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This leads to complications in the application of thermal perturbation theory, including

the appearance of novel infrared divergences in loop integrals and an apparent absence of

four-dimensional integration-by-parts (IBP) identities, vital for high-order computations.

Here, we propose a new strategy that enables the use of IBP techniques in the evaluation

of Feynman integrals, in particular vacuum or bubble diagrams, in the limit of vanishing

temperature T but nonzero chemical potentials µ. The central elements of the new setup

include a contour representation for the temporal momentum integral, the use of a small

but nonzero T as an IR regulator, and the systematic application of both temporal and

spatial differential operators in the generation of linear relations among the loop integrals

of interest. The relations we derive contain novel inhomogeneous terms featuring differenti-

ated Fermi-Dirac distribution functions, which severely complicate calculations at nonzero

temperature, but are shown to reduce to solvable lower-dimensional objects as T tends to

zero. Pedagogical example computations are kept at the one- and two-loop levels, but the

application of the new method to higher-order calculations is discussed in some detail.
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1 Introduction

Perturbation theory is undoubtedly the single most powerful technique for making quanti-

tative predictions in quantum field theory [1–3]. Importantly, its application is not limited

to problems in vacuum, but perturbative methods are equally applicable to the study of

extended systems in and even out of thermal equilibrium [4–7]. In the latter context, the

physical systems of relevance range from the early Universe to the extremely dense cores

of neutron stars and the hot fireball created in heavy-ion collisions. In such applications,

Quantum Chromodynamics (QCD) has proven a particularly challenging theory [8] due

to a combination of complicated phenomenological problems and the slow convergence of

weak-coupling expansions. For this reason, thermal perturbation theory calculations in

QCD need to be pushed to particularly high loop orders, and, e.g., the equation of state

(EoS) of deconfined QCD matter is currently known to partial four-loop level both at high

temperatures T and small or vanishing chemical potentials µ [9–14] as well as at high µ

and small or vanishing T [15–18].

In high-loop-order perturbative calculations, be that in vacuum or a thermal setting,

various methods of automation become indispensable. In vacuum, one of the most cru-

cial tools enabling, e.g., the determination of the five-loop running coupling constant of

QCD [19, 20], is the integration-by-parts (IBP) technique [21, 22]. It allows for the deriva-

tion of linear relations between different Feynman integrals, reducing the number of inde-

pendent master integrals in need of explicit analytic or numerical evaluation. These iden-

tities are typically generated by multiplying the integrand of a Feynman integral, schemat-

ically
∫

P g(P ), by a momentum-dependent function fν(P ) and using the fact that integrals

over total derivatives vanish, i.e.
∫

P ∂ν
(
fν(P )g(P )

)
= 0.

Unfortunately, the derivation of IBP relations relies heavily on Lorentz symmetry,

which is broken by both a nonzero T and µ. In the imaginary-time formalism of thermal

field theory, applicable in thermal equilibrium, the spacetime metric becomes Euclidean

with integrals over the temporal momentum component being replaced by discrete sums

over the so-called Matsubara frequencies [23]. The latter take the form p0 = ωB/F
n with ωB

n =

2nπT for bosons and ωF
n = (2n + 1)πT + iµ for fermions, n ∈ Z, where an imaginary shift

appears for nonzero chemical potentials. This implies that total derivatives in the temporal

direction no longer lead to vanishing momentum integrals, which prevents the closing of

traditional IBP relations. In existing literature, this issue has typically been resolved by

only considering spatial derivative operators and integrations in the derivation of IBP

relations [24, 25], which however severely limits their power in practical computations.1

In a largely unrelated development, it was recently pointed out in [26] that even the

simplest loop calculations involving chemical potentials require particular care in the low-

temperature limit. A naive application of the residue theorem may lead to the missing

of important contributions to physical quantities. This issue appears whenever fermionic

propagators are raised to (integer) powers higher than 1 and can be most conveniently

circumvented through a consistent use of a contour-integral formulation for the temporal

1Note also that while spatial IBP operators are always applicable, the presence of chemical potential

changes the structure of the corresponding IBP relations derived at µ = 0 as demonstrated in appendix D.4.
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integral, introduced in [26] and reviewed in section 2 below. In the strict T = 0 limit,

this procedure gives rise to δ-function terms easily missed in standard residue calculations

that utilize a single linear contour along the real axis,2 which also highlights the fact that

thermal field theory calculations performed at T = 0, µ 6= 0 should always be thought

of as the T → 0 limit of a finite-temperature computation. As detailed in [26], even if

infinitesimally small, the parameter T plays an important regulatory role in loop integrals.

Motivated by the phenomenological need to determine the EoS of cold and ultradense

quark matter, stemming from attempts to determine the EoS of neutron-star matter in

a model-agnostic manner (see e.g., [28–30] for recent studies), our aim in this paper is to

generalize IBP methods to be at least partially available in the limit of nonzero chemical

potentials but vanishing temperatures. Crucially, we are interested in IBPs in all D ≡

4 − 2ǫ dimensions, and to this end insist on including also temporal derivatives in the

operators generating linear relations. As we will detail below, the use of the contour-

integral prescription of [26] will give rise to extra boundary terms or inhomogeneities in

IBP relations that often feature derivatives of the Fermi-Dirac distribution function. While

highly problematic at nonzero temperatures, in the strict T → 0 limit these derivative terms

simplify considerably, leading to more easily computable entities that close the extended

IBP relations although some differences to standard vacuum IBP relations are seen to

arise.3

In the practical derivation of the new IBP relations, our strategy is to use temporal

derivatives to write the boundary terms in a form, where ideally all fermionic distribution

functions have been differentiated, while all other terms are of a form familiar from vacuum-

type IBP relations. While the latter can be further simplified using spatial IBP relations

as discussed in section 3 below, the integrals with differentiated distribution functions

need to be evaluated explicitly. The techniques needed in such computations are outlined

in section 2, where we also introduce our notation and general formalism. In sections 4

and 5, we then provide explicit examples of this procedure at the one- and two-loop levels,

wherein we also describe the required regularization due to the complex nature of fermionic

propagators at nonzero µ [26]. As a byproduct of our calculations, we end up generalizing

the factorization of the vacuum sunset diagram with collinear scales to finite µ, motivated

by an observed factorization from our IBP relations; this topic is discussed in detail in

appendix E. The final objective of our program is to create an automatable algorithm that,

in combination with other tools such as the cutting rules of [31], will facilitate computations

at high orders of perturbation theory. Although this important extension of our framework

is largely left to future work, some related aspects are discussed in the concluding section 6.

2Somewhat analogous δ-function terms are known to arise from the temporal integration in the context

of the real-time formalism of thermal field theory [6, 27] when using a generalized Cauchy principal value.
3Unlike in the standard T = µ = 0 IBP framework, a consecutive application of a given temporal deriva-

tive operator does not provide additional information. Furthermore, each individual temporal derivative

introduces a new closed group operation for linear algebra, characterized by the number of differentiated

distribution functions in a loop integral.
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2 Formalism and setup

We work in the imaginary-time formalism of thermal field theory. Here, the starting

point of any computation at nonzero temperature T involves discrete sums over Matsubara

frequencies [23], amounting to ωB
n = 2nπT for bosons and ωF

n = (2n+1)πT +iµ for fermions

at a nonzero chemical potential µ, with n ∈ Z. As demonstrated in numerous textbooks [4–

6], sums over these discrete frequencies can be easily converted to continuous integrals using

the analyticity properties of the Bose-Einstein and Fermi-Dirac distribution functions,

nF(x) =
1

ex + 1
, nB(x) =

1

ex − 1
. (2.1)

Concretely, we may write the (sum-)integration measures appearing in thermal Feynman

integrals in the forms

∑∫

P

f(ωB
n, p) = T

∑

ωB
n

∫

p

f(ωB
n, p) =

∮ b

P
nB(iβp0)f(p0, p) , (2.2)

∑∫

{P }

f(ωF
n, p) = T

∑

ωF
n

∫

p

f(ωF
n, p) =

∮ f

P
nF [iβ(p0 − iµ)] f(p0, p) , (2.3)

where P = (p0, p) stands for a momentum in D = d + 1 dimensions, p is a d-dimensional

spatial vector, and p ≡ |p|. Sum-integrals are denoted by the shorthand Σ
∫

P = T
∑

pn

∫
p
,

where pn = ωB/F
n and curly brackets are used to indicate the fermionic nature of the loop

momentum.

Above, we have also introduced a shorthand notation for the (d + 1)-dimensional

integral and its temporal integration contours

∮ b/f

P
≡

∮ b/f

p0

∫

p

,

∮ b

p0

≡

[∫ ∞−iη

−∞−iη
+
∫ −∞+iη

∞+iη

]
dp0

2π
,

∮ f

p0

≡

[∫ ∞+iµ+iη

−∞+iµ+iη
+
∫ −∞+iµ−iη

∞+iµ−iη

]
dp0

2π
,

(2.4)

where the integration contour runs (anti-)clockwise for fermions (bosons) around the real

axis of the complex p0-plane. For the dimensionally regulated (MS) spatial integrals in

d = 3 − 2ǫ dimensions, we finally introduce the measure

∫

p

≡

(
eγEΛ̄2

4π

) 3−d
2
∫

ddp

(2π)d
, (2.5)

where Λ̄ is the corresponding renormalization scale and γE is the Euler-Mascheroni constant.

Unless otherwise stated, we will provide results for general d dimensions whenever possible.

Below, we will briefly discuss two technical issues that are both frequently used in

our forthcoming presentation. The first issue has to do with subtleties in taking the zero-

temperature limit in the above (sum-)integration measures; see section 2.1. The second

introduces two convenient deformations of the fermionic p0-integration contour defined

above, which turn out to greatly simplify practical calculations; see section 2.2.
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2.1 Small-temperature limit and regularization

As discussed in detail in [26], taking the zero-temperature limit in the integrals defined

above can be surprisingly non-trivial, and in particular, changing the order of the temporal

and spatial integrations must be handled with care. To prepare for these subtleties, we

identify the real-valued parameters x ≡ Re(p0) and y ≡ Im(p0) − µ for the Fermi-Dirac

distribution as well as x ≡ Re(p0) and y ≡ Im(p0) for the Bose-Einstein distribution,

whereby the low-temperature limits of the corresponding distribution functions become

nF(B) [iβx − βy] = +
(−)

1

2

[
1 +

sinh(βy)

cosh(βy) +
(−) cos(βx)

]
−

i

2

sin(βy)

cosh(βy) +
(−) cos(βx)

T <|y|
−→ +

(−)θ
F(B)
T (y) − i0F(B)

T 1 . (2.6)

In this result, the bosonic case is always shown in parenthesis, and the chosen notation

for the two functions defined on the lower line corresponds to the respective behaviors of

the real and imaginary parts of the distribution functions at small but non-vanishing T :

limT →0 θF(B)
T (y) = θ(y) and limT →0 0F(B)

T 1 = 0.4

The derivative of the real-valued fermionic distribution function finally gives rise to a

well-known nascent delta distribution, referred to as the δ- sequence below:

−βn′
F[−βy] =

β

2

1

[cosh(βy) + 1]
T <|y|
−→ δT (y) . (2.7)

Similarly, the complex generalizations of the differentiated Fermi-Dirac and Bose-Einstein

distributions (often referred to as primed distribution functions) yield

−βn′
F(B) [iβx − βy] =

β

2

cosh(βy) cos(βx) +
(−) 1

[cosh(βy) +
(−) cos(βx)]2

+
(−)

iβ

2

sinh(βy) sin(βx)

[cosh(βy) +
(−) cos(βx)]2

T <|y|
−→ +

(−)δ
F(B)
T (y) +

(−) i0F(B)
T 2 , (2.8)

where we introduced two more functions with the respective limits of limT →0 δF(B)
T (y) = δ(y)

and limT →0 0F(B)
T 2 = 0.

The simplest example of an integrand, for which the use of T as a regulatory parameter

(through the above relations) becomes important,5 consists of a massless fermionic propa-

gator raised to an arbitrary real-valued power α. Here, a naive way to proceed would be

to first drop the lower part of the p0-contour in eq. (2.3) due to its exponential suppression

at small T and then to set nF [iβ(p0 − iµ)] → 1, resulting in

∮ f

p0

∫

p

nF [iβ(p0 − iµ)]

[p2
0 + p2]α

7→

∫

p

∫ ∞

−∞

dp0

2π

1

[(p0 + iµ)2 + p2]α
. (2.9)

This strategy indeed yields a p0-integral that can be easily evaluated using the residue

theorem, but the result turns out to be the physically correct one only for 1/2 < α ≤ 1;

4Upper indices in eq. (2.6) indicate the particular θ-function and 0-sequences defined by this equation.
5Keeping T nonzero prevents the temporal components of fermionic momenta p

f
0 = ωF

n = (2n+1)πT +iµ

from vanishing, which in turn protects integrals with high powers of fermionic propagators from problematic

divergences from the region p = µ, Re(p0) = 0.

– 4 –
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see appendix A.1 and [26]. For α > 1, an explicit divergence occurs at p = µ, p0 ∼ 0

∫ ǫ

−ǫ

dp0

2π

1

[p0 + iµ + ip]α[p0 + iµ − ip]α
=
∫ ǫ

−ǫ

dp0

2π

1

[p0 + 2iµ]α[p0]α
, (2.10)

which explains the fact that different integration orders are seen to yield differing results

∫

p

∫ ∞

−∞

dp0

2π

1

[(p0 + iµ)2 + p2]α
6=
∫ ∞

−∞

dp0

2π

∫

p

1

[(p0 + iµ)2 + p2]α
. (2.11)

As first pointed out in [26] (see also appendix A.1), this discrepancy is correctly treated

through the Fermi-Dirac distribution and its derivative, which induces an additional δ-

function-type contribution when p0 crosses the imaginary axis along the contour of eq. (2.3).

Similar issues are absent for purely bosonic integrals, given the lack of scales like

chemical potentials. However, graphs mixing bosonic and fermionic momenta may again

feature nontrivial low-temperature limits. Like in the fermionic case, keeping T small but

nonzero in eqs. (2.6) and (2.8) and utilizing (simplifications of) the bosonic δ-sequences

ensure that the order of the temporal and spatial integrations are always interchangeable.

2.2 Contour deformations

To no surprise, the technical complications that we encountered in the T → 0 limit of

the one-loop integral (2.9) and that culminated in the isolation of a novel divergence in

eqs. (2.10) and (2.11) continue to be present at higher loop orders. Although one may

often bypass these issues by analytically continuing results derived for convergent values of

parameters such as the dimension d and the exponent α above, in the application of IBP

relations we will again encounter integrals containing differentiated Fermi-Dirac distribu-

tion functions that give rise to extra contributions from the momentum region that makes

the argument of the n′
F vanish, namely p = µ, p0 ∼ 0. It turns out that for the two classes

of p0-integrals featuring either undifferentiated or differentiated nF functions the optimal

computational strategies differ somewhat and in particular feature slightly different ways of

deforming the original p0-contour (2.4). Below, we briefly introduce these two deformations

that are respectively summarized in figure 1 (left) and (right).

The former class of integrals is initially characterized by such parameter values that

allow one to take the step-function limit of the Fermi-Dirac distribution function without

introducing new divergences, leading to special function solutions analytically continued

to the relevant parameter values. Akin to eq. (2.9), it is then sufficient to only consider

the first line integral in eq. (2.4), and η can furthermore be taken to 0. The practical

evaluation of such integrals can be simplified by deforming the remaining integral in a

fashion illustrated in figure 1 (left) and detailed in [26]. Using the Cauchy theorem, we can

namely replace the infinite integral (La, Lb) parallel to the real axis by three separate line

integrals (L1, L2, L3), of which L2 and L3 are of finite length and run along the imaginary

axis while L1 runs along the real axis, giving

∫ ∞+iµ

−∞+iµ

dp0

2π
f(p0) =

∫ ∞

−∞

dp0

2π
f(p0) −

∫ +iµ

0

dp0

2π
f(p0) −

∫ −iµ

0

dp0

2π
f(−p0) . (2.12)

– 5 –
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Re(p0)

Im(p0)

La Lb

La

L1

L2

L3

+iµ

−iµθT -

terms

Re(p0)

Im(p0)
Ca

Cb

Cu,1

Cl,1

Cu

+iµ + iη

+iµ − iη

Cl

−iµ + iη

−iµ − iη
δT -

terms

Figure 1. Left: deformation of the line integral (2.12) for integrals involving nF-terms, i.e. (La, Lb)
to (L1, L2, L3). The contours La and Lb indicate the original line integral parallel to the real axis.
By mapping La from (−∞ + iµ, iµ) to (−iµ, ∞ − iµ) and changing the sign of the integrand
f(p0) 7→ −f(−p0), the rectangular contour of interest can be closed, while the dashed contours
can be neglected. In turn, the integral is evaluated in terms of the thick blue lines L1, L2 as well
as L1, L3. The lines L2 and L3 are oriented in opposite direction, while L1 is used twice in this
construction. Right: deformation of the fermionic contour (2.3) for integrals involving n′

F-terms, i.e.
(Ca, Cb) to (Cu, Cl). The initial contour, which is closed by two vertical segments at Re(p0) = ±∞,
is first split into two semi-infinite closed contours by introducing the vertical segment Cu,1 and its
inverse. The left of these closed contours is then mapped to the fourth quadrant of the complex
plane upon setting p0 7→ −p0, whereby the inverse of Cu,1 becomes Cl,1 and we end up with the
final blue contours Cu and Cl.

The validity of this construction, detailed in appendix A.1, requires that the integrated

function f(p0) be regular inside the closed Cauchy contour. This can typically be achieved

for certain ranges of propagator exponents, resulting in expressions that can be later ana-

lytically continued to the divergent parameter regions.

For the second class of integrals, a different strategy involving the full fermionic contour

of eq. (2.3) is needed, owing to the sensitivity of the differentiated Fermi-Dirac distribution

to those momentum regions where its argument vanishes. This can be understood by

recognizing that eq. (2.8) describes a two-sided δ-distribution, which results in both line

integrals of the fermionic contour (2.4) contributing to the results at T → 0. Assuming,

as usual, that f(p0) is regular within the fermionic contour, we can again split the original

integrals, denoted now by Ca and Cb, at the imaginary axis as shown in figure 1 (right). The

contour on the left-hand side of the imaginary axis is then mapped to the fourth quadrant

of the complex plane, so that (Ca + Cb) 7→ (Cu + Cl) as detailed in the figure.

Considering now the n′
F-terms integrated over the contours Cu and Cl, we obtain

∮ f

p0

f(p0)
{

iβn′
F [iβ(p0 − iµ)]

}
=
∮ Cu

p0

f(p0)
{

iβn′
F [iβ(p0 − iµ)]

}

+
∮ Cl

p0

f(−p0)
{

iβn′
F [iβ(−p0 − iµ)]

}
, (2.13)

where the only nonzero contributions originate from Cu,1 and Cl,1 of figure 1 (right). The

– 6 –
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leading low-temperature behavior of the fermionic contour integral then becomes

∮ f

p0

f(p0)
{

iβn′
F [iβ(p0 − iµ)]

}
→

∫ iµ+iη

iµ−iη

dp0

2π
f(p0)

{
iβn′

F [iβ(p0 − iµ)]
}

+
∫ −iµ−iη

−iµ+iη

dp0

2π
f(−p0)

{
iβn′

F [iβ(−p0 − iµ)]
}

, (2.14)

which demonstrates that the only nonzero contributions to the original integral originate

from the neighborhood of p0 = iµ of eq. (2.4). The deformed contours defined here greatly

simplify analytic computations involving the δ-sequences but are nevertheless able to cap-

ture the novel thermal corrections from the differentiated distribution functions. This

resembles, to some extent, the role of the finite line integrals in eq. (2.12).

3 Integration-by-parts relations

Moving on from the details of integration contours to the derivation of the desired IBP

relations, let us first specify the precise form of the vacuum-type Feynman integrals we

will be studying in this paper. To this end, we abbreviate the Fermi-Dirac distribution

functions as

ñF(p0) ≡ nF [iβ(p0 − iµ)] , ñ′
F(p0) ≡ iβn′

F [iβ(p0 − iµ)] , (3.1)

and assume a scalarized numerator structure in the Feynman integrals to be considered.

A generic vacuum-type Feynman integral then takes the form

Z
{s},{t}
{α},{γ},{φ}(µ, T ) =

{ N f
ℓ∏

k=1

∮ f

Pk

psk
k,0ñF(pk,0)

[P 2
k ]αk

}{Nb
ℓ∏

l=1

∮ b

Ql

qtl
l,0nB[iβql,0]

[Q2
l ]γl

} ∏

R∈R±
≥2

(Pk,Ql)

1

[R2]φR
,

(3.2)

where we again denote momenta in d + 1 dimensions by P = (p0, p). In this expression,

N f
ℓ stands for the number of fermionic and Nb

ℓ for the number of bosonic loops, with

Pk = (pk,0, pk) denoting fermionic and Ql bosonic loop momenta. Finally, the momenta R

(no indices) are linear combinations of the Pk and Ql, picked from the sets R±
≥2(Pk, Ql).6

As two explicit examples of the (scalarized) integrals to be considered, the one-loop

fermion bubble and the two-loop fermionic sunset are defined as

Is
α(µ, T ) ≡ =

∮ f

p0

ps
0 ñF(p0) Iα(p0) , (3.3)

Ss1s2
α1α2α3

(µ, T ) = =
∮ f

p0

∮ b

q0

ps1
0 qs2

0 ñF(p0)ñF(q0) Sα1α2α3(p0, q0, p0 − q0) , (3.4)

where we henceforth use calligraphic letters for in-medium and Latin letters for d-dimensio-

nal T = 0 loop integrals and also identify Iα(µ, T ) ≡ I0
α(µ, T ) as well as Sα1α2α3(µ, T ) ≡

6We denote by R≥2(Pk, Ql) the set of distinct loop momenta with two or more constituents, while

R±
≥2(Pk, Ql) further includes a unique sign signature for each subset corresponding to the fermionic flow in

the corresponding diagram.
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S00
α1α2α3

(µ, T ) . In the graphical notation, wiggly lines always stand for bosonic and directed

solid lines for fermionic propagators. We also introduced the corresponding d-dimensional

vacuum integrals for the one-loop bubble and two-loop sunset

Iα(m) =
∫

p

1

[p2 + m2]α
=
(

eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

Γ
(
α
) [m2]

d
2

−α

(4π)
d
2

, (3.5)

Sα1α2α3(m1, m2, m3) =
∫

p,q

1

[p2 + m2
1]α1 [q2 + m2

2]α2 [|p − q|2 + m2
3]α3

, (3.6)

while deferring special mass signatures of the latter to appendix D.1.

In practice, both spatial and temporal IBP relations are derived starting from integral

expressions that vanish as total derivatives. Assuming that the integration orders are

interchangeable, for one loop momentum, Pµ, such a relation can be written as

0 =
∮ f

P

∂

∂P µ

[
P ν ñF(p0)f(P )

]
≡

∂

∂P µ
◦ P ν

[ ∮ f

P
ñF(p0)f(P )

]

=
∮ f

P

[
ñF(p0)

(
δν

µ + P ν ∂

∂P µ

)
f(P ) + δµ0P ν ñ′

F(p0)f(P )
]

,

(3.7)

where the integrand f(P ) typically takes the form of a product of individual propagators

and we have introduced a notation for the differential operator ∂
∂P µ ◦ P ν acting on an

integral. The last term on the last line of eq. (3.7) is seen to contain a derivative of the

Fermi-Dirac distribution, which is specific to a thermal setting. The explicit distribution

functions are essential for ensuring that the total derivatives vanish and that integration

orders are interchangeable.

Considering next two distinct loop momenta P and Q, the simplest differential oper-

ators that can be expected to give rise to non-trivial IBP relations are bilinear in both

momenta and derivatives. They form two disjoint classes that are either diagonal or off-

diagonal7 in Lorentz indices,
{

∂

∂pi
◦ pi,

∂

∂pi
◦ qi,

∂

∂p0
◦ p0,

∂

∂p0
◦ q0, · · ·

}
diagonal ,

{
∂

∂p0
◦ pi,

∂

∂pi
◦ q0, · · ·

}
off-diagonal . (3.8)

When acting on the integrand apart from the distribution functions, the two classes are self-

contained , such that integrals generated by an operator of a given class can be algebraically

related to integrals generated by other operators in the same class. This property can be

seen in the one-loop expression

∮ f

P
ñF(p0)

∂

∂p0

p0

[p2
0 + p2]α

=

[
(d + 1 − 2α) −

∂

∂pi
◦ pi

]
Iα(µ, T ) , (3.9)

7The off-diagonal operators lead to scalarized expressions only when combining an even number of them

to a composite operator. While of no interest at the one-loop level, they can play a more pronounced role

in multi-loop problems.
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where the emergent quadratic numerator structure p2
0 has been expressed in terms of a

scalar multiplier and a total spatial derivative.

So far, only spatial differential operators have been considered in the derivation of IBP

relations [24, 25] for systems with broken Lorentz symmetry. The extension we propose here

is to generalize the IBP relations to the full (d+1)-dimensional spacetime, taking advantage

of natural simplifications such as that present in eq. (3.9). A pedagogical example of this

procedure at the one-loop level is obtained by acting on Is
α(µ, T ) with both spatial and

temporal derivatives. This leads to

0 =
(

∂

∂pi
◦ pi

)
Is

α(µ, T ) = (d − 2α)Is
α(µ, T ) + 2αIs+2

α+1(µ, T ) , (ibp.1a)

0 =
(

∂

∂p0
◦ p0

)
Is

α(µ, T ) = (1 + s)Is
α(µ, T ) − 2αIs+2

α+1(µ, T ) +
∮ f

P

ps+1
0 ñ′

F(p0)

[p2
0 + p2]α

, (ibp.1b)

0 =

(
∂

∂Pµ
◦ Pµ

)
Is

α(µ, T ) = (d + 1 − 2α + s)Is
α(µ, T ) +

∮ f

P

ps+1
0 ñ′

F(p0)

[p2
0 + p2]α

, (ibp.1c)

where on the last line we combined spatial and temporal total derivatives into the (d + 1)-

dimensional bilinear operator

∂

∂Pµ
◦ Pµ =

∂

∂p0
◦ p0 +

∂

∂pi
◦ pi . (3.10)

In the relations (ibp.1a)–(ibp.1c), each term notably involves either one differentiated

or one non-differentiated distribution function. Proceeding to higher loop orders, the clas-

sification of integrals appearing in our generalized IBP identities will naturally become

slightly more complicated, but all integrals nevertheless still fall into one of the following

three disjoint classes:

type A: integrals with no differentiated distribution functions,

type B: integrals with only differentiated distribution functions, and

type C: integrals with at least one differentiated and one non-differentiated distribution

function.

Conventional spatial IBP identities such as (ibp.1a) only involve integrals of type A, which

are also familiar from vacuum computations [21, 22]. There they typically reduce the

numerator and denominator powers in type A integrals while introducing rational functions

of the dimension d. In contrast, the novel terms of types B and C are generated by temporal

derivatives in the thermal context, where they play the role of inhomogeneous terms closing

the IBP relations between type A integrals. This can be seen already in the one-loop

relation (ibp.1c), where the presence of the last term allows writing Iα(µ, T ) in terms of

an integral of reduced dimensionality in the zero-temperature limit due to the δ-sequence

of eq. (2.7), thus constituting a new representation for the original integral.

At higher loop orders, the utility of the novel IBP relations similarly derives from

a qualitative hierarchy between the computational workloads associated with evaluating
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type A, B, and C integrals: type A > type C ≫ type B. This is due to the appearance

of differentiated distribution functions in the type C and B integrals, which according to

the δ-sequence of eq. (2.7) amounts to a reduction in their dimensionality.8 As we will

demonstrate in the following two sections of the article, results for type B integrals are

typically immediately available through a straightforward analytic continuation of known

massive vacuum (T = µ = 0) integrals, but even type C integrals are normally dramatically

simpler to evaluate than the original type A entities. Accordingly, our general strategy will

focus on deriving relations between type A and B terms, i.e. integrals involving either only

differentiated or non-differentiated distributions functions, with type C terms remaining

present only if absolutely necessary.

4 One-loop integrals: new strategy in action

Having laid out our general strategy above, we will now take a closer look at explicit IBP

calculations at the one-loop level, where we first return to the well-known integral (3.3)

with s = 0 (for s ∈ N, see eq. (A.6)). It was shown in [26] that in the limit T → 0 and for

any α ∈ R, the integral takes the form

Iα(µ) ≡ lim
T →0

Iα(µ, T ) = −2 Re
∫

p

θ(µ − p)
∫ iµ

0

dp0

2π

1

[p2
0 + p2]α

= −

(
eγEΛ̄2

4π

) 3−d
2 1

(4π)
d
2 Γ
(
α
)
Γ
(

d
2 + 1 − α

)
µd+1−2α

(
d + 1 − 2α

) , (4.1)

which is nothing but the T → 0 limit of the Ĩ0
α function defined in [10], generalized to

an arbitrary spatial dimensionality d. The integral converges for parameter values of α

and d inside the triangle-shaped region {2α − d > 1 | 1
2 < α < 1 ∧ d > 0}, but for

strictly vanishing T features a d-independent novel divergence in the neighborhood of

p = µ for α > 1 that requires analytic continuation from the convergent region. The result

in eq. (4.1) is easiest derived starting from the spatial integral and utilizing a complex-

valued generalization of Euler’s beta function,9 which ensures a consistent treatment of the

problematic neighborhood in the low-temperature limit. A generalization of this result to

non-vanishing masses is detailed in appendix B with additional context found in section III

of [26]. Further consistency checks are relegated to appendix C, including the verification

of the fact that acting on the master integral eq. (4.1) with spatial total derivatives ∂
∂pi

◦ pi

leads to a vanishing result as it should.

As alluded to in the previous section, acting on thermal integrals with temporal total

derivative operators may give rise to non-trivial linear relations, where terms featuring

differentiated distribution functions are expected to lead to simplifications in the low-

temperature limit. To demonstrate this at the simplest possible level, we focus on the

8Each occurring delta function trades a temporal integration for a linear combination of on-shell substi-

tutions, simplifying the evaluation of the corresponding loop integral. This is somewhat analogous to how

the cutting rules of [31] operate.
9Assuming that α2 > α1 > 0 and that either c 6= 0 or y > 0 for c, y ∈ R, we can generalize Euler’s beta

function integral such that
∫∞

0
dx xα1−1

(x+y+ic)α2
= Γ(α1)Γ(α2−α1)

Γ(α2)
(y + ic)α1−α2 as used in [26].
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identity (ibp.1c), which clearly allows the evaluation of the master integral Iα(µ) through

a new representation

Iα(µ) = −
1

(d + 1 − 2α)
lim
T →0

∮ f

p0

p0 ñ′
F(p0)Iα(p0) . (4.2)

To evaluate the right-hand side of this relation, we first apply a complex-valued general-

ization of the integral form of Euler’s beta function, resulting in

∮ f

p0

p0 ñ′
F(p0)Iα(p0) = −i

(
eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

(4π)
d
2 Γ(α)

∮ f

p0

p0[p2
0]

d
2

−α
{

−βn′
F [iβ(p0 − iµ)]

}

eq. (2.8)
= −i

(
eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

(4π)
d
2 Γ(α)

∮ f

p0

p0[p2
0]

d
2

−α
{

δF
T [µ − Im(p0)] + i0F

T 2

}
. (4.3)

Subsequently, we utilize the contour prescription of figure 1 (right), where nonzero con-

tributions arise from the two finite line segments Cu,1 and Cl,1. Since these two terms are

related to each other via complex conjugation, we easily obtain

lim
T →0

∮ f

p0

p0 ñ′
F(p0)Iα(p0)=−

(
eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

(4π)
d
2 Γ(α)

1

π
Re
{

i

∫ iµ+iη

iµ−iη
dp0 p0[p2

0]
d
2

−αδ(µ + ip0)
}

.

(4.4)

Finally, to ensure that the monomial structure resulting from the final p0-integration is

well-defined for arbitrary non-integer powers α, we regulate the imaginary unit inside the

integral by defining

i 7→ Π+ ≡ exp
[ iπ

2
(1 + κ)

]
, (4.5)

with κ > 0 an infinitesimal positive real number. This allows to extract a result in terms

of trigonometric functions, swiftly leading to the same result reported in eq. (4.1) upon

taking κ → 0.

As demonstrated by the above example, the appearance of a differentiated distribution

function reduces the number of integrations by one in the T → 0 limit, while the remaining

ones correspond to complex-valued generalizations of standard d-dimensional integrals. It

is often operationally useful to first perform the temporal integral but leave the complex-

valued substitution (with the regulated imaginary unit Π+) to be performed after the

spatial integrations. In the above example, this would imply writing

lim
T →0

∮ f

p0

p0 ñ′
F(p0)Iα(p0) =

1

2π

{
p0Iα(p0)

∣∣
p0 7→µ Π+ + p0Iα(p0)

∣∣
p0 7→µ/Π+

}
, (4.6)

where the spatial integral can be identified as the standard one-loop vacuum integral from

eq. (3.5).

To conclude this section, a few general remarks are in order. First, it should be appar-

ent from above that the procedure applied in eq. (4.6) will greatly simplify the treatment

of the inhomogeneous (type B) terms at higher loop orders, which should optimally contain

the maximal number of differentiated distribution functions. Second, we have relegated sev-

eral additional example calculations to appendix C; these include consistency checks of the

one-loop IBP relation (4.2), an explicit computation involving linear p0-structures within

the integrand numerator, and a brief discussion of the use of parametric µ-differentiation.
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5 Proceeding to the two-loop level and beyond

The value of the proposed novel IBP machinery only becomes apparent in multi-loop

computations. While this paper is mostly devoted to developing the new formalism, we will

therefore next discuss its application at the lowest nontrivial order of perturbation theory,

i.e. two loops, which amounts to the leading correction to the non-interacting limit for the

QCD pressure. This order is somewhat special, as it allows the derivation of nontrivial IBP

relations while keeping the practical computations at a pedagogical and easily tractable

level. This is particularly true for integrals with unit numerators but sufficiently general

denominators, so that the result does not trivially factorize into one-loop structures.10

For the aforementioned reasons, we shall concentrate on the fermionic sunset (cf.

eq. (3.4))

1

2
3 = Ss1s2

α1α2α3
=
∮ f

P,Q

ps1
0 ñF(p0)

[p2
0 + p2]α1

qs2
0 ñF(q0)

[q2
0 + q2]α2

1

[(p0 − q0)2 + |p − q|2]α3

=
∮ f

p0,q0

ps1
0 qs2

0 ñF(q0)ñF(p0)Sα1α2α3(p0, q0, p0 − q0) , (5.1)

where S00
α1α2α3

≡ Sα1α2α3
and the non-calligraphic Sα1α2α3 denoted the corresponding d-

dimensional vacuum sunset from eq. (3.6). The denominator exponents {α1, α2, α3} can

be chosen such that the p0- and q0-integrals are regular both in the ultraviolet (UV) and

at possible individual poles. As detailed in section 2 and appendix A, this allows for using

the Cauchy theorem (see e.g. eq. (2.12)) to analytically continue the results to all integer-

valued exponents. In addition, it allows choosing the integration order at will even in the

low-temperature limit and conveniently isolates the novel boundary contributions to finite

line integrals along the imaginary axis as summarized in figure 1 (left).

Finally, we reiterate that the main goal of our new IBP program is to find relations

between Feynman integrals that are of the vacuum-type A in the presence of additional

non-vacuum type B terms that are needed to close the relations. The latter terms include a

maximal number of differentiated distribution functions and are computationally less com-

plex as demonstrated in the previous section at the one-loop level. At the two-loop level,

scrutinized in the present section, we begin our discussion from these maximally primed

terms in section 5.1, derