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We start from a generic dual conformal correlator, and require it to be conformally covariant

in coordinate space. The two requirements constrain such solutions to take a unique

hypergeometric form. They describe correlators which are at the same time conformal and

dual conformal in any dimension. These specific ansätze also show the existence of a link

between 3- and 4-point functions of a CFT for such class of exact solutions, similarly to

what found for planar ladder diagrams. We show that in d = 4 only the box diagram and its

melonic variants, in free field theory, satisfies such conditions, the remaining solutions being

nonperturbative. We then turn to the analysis of some approximate high energy fixed angle

solutions of the CWI’s which also in this case take the form of generalized hypergeometric

functions. We show that they describe the behaviour of the 4-point functions at large energy

and momentum transfers, with a fixed −t/s. The equations, in this case, are solved by

linear combinations of Lauricella functions of 3 variables and can be rewritten as generalized

4K integrals. In both cases the CWI’s alone are sufficient to identify such solutions and

their special connection with generalized hypergeometric systems of equations.
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1 Introduction

The study of conformal correlators of lower points, such as 2- and 3-point functions in

d = 4 and higher/lower spacetime dimensions, plays a special role in conformal field theory

(CFT). In fact, they are almost completely determined by the symmetry of the theory,

except for few constants which are specific of a given CFT. One of the objectives of these

investigations is to determine the correlation functions of a given theory without resorting to

a Lagrangian realization. This allows to move beyond the standard perturbative approach,

whenever this is possible, identifying interacting CFT’s which do not necessarily have a

corresponding free field theory realization.

One of the few reasons which motivate the study of such correlators in coordinate

space is the possibility of imposing on them the conformal constraints in a simpler way

compared to momentum space. This approach also plays a key role in the realization of the

conformal bootstrap, where higher point functions are computed starting from correlators

of lower points, using an expansion in conformal partial waves [1, 2].

On the other hand, one of the advantages of the momentum space approach to the

determination of CFT correlators, is that it allows to establish a link with the ordinary

perturbative Feynman expansion. In particular, it allows to compare general results with

explicit realizations of CFT’s, where a large variety of methods are available. While the

latter are directly connected with a specific Lagrangian realization, the analysis of the

conformal Ward identities (CWI’s) in momentum space, on the other hand, allows to

investigate the operatorial content of a CFT in the most general way, whenever this is

possible. As shown in the case of rather complex correlators such as the TTT and TJJ,

where T denotes the stress-energy tensor of a given CFT and J a gauge current, by matching

perturbative [3–5] and general CFT solutions [6–9] — both in momentum space — it is

possible to rewrite the renormalized expressions of such correlators — in the most general

CFT, at least for d = 4 — in a very simple form, just in terms of scalar one-loop 2- and

3-point functions.

Most of such comparative studies performed in momentum space, which reconstruct

the correlation function in a completely autonomous way, have dealt with scalar and tensor

correlators [3, 5–8, 10, 11] only in d = 3, 4, 5 dimensions, and limitedly to 3-point functions.

In even spacetime dimensions, the study of such constraints in momentum space finds

important applications in the context of the conformal anomaly action [12–14], which has

been investigated in the perturbative context in d = 4.
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Beside the case of d = 4, we also mention that in d = 3 such correlators play an

important role in the analysis of the gravitational perturbations and find wide applications

in the investigation of nongaussianities [15], in holographic cosmology [16, 17] and also

in condensed matter [18]. More recently, a general formalism for the extension of such

analysis to a De Sitter background, in the context of inflationary cosmology, has been

formulated [19–22]. The general analysis of such correlators provides a complementary

approach with respect to those developed in the last two decades in the context of pertur-

bative gauge theory amplitudes (see [23, 24] for an overview). The latter, in fact, rely on

specific Lagrangian realizations and on supersymmetry. In d = 4, one of the principal goals

of this program, from our perspective, is the investigation of the structure of multipoint

correlators containing stress energy tensors, in order to characterize the structure of the

conformal anomaly action in a unique way.

1.1 Towards 4-point functions

In any attempt to move towards correlators of higher rank and spin, which can obviously

parallel the significant developments obtained in coordinate space, it is necessary to in-

vestigate first the case of scalar amplitudes, as already done for 3-point functions. As

well known from coordinate space, such 4-point correlators are not completely fixed by the

CWI’s, since these are easily solved modulo a generic function of the conformal invariant

ratios. The ambitious goal of the conformal bootstrap program is to constrain such un-

determined functions by using an expansion in conformal partial waves and the operator

algebra of the corresponding OPE.

In some cases, however, it is possible to completely fix some correlation functions only

by solving the corresponding CWI’s, as we are going to show, by invoking an extra symme-

try. This extra symmetry combines conformal invariance and dual conformal invariance at

the same time. Also in this case it is important to work in full generality, only at the level

of the CWI’s, and we will derive the explicit forms of such solutions in momentum space.

We will show that the CWI’s reduce to an hypergeometric system of equations which can

be solved as in the case of 3-point functions.

1.2 Dynamical symmetries in momentum space

Often, conformal properties of the perturbative expansion are found by the direct inspec-

tion of large classes of Feynman diagrams and indicate the presence of symmetries in the

perturbative expansion of a given Lagrangian field theory. The simplest example is pro-

vided by ladder diagrams of 3- and 4-point functions in a scalar φ3 theory which, obviously,

is not conformal invariant in d = 4, due to a dimensionful coupling.

However, as noticed long ago by Ussuykina, Davydychev and Broadhurst [25–28] a cer-

tain class of ladder diagrams of 3- and 4-point functions are related by certain redefinitions

of some combinations of momenta in their explicit solutions. Such properties are not iden-

tified as generated by symmetries of the original Lagrangian, but provide — neverthless —

examples of other symmetries of the integrands of such diagrams, later denominated dual

conformal symmetries (or DC). They play a role in specific field theory realizations, as in

the planar limit of the N = 4 super Yang-Mills gauge theory, and are generically identified
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as being of dynamical origin. Obviously, such symmetries although characterized by a set

of WI, are not symmetries of the action.

We establish a link, whenever such a link exists, between the results of [25–28] and

the general CWI’s of primary operators. Obvious differences exist between the class of

conformal integrals identified in perturbation theory, which provide a realization of the DC

symmetries in a Lagrangian realization, and the solutions of the CWI’s of primary opera-

tors, which are rendered manifest by the type of ansätze that we choose. In particular, we

will show that CFT’ s where such symmetries are realized are essentially non-perturbative.

For instance, ladder correlators do not share such symmetries, except for the box diagram

and its melonic extensions.

1.3 Our work

In this work we are going to move to the analysis of 4-point functions in momentums space

by investigating some scaling solutions of primary operators, showing that the hypergeo-

metric character of the corresponding CWI’s, already found in the case of 3-point functions,

at least for such solutions, is preserved. Our analysis extends to 4-point functions previous

similar studies [3–8, 10], formulated for scalar correlators.

The solutions that we present, as we are going to elaborate, can be classified as being

dual conformal (DC), as described in [29–31], and conformal in coordinate space (DCC)

at the same time. They are constructed by requiring that they satisfy the first order

differential conditions of dual conformal invariance, together with the second order ones

coming from ordinary conformal symmetry. Both conditions are implemented and solved

in momentum space.

The solutions that we identify can be written in two forms, either as generalized hyper-

geometrics, now functions of quartic ratios of momenta, or as integrals of 3 Bessel functions

(3K integrals). It will be clear, from our approach, that a central part in our analysis is

played by the hypergeometric system of partial differential equations (PDE’s) which emerge

from CWI’s once we select a certain ansätz for a given correlator in momentum space.

1.4 Dual conformal ansätz (DCA) and conformal invariance in coordinate

space

We use specific (dual conformal) ansätze (DCA’s) to reduce the system of CWI’s to

Appell’s hypergeometric functions, by introducing specific factorization of the expression

of the correlators in terms of a scaling factor and of a remaining scale-invariant func-

tion of some conformal ratios. The various DCA’s allow us to build such exact solutions

in momentum space, link 3- and 4- point functions, exemplifying well known previous

results [25–28, 32, 33] on ladder diagrams in perturbation theory, as mentioned above.

These have provided the first examples of dual conformal symmetry in the planar limit for

scalar ladders.

We solve the equations in two cases, for equal scalings (∆i = ∆, i = 1, . . . 4) of the

primary operators and for two separate scalings (∆1 = ∆2 = ∆x,∆3 = ∆4 = ∆y). The

choice of the ansätz in momentum space implies that the solutions that we are looking

for are dual conformal to begin with, and their Fourier transform to coordinate space is
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conformal as well. This last step is guaranteed if the ansätz satisfies the ordinary CWI’s

in coordinate space, which become second order PDE’s in momentum space.

We show that for the solution of CWI’s in momentum space that we derive one can

use the same formalism of the 3K integrals known for 3-point functions, though equivalent

to their hypergeometric form.

By re-expressing the solutions generated by the ansätze as 3K integrals, the different

ansätze are shown to determine a unique class of solutions, expressed just in terms of an

overall constant and specific scaling dimensions. We will comment on the difference between

such a result and those found in the computation of ladder diagrams in perturbation

theories, where different dual conformal expressions — associated to specific one, two loop

diagrams etc. — have, obviously, different analytic expressions.

1.5 Approximate conformal solutions of primary operators and the Lauricella

system

Beside the search for exact solutions of the CWI’s using the DCA in momentum space, in

a second part of our study we are also going to focus our attention on some approximate

solutions of the same CWI’s (for primary operators) using a specific kinematic approxima-

tion. Obviously, all our considerations apply to ordinary scattering amplitudes which are

conformal in coordinate space, in particular to Feynman integrals of such type. We show

that if we consider large s and t (Mandelstam) invariants in the correlators, with −t/s
fixed, suitable for a description of the same equations at fixed angle, the CWI’s simplify.

The equations, in this approximation, are going to factorize the dependence on the

external invariants s, t, from the remaining external mass invariants p2
i . We show that the

equations are fully compatible with asymptotic solutions which are logarithmic in −t/s
in the Minkowski region, while the external mass invariants parameterize Lauricella func-

tions, i.e. hypergeometric functions of 3 independent ratios. We show how such solutions

and systems of equations can be equivalently described by the natural generalization of

the 3K integrals to 4K. We conjecture that this pattern may extend to even higher point

functions when the external mass invariants are separated from the remaining invariants

scalar products of 2 different momenta. It seems clear that such factorized ansätze capture

the essential behaviour of these correlators in some special kinematical limits, as it has

been long known in the case of the Regge limit even at next-to-leading order in the gauge

coupling, using conformal methods of t-channel unitarity [34–37]. In all these cases the

CFT constraints provide rather simple predictions compared to the explicit NLO compu-

tations performed in QCD, with new partial waves appearing at NLO in the conformal

reconstruction of the evolution (BFKL) kernel at the same order.

1.6 Notational remarks

We will be denoting with xi the coordinate dependence of a correlator. We will reserve the

symbols yi to denote the dual coordinates in momentum space of the same correlator, while

the (incoming) four-momenta will be denoted as pi. The variables x and y (without any

lower positional index i) will be used to denote ratios in momentum space expressed in terms

of the invariants built out of the momenta pi. Instead, the two invariant ratios in coordinate
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space, defined below, will be denoted as u(xi) and v(xi). The same invariant ratios in the

dual conformal coordinates will be denoted as u(yi) and v(yi). The generators of the dual

conformal symmetry will carry a yi dependence, such as D(yi),K
κ(yi) for dilatation and

special conformal transformations. Their versions in momentum space will be denoted as

D(pi),K
κ(pi), where in all these cases yi ≡ (y1 . . . y4), xi ≡ (x1, . . . x4) and pi ≡ (p1, . . . p4).

As will be hopefully clear in the following, Kκ(y), the special conformal generator in

momentum space but in the dual conformal coordinates is a first order differential operator

while Kκ(pi) is second order.

2 Three- and four-point functions from conformal invariance for

correlators of primaries

In order to clarify the new features of 4-point functions respect to correlators of lower

points, we start our discussion by reviewing the case of such correlators in coordinate

space. For 3-point functions we summarize the approach used in the analysis of primary

scalar 3-point functions directly in momentum space, discussed in previous studies [10].

We consider the simple case of a correlator of n primary scalar fields Oi(xi), each of scaling

dimension ∆i

Φ(x1, x2, . . . , xn) = 〈O1(x1)O2(x2) . . . On(xn)〉 . (2.1)

Among these, 3- and 4-point functions (beside 2-point functions) in any CFT are signifi-

cantly constrained in their general structure. Scalar 3-point functions of primary operators

φi of scaling dimensions ∆i (i = 1, 2, 3) are constrained to be of the form

〈φ1(x1)φ2(x2)φ3(x3)〉 =
C123

x∆t−2∆3
12 x∆t−2∆1

23 x∆t−2∆2
13

, ∆t ≡
3∑
i=1

∆i. (2.2)

C123 is a constant which specifies the CFT (the “CFT data”). For 4-point functions the

constraints determine the structure of the correlator in a less effective way. In that case

one identifies the two cross ratios

u(xi) =
x2

12x
2
34

x2
13x

2
24

v(xi) =
x2

23x
2
41

x2
13x

2
24

(2.3)

and the general solution can be written in the form

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = h(u(xi), v(xi))
1(

x2
12

)∆1+∆2
2

(
x2

34

)∆3+∆4
2

(2.4)

where h(u(xi), v(xi)) remains unspecified. We are going to show that the equations may

constrain h(u(xi), v(xi)) to take a specific form in momentum space, if we look for a specific

ansätz.

For scalar correlators the special CWI’s are given by first order differerential equations

Kκ(xi)Φ(x1, x2, . . . , xn) = 0 (2.5)

– 5 –
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with

Kκ(xi) ≡
n∑
j=1

(
2∆jx

κ
j − x2

j

∂

∂xκj
+ 2xκj x

α
j

∂

∂xαj

)
(2.6)

being the corresponding generator in coordinate space. The same operator, deprived of the

scaling coefficients, will be denoted as Kκ
0 (xi), i.e.

Kκ
0 (xi) ≡

n∑
j=1

(
2xκj x

α
j

∂

∂xαj
− x2

j

∂

∂xκj

)
. (2.7)

Conformal covariance and conformal invariance in coordinate space simply refer to the

validity of (2.5) and of

Kκ
0 (xi)Φ(x1, x2, . . . , xn) = 0 (2.8)

respectively. Denoting with

Φ(p1, . . . pn−1, p̄n) = 〈O1(p1) . . . On(p̄n)〉 (2.9)

and

Kκ(pi) ≡
n−1∑
j=1

(
2(∆j − d)

∂

∂pκj
+ pκj

∂2

∂pαj ∂p
α
j

− 2pαj
∂2

∂pκj ∂p
α
j

)
(2.10)

the Fourier transform of (2.1) and of (2.6) respectively, the form of the second order

differential equations is given by

Kκ(pi)Φ(p1, . . . pn−1, p̄n) = 0, (2.11)

where we have chosen p̄µn = −
∑n−1

i=1 p
µ
i the n-th momentum, to be the linearly depen-

dent one. The action of the differential operators is realized on the shell of momentum

conservation, where the 4-th momentum, conventionally, will be taken as dependent from

the previous ones. Coming to the dilatation WI’s, in our conventions, a scale-covariant

function in coordinate space

φ(λxi) = λ−∆φ(xi) (2.12)

gives in momentum space

φ(λp1 . . . λp̄n) = λ−∆′φ(p1 . . . p̄n), (2.13)

with

∆′ ≡

(
−

n∑
i=1

∆i + (n− 1)d

)
= −∆t + (n− 1)d. (2.14)

The corresponding equations are

D(xi)Φ(x1, . . . xn) = 0 (2.15)

with

D(xi) ≡
n∑
i=1

(
xαi

∂

∂xαi
+ ∆i

)
(2.16)
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for scale covariant correlators, in the case of scale invariance turn into

D0(xi)Φ(x1, . . . xn) = 0 (2.17)

with D0(xi) given by

D0(xi) ≡
n∑
i=1

(
xαi

∂

∂xαi

)
. (2.18)

In momentum space, the condition of scale covariance and invariance are respectively

given by

D(pi)Φ(p1 . . . p̄n) = 0 (2.19)

with

D(pi) ≡
n−1∑
i=1

pαi
∂

∂pαi
+ ∆′ (2.20)

and

D0(pi)Φ(p1 . . . p̄n) = 0 (2.21)

with

D0(pi) ≡
n−1∑
i=1

pαi
∂

∂pαi
. (2.22)

Once we move to dual conformal coordinates in momentum space, denoted as yi below,

it is important to keep clearly in mind the separation between actions of K or D, such

as those induced by their expressions in xi coordinates, from their second order in the pi
variable. It is also common to refer to dual conformal symmetry to just an independent

SO(2, 4) symmetry respect to the ordinary conformal symmetry of coordinate space (or of

its Fourier image).

2.1 Equations for 3-point functions and the hypergeometric solutions

For 3-point functions the momentum dependence of the correlator is parameterized

uniquely by p2
1, p

2
2 and p3

3, the three external invariant masses and we will denote with

pi their magnitudes. The CWI’s in momentum space, in this case, can be reduced to scalar

equations by some manipulations, as discussed in [5, 6, 10]. Introducing the operators

Ki =
∂2

∂p2
i

+
d+ 1− 2∆i

pi

∂

∂pi
i = 1, 2, 3 (2.23a)

Kij = Ki −Kj (2.23b)

Φ(p1, p2, p3), in the scalar case, is constrained by two equations derived from the special

conformal transformations

K12Φ(p1, p2, p3) = 0 K13Φ(p1, p2, p3) = 0 (2.24)

and the dilatation WI

3∑
i=1

pi
∂

∂pi
Φ(p1, p2, p3) = (∆t − 2d)Φ(p1, p2, p3). (2.25)

– 7 –



J
H
E
P
0
9
(
2
0
1
9
)
1
0
7

Following the approach presented in [10], the ansätz for the solution can be taken of

the form

Φ(p1, p2, p3) = p∆t−2d
3 xaybF (x, y) (2.26)

with x =
p2

1

p2
3

and y =
p2

2

p2
3
. Here we are taking p3 as “pivot” in the expansion, but we could

have equivalently chosen as such any of the 3 momentum invariants p2
i . Φ is required to

be homogeneous of degree ∆t − 2d under a scale transformation, according to (2.25), and

in (2.26) this is taken into account by the factor p∆t−2d
3 . In order to perform the reduction

to the hypergeometric form of the equations, we need to set the (Fuchsian) indices

a = 0 ≡ a0 or a = ∆1 −
d

2
≡ a1. (2.27)

In order to reduce the equation K13Φ = 0 to an hypergeometric system. From the equation

K23Φ = 0 we obtain a similar condition for b, thereby fixing the two remaining (Fuchsian)

indices

b = 0 ≡ b0 or b = ∆2 −
d

2
≡ b1. (2.28)

The complete equivalence of the CWI’s (2.24) with an hypergeometric system of equations

is obtained by choosing such particular (a, b) exponents in the non-scale invariant part of

the ansätz. The four independent solutions of the CWI’s then will all be characterized by

the same 4 pairs of indices (ai, bj) (i, j = 1, 2). Setting

α(a, b) = a+ b+
d

2
− ∆1 + ∆2 −∆3

2
β(a, b) = a+ b+ d− ∆1 + ∆2 + ∆3

2
(2.29)

the general solutions takes the form

Φ(p1, p2, p3) = p∆−2d
3

∑
a,b

c(a, b, ~∆t)x
ayb F4(α(a, b), β(a, b); γ(a), γ′(b);x, y) (2.30)

where the sum runs over the four values ai, bi i = 0, 1 with constants c(a, b, ~∆t) and
~∆t = (∆1,∆2,∆3). Defining

α ≡ α(a0, b0) =
d

2
− ∆1 + ∆2 −∆3

2
, β ≡ β(b0) = d− ∆1 + ∆2 + ∆3

2
,

γ ≡ γ(a0) =
d

2
+ 1−∆1, γ′ ≡ γ(b0) =

d

2
+ 1−∆2, (2.31)

the 4 independent solutions can be re-expressed in terms of the parameters above as

S1(α, β; γ, γ′;x, y) ≡ F4(α, β; γ, γ′;x, y) =

∞∑
n=0

∞∑
m=0

(α)n+m (β)n+m

(γ)n (γ′)m

xn

n!

ym

m!
(2.32)

with the definition of the Pochhammer symbol (λ)k given by

(λ)k =
Γ(λ+ k)

Γ(λ)
= λ(λ+ 1) . . . (λ+ k − 1), (2.33)
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and

S2(α,β;γ,γ′;x,y) =x1−γ F4(α−γ+1,β−γ+1;2−γ,γ′;x,y) ,

S3(α,β;γ,γ′;x,y) = y1−γ′ F4(α−γ′+1,β−γ′+1;γ,2−γ′;x,y) ,

S4(α,β;γ,γ′;x,y) =x1−γ y1−γ′ F4(α−γ−γ′+2,β−γ−γ′+2;2−γ,2−γ′;x,y) . (2.34)

for which the solution can be written in the final form

Φ(p1, p2, p3) = p∆−2d
3

4∑
i=1

ci(∆1,∆2,∆3)Si(α, β; γ, γ′;x, y) (2.35)

where ci are arbitrary coefficients which may depend on the scale dimensions ∆i and on the

spacetime dimension d. An equivalent version of the solution found above can be derived

as in [6], where it is written in terms of K Bessel functions as

Φ(p1,p2,p3) =C123 p
∆1− d

2
1 p

∆2− d
2

2 p
∆3− d

2
3

∫ ∞
0

dxx
d
2
−1K∆1− d

2
(p1x)K∆2− d

2
(p2x)K∆3− d

2
(p3x)

(2.36)

where C123 is an undetermined constant. This formalism will be used later in the analysis

of the solution of the 4-point function.

2.2 Symmetrizations

Notice that in the scalar case, for ordinary correlators, one is allowed to require its com-

plete symmetry under the exchange of the 3 external momenta and scaling dimensions,

as discussed in [10]. This reduces the four constants of integration to just one overall.

The 4 independent solutions are then all of the form xaybF4, with a and b fixed by (2.27)

and (2.28). Such values of the (a, b) exponents in the part of the ansätz which is not scale

invariant, are determined by the condition that the 1/x and 1/y contributions vanish in the

PDE’s, turning the CWI’s into a hypergeometric system of two equations, whose structure

is symmetric under the exhange of x and y.

For tensor correlators such as the TJJ or the TTT an extensive use of the properties of

the hypergeometric operators Kij allows to build the complete solutions for the form factors

which parameterize each of these correlators [3, 5]. Imposing the symmetry conditions is,

in general, rather cumbersome, and one has to rely on one of the few relations known for

the Appell function F4, specifically the inversion formula

F4(α,β;γ,γ′;x,y) =
Γ(γ′)Γ(β−α)

Γ(γ′−α)Γ(β)
(−y)−αF4

(
α,α−γ′+1;γ,α−β+1;

x

y
,
1

y

)
+

Γ(γ′)Γ(α−β)

Γ(γ′−β)Γ(α)
(−y)−β F4

(
β−γ′+1,β;γ,β−α+1;

x

y
,
1

y

)
(2.37)

which allows to reverse the ratios respect to the momentum chosen as pivot. The sym-

metrization, obviously, allows to reduce the number of constants.
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2.3 Extracting the physical solution

In order to clarify this subtle point, we illustrate the possible methods that can be followed

in order to identify the unique physical solution of the hypergeometric equations.

Notice, as already mentioned above, that the four solutions (2.32) and (2.34) define

the basis into which any solution can be expanded. Such basis allows to generate by linear

combination any function which is symmetric in the external momenta, under the condition

that the constants ci(∆1,∆2,∆3) are appropriately chosen. This is exactly what (2.37)

allows to achieve. In fact, by using (2.37), the general symmetric solution can be identified

— modulo a single overall constant — in the form [10]

〈O(p1)O(p2)O(p3)〉 =
(
p2

3

)−d+
∆t
2 C(∆1,∆2,∆3, d){

Γ

(
∆1 −

d

2

)
Γ

(
∆2 −

d

2

)
Γ

(
d− ∆1 + ∆2 + ∆3

2

)
Γ

(
d− ∆1 + ∆2 −∆3

2

)
× F4

(
d

2
− ∆1 + ∆2 −∆3

2
, d− ∆t

2
,
d

2
−∆1 + 1,

d

2
−∆2 + 1;x, y

)
+ Γ

(
d

2
−∆1

)
Γ

(
∆2 −

d

2

)
Γ

(
∆1 −∆2 + ∆3

2

)
Γ

(
d

2
+

∆1 −∆2 −∆3

2

)
× x∆1− d

2 F4

(
∆1 −∆2 + ∆3

2
,
d

2
− ∆2 + ∆3 −∆1

2
,∆1 −

d

2
+ 1,

d

2
−∆2 + 1;x, y

)
+ Γ

(
∆1 −

d

2

)
Γ

(
d

2
−∆2

)
Γ

(
−∆1 + ∆2 + ∆3

2

)
Γ

(
d

2
+
−∆1 + ∆2 −∆3

2

)
× y∆2− d

2 F4

(
∆2 −∆1 + ∆3

2
,
d

2
− ∆1 −∆2 + ∆3

2
,
d

2
−∆1 + 1,∆2 −

d

2
+ 1;x, y

)
+ Γ

(
d

2
−∆1

)
Γ

(
d

2
−∆2

)
Γ

(
∆1 + ∆2 −∆3

2

)
Γ

(
−d

2
+

∆1 + ∆2 + ∆3

2

)
× x∆1− d

2 y∆2− d
2F4

(
−d

2
+

∆t

2
,
∆1 + ∆2 −∆3

2
,∆1 −

d

2
+ 1,∆2 −

d

2
+ 1;x, y

)}
.

(2.38)

One can verify that the symmetric solution above does not have any unphysical singularity

in the physical region and it has the expected behaviour in the large momentum limit

p3 � p1, in agreement with the requirements discussed in [38]. In fact, one can check

that the previous expression, in the limit p3 � p1 (expressible also as p2
3, p

2
2 → ∞ with

p2
2/p

2
3 → 1 fixed), it behaves as

〈O(p1)O(p2)O(p3)〉 ∝ f(d,∆i) p
∆1+∆2+∆3−2d
3 (1 +O (p1/p3)) if ∆1 >

d

2
(2.39)

and

〈O(p1)O(p2)O(p3)〉 ∝ g(d,∆i) p
∆2+∆3−∆1−d
3 p2∆1−d

1 (1 +O (p1/p3)) if ∆1 <
d

2
, (2.40)

with f(d,∆i) and g(d,∆i) depending only on the scaling and spacetime dimensions. No-

tice that this approach introduces the minimal set of independent solutions. The result

above in (2.38) is in complete agreement with the direct computation performed by Davy-

dychev [25] of the generalized master integrals, obtained by a Fourier transform of (2.2)

and the use of the Mellin-Barnes method.
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An alternative method consists in performing an explicit symmetrization of each of

the four solutions and corresponding constants cjSj (j = 1, 2, 3, 4), obtained by permuting

the (pi,∆i) under the S3 permutation group.

We remark that the method, in this case, introduces twenty-four functionally depen-

dent contributions which, again, can be simplified by a repeated use of (2.37). In this case

one discovers, after this simplification, that the symmetric solution so generated may man-

ifest some unphysical singularities which disappear for a specific choice of the fundamental

constants. A rather lengthy computation shows that the choice of such constants coincides

with those presented in the solution (2.38), originally given in [10], which involves the four

basic solutions Sj (2.32) and (2.34).

An alternative approach is based on the formalism of the 3K integrals developed

in [6, 8], which for 3-point function is automatically symmetric. In this case the linear

combination of the four solutions Si appearing in each 3K integral — as one can deduce

from eq. (5.29) — has been checked to be free of unphysical singularities in the region of

convergence.

In the case of 4-point functions the only method which appears manageable is the

explicit symmetrization of the fundamental solutions accompanied by the requirement that

the symmetric expression is free of unphysical singularities in the pnysical domain. We will

be illustrating this point in the following sections.

3 CWI’s for scalar four-point functions

From this subsection on we discuss an extension of the method summarized above to 4-

point functions. We follow a similar strategy, by choosing a specific set of variables to

characterize the ansätz for the solution of the corresponding PDE’s. In the case of 3-point

functions it is quite clear that the special CWI’s are two equations and one can explicitly

show that they remain independent after we introduce the ansätz (2.26). In the class of

solutions that we look for, with a specific ansätz, two of the three constraining equations

are independent, while a third equation is automatically satisfied.

In the case of the four point function the correlator depends on six invariants that we

will normalize as pi = |
√
pi2|, i = 1, . . . , 4, representing the magnitudes of the momenta,

and s = |
√

(p1 + p2)2|, t = |
√

(p2 + p3)2| the two Mandelstam invariants, redefined by a

square root. The CWI’s are, in this case

〈O(p1)O(p2)O(p3)O(p̄4)〉 = Φ(p1, p2, p3, p4, s, t). (3.1)

This correlation function, to be conformally invariant, has to verify the dilatation Ward

Identity [
4∑
i=1

∆i − 3d−
3∑
i=1

pµi
∂

∂pµi

]
〈O(p1)O(p2)O(p3)O(p̄4)〉 = 0 (3.2)

and the special conformal Ward Identities

3∑
i=1

[
2(∆i − d)

∂

∂pi κ
− 2pαi

∂2

∂pαi ∂p
κ
i

+ pκi
∂2

∂pαi ∂pi α

]
〈O(p1)O(p2)O(p3)O(p̄4)〉 = 0. (3.3)
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One can split these equations in terms of the invariants of the four-point function written

in (3.1), by using the chain rules

∂

∂p1µ
=
pµ1
p1

∂

∂p1
− p̄µ4
p4

∂

∂p4
+
pµ1 + pµ2

s

∂

∂s
(3.4)

∂

∂p2µ
=
pµ2
p2

∂

∂p2
− p̄µ4
p4

∂

∂p4
+
pµ1 + pµ2

s

∂

∂s
+
pµ2 + pµ3

t

∂

∂t
(3.5)

and similarly for the pµ3 momentum, where p̄µ4 = −pµ1 − p
µ
2 − p

µ
3 . From this prescription the

dilatation WI becomes[
(∆t − 3d)−

4∑
i=1

pi
∂

∂pi
− s ∂

∂s
− t ∂

∂t

]
Φ(p1, p2, p3, p4, s, t) = 0, (3.6)

with ∆t =
∑

i ∆i is the total scaling, and the special CWI’s can be written as

3∑
i=1

pκi Ci = 0, (3.7)

where the coefficients Ci are differential equations of the second order with respect to the

six invariants previously defined. Being pκ1 , p
κ
2 , p

κ
3 , in (3.7) independent, we derive three

scalar second order equations for each of the three Ci, which must vanish independently.

At this stage the procedure to simplify the corresponding equations is similar to the

one described in [3, 5]. A lengthy computation allows to rewrite the equations in the form

C1 =

{
∂2

∂p2
1

+
(d− 2∆1 + 1)

p1

∂

∂p1
− ∂2

∂p2
4

− (d− 2∆4 + 1)

p4

∂

∂p4

+
1

s

∂

∂s

(
p1

∂

∂p1
+ p2

∂

∂p2
− p3

∂

∂p3
− p4

∂

∂p4

)
+

(∆3 + ∆4 −∆1 −∆2)

s

∂

∂s

+
(p2

2 − p2
3)

st

∂2

∂s∂t

}
Φ(p1, p2, p3, p4, s, t) = 0 (3.8)

for C1 and

C2 =

{
∂2

∂p2
2

+
(d− 2∆2 + 1)

p2

∂

∂p2
− ∂2

∂p2
4

− (d− 2∆4 + 1)

p4

∂

∂p4

+
1

s

∂

∂s

(
p1

∂

∂p1
+ p2

∂

∂p2
− p3

∂

∂p3
− p4

∂

∂p4

)
+

(∆3 + ∆4 −∆1 −∆2)

s

∂

∂s

+
1

t

∂

∂t

(
p2

∂

∂p2
+ p3

∂

∂p3
− p1

∂

∂p1
− p4

∂

∂p4

)
+

(∆1 + ∆4 −∆2 −∆3)

t

∂

∂t

+
(p2

2 − p2
4)

st

∂2

∂s∂t

}
Φ(p1, p2, p3, p4, s, t) = 0 (3.9)

C3 =

{
∂2

∂p2
3

+
(d− 2∆3 + 1)

p3

∂

∂p3
− ∂2

∂p2
4

− (d− 2∆4 + 1)

p4

∂

∂p4

+
1

t

∂

∂t

(
p2

∂

∂p2
+ p3

∂

∂p3
− p1

∂

∂p1
− p4

∂

∂p4

)
+

(∆1 + ∆4 −∆2 −∆3)

t

∂

∂t

+
(p2

2 − p2
1)

st

∂2

∂s∂t

}
Φ(p1, p2, p3, p4, s, t) = 0 (3.10)
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y3

y1
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p1

p3

p4

Figure 1. The box with its dual (left) and its higher scaling version (right). While the first is

conformal for d 6= 2 in ordinary conformal coordinates and for d = 4 in dual coordinates, the right

one is not conformal in coordinate and dual coordinate space at the same time.

for C2 and C3, in agreement with [19]. One of the two equations that we will be solving

will be C13 ≡ C1 − C3 = 0 and it is convenient to present it explicitly

C13 =

{
∂2

∂p2
1

+
(d− 2∆1 + 1)

p1

∂

∂p1
− ∂2

∂p2
3

− (d− 2∆3 + 1)

p3

∂

∂p3

+
1

s

∂

∂s

(
p1

∂

∂p1
+ p2

∂

∂p2
− p3

∂

∂p3
− p4

∂

∂p4

)
+

(∆3 + ∆4 −∆1 −∆2)

s

∂

∂s

+
1

t

∂

∂t

(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)
+

(∆2 + ∆3 −∆1 −∆4)

t

∂

∂t

+
(p2

1 − p2
3)

st

∂2

∂s∂t

}
Φ(p1, p2, p3, p4, s, t) = 0. (3.11)

4 Dual conformal/conformal (DCC) examples

Before moving to a discussion of the DCA’s and the character of the solutions that we

are going to identify, we turn to some specific examples of perturbative 4-point functions

which are both conformal and dual conformal at the same time (DCC). We recall that

a dual conformal integral [29–31] is a Feynman integral which, once rewritten in terms of

some dual coordinates, under the action of Kκ, is modified by factors which depend only

on the coordinates of the external points. The reformulation of the ordinary momentum

integral in terms of such dual coordinates can be immediately worked out by drawing the

associated dual diagram. We start from the ordinary box diagram (see figure 1)

ΦBox(p1, p2, p3, p4) =

∫
ddk

k2(k + p1)2(k + p1 + p2)2(k + p1 + p2 + p3)2
(4.1)

and apply the redefinition in terms of momentum variables yi

k = y51, p1 = y12, p2 = y23, p3 = y34 (4.2)
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with yij = yi − yj , thereby rewriting the integral in the form

ΦBox(y1, y2, y3, y4) =

∫
ddy5

y2
15y

2
25y

2
35y

2
45

(4.3)

The action of Kκ is realized in the form I · T · I (inversion, translation and inversion

transformations) rather than as a differential action (by Kκ
0 ). We recall that under an

inversion (I)

I(ddy5) = ddy5(y2
5)
−d I(y2

ij) =
y2
ij

y2
i y

2
j

(4.4)

and in order to have an expression which is invariant under special conformal transforma-

tion, it is necessary to include a pre-factor in ΦBox, in the form

s2t2ΦBox(p1, p2, p3, p4) = y2
13y

2
24ΦBox(y1, y2, y3, y4) (4.5)

then its is easy to check that under the action of I the integrand

I
(
ddy5y

2
13y

2
24

y2
15y

2
25y

2
35y

2
45

)
=

(
ddy5(y2

5)4−dy2
13y

2
24

y2
15y

2
25y

2
35y

2
45

)
(4.6)

becomes invariant under the action of the special conformal transformation if d = 4. Ob-

viously, the invariance under the complete action IT I is ensured. It is easily checked that

the integrand is also scale invariant. It is then clear that the expression of the box diagram

can only be of the form

ΦBox =
1

y2
13y

2
24

F
(
u(yi), v(yi)

)
(4.7)

with u and v given by

u(yi) =
y2

12y
2
34

y2
13y

2
24

v(yi) =
y2

23y
2
41

y2
13y

2
24

(4.8)

For future purposes it will be convenient to define

x =
p2

1 p
2
3

s2 t2
, y =

p2
2 p

2
4

s2 t2
(4.9)

being the two invariant ratios u(yi), v(yi), now expressed directly in terms of the original

momentum invariants. Notice that, by construction u, v satisfy the first order equation in

the y variables

Kκ
0 (y)u(yi) =

4∑
j=1

(
−y2

j

∂

∂yκj
+ 2yκj y

α
j

∂

∂yαj

)
u(yi) = 0

Kκ
0 (y) v(yi) =

4∑
j=1

(
−y2

j

∂

∂yκj
+ 2yκj y

α
j

∂

∂yαj

)
v(yi) = 0

(4.10)

while the action of Kκ
0 (p) on x and y will be nonzero.

Notice that while the two forms of the Kκ
0 operator Kκ

0 (xi) (coordinate) and Kκ
0 (pi)

(momenta) are one the Fourier transform of the other, x and y in (4.9) are not the Fourier

images of u(xi) and v(xi).
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The box diagram is an example of a diagram which is dual conformal and conformal

in d = 4. To show this point reconsider this diagram in coordinate space

ΦBox(xi) =
1

x2
12x

2
23x

2
34x

2
41

, (4.11)

that we can rewrite in the form

ΦBox(xi) =
1(

x2
12x

2
34

)2 (x2
12x

2
34

x2
23x

2
41

)

=
1(

x2
12x

2
34

)2 (u(xi)

v(xi)

)
(4.12)

which is the conformally covariant correlator generated by 4 scalar primary fields (φi) in

d = 4 with ∆i = 2. Denoting with χ an ordinary scalar field of scaling dimension 1, and

setting φi = χ2 we would have

ΦBox(xi) ≡ 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = 〈χ2(x1)χ2(x2)χ2(x3)χ2(x4)〉

=
1

(x2
12)∆(x2

34)∆
h
(
u(xi), v(xi)

)
(4.13)

with ∆ = 2 and h
(
u(xi), v(xi)

)
= u(xi)/v(xi). It is then obvious that the scalar box

diagram satisfies the four constraints

Kκ(xi)Φ(xi) = 0 D(xi)ΦBox(xi) = 0 (4.14)

Kκ(yi)Φ(yi) = 0 D(yi)ΦBox(yi) = 0 (4.15)

in coordinates xi and dual (momentum) coordinates yi respectively as a system of first

order PDE’s. The system of equations can be all reported to momentum space in the form

Kκ(pi)ΦBox(pi) = 0 D(pi)ΦBox(pi) = 0 (4.16)

Kκ(yi)Φbox(yi) = 0 D(yi)ΦBox(yi) = 0 (4.17)

as a system of second and first order constraints. We are going to discuss the solution of

such constraints in detail, showing its unique hypergeometric structure.

4.1 DCC solutions and the Feynman expansion: melonic contributions

The case discussed above is a special one. In general, in fact, in perturbation theory, it is

possible to find solutions which are dual conformal or conformal, but not both, since some

of the basic requirements are violated.

Consider the case of the perturbative melonic diagram shown in figure 1 where we have

introduced a composite operator

φ(xi) = χn+m(xi) n,m ∈ N (4.18)

in d dimensions with n + m = N ∈ N fixed, which in free field theory generates the

correlator

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

x
2a(n)
12 x

2b(m)
23 x

2a(n)
34 x

2b(m)
41

(4.19)
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with

a(n) = n∆, b(m) = m∆, ∆ =
d− 2

2
(4.20)

which is conformally covariant since it can be re-expressed in the form

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1(

x2
12x

2
34

)a(n)+b(n)

(
u(xi)

v(xi)

)b(n)

(4.21)

with the scaling dimension of φ given by [φ] = a(n) + b(m). In momentum space the

corresponding integral is given by∫
ddk

(k2)ν1((k + p1)2)ν2((k + p1 + p2)2)ν3((k + p1 + p2 + p3)2)ν4
(4.22)

with ν1 = ν3 = d/2− a(n) and ν2 = ν4 = d/2− b(m). Mapping this expression to dual co-

ordinate, invariance of the integrand under special conformal transformations requires that

m+ n =
d

d− 2
(4.23)

which clearly shows that only d = 4 allows to satisfy the dual conformal and conformal con-

ditions, since n+m has to be an integer. This brings us back to the ordinary box diagram.

4.2 DC symmetry and ladders

We can slightly generalize the discussion presented above. It is convenient to introduce

a more general notation, which can be used for the single, double etc. box diagrams, in

order to set a distinction between correlators which are either dual conformal or conformal,

or both.

The conformal behaviour of the box diagram in coordinate space xi, for generic d 6= 2

dimensions can be explicitly rewritten in the form

ΦBox(xi) =
1

(x2
13)d−2(x2

24)d−2
φ(1) (u(xi), v(xi)) , d 6= 2 (4.24)

where φ(1) (u(xi), v(xi)) is the undetermined function of the conformal ratios in coordinate

space. φ(1) can be easily identified from (4.12) in d = 4 in perturbation theory. Its

expression in dual (momentum space) coordinates can be rewritten as

ΦBox(yi) =
1

y2
13 y

2
24

φ̃(1) (u(yi), v(yi)) , (4.25)

only in d = 4. As elaborated above, the box diagram can be both conformal and dual

conformal invariant only in d = 4.

Moving to the two-loop case, we consider the four-point ladder (planar) diagram (see

figure 2) and using the special conformal transformations, its expression takes the form

Φ2-Box(xi) =
1

(x2
13)4(x2

24)4
φ(2) (u(xi), v(xi)) , (4.26)
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Figure 2. The two loop box digram with its dual. This diagram is not conformal in coordinate

and dual coordinate space at the same time.

valid for d = 6, where also in this case φ(2) (u(xi), v(xi)) is another function of the conformal

ratios in coordinate space, different from the one obtained in the one-loop case. Moving to

momentum space and then to dual coordinates, we find the dual conformal expression of

the double box in this space as

Φ2-Box(xi) =
1

(y2
13)2(y2

24)
φ̃(2) (u(yi), v(yi)) , (4.27)

which holds for d = 4. It is obvious that the double box diagram can’t be both conformal

and dual conformal, at the same time and does not provide a perturbative realization of

the solution previously found using the CWI’s.

Using the same argument one can prove that the 4-point n-loop ladder diagram in

coordinate space is conformal covariant only in d = 6, taking the form

Φn-Box(xi) =
1

(x2
13)4(x2

24)4
φ(n) (u(xi), v(xi)) , (4.28)

valid for n ≥ 2, where φ(n) is a function of the conformal ratios. On the other hand, the

same diagram in momentum space is dual conformal covariant

Φn-Box(xi) =
1

(y2
13)n y2

24

φ̃(n) (u(yi), v(yi)) , (4.29)

for n ≥ 2 and only for d = 4. This shows that the class of solutions that we have identified

are only realized at one-loop level.

4.3 The triangle diagram

The triangle diagram, on the other hand, is truly special, if we follow the same reasonings

as above. Given its general expression

J(ν1, ν2, ν3) =

∫
ddl

(2π)d
1

(l2)ν3((l + p1)2)ν2((l − p2)2)ν1
, (4.30)
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with generic indices for the Feynman propagators (ν1, ν2, ν3), it is easy to verify that the

condition of dual conformal invariance

d = ν1 + ν2 + ν3 (4.31)

allows to satisfy the DCC constraints in all dimensions. Such solutions are not obtained, in

general, from free-field theories. We elaborate briefly on these points. A related discussion

can be also found in [11].

In fact, eq. (4.30) is the Fourier transform of a correlator of the form (2.2), for appropri-

ate primary fields of scaling dimensions ∆i. Given some specific νi, we can reverse-engineer

three scalar primary fields of scalings ∆i by the relations

∆1 = d− ν2 − ν3 , ∆2 = d− ν1 − ν3 , ∆3 = d− ν1 − ν2, (4.32)

in such a way that (2.2) is respected. Equivalently,

ν1 =
1

2
(d+ ∆1−∆2−∆3) ν2 =

1

2
(d−∆1 + ∆2−∆3) , ν3 =

1

2
(d−∆1−∆2 + ∆3).

(4.33)

Using these relations, any conformal correlator of some scalar primaries of scaling ∆i’s,

is bound to be of the form (2.2). The ∆′is are trivially identified by the transform∫
ddp1

(2π)d
ddp2

(2π)d
ddp3

(2π)d
(2π)dδ(d)(p1 + p2 + p3) J(ν1, ν2, ν3)e−ip1·x1−ip2·x2−ip3·x3

=
1

4ν1+ν2+ν3π3d/2

Γ(d/2− ν1)Γ(d/2− ν2)Γ(d/2− ν3)

Γ(ν1)Γ(ν2)Γ(ν3)
Φ(x1, x2, x3) (4.34)

with

Φ(x1, x2, x3) ≡ 1

(x2
12)d/2−ν3(x2

23)d/2−ν1(x2
31)d/2−ν2

(4.35)

being the expression of a scalar conformal 3-point function. Therefore, the conformal

constraints in coordinated space on Φ(x1, x2, x3) are automatically satisfied, providing no

new information, while in momentum space they amount to some significant differential

conditions

Kκ(pi)J(ν1, ν2, ν3) = 0

D(pi)J(ν1, ν2, ν3) = 0
(4.36)

which need to be satisfied by the original integral J .

Eqs. (4.36) allow to obtain recursion relations among the class of master integrals

associated to J It can be also easily shown that the scale covariant condition, the second

equation above, is equivalent to the integration by part rule used in the ordinary multiloop

analysis of the master integrals [10].

We can follow a similar route with ordinary composite operators in free field theory,

built out of scalar fields χ in d dimensions, such as Φ = χ2n with ∆i = n(d − 2). In this

case the corresponding conformal 3-point function derived in free field theory is given by

Φ(xi) =
1(

x2
12x

2
23x

2
31

)nd′ (4.37)
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(d′ = (d−2)/2) which generates the master integral J with νi = d/2−nd′. If we require the

dual conformal condition (4.31) to be valid, then this requires that d = 6n/(3n − 1). For

d to be a physical dimension we require it to be an integer, and we are left only with the

choice of n = 1, which gives d = 3. Therefore, the ordinary triangle diagram, if generated

by a free CFT, is a DCC solution only in d = 3.

5 Factorized solutions of the CWI’s from DCA’s

Now we turn to discuss the solution of (3.9) and of (3.11). As discussed above, we will

consider possible solutions which are built around specific dual conformal ansätze, as illus-

trated in the previous sections.

The equations involving C1 and C3 are both identically satisfied if the former equa-

tions (3.9) and (3.11) are. The number of independent equations, by using the ansätz

that we are going to present below, will then reduce from 3 down to 2. We illustrate this

procedure in some detail.

We choose the ansätz

Φ(pi, s, t) =
(
s2t2

)ns F (x, y) (5.1)

where ns is a coefficient (scaling factor of the ansätz) that we will fix below by the dilatation

WI, and the variables x and y are defined by the quartic ratios

x =
p2

1 p
2
3

s2 t2
, y =

p2
2 p

2
4

s2 t2
. (5.2)

We will comment in a later section on the significance of such a choice and on the way to

set up the invariants in momentum space in general. We will re-express the equations in

terms of these new variables which will replace s and t.

By inserting the ansätz (5.1) into the dilatation Ward Identities, and turning to the

new variables x and y, after some manipulations we obtain from (3.6) the condition[
(∆t − 3d)−

4∑
i=1

pi
∂

∂pi
− s ∂

∂s
− t ∂

∂t

](
s2t2

)c
F (x, y),

=
(
s2t2

)ns
[
(∆t − 3d)− 4ns

]
F (x, y) = 0 (5.3)

which determines ns = (∆t − 3d)/4, giving

Φ(pi, s, t) =
(
s2t2

)(∆t−3d)/4
F (x, y). (5.4)

We will be using this specific form of the solution in two of the three equations (C2 and

C13). The functional form of F (x, y) will then be furtherly constrained.

5.1 Determining the solutions in the case of primaries with equal scalings

In order to determine the conditions on F (x, y) from (3.9) and (3.11), we re-express these

two equations in terms of x and y using several identities. In particular we will use the

relations

∂2

∂s∂t
F (x, y) =

4

st

[(
x ∂x + y∂y

)
F +

(
x2∂xx + 2xy ∂xy + y2∂yy

)
F
]
, (5.5)
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together with(
p1

∂

∂p1
+p2

∂

∂p2
−p3

∂

∂p3
−p4

∂

∂p4

)
F (x,y) = (2x∂x+2y∂y−2x∂x−2y∂y)F (x,y) = 0, (5.6)(

p1
∂

∂p1
+p4

∂

∂p4
−p3

∂

∂p3
−p2

∂

∂p2

)
F (x,y) = (2x∂x+2y∂y−2x∂x−2y∂y)F (x,y) = 0. (5.7)

Both relations can be worked out after some lengthy computations using the relations

presented in appendix A.

We start investigating the solutions of these equations by assuming, as a first example,

that the scaling dimensions of all the fields φi are equal ∆1 = ∆2 = ∆3 = ∆4 = ∆.

Using (5.5) and (5.7), we write the first equation (3.9) associated to C2 in the new

variable x and y as

C2 = 4
(
p2

2−p2
4

)
(s2)ns−1(t2)ns−1

×
[
y(1−y)∂yy−2xy∂xy−x2∂xx−(1−2ns)x∂x+

(
1−∆+

d

2
−y(1−2ns)

)
∂y−n2

s

]
F (x,y) = 0

(5.8)

and the second one (3.11) associated to C13 as

4
(
p2

1−p2
3

)
(s2)ns−1(t2)ns−1

×
[
x(1−x)∂xx−2xy∂xy−y2∂yy−(1−2ns)y∂y+

(
1−∆+

d

2
−x(1−2ns)

)
∂x−n2

s

]
F (x,y) = 0

(5.9)

where we recall that ns is the scaling under dilatations, now given by

ns = ∆− 3d

4
(5.10)

since ∆t = 4 ∆.

By inspection, one easily verifies that (5.8) and (5.9) define a hypergeometric system

of two equations whose solutions can be expressed as linear combinations of 4 Appell

functions of two variables F4, as in the case of 3-point functions discussed before. The

general solution of such system is expressed as

Φ(pi, s, t) =
(
s2t2

)(∆t−3d)/4
F (x, y)

F (x, y) =
∑
a,b

c(a, b, ~∆t)x
aybF4

(
α(a, b), β(a, b), γ(a), γ′(b);x, y

)
, (5.11)

with ~∆t = ∆(1, 1, 1, 1) for being in the equal scaling case. Notice that the solution is similar

to that of the 3-point functions given by (2.30), discussed before.

The general solution (5.11) has been written as a linear superposition of these with

independent constants c(a, b), labelled by the exponents a, b

a = 0, ∆− d

2
, b = 0, ∆− d

2
, (5.12)
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which fix the dependence of the F4

α(a, b) =
3

4
d−∆ + a+ b, β(a, b) =

3

4
d−∆ + a+ b,

γ(a) =
d

2
−∆ + 1 + 2a, γ′(b) =

d

2
−∆ + 1 + 2b. (5.13)

We are now going to show that the third CWI corresponding to C1 is identically

satisfied by choosing the solution identified in (5.11). For this purpose we re-express the

C1 equation (3.8) in terms of the x and y invariant ratios in the form

C1 = 4(p2
2−p2

3)(s2)ns−1(t2)ns−1
[
x2∂xx+2xy∂xy+y2∂yy+(1−2n)x∂x+(1−2n)y∂y+n2

]
F (x,y)

+
4(s2)ns(t2)ns

p2
1

[
x2∂xx−

p2
1

p2
4

y2∂yy+
(d−2∆+2)

2
x∂x−

(d−2∆+2)

2

p2
1

p2
4

y∂y

]
F (x,y) = 0 .

(5.14)

One can observe that the first line of the previous expression is actually a linear combination

of the (5.8) and (5.9). After some lengthy algebra we can rewrite the equation coming from

C1 in the form

(p2
2 + p2

3)

[
2x ∂xx − 2y ∂yy + (d− 2∆ + 2)∂x − (d− 2∆ + 2)∂y

]
F (x, y) = 0. (5.15)

In order to verify that the equation above is identically satisfied, we use the following

identities for the Appell hypergeometric function

∂xF4(a,b,c1, c2;x,y) =
ab

c1
F4(a+1, b+1, c1+1, c2;x,y) (5.16)

∂yF4(a,b,c1, c2;x,y) =
ab

c2
F4(a+1, b+1, c1, c2+1;x,y) (5.17)

x∂xF4(a,b,c1, c2;x,y) = (c1−1)
[
F4(a,b,c1−1, c2;x,y)−F4(a,b,c1, c2;x,y)

]
. (5.18)

We can use these relations to derive the further relation

x ∂xx F4(a, b, c1, c2;x, y) = (c1 − 1)∂x F4(a, b, c1 − 1, c2;x, y)− c1 ∂x F4(a, b, c1, c2;x, y)

= a b
[
F4(a+ 1, b+ 1, c1, c2;x, y)− F4(a+ 1, b+ 1, c1 + 1, c2;x, y)

]
(5.19)

with an analogous expression obtained for the y variable. Considering the general expres-

sion of F (x, y) previously obtained in (5.11), as F (x, y)=xaybF4(α(a, b), β(a, b), γ(a), γ′(b);x, y)

into (5.15) one indeed verifies that the equation

0 =

[
2x∂xx−2y∂yy+(d−2∆+2)∂x−(d−2∆+2)∂y

]
xa ybF4

(
α(a,b),β(a,b),γ(a),γ′(b);x,y

)
= xa yb

[
2x∂xx−2y∂yy+(d−2∆+2+2a)∂x−(d−2∆+2+2b)∂y

]
F4

(
α(a,b),β(a,b),γ(a),γ′(b);x,y

)
(5.20)

is satisfied, if we choose α(a, b), β(a, b), γ(a) and γ′(b) as identified from (5.13).

Therefore one indeed verifies that equation C1 vanishes on the chosen ansätz.
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5.2 Two independent operatorial scalings

The solution obtained above in the equal scaling case can be extended to the more general

case

∆1 = ∆3 = ∆x, ∆2 = ∆4 = ∆y. (5.21)

In this case the CWI’s give the system of equations
[
y(1−y)∂yy−2xy∂xy−x2∂xx−(1−2ns)x∂x+

(
1−∆y+

d

2
−y(1−2ns)

)
∂y−n2

s

]
F (x,y) = 0[

x(1−x)∂xx−2xy∂xy−y2∂yy−(1−2ns)y∂y+

(
1−∆x+

d

2
−x(1−2ns)

)
∂x−n2

s

]
F (x,y) = 0

(5.22)

where now ns is defined as

ns =
∆x

2
+

∆y

2
− 3

4
d, (5.23)

whose solutions are expressed as

Φ(pi, s, t) =
(
s2t2

)(∆t−3d)/4
∑
a,b

c(a, b, ~∆t)x
aybF4

(
α(a, b), β(a, b), γ(a), γ′(b);x, y

)
(5.24)

with ~∆t = (∆x,∆y,∆x,∆y), ∆t = 2∆x + 2∆y and the Fuchsian points are fixed by the

conditions

a = 0, ∆x −
d

2
b = 0, ∆y −

d

2

α(a, b) =
3

4
d− ∆x

2
− ∆y

2
+ a+ b, β(a, b) =

3

4
d− ∆x

2
− ∆y

2
+ a+ b,

γ(a) =
d

2
−∆x + 1 + 2a, γ′(b) =

d

2
−∆y + 1 + 2b. (5.25)

We pause for a moment to discuss the domain of convergence of such solutions. Such

domain, for F4, is bounded by the relation

√
x+
√
y < 1, (5.26)

which is satisfied in a significant kinematic region, and in particular at large energy and

momentum transfers. Notice that the analytic continuation of (5.24) in the physical region

can be simply obtained by sending t2 → −t2 (with t2 < 0) and leaving all the other

invariants untouched. In this case we get√
p2

1p
2
3 +

√
p2

2p
2
4 <

√
−s2t2. (5.27)

At large energy and momentum transfers the correlator exhibits a power-like behaviour of

the form

Φ(pi, s, t) ∼
1

(−s2t2)(3d−∆t)/4
. (5.28)

Given the connection between the function F4 and the 3K integrals, we will reformulate

this solution in terms of such integrals. They play a key role in the solution of the CWI’s

for tensor correlators, as discussed in [6] for 3-point functions.
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5.3 DCC solutions as 3K integrals

The link between 3- and 4-point functions outlined in the previous section allows to re-

express the solutions in terms of a class of parametric integrals of 3 Bessel functions, as done

in the case of the scalar and tensor correlators [6], with the due modifications. We consider

the case of the solutions characterized by ∆1 = ∆2 = ∆3 = ∆4 = ∆ or ∆1 = ∆3 = ∆x

and ∆2 = ∆4 = ∆y. We will show that the solution can be written in terms of triple-K

integrals which are connected to the Appell function F4 by the relation∫ ∞
0

dxxα−1Kλ(ax)Kµ(bx)Kν(cx) =
2α−4

cα

[
B(λ,µ)+B(λ,−µ)+B(−λ,µ)+B(−λ,−µ)

]
,

(5.29)

where

B(λ, µ) =
(a
c

)λ(b
c

)µ
Γ

(
α+ λ+ µ− ν

2

)
Γ

(
α+ λ+ µ+ ν

2

)
Γ(−λ)Γ(−µ)×

× F4

(
α+ λ+ µ− ν

2
,
α+ λ+ µ+ ν

2
;λ+ 1, µ+ 1;

a2

c2
,
b2

c2

)
, (5.30)

valid for

Reα > |Reλ|+ |Reµ|+ |Re ν|, Re (a+ b+ c) > 0

and the Bessel functions Kν satisfy the equations

∂

∂p

[
pβKβ(p x)

]
= −x pβKβ−1(px)

Kβ+1(x) = Kβ−1(x) +
2β

x
Kβ(x). (5.31)

In particular the solution can be written as

Iα{β1,β2,β3}(p1 p3;p2 p4;st) =

∫ ∞
0

dxxα (p1 p3)β1 (p2 p4)β2 (st)β3Kβ1(p1 p3x)Kβ2(p2 p4x)Kβ3(stx).

(5.32)

Using (5.31) one can derive several relations, such as

∂2

∂p2
1

Iα{β1,β2,β3} = − p2
3 Iα+1{β1−1,β2,β3} + p2

1 p
4
3 Iα+2{β1−2,β2,β3} (5.33)

which generate identities such as

p2
1 p

2
3 Iα+2{β1−2,β2,β3} = Iα+2{β1,β2,β3} − 2(β1 − 1) Iα+1{β1−1,β2,β3}. (5.34)

We refer to appendix B for more details and a complete list of identities for such integrals.

Using these relations, the dilatation Ward identities (3.6) take the form

(∆t−3d)Iα{β1,β2,β3}+2p2
1p

2
3 Iα+1{β1−1,β2,β3}+2p2

2p
2
4 Iα+1{β1,β2−1,β3}+2s2t2 Iα+1{β1,β2,β3−1}= 0

(5.35)
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where the arguments of the Iα{β1β2β3} function, written explicitly in (5.32), have been

omitted for the sake of simplicity. The I integrals satisfy the differential equations

1

s

∂

∂s

(
p1

∂

∂p1
+ p2

∂

∂p2
− p3

∂

∂p3
− p4

∂

∂p4

)
Iα{β1,β2,β3} = 0 (5.36)

1

t

∂

∂t

(
p1

∂

∂p1
+ p4

∂

∂p4
− p2

∂

∂p2
− p3

∂

∂p3

)
Iα{β1,β2,β3} = 0 (5.37)

which can be checked using the relations given in the same appendix, and we finally find

(∆t − 3d+ 2α+ 2− 2βt)Iα{β1,β2,β3} = 0 (5.38)

where βt = β1 + β2 + β3. In order to satisfy this equation the α parameter has to be equal

to a particular value given by

α̃ ≡ 3

2
d+ βt − 1− ∆t

2
. (5.39)

In the particular case ∆i = ∆ the special conformal Ward identities are given by

[
∂2

∂p2
1

+
(d− 2∆ + 1)

p1

∂

∂p1
− ∂2

∂p2
3

− (d− 2∆ + 1)

p3

∂

∂p3
+

(p2
1 − p2

3)

st

∂2

∂s∂t

]
Iα̃{β1,β2,β3} = 0

[
∂2

∂p2
2

+
(d− 2∆ + 1)

p2

∂

∂p2
− ∂2

∂p2
4

− (d− 2∆ + 1)

p4

∂

∂p4
+

(p2
2 − p2

4)

st

∂2

∂s∂t

]
Iα̃{β1,β2,β3} = 0

[
∂2

∂p2
3

+
(d− 2∆ + 1)

p3

∂

∂p3
− ∂2

∂p2
4

− (d− 2∆ + 1)

p4

∂

∂p4
+

(p2
2 − p2

1)

st

∂2

∂s∂t

]
Iα̃{β1,β2,β3} = 0

(5.40)

and using the properties of Bessel functions they can be rewritten in a simpler form. The

first equation, for instance, can be written as

(p2
1 − p2

3)

(
(d− 2∆ + 2β1) Iα̃+1{β1−1,β2,β3} − 2β3 Iα̃+1{β1,β2,β3−1}

)
= 0, (5.41)

which is identically satisfied if the conditions

β1 = ∆− d

2
, β3 = 0 (5.42)

hold. In the same way we find that the second equation takes the form

(p2
2 − p2

4)

(
(d− 2∆ + 2β2) Iα̃+1{β1,β2−1,β3} − 2β3 Iα̃+1{β1,β2,β3−1}

)
= 0 (5.43)

and it is satisfied if

β2 = ∆− d

2
, β3 = 0. (5.44)

One can check that the third equation

p2
2(d−2∆+2β2)Iα̃+1{β1,β2−1,β3}−p

2
1(d−2∆+2β1)Iα̃+1{β1−1,β2,β3}−2(p2

2−p2
1)β3 Iα̃+1{β1,β2,β3−1}= 0,

(5.45)
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generates the same conditions given by (5.41) and (5.43). After some computations, finally

the solution for the 4-point function, in this particular case, can be written as

〈O(p1)O(p2)O(p3)O(p̄4)〉 = ᾱ I d
2
−1{∆− d

2
,∆− d

2
,0}(p1 p3; p2 p4; s t), (5.46)

where ᾱ is an undetermined constant.

In the case ∆1 = ∆3 = ∆x and ∆2 = ∆4 = ∆y, the special CWI’s can be written as

[
∂2

∂p2
1

+
(d−2∆x+1)

p1

∂

∂p1
− ∂2

∂p2
3

− (d−2∆x+1)

p3

∂

∂p3
+

(p2
1−p2

3)

st

∂2

∂s∂t

]
Iα̃{β1,β2,β3}= 0

[
∂2

∂p2
2

+
(d−2∆y+1)

p2

∂

∂p2
− ∂2

∂p2
4

− (d−2∆y+1)

p4

∂

∂p4
+

(p2
2−p2

4)

st

∂2

∂s∂t

]
Iα̃{β1,β2,β3}= 0

[
∂2

∂p2
3

+
(d−2∆x+1)

p3

∂

∂p3
− ∂2

∂p2
4

− (d−2∆y+1)

p4

∂

∂p4
+

(p2
2−p2

1)

st

∂2

∂s∂t

]
Iα̃{β1,β2,β3}= 0

(5.47)

whose solution is

〈O(p1)O(p2)O(p3)O(p̄4)〉 = ¯̄α I d
2
−1{∆x− d

2
,∆y− d

2
,0}(p1 p3; p2 p4; s t) (5.48)

which takes a form similar to the one typical of the three-point function given in (2.36).

In order to identify the form of the unique solution we need to satisfy the symmetry

constraints and the absence of unphysical singularities [6] in the domain of convergence.

We will address the first issue below, while the second is discussed in section 7, where we

show that such singularities are not present.

5.4 Symmetric solutions as F4 hypergeometrics or 3K integrals. The equal

scalings case

The derivation of symmetric expressions of such correlators requires some effort, and can

be obtained either by using the few known relations available for the Appell function F4

or, alternatively (and more effectively), by resorting to the formalism of the 3K integrals.

A solution which is symmetric respect to all the permutation of the momenta pi,

expressed in terms of 3 of the four constants c(a, b), after some manipulations, can be

expressed in the form

〈O(p1)O(p2)O(p3)O(p4)〉=

=
∑
a,b

c(a,b)

[
(s2 t2)∆− 3

4
d

(
p2

1p
2
3

s2t2

)a(
p2

2p
2
4

s2t2

)b
F4

(
α(a,b),β(a,b),γ(a),γ′(b),

p2
1p

2
3

s2t2
,
p2

2p
2
4

s2t2

)

+ (s2u2)∆− 3
4
d

(
p2

2p
2
3

s2u2

)a(
p2

1p
2
4

s2u2

)b
F4

(
α(a,b),β(a,b),γ(a),γ′(b),

p2
2p

2
3

s2u2
,
p2

1p
2
4

s2u2

)
+ (t2u2)∆− 3

4
d

(
p2

1p
2
2

t2u2

)a (
p2

3p
2
4

t2u2

)b
F4

(
α(a,b),β(a,b),γ(a),γ′(b),

p2
1p

2
2

t2u2
,
p2

3p
2
4

t2u2

)]
(5.49)
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where the four coefficients c(a, b)’s given in (5.11) are reduced to three by the constraint

c

(
0,∆− d

2

)
= c

(
∆− d

2
, 0

)
. (5.50)

Additional manipulations, in order to reduce even further the integration constants are

hampered by absence of known relations for the Appell functions F4. As already mentioned

above, it is possible, though, to bypass the problem by turning to the 3K formalism.

Equation (5.49) can be further simplified using this formalism.

5.4.1 3K symmetrization in the equal scaling case

In order to show this, (5.49) can be written in terms of a linear combination of 3K

integrals as

〈O(p1)O(p2)O(p3)O(p4)〉 = C1 I d
2
−1{∆− d

2
,∆− d

2
,0}(p1 p3, p2 p4, s t)

+ C2 I d
2
−1{∆− d

2
,∆− d

2
,0}(p2 p3, p1 p4, s u) + C3 I d

2
−1{∆− d

2
,∆− d

2
,0}(p1 p2, p3 p4, t u) (5.51)

by an explicit symmetrization of the momenta in the parametric integrals. It is now much

simpler to show that the symmetry under permutations forces the Ci to take the same

value, and the final symmetric result is given by

〈O(p1)O(p2)O(p3)O(p4)〉 = C

[
I d

2
−1{∆− d

2
,∆− d

2
,0}(p1 p3, p2 p4, s t)

+ I d
2
−1{∆− d

2
,∆− d

2
,0}(p2 p3, p1 p4, s u) + I d

2
−1{∆− d

2
,∆− d

2
,0}(p1 p2, p3 p4, t u)

]
,

(5.52)

written in terms of only one arbitrary overall constant C. We can use the relation between

the 3K integrals and the F4 written in (5.29) and (5.30), to re-express the final symmetric

solution, originally given in eq. (5.49), in terms of a single constant in the form

〈O(p1)O(p2)O(p3)O(p4)〉= 2
d
2
−4 C

∑
λ,µ=0,∆− d

2

ξ(λ,µ)

[(
s2 t2

)∆− 3
4
d
(
p2

1p
2
3

s2t2

)λ(
p2

2p
2
4

s2t2

)µ

×F4

(
3

4
d−∆+λ+µ,

3

4
d−∆+λ+µ,1−∆+

d

2
+λ,1−∆+

d

2
+µ,

p2
1p

2
3

s2t2
,
p2

2p
2
4

s2t2

)
+
(
s2u2

)∆− 3
4
d
(
p2

2p
2
3

s2u2

)λ(
p2

1p
2
4

s2u2

)µ
×F4

(
3

4
d−∆+λ+µ,

3

4
d−∆+λ+µ,1−∆+

d

2
+λ,1−∆+

d

2
+µ,

p2
2p

2
3

s2u2
,
p2

1p
2
4

s2u2

)
+
(
t2u2

)∆− 3
4
d
(
p2

1p
2
2

t2u2

)λ(
p2

3p
2
4

t2u2

)µ
×F4

(
3

4
d−∆+λ+µ,

3

4
d−∆+λ+µ,1−∆+

d

2
+λ,1−∆+

d

2
+µ,

p2
1p

2
2

t2u2
,
p2

3p
2
4

t2u2

)]
. (5.53)
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where the coefficients ξ(λ, µ) are explicitly given by

ξ (0, 0) =

[
Γ

(
3

4
d−∆

)]2 [
Γ

(
∆− d

2

)]2

ξ

(
0,∆− d

2

)
= ξ

(
∆− d

2
, 0

)
=

[
Γ

(
d

4

)]2

Γ

(
∆− d

2

)
Γ

(
d

2
−∆

)
ξ

(
∆− d

2
,∆− d

2

)
=

[
Γ

(
∆− d

4

)]2 [
Γ

(
d

2
−∆

)]2

.

(5.54)

The solution found in (5.53) is explicitly symmetric under all the possible permutations of

the momenta and it is fixed up to one undetermined constant C. Eq. (5.53) gives the final

expression of the solution obtained from the first DCA (5.4).

6 Solutions from other DCA’s

The DCA from which we start is clearly not unique, since other types of factorized ansätze

can be chosen in dual coordinate space. It is then resonable to ask whether the types of

solutions that we have identified are truly unique, even if they are generated starting from a

specific DCA. In order to answer such a question we turn to a different DCA and show that

this is indeed the case. The intermediate steps of the derivation are rather involved, but one

can obtain the same expression of the DCC solution obtained from (5.4), given in (5.53),

using some analytic continuations of the new solution generated by such a second ansätz.

For this purpose, we consider as a starting point a DCA of the form

Φ =
(
p2

1 p
2
3

)ns
F

(
s2t2

p2
1p

2
3

,
p2

2p
2
4

p2
1p

2
3

)
(6.1)

where all the scalings are taken to be equal ∆i = ∆, i = 1, 2, 3, 4. Also in this case the

dilatation WI’s fix the value of ns as in (5.10), while the special WI’s can be written as
[
x(1−x)∂xx−2xy∂xy−y2∂yy−y(d−∆+1)∂y+[1−(d−∆+1)x]∂x−

d

4

(
3

4
d−∆

)]
F (x,y) = 0[

x∂xx−y∂yy+∂x−
(
d

2
−∆+1

)
∂y

]
F (x,y) = 0

(6.2)

where we have defined x = s2t2/(p2
1p

2
3) and y = p2

2p
2
4/(p

2
1p

2
3). Subtracting the second

equation from the first one we derive the system of equations

[
x(1−x)∂xx−2xy∂xy−y2∂yy−y(d−∆+1)∂y+[1−(d−∆+1)x]∂x−

d

4

(
3

4
d−∆

)]
F (x,y) = 0[

y(1−y)∂yy−2xy∂xy−x2∂xx

−x(d−∆+1)∂x+

[(
d

2
−∆+1

)
−(d−∆+1)x

]
∂x−

d

4

(
3

4
d−∆

)]
F (x,y) = 0

(6.3)
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which corresponds, once more, to a hypergeometric system of equations in two variables,

corresponding to Appell’s F4. The general solution of such a system can be expressed as a

linear combination of two F4 functions as

Φ =
(
p2

1 p
2
3

)∆− 3
4
d
[
C1F4

(
d

4
,

3

4
d−∆ , 1 ,

d

2
−∆ + 1 ;

s2t2

p2
1p

2
3

,
p2

2p
2
4

p2
1p

2
3

)

+ C2

(
p2

2p
2
4

p2
1p

2
3

)∆− d
2

F4

(
∆− d

4
,
d

4
, 1 , 1− d

2
+ ∆ ;

s2t2

p2
1p

2
3

,
p2

2p
2
4

p2
1p

2
3

)]
. (6.4)

This solution corresponds to a very specific case, in which one of the 4 parameters of the

general solution given by the 4 hypergeometric functions of type F4 is fixed to γ = 1.

One can show that in this case the number of independent hypergeometric solutions is

then reduced from 4 to 2. However, at this stage, eq. (6.4) is symmetric only respect to

the momentum exchanges (p1 ↔ p3) and (p2 ↔ p4). As a first step we can proceed by

constructing the completely symmetric solution of the same system in the form

Φ =
(
p2

1 p
2
3

)∆− 3
4
d
[
C1F4

(
d

4
,

3

4
d−∆ , 1 ,

d

2
−∆+1;

s2t2

p2
1p

2
3

,
p2

2p
2
4

p2
1p

2
3

)

+C2

(
p2

2p
2
4

p2
1p

2
3

)∆− d
2

F4

(
∆− d

4
,
d

4
, 1 , 1− d

2
+∆;

s2t2

p2
1p

2
3

,
p2

2p
2
4

p2
1p

2
3

)]
+
(
p2

2 p
2
3

)∆− 3
4
d
[
C1F4

(
d

4
,

3

4
d−∆ , 1 ,

d

2
−∆+1;

s2u2

p2
2p

2
3

,
p2

1p
2
4

p2
2p

2
3

)

+C2

(
p2

1p
2
4

p2
2p

2
3

)∆− d
2

F4

(
∆− d

4
,
d

4
, 1 , 1− d

2
+∆;

s2u2

p2
2p

2
3

,
p2

1p
2
4

p2
2p

2
3

)]
+
(
p2

1 p
2
2

)∆− 3
4
d
[
C1F4

(
d

4
,

3

4
d−∆ , 1 ,

d

2
−∆+1;

u2t2

p2
1p

2
2

,
p2

3p
2
4

p2
1p

2
2

)

+C2

(
p2

3p
2
4

p2
1p

2
2

)∆− d
2

F4

(
∆− d

4
,
d

4
, 1 , 1− d

2
+∆;

u2t2

p2
1p

2
2

,
p2

3p
2
4

p2
1p

2
2

)]
(6.5)

containing only the coefficients C1 and C2. Considering the (p2 ↔ p4) exchange the solution

will be given by

Φp2↔p4 =
(
p2

1 p
2
3

)∆− 3
4
d
[
C1F4

(
d

4
,

3

4
d−∆ , 1 ,

d

2
−∆+1;

s2t2

p2
1p

2
3

,
p2

2p
2
4

p2
1p

2
3

)

+C2

(
p2

2p
2
4

p2
1p

2
3

)∆− d
2

F4

(
∆− d

4
,
d

4
, 1 , 1− d

2
+∆;

s2t2

p2
1p

2
3

,
p2

2p
2
4

p2
1p

2
3

)]
+
(
p2

4 p
2
3

)∆− 3
4
d
[
C1F4

(
d

4
,

3

4
d−∆ , 1 ,

d

2
−∆+1;

t2u2

p2
4p

2
3

,
p2

1p
2
2

p2
4p

2
3

)

+C2

(
p2

1p
2
4

p2
2p

2
3

)∆− d
2

F4

(
∆− d

4
,
d

4
, 1 , 1− d

2
+∆;

t2u2

p2
4p

2
3

,
p2

1p
2
2

p2
4p

2
3

)]
+
(
p2

1 p
2
4

)∆− 3
4
d
[
C1F4

(
d

4
,

3

4
d−∆ , 1 ,

d

2
−∆+1;

u2s2

p2
1p

2
4

,
p2

3p
2
2

p2
1p

2
4

)

+C2

(
p2

3p
2
2

p2
1p

2
4

)∆− d
2

F4

(
∆− d

4
,
d

4
, 1 , 1− d

2
+∆;

u2s2

p2
1p

2
4

,
p2

3p
2
2

p2
1p

2
4

)]
(6.6)
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that can be rearranged in the form given in (6.5) using (2.37).

After imposing the symmetry condition Φp2↔p4 = Φ under this particular permutation,

we find a single degenerate condition on the ratios of C1 and C2 given by

C1
C2

=
[
Γ
(
∆− 3

4d
)

Γ
(
1−∆ + 3

4d
)

Γ
(
1 + ∆− d

2

)] [
Γ
(
∆− d

4

)
Γ
(
1 + ∆− 3

4d
)

Γ
(
1−∆ + d

2

)]−1
.

(6.7)

This constraint fixes the solution up to one undetermined constant in the form

Φ =C1

{(
p2

1 p
2
3

)∆− 3
4
d
[
F4

(
d

4
,

3

4
d−∆ , 1 ,

d

2
−∆+1;

s2t2

p2
1p

2
3

,
p2

2p
2
4

p2
1p

2
3

)

+
Γ
(
∆− d

4

)
Γ
(
1+∆− 3

4d
)

Γ
(
1−∆+ d

2

)
Γ
(
∆− 3

4d
)

Γ
(
1−∆+ 3

4d
)

Γ
(
1+∆− d

2

) (p2
2p

2
4

p2
1p

2
3

)∆− d
2

F4

(
∆− d

4
,
d

4
, 1 , 1− d

2
+∆;

s2t2

p2
1p

2
3

,
p2

2p
2
4

p2
1p

2
3

)]

+
(
p2

2 p
2
3

)∆− 3
4
d
[
F4

(
d

4
,

3

4
d−∆ , 1 ,

d

2
−∆+1;

s2u2

p2
2p

2
3

,
p2

1p
2
4

p2
2p

2
3

)

+
Γ
(
∆− d

4

)
Γ
(
1+∆− 3

4d
)

Γ
(
1−∆+ d

2

)
Γ
(
∆− 3

4d
)

Γ
(
1−∆+ 3

4d
)

Γ
(
1+∆− d

2

) (p2
1p

2
4

p2
2p

2
3

)∆− d
2

F4

(
∆− d

4
,
d

4
, 1 , 1− d

2
+∆;

s2u2

p2
2p

2
3

,
p2

1p
2
4

p2
2p

2
3

)]

+
(
p2

1 p
2
2

)∆− 3
4
d
[
F4

(
d

4
,

3

4
d−∆ , 1 ,

d

2
−∆+1;

u2t2

p2
1p

2
2

,
p2

3p
2
4

p2
1p

2
2

)

+
Γ
(
∆− d

4

)
Γ
(
1+∆− 3

4d
)

Γ
(
1−∆+ d

2

)
Γ
(
∆− 3

4d
)

Γ
(
1−∆+ 3

4d
)

Γ
(
1+∆− d

2

) (p2
3p

2
4

p2
1p

2
2

)∆− d
2

F4

(
∆− d

4
,
d

4
, 1 , 1− d

2
+∆;

u2t2

p2
1p

2
2

,
p2

3p
2
4

,
p2

1p
2
2

)]}
(6.8)

which can be shown to be symmetric under all the possible permutations of the momenta

(p1, p2, p3, p4).

We are now going to show the equivalence of such solution to (5.53), which is given

by a 3K integral. We perform an analytic continuation of (6.8) using (2.37) to obtain the

intermediate expression

Φ =
(
s2 t2

)∆− 3
4
d
C1

[
Γ
(
∆− d

2

)
(−1)∆− 3

4
d

Γ
(
1+∆− 3

4d
)

Γ
(
d
4

) F4

(
3

4
d−∆ ,

3

4
d−∆ ,

d

2
−∆+1 ,

d

2
−∆+1;

p2
1p

2
3

s2t2
,
p2

2p
2
4

s2t2

)

+
Γ
(
d
2−∆

)
(−1)−

d
4

Γ
(
1− d

4

)
Γ
(

3
4d−∆

) (p2
1p

2
3

s2t2

)∆− d
2

F4

(
d

4
,
d

4
, 1− d

2
+∆ , 1+

d

2
−∆;

p2
1p

2
3

s2t2
,
p2

2p
2
4

s2t2

)

+
Γ
(
d
2−∆

)
(−1)−

d
4

Γ
(
1− d

4

)
Γ
(

3
4d−∆

) (p2
2p

2
4

s2t2

)∆− d
2

F4

(
d

4
,
d

4
, 1+

d

2
−∆ , 1− d

2
+∆;

p2
1p

2
3

s2t2
,
p2

2p
2
4

s2t2

)

+

[
Γ
(
d
2−∆

)]2
Γ
(
∆− d

4

)
(−1)

d
4
−∆

Γ
(
1+ d

4−∆
)

Γ
(
d
4

)
Γ
(

3
4d−∆

)
Γ
(
∆− d

2

)
×
(
p2

2p
2
4

s2t2

)∆− d
2
(
p2

1p
2
3

s2t2

)∆− d
2

F4

(
3

4
d−∆ ,

3

4
d−∆ , 1+

d

2
−∆ , 1+

d

2
−∆;

p2
1p

2
3

s2t2
,
p2

2p
2
4

s2t2

)]

+[(p1↔ p2)]+[(p2↔ p3)].

(6.9)
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After some manipulations and using the properties of Gamma function

Γ(a− b) =
Γ(a)Γ(1− a)(−1)b

Γ(1− a+ b)
,

1

Γ(a− b)
=

Γ(1− a+ b)(−1)−b

Γ(a)Γ(1− a)
, (6.10)

we write (6.9) as

Φ =
(
s2 t2

)∆− 3
4
d C1

Γ
(
d
4

)
Γ
(
d
2

)
Γ
(
1− d

2

)
Γ
(

3
4d−∆

)
Γ
(
∆− d

2

)
×

{[
Γ

(
∆− d

2

)]2[
Γ

(
3

4
d−∆

)]2

F4

(
3

4
d−∆ ,

3

4
d−∆ ,

d

2
−∆+1 ,

d

2
−∆+1;

p2
1p

2
3

s2t2
,
p2

2p
2
4

s2t2

)

+

[
Γ

(
d

4

)]2

Γ

(
d

2
−∆

)
Γ

(
∆− d

2

)(
p2

1p
2
3

s2t2

)∆− d
2

F4

(
d

4
,
d

4
, 1− d

2
+∆ , 1+

d

2
−∆;

p2
1p

2
3

s2t2
,
p2

2p
2
4

s2t2

)

+

[
Γ

(
d

4

)]2

Γ

(
d

2
−∆

)
Γ

(
∆− d

2

)(
p2

2p
2
4

s2t2

)∆− d
2

F4

(
d

4
,
d

4
, 1+

d

2
−∆ , 1− d

2
+∆;

p2
1p

2
3

s2t2
,
p2

2p
2
4

s2t2

)

+

[
Γ

(
d

2
−∆

)]2[
Γ

(
∆− d

4

)]2

×
(
p2

2p
2
4

s2t2

)∆− d
2
(
p2

1p
2
3

s2t2

)∆− d
2

F4

(
3

4
d−∆ ,

3

4
d−∆ , 1+

d

2
−∆ , 1+

d

2
−∆;

p2
1p

2
3

s2t2
,
p2

2p
2
4

s2t2

)}

+[(p1↔ p2)]+[(p2↔ p3)]. (6.11)

which takes the same form of solution (5.53). In fact this expression can be rewritten as

Φ =
C1

Γ
(
d
4

)
Γ
(
d
2

)
Γ
(
1− d

2

)
Γ
(

3
4d−∆

)
Γ
(
∆− d

2

) ∑
λ,µ=0,∆− d

2

ξ(λ,µ)

[(
s2 t2

)∆− 3
4
d
(
p2

1p
2
3

s2t2

)λ(
p2

2p
2
4

s2t2

)µ

×F4

(
3

4
d−∆+λ+µ,

3

4
d−∆+λ+µ,1−∆+

d

2
+λ,1−∆+

d

2
+µ,

p2
1p

2
3

s2t2
,
p2

2p
2
4

s2t2

)
+
(
s2u2

)∆− 3
4
d
(
p2

2p
2
3

s2u2

)λ(
p2

1p
2
4

s2u2

)µ
×F4

(
3

4
d−∆+λ+µ,

3

4
d−∆+λ+µ,1−∆+

d

2
+λ,1−∆+

d

2
+µ,

p2
2p

2
3

s2u2
,
p2

1p
2
4

s2u2

)
+
(
t2u2

)∆− 3
4
d
(
p2

1p
2
2

t2u2

)λ(
p2

3p
2
4

t2u2

)µ
×F4

(
3

4
d−∆+λ+µ,

3

4
d−∆+λ+µ,1−∆+

d

2
+λ,1−∆+

d

2
+µ,

p2
1p

2
2

t2u2
,
p2

3p
2
4

t2u2

)]
(6.12)

with a different coefficient in front, but with the coefficients ξ(λ, µ) being the same of (5.54),

completing the proof.

Notice that we could have gone through the analytic proof of the equivalence, by using

even a third DCA, for instance of the form

Φ′ =
(
p2

2 p
2
4

)n′s F ( s2t2

p2
2p

2
4

,
p2

1p
2
3

p2
2p

2
4

)
(6.13)
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and following the same procedure described above, we would have obtained an hypergeo-

metric system of equations with a solution of the form

Φ′=
(
p2

2 p
2
4

)∆− 3
4
d
[
C1F4

(
d

4
,

3

4
d−∆ , 1 ,

d

2
−∆+1;

p2
1p

2
3

p2
2p

2
4

,
s2t2

p2
2p

2
4

)

+C2

(
p2

1p
2
3

p2
2p

2
4

)∆− d
2

F4

(
∆− d

4
,
d

4
, 1 , 1− d

2
+∆;

p2
1p

2
3

p2
2p

2
4

,
s2t2

p2
2p

2
4

)]
, (6.14)

as in (6.4). It can be explicitly shown that also in this case, by repeating the steps illustrated

above, from (6.14) one arrives to (5.53).

We have indeed shown that DCC solutions take a unique form, independently of the

structure of the original DCA. If we combine the results of section 4 with those above, it

is clear that the solutions that we have found represent DCC correlators for any spacetime

dimensions, of which the box diagram and its melonic variants are the only perturbtive

realization, limited to d = 4.

7 Convergence of the 3K solution integral and absence of physical

singularities

The absence of unphysical singularities in the domain of convergence of the solution found,

given in (5.48), can be addressed as follows.

Considering the DCC solution, we have derived its explicit expression as

I d
2
−1{∆− d

2
,∆− d

2
,0}(p1p3, p2p4, s, t) =

= (p1p3)∆− d
2 (p2p4)∆− d

2

∫ ∞
0

dxx
d
2
−1K∆− d

2
(p1p3 x)K∆− d

2
(p2p4 x)K0(st x). (7.1)

Notice that a possible singularity which could invalidate the convergence of (7.1) can be

generated by the Bessel function K0(x) at small x, as evident from the expansions

Kν(x) '
√
π

2

e−x√
x

+ . . . at large x, (7.2)

Kν(x) ' xν
Γ(−ν)

21+ν
+ x−ν

Γ(ν)

21−ν + . . . at small x. (7.3)

The singularity in K0 can be regulated using the replacement K0 → Kε, with ε a small

regulator parameter (ε > 0). For this purpose we consider the regulated expression

I d
2
−1{∆− d

2
,∆− d

2
,ε}(p1p3, p2p4, s, t) =

= (p1p3)∆− d
2 (p2p4)∆− d

2 (st)ε
∫ ∞

0
dxx

d
2
−1K∆− d

2
(p1p3 x)K∆− d

2
(p2p4 x)Kε(st x). (7.4)

With this regularization, at large x the integrand of (7.1) can be written as

x
d
2
−1K∆− d

2
(p1p3x)K∆− d

2
(p2p4x)Kε(stx)' (

√
p1p2
√
p3p4

√
st)−1

(π
2

) 3
2
x

d−5
2 e−(p1p3+p2p4+st)x

(7.5)
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which is well-behaved in the asymptotic region in x if the condition

p1p3 + p2p4 + st > 0 (7.6)

is satisfied.

Similarly, the same integrand at small x gives

x
d
2
−1K∆− d

2
(p1p3x)K∆− d

2
(p2p4x)Kε(stx)

' x
d
2
−1

(
(p1p3x)∆− d

2
1

21+∆− d
2

Γ

(
d

2
−∆

)
+(p1p3x)

d
2
−∆ 1

21+ d
2
−∆

Γ

(
∆− d

2

))
×
(

(p2p4x)∆− d
2

1

21+∆− d
2

Γ

(
d

2
−∆

)
+(p2p4x)

d
2
−∆ 1

21+ d
2
−∆

Γ

(
∆− d

2

))
×
(

(stx)ε
Γ(−ε)
21+ε

+(stx)−ε
Γ(ε)

21−ε

)
(7.7)

and expanding the last factor in the previous expression — for small values of the regulator

ε — this takes the form

(st x)ε
Γ(−ε)
21+ε

+ (st x)−ε
Γ(ε)

21−ε ' − log(st x)− γ + log(2) +O(ε). (7.8)

By combining all the contributions, (7.7) can be rewritten as

x
d
2
−1K∆− d

2
(p1p3 x)K∆− d

2
(p2p4 x)Kε(st x) ' log(st x)x

d
2
−1±(∆− d

2 )±(∆− d
2 ) +O(ε) (7.9)

which converges if the condition

d

2
− 1±

(
∆− d

2

)
±
(

∆− d

2

)
> 0 (7.10)

is satisfied which branches into four possible constraints. One can check that the

bound (7.6) is satisfied in the physical region

p1 + p2 + p3 + p4 > 0 (7.11)

since

p1p3 + p2p4 + st > p1 + p2 + p3 + p4 > 0 (7.12)

and the convergence of the 3K representation is guaranteed if (7.10) is satisfied. The condi-

tion (7.10) can generate in the physical region some divergences which need an appropriate

regularization, as pointed out in [8, 11] in the case of 3-point functions. A similar analysis

of the singularities in view of the previous constraints is underway and the regularization

procedure will be presented in a separate work.

8 CWI’s at fixed angle and the Lauricella hypergeometric functions

From this section on we turn to an analysis of another class of solutions of the CWI’s, ap-

proximate in their character, which also show the hypergeometric nature of the system of

equations derived from the CWI’s, if we investigate such equations in a special kinematical

limit.

The hypergeometric nature of the CWI’s can be shown if we resort to some approxi-

mations.
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The second class of solutions that we are going to discuss are obtained by assuming

particular asymptotic values of the s and t invariants. In this case the solution is generated

by inspecting the contribution coming from the operatorial term Dst defined below in

eq. (8.4), which vanishes if it acts on a function of the form log(t/s). Such solution,

for dimensional reason, is unique, and can be included in a factorized ansätz in order to

generate a solution of the full equations. As we are going to show, the choice of such ansätz

takes to solutions in which the dependence on the external mass invariants p2
i and the s, t

invariants are completely factorized and describe asymptotic solutions of the equations for

large s and t invariants. In this case the rapidity variable y = log(t/s) can be associated

with the behaviour of the correlator at fixed angle (i.e. with s/t fixed and O(1)). The

remaining part of the solutions, in this case, are expressed as a system of generalized

hypergeometric (Lauricella) functions. We will show that such solutions can be expressed

in terms of 4-K integrals, that we will define.

For this purpose is helpful to identify several contributions in the expressions of the

C ′is given above taking C13 as an example. Beside the operator Ki given by (2.23), we

define in general the operators

Jij = pi
∂

∂pi
+ pj

∂

∂pj
, J̃ik = pi

∂

∂pi
− pk

∂

∂pk
, (8.1)

Jij,kl = pi
∂

∂pi
+ pj

∂

∂pj
− pk

∂

∂pk
− pl

∂

∂pl
= Jij − Jkl (8.2)

hij,kl = ∆i + ∆j −∆k −∆l, Dt =
1

t

∂

∂t
, Ds =

1

s

∂

∂s
(8.3)

and

Dst
ij ≡

(p2
i − p2

j )

st

∂2

∂s∂t
= (p2

i − p2
j )D

sDt. (8.4)

These notations turns necessary when discussing the contributions of the various opera-

tors appearing in the equations in a compact way, but we will also turn to their original

(extended) expressions in order to avoid using indices, whenever possible.

For instance, C13 will take the form

C13 =
(
K13 +DsJ12,34 + h34,12D

s +DtJ14,23 + h23,14D
t +Dst

13

)
Φ = 0, (8.5)

while C1 will be given by

C1 =
(
K14 +DsJ12,34 + h34,12D

s +Dst
23

)
Φ = 0. (8.6)

Using the definitons above, each equation can be characterized in terms of the set of

operators (K,J, hD,Dst). We recognize in Kij the typical operators appearing in 3-point

functions, which emerge when every form factor is expressed in terms of the three external

mass invariant, with the Jij,kj vanishing when the scaling dimensions of the same invariants

are suitably balanced. For instance, given a function of two variables f(z1, z2), we will have

Jij,kl f

(
p2
i

p2
j

,
p2
k

p2
l

)
= 0 Jij,kl f

(
p2
i p

2
k, p

2
jp

2
l

)
= 0 (8.7)
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and similar equations obtained by suitably exchanging i, j, k, l. If all the external invariants

are grouped into a single variable, for a given function g(z), similarly we will obtain, for

instance,

Jij g

(
p2
i

p2
j

)
= 0 J̃ij g

(
p2
i p

2
j

)
= 0 Jij,kl g(p2

i p
2
jp

2
kp

2
l ) = 0 Jij,kl g

(
p2
i

p2
j

p2
k

p2
l

)
= 0. (8.8)

Beside the exact solutions identified in the previous sections, the CWI’s allows other

classes of solutions which may be found using a limited set of assumptions on the s, t de-

pendence of the ansätz. Therefore, we will proceed with an analysis of the special CWI’s,

trying to find approximate solutions of eqs. (3.8)–(3.10). We will adopt the notations in-

troduced in eqs. (8.1)–(8.8) in order to refer to the various terms of the corresponding

partial differential equations. For definiteness we will consider the case of eq. (3.8), rewrit-

ten in the form (8.6). We will assume that s and t are both large invariants but we will

keep their ratio fixed. In the Minkowski region this would correspond to investigating the

contribution of such correlator for scatterings at fixed angle (i.e. −t/s fixed).

We notice that if look for a factorised solution of the form

Φ(p1, p2, p3, p4) ≡ χ(s, t)φ(p2
i ), (8.9)

where we separate the dependence on the external mass invariants p2
i from the s, t, we can

satisfy the dilatation WI (5.3) in the form[
(∆t − 3d)−

4∑
i=1

pi
∂

∂pi

]
φ(p2

i ) = 0 (8.10)(
s
∂

∂s
+ t

∂

∂t

)
χ(s, t) = 0 (8.11)

with χ(s, t) ≡ χ(s/t), i.e. an arbitrary function of the ratio of the two external invariants,

describing energy and momentum transfers.

At this stage we can proceed with a separation of the special CWI (8.6) into the three

equations

Dst
23χ(s/t) = 0 (8.12)

(DsJ12,34 + h34,12D
s)χ(s/t)φ(p2

i ) = 0 (8.13)

K14φ = 0 (8.14)

of which we try to identify an asymptotic solution.

Notice that a simple but exact solution of the first of the three equations above is

logarithmic with χ(s/t) ∼ log(−t/s). It is also easy to check, by plugging this expression

into the second equation, that

(DsJ12,34 + h34,12D
s)χ(s/t)φ(p2

i ) ∼ O(1/s2, 1/t2) (8.15)

and contributes insignificantly if the mass invariants p2
i stays bound. Indeed we will consider

solutions of the ratios p2
i /p

2
j where this occurs. For this reason the solution of the last

equation (8.14) has to satisfy also (8.10). We are clearly choosing to assign all the scaling

behaviour of the global solution (8.9) on the external mass invariants. If we require that

p2
i ∼ O(1)� s, t then we can independently search for exact solutions of (8.14).
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8.1 Factorized solutions as generalized hypergeometrics

We can generalize these considerations to all the three CWI’s (3.8), (3.9), (3.10), generating

the system of equations

K14φ = 0, K24φ = 0, K34φ = 0 (8.16)

where

Ki =
∂2

∂p2
i

+
(d− 2∆i + 1)

pi

∂

∂pi
, i = 1, . . . , 4 , (8.17)

Kij = Ki −Kj . (8.18)

An equivalent way to rearrange this operator is to use a change of variables from

(p2
1, p

2
2, p

2
3, p

2
4) to (x, y, z, p2

4) where

x =
p2

1

p2
4

, y =
p2

2

p2
4

, z =
p2

3

p2
4

(8.19)

are the dimensionless rations x, y and z which must not to be confused with coordinate

points in a three dimensional space. The ansätz for the solution can be taken of the form

φ(p1, p2, p3, p4) = (p2
4)ns xa yb zc F (x, y, z), (8.20)

satisfying the dilatation Ward identity (8.10)

with the condition

ns =
∆t

2
− 3d

2
(8.21)

With this ansätz the conformal Ward identities read as

K14φ= 4p∆t−3d−2
4 xa yb zc

[
(1−x)x

∂2

∂x2
−2xy

∂2

∂x∂y
−y2 ∂

2

∂y2
−2xz

∂2

∂x∂z
−z2 ∂

2

∂z2
−2y z

∂2

∂y∂z

+(Ax+γ)
∂

∂x
+Ay

∂

∂y
+Az

∂

∂z
+

(
E+

G

x

)]
F (x,y,z) = 0 (8.22)

with

A = ∆1 + ∆2 + ∆3 −
5

2
d− 2(a+ b+ c)− 1 (8.23a)

E = −1

4

(
3d−∆t + 2(a+ b+ c)

)(
2d+ 2∆4 −∆t + 2(a+ b+ c)

)
(8.23b)

G =
a

2
(d− 2∆1 + 2a) (8.23c)

γ =
d

2
−∆1 + 2a+ 1 (8.23d)

Similar constraints are obtained from the equation K34φ = 0 that can be written as

K24φ= 4p∆t−3d−2
4 xa yb zc

[
−x2 ∂

2

∂x2
−2xy

∂2

∂x∂y
+(1−y)y

∂2

∂y2
−2xz

∂2

∂x∂z
−z2 ∂

2

∂z2
−2y z

∂2

∂y∂z

+A′x
∂

∂x
+(A′y+γ′)

∂

∂y
+A′z

∂

∂z
+

(
E′+

G′

x

)]
F (x,y,z) = 0 (8.24)
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with

A′ = ∆1 + ∆2 + ∆3 −
5

2
d− 2(a+ b+ c)− 1 (8.25a)

E′ = −1

4

(
3d−∆t + 2(a+ b+ c)

)(
2d+ 2∆4 −∆t + 2(a+ b+ c)

)
(8.25b)

G′ =
b

2
(d− 2∆2 + 2b) (8.25c)

γ′ =
d

2
−∆2 + 2b+ 1 (8.25d)

and finally, for the third condition coming from the conformal Ward identities

K34φ= 4p∆t−3d−2
4 xa yb zc

[
−x2 ∂

2

∂x2
−2xy

∂2

∂x∂y
−y2 ∂

2

∂y2
−2xz

∂2

∂x∂z
+(1−z)z

∂2

∂z2
−2y z

∂2

∂y∂z

+A′′x
∂

∂x
+A′′y

∂

∂y
+(A′′z+γ′′)

∂

∂z
+

(
E′′+

G′′

x

)]
F (x,y,z) = 0 (8.26)

with

A′′ = ∆1 + ∆2 + ∆3 −
5

2
d− 2(a+ b+ c)− 1 (8.27a)

E′′ = −1

4

(
3d−∆t + 2(a+ b+ c)

)(
2d+ 2∆4 −∆t + 2(a+ b+ c)

)
(8.27b)

G′′ =
c

2
(d− 2∆3 + 2c) (8.27c)

γ′′ =
d

2
−∆3 + 2c+ 1 (8.27d)

It is worth noticing that in order to perform the reduction to the hypergeometric form

of the equations, we need to set G = 0, G′ = 0 and G′′ = 0, which imply that the Fuchsian

points a, b, c have different values as

a = 0, ∆1 −
d

2
(8.28a)

b = 0, ∆2 −
d

2
(8.28b)

c = 0, ∆3 −
d

2
. (8.28c)

We find also that E = E′ = E′′ = −α(a, b, c)β(a, b, c) where

α(a, b, c) = d+ ∆4 −
∆t

2
+ a+ b+ c

β(a, b, c) =
3d

2
− ∆t

2
+ a+ b+ c (8.29)

as well as A = A′ = A′′ = −(α(a, b, c) + β(a, b, c) + 1), indeed

A = A′ = A′′ = −(α(a, b, c) + β(a, b, c) + 1) = ∆1 + ∆2 + ∆3 −
5

2
d− 2(a+ b+ c)− 1

(8.30)
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and finally

γ(a) =
d

2
−∆1 + 2a+ 1 , γ′(b) =

d

2
−∆2 + 2b+ 1 , γ′′(c) =

d

2
−∆3 + 2c+ 1. (8.31)

With this redefinition of the coefficients, the equations are then expressed in the form


xj(1−xj)∂

2F
∂x2

j
+
∑
s 6=j for r=j

xr
∑
xs

∂2F
∂xr∂xs

+[γj−(α+β+1)xj ]
∂F
∂xj
−(α+β+1)

∑
k 6=j

xk
∂F
∂xk
−αβF = 0

(j= 1,2,3)

(8.32)

where for sake of simplicity we have re-defined γ1 = γ, γ2 = γ′ and γ3 = γ′′ and x1 = x,

x2 = y and x3 = z. This system of equations allows solutions in the form of the Lauricella

hypergeometric function FC of three variables, defined by the series

FC(α, β, γ, γ′, γ′′, x, y, z) =
∞∑

m1,m2,m3

(α)m1+m2+m3(β)m1+m2+m3

(γ)m1(γ′)m2(γ′′)m3m1!m2!m3!
xm1ym2zm3 , (8.33)

where the Pochhammer symbol (λ)k with an arbitrary λ and k a positive integer not equal

to zero, was previously defined in (2.33). The convergence region of this series is defined

by the condition ∣∣√x∣∣+ |√y|+
∣∣√z∣∣ < 1. (8.34)

The function FC is the generalization of the Appell F4 for the case of three variables.

The system of equations (8.32) admits 8 independent particular integrals (solutions) listed

below

S1(α,β,γ,γ′,γ′′,x,y,z) =FC
(
α,β,γ,γ′,γ′′,x,y,z

)
,

S2(α,β,γ,γ′,γ′′,x,y,z) =x1−γ FC
(
α−γ+1,β−γ+1,2−γ,γ′,γ′′,x,y,z

)
,

S3(α,β,γ,γ′,γ′′,x,y,z) = y1−γ′ FC
(
α−γ′+1,β−γ′+1,γ,2−γ′,γ′′,x,y,z

)
,

S4(α,β,γ,γ′,γ′′,x,y,z) = z1−γ′′ FC
(
α−γ′′+1,β−γ′′+1,γ,γ′,2−γ′′,x,y,z

)
,

S5(α,β,γ,γ′,γ′′,x,y,z) =x1−γy1−γ′ FC
(
α−γ−γ′+2,β−γ−γ′+2,2−γ,2−γ′,γ′′,x,y,z

)
,

S6(α,β,γ,γ′,γ′′,x,y,z) =x1−γz1−γ′′ FC
(
α−γ−γ′′+2,β−γ−γ′′+2,2−γ,γ′,2−γ′′,x,y,z

)
,

S7(α,β,γ,γ′,γ′′,x,y,z) = y1−γ′z1−γ′′ FC
(
α−γ′−γ′′+2,β−γ′−γ′′+2,γ,2−γ′,2−γ′′,x,y,z

)
,

S8(α,β,γ,γ′,γ′′,x,y,z) =x1−γy1−γ′z1−γ′′

×FC
(
α−γ−γ′−γ′′+2,β−γ−γ′−γ′′+2,2−γ,2−γ′,2−γ′′,x,y,z

)
.

(8.35)
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where we have defined

α ≡ α(0, 0, 0) = d+ ∆4 −
∆t

2

β ≡ β(0, 0, 0) =
3d

2
− ∆t

2

γ ≡ γ(0) =
d

2
−∆1 + 1

γ′ ≡ γ′(0) =
d

2
−∆2 + 1

γ′′ ≡ γ′′(0) =
d

2
−∆3 + 1. (8.36)

Finally the solution for φ can be written as

φ(p2
i ) = p∆t−3d

4

∑
i

Ci Si(α, β, γ, γ
′, γ′′, x, y, z) (8.37)

where Ci are arbitrary constant and Si, i = 1, . . . , 23 are the independent solutions written

above.

To summarize, we have indeed shown that approximate solutions of the CWI’s, de-

scribing the behaviour of the correlator at fixed angle can be taken of the factorized form

Φ(p1, p2, p3, p4) ∼ log(−t/s)φ(p2
i ). (8.38)

We should remark that other approximate solutions of similar form, containing higher

powers of logarithms of −t/s are also compatible with the asymptotic ansätz that we

have presented here. Obviously, in such a case we would be requiring that the exact

condition (8.12) would be replaced by the new condition

Dst
23χ(s/t) = O(1/s2, 1/t2) (8.39)

which is asymptotically satisfied also by higher powers of log(−t/s). In general, under

such weaker assumptions, approximate asymptotic solutions can be summarized in the

more general form

Φ(p1, p2, p3, p4) ∼ f (log(−t/s))φ(p2
i ), (8.40)

where f can be take of the generic form

f (log(−t/s)) =
∑
k

ck logk ((−t/s)) . (8.41)

In the next section we are going to show that for the p2
i dependence on the external mass

invariants of the approximate solution, given by the Lauricella functions, their equivalence

to 4-K integrals, generalizing previous results for 3-point functions.

8.2 Lauricella’s as 4-K integrals

It is interesting to show how the solutions found above can be reformulated in a way

which resembles what found in the case of 3-point functions. As alredy mentioned, the
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3K integrals provide an efficient alternative way to express the solutions for scalar 3-point

functions in terms of Appell functions. We are now going to show that hypergeometrics of

3-variables, which belong to the class of Lauricella functions, similarly, can be related to

4K integrals. We write the solutions of such systems in the form

Iα−1{ν1,ν2,ν3,ν4}(a1, a2, a3, a4) =

∫ ∞
0

dxxα−1
4∏
i=1

(ai)
νi Kνi(ai x) (8.42)

with the Bessel functions Iν , Jν ,Kν related by the identities

Iν(x) = i−ν Jν(ix) (8.43)

Kν(x) =
π

2sin(πν)

[
I−ν(x)−Iν(x)

]
=

1

2

[
iν Γ(ν)Γ(1−ν)J−ν(ix)+i−ν Γ(−ν)Γ(1+ν)Jν(ix)

]
(8.44)

where we have used the properties of the Gamma functions

π

sin(πν)
= Γ(ν) Γ(1− ν), − π

sin(πν)
= Γ(−ν) Γ(1 + ν). (8.45)

The structure of the CWI’s (8.16) supports this formulation. The dilatation Ward

identities in this case can be written as[
(∆t − 3d)−

4∑
i=1

pi
∂

∂pi

]
Iα{β1,β2,β3,β4}(p1, p2, p3, p4) = 0 (8.46)

and using the properties of 4K integrals in appendix C we derive the relation

(α− βt + 1 + ∆t − 3d)Iα{β1,β2,β3,β4}(p1, p2, p3, p4) = 0 (8.47)

which is identically satisfied if the α exponent is equal to α̃

α̃ = βt + 3d−∆t − 1. (8.48)

The conformal Ward identities (8.16) can now be written as
K14Iα̃{β1,β2,β3,β4} = 0

K24Iα̃{β1,β2,β3,β4} = 0

K34Iα̃{β1,β2,β3,β4} = 0,

(8.49)

generating the final relations
(d− 2∆4 + 2β4)Iα̃+1{β1,β2,β3,β4−1} − (d− 2∆1 + 2β1)Iα̃+1{β1−1,β2,β3,β4} = 0

(d− 2∆4 + 2β4)Iα̃+1{β1,β2,β3,β4−1} − (d− 2∆2 + 2β2)Iα̃+1{β1,β2−1,β3,β4} = 0

(d− 2∆4 + 2β4)Iα̃+1{β1,β2,β3,β4−1} − (d− 2∆3 + 2β3)Iα̃+1{β1,β2,β3−1,β4} = 0

(8.50)

which are satisfied if

βi = ∆i −
d

2
, i = 1, . . . , 4 (8.51)
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giving

α̃ = d− 1. (8.52)

The final solution can be written as

φ(p1, p2, p3, p4) = ¯̄α Id−1{∆1− d
2
,∆2− d

2
,∆3− d

2
,∆4− d

2}(p1, p2, p3, p4)

=

∫ ∞
0

dxxd−1
4∏
i=1

(pi)
∆i− d

2 K∆i− d
2
(pi x)., (8.53)

where ¯̄α is a undetermined constant.

Concerning the convergence of the approximate 4K solutions found in the fixed angle

scattering limit at large s and t, one can discuss the general conditions to be imposed, by

following a strategy quite similar to the one discussed in section 7.

The asymptotic limit at large and small x values, also in this case previously shown

in (7.2) et seq., gives the conditions

p1 + p2 + p3 + p4 > 0 (8.54)

and

d

2
− 1±

(
∆1 −

d

2

)
±
(

∆2 −
d

2

)
±
(

∆3 −
d

2

)
±
(

∆4 −
d

2

)
> 0, (8.55)

respectively. Therefore the condition of convergence at large x of the parametric represen-

tation of the 4K integral is verified within the physical region of the general scalar 4-point

function. Also in this case, as in section 7, a discussion of implications of such convergence

constraints will be presented in a related work.

8.3 Connection with the Lauricella

The key identity necessary to obtain the relation between the Lauricella functions and the

4K integral takes the form

∫ ∞
0

dxxα−1
3∏
j=1

Jµj (aj x)Kν(c x) = 2α−2 c−α−λ Γ

(
α+ λ− ν

2

)
Γ

(
α+ λ+ ν

2

)

×
3∏
j=1

a
µj
j

Γ(µj + 1)
FC

(
α+ λ− ν

2
,
α+ λ+ ν

2
, µ1 + 1, µ2 + 1, µ3 + 1;−a

2
1

c2
,−a

2
2

c2
,−a

2
3

c2

)
λ =

3∑
j=1

µj ; Re(α+ λ) > |Re(ν)|, Re(c) >

3∑
j=1

|Im aj |

 . (8.56)

One of the advantages of the use of the 4K integral expression of a solution is the simplified

way by which the symmetry conditions can be imposed. In fact, by taking each of the

8 independent solutions identified in (8.35), and by rewriting them in the form of 4K
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integrals, we can impose the symmetry constraints far more easily. Then the general 4K

integral in (8.42), using (8.44), can be written as

Φ(p2
i ) = 2d−5p∆t−3d

4 C1234

{
Γ

(
∆1−

d

2

)
Γ

(
∆2−

d

2

)
Γ

(
∆3−

d

2

)
Γ

(
3d−∆t

2

)
Γ

(
d+∆4−

∆t

2

)
×F (3)

C

(
3d

2
−∆t

2
, d+∆4−

∆t

2
,
d

2
−∆1+1,

d

2
−∆2+1,

d

2
−∆3+1;

p2
1

p2
4

,
p2

2

p2
4

,
p2

3

p2
4

)

+Γ

(
∆1−

d

2

)
Γ

(
∆2−

d

2

)
Γ

(
d

2
−∆3

)
Γ

(
d

2
−∆t

2
+∆3+∆4

)
Γ

(
d+∆3−

∆t

2

)(
p2

3

p2
4

)∆3− d
2

×F (3)
C

(
d−∆t

2
+∆3 ,

d

2
−∆t

2
+∆3+∆4,

d

2
−∆1+1,

d

2
−∆2+1,1− d

2
+∆3;

p2
1

p2
4

,
p2

2

p2
4

,
p2

3

p2
4

)

+Γ

(
∆1−

d

2

)
Γ

(
d

2
−∆2

)
Γ

(
∆3−

d

2

)
Γ

(
d−∆t

2
+∆2

)
Γ

(
d

2
−∆t

2
+∆2+∆4

)(
p2

2

p2
4

)∆2− d
2

×F (3)
C

(
d−∆t

2
+∆2 ,

d

2
−∆t

2
+∆2+∆4,

d

2
−∆1+1,1− d

2
+∆2,

d

2
−∆3+1;

p2
1

p2
4

,
p2

2

p2
4

,
p2

3

p2
4

)

+Γ

(
d

2
−∆1

)
Γ

(
∆2−

d

2

)
Γ

(
∆3−

d

2

)
Γ

(
d−∆t

2
+∆1

)
Γ

(
d

2
−∆t

2
+∆1+∆4

)(
p2

1

p2
4

)∆1− d
2

×F (3)
C

(
d−∆t

2
+∆1 ,

d

2
−∆t

2
+∆1+∆4,1−

d

2
+∆1,

d

2
−∆2+1,

d

2
−∆3+1;

p2
1

p2
4

,
p2

2

p2
4

,
p2

3

p2
4

)

+Γ

(
∆1−

d

2

)
Γ

(
d

2
−∆2

)
Γ

(
d

2
−∆3

)
Γ

(
∆t

2
−∆1

)
Γ

(
d

2
−∆t

2
+∆2+∆3

)(
p2

2

p2
4

)∆2− d
2
(
p2

3

p2
4

)∆3− d
2

×F (3)
C

(
d

2
−∆t

2
+∆2+∆3 ,

∆t

2
−∆1,1+

d

2
−∆1,1−

d

2
+∆2,1−

d

2
+∆3;

p2
1

p2
4

,
p2

2

p2
4

,
p2

3

p2
4

)

+Γ

(
d

2
−∆1

)
Γ

(
d

2
−∆2

)
Γ

(
∆3−

d

2

)
Γ

(
∆t

2
−∆3

)
Γ

(
d

2
−∆t

2
+∆1+∆2

)(
p2

1

p2
4

)∆1− d
2
(
p2

2

p2
4

)∆2− d
2

×F (3)
C

(
∆t

2
−∆3 ,

d

2
−∆t

2
+∆1+∆2,1+∆1−

d

2
,1+

d

2
−∆2,1−

d

2
+∆3;

p2
1

p2
4

,
p2

2

p2
4

,
p2

3

p2
4

)

+Γ

(
d

2
−∆1

)
Γ

(
∆2−

d

2

)
Γ

(
d

2
−∆3

)
Γ

(
∆t

2
−∆2

)
Γ

(
d

2
−∆t

2
+∆1+∆3

)(
p2

1

p2
4

)∆1− d
2
(
p2

3

p2
4

)∆3− d
2

×F (3)
C

(
∆t

2
−∆2 ,

d

2
−∆t

2
+∆1+∆3,1+∆1−

d

2
,1+

d

2
−∆2,1−

d

2
+∆3;

p2
1

p2
4

,
p2

2

p2
4

,
p2

3

p2
4

)

+Γ

(
d

2
−∆1

)
Γ

(
d

2
−∆2

)
Γ

(
d

2
−∆3

)
Γ

(
3d

2
−∆t

2

)
Γ

(
d−∆t

2
+∆4

)(
p2

1

p2
4

)∆1− d
2
(
p2

2

p2
4

)∆2− d
2
(
p2

3

p2
4

)∆3− d
2

×F (3)
C

(
3d

2
−∆t

2
, d−∆t

2
+∆4,1+∆1−

d

2
,1+∆2−

d

2
,1− d

2
+∆3;

p2
1

p2
4

,
p2

2

p2
4

,
p2

3

p2
4

)}
(8.57)

where C1234 is the only undetermined constant.

9 Conclusions

We have investigated two classes of solutions of the CWI’s of scalar primary correlators

in momentum space. In the first class we have identified solutions in the form of 4-point

functions which are dual conformal and conformal at the same time. Such solutions have
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been found using ansätze which allow to reduce the equations to systems of generalized

hypergeometrics. The method extends previous analysis of 3-point functions for scalar

and tensor correlators, limitedly to DCC solutions, which can be expressed in terms of 3K

integrals, similarly to the case of ordinary 3-point functions.

We have also discussed how one can construct solutions of the CWI’s, by showing that

at large s and t, with a fixed −t/s, i.e. at fixed angle, the CWI’s are approximated by a

system of special hypergeometric equations, which can be solved by a specific factorized

ansatz. In the ansatz, which is an exact solution of such a system, the dependence of the

correlators on the external mass invariants is separated from the s and t invariants. We

have shown that the solutions, in this case, take the form of Lauricella hypergeometric

functions of 3 variables. The s and t dependence of the solutions is compatible with the

structure of such correlators at fixed angle in the asymptotic limit, due to the logarithmic

−t/s dependence, typical of such solutions.

Finally, we have shown that the system of the Lauricella solutions are equivalent to

some newly introduced 4K integrals. Would be very interesting to investigate whether this

pattern can be extended to n-point functions, in the context of more realistic field theories

such as QCD, for instance, following the analysis presented in [39–41].
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A Chain rules

In this section we summarize some important relations regarding the chain rules used in

the derivation of the hypergeometric system of equations. They are given by

∂2

∂p2
1

F (x,y) =
2x

p2
1

∂xF (x,y)+
4x2

p2
1

∂xxF,
∂2

∂p2
4

F (x,y) =
2y

p2
4

∂yF (x,y)+
4y2

p2
4

∂yyF, (A.1)

∂2

∂p2
3

F (x,y) =
2x

p2
3

∂xF (x,y)+
4x2

p2
3

∂xxF,
∂2

∂p2
2

F (x,y) =
2y

p2
2

∂yF (x,y)+
4y2

p2
2

∂yyF, (A.2)

∂

∂p1
F (x,y) =

2x

p1
∂xF (x,y),

∂

∂p4
F (x,y) =

2y

p4
∂yF (x,y), (A.3)

∂

∂p3
F (x,y) =

2x

p3
∂xF (x,y),

∂

∂p2
F (x,y) =

2y

p2
∂yF (x,y), (A.4)

∂

∂s
F (x,y) =−2

s

(
x∂xF+y∂yF

)
,

∂

∂t
F (x,y) =−2

t

(
x∂xF+y∂yF

)
, (A.5)

∂2

∂s∂t
F (x,y) =

4

st

[(
x∂x+y∂y

)
F+

(
x2∂xx+2xy∂xy+y2∂yy

)
F
]
, (A.6)(

p1
∂

∂p1
+p2

∂

∂p2
−p3

∂

∂p3
−p4

∂

∂p4

)
F (x,y) = (2x∂x+2y∂y−2x∂x−2y∂y)F (x,y) = 0, (A.7)(

p1
∂

∂p1
+p4

∂

∂p4
−p3

∂

∂p3
−p2

∂

∂p2

)
F (x,y) = (2x∂x+2y∂y−2x∂x−2y∂y)F (x,y) = 0. (A.8)
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B 3K integrals for 4-point functions

We summarize some relations concerning 3K integrals. We define

Iα{β1,β2,β3}(p1 p3;p2 p4;st) =

∫ ∞
0

dxxα (p1p3)β1 (p2p4)β2 (st)β3Kβ1(p1p3x)Kβ2(p2p4x)Kβ3(stx)

(B.1)

as in (5.29). The K Bessel functions satisfy the relations

∂

∂p

[
pβKβ(p x)

]
= −x pβKβ−1(px) (B.2)

Kβ+1(x) = Kβ−1(x) +
2β

x
Kβ(x) (B.3)

from which we obtain (omitting the argument in each integral as in (5.29))

∂

∂p1
Iα{β1,β2,β3} = −p1 p

2
3 Iα+1{β1−1,β2,β3} (B.4)

∂

∂p3
Iα{β1,β2,β3} = −p3 p

2
1 Iα+1{β1−1,β2,β3} (B.5)

∂

∂p2
Iα{β1,β2,β3} = −p2 p

2
4 Iα+1{β1,β2−1,β3} (B.6)

∂

∂p4
Iα{β1,β2,β3} = −p4 p

2
2 Iα+1{β1,β2−1,β3} (B.7)

∂

∂s
Iα{β1,β2,β3} = −s t2 Iα+1{β1,β2,β3−1} (B.8)

∂

∂t
Iα{β1,β2,β3} = −t s2 Iα+1{β1,β2,β3−1} (B.9)

and for the second derivative

∂2

∂p2
1

Iα{β1,β2,β3} = − p2
3 Iα+1{β1−1,β2,β3} + p2

1 p
4
3 Iα+2{β1−2,β2,β3} (B.10)

∂2

∂p2
3

Iα{β1,β2,β3} = − p2
1 Iα+1{β1−1,β2,β3} + p2

3 p
4
1 Iα+2{β1−2,β2,β3} (B.11)

∂2

∂p2
2

Iα{β1,β2,β3} = − p2
4 Iα+1{β1,β2−1,β3} + p2

2 p
4
4 Iα+2{β1,β2−2,β3} (B.12)

∂2

∂p2
4

Iα{β1,β2,β3} = − p2
2 Iα+1{β1,β2−1,β3} + p2

4 p
4
2 Iα+2{β1,β2−2,β3} (B.13)

∂2

∂s∂t
Iα{β1,β2,β3} = −2 s t Iα+1{β1,β2,β3−1} + t3 s3 Iα+2{β1,β2,β3−2}. (B.14)

They can be rearranged using the relations

p2
1 p

2
3 Iα+2{β1−2,β2,β3} = Iα+2{β1,β2,β3} − 2(β1 − 1) Iα+1{β1−1,β2,β3} (B.15)

p2
2 p

2
4 Iα+2{β1,β2−2,β3} = Iα+2{β1,β2,β3} − 2(β2 − 1) Iα+1{β1,β2−1,β3} (B.16)

s2 t2 Iα+2{β1,β2,β3−2} = Iα+2{β1,β2,β3} − 2(β3 − 1) Iα+1{β1,β2,β3−1}. (B.17)
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C 4K integrals for Lauricella 4-point functions

We summarize some important relations about the 4K integrals. Defining the 4K integral as

Iα{β1,β2,β3,β4}(p1, p2, p3, p4) =

∫ ∞
0

dxxα
4∏
i=1

(pi)
βi Kβi(pi x) (C.1)

its first derivative with respect the mgnitudes of the momenta is given by

pi
∂

∂pi
Iα{βj} = −p2

i Iα+1{βj−δij}, i, j = 1, . . . , 4. (C.2)

One can show that the relation∫ ∞
0

xα+1 ∂

∂x

[
4∏
i=1

pβii Kβi(pi x)

]
= −

∫ ∞
0

[
∂xα+1

∂x

] 4∏
i=1

pβii Kβi(pi x) (C.3)

leads to the identity

4∑
i=1

p2
i Iα+1{βj−δij} = (α− βt + 1) Iα{βj}, j = 1, . . . , 4 (C.4)

where βt = β1 + β2 + β3 + β4.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[13] R. Armillis, C. Corianò and L. Delle Rose, Conformal Anomalies and the Gravitational

Effective Action: The TJJ Correlator for a Dirac Fermion, Phys. Rev. D 81 (2010) 085001

[arXiv:0910.3381] [INSPIRE].
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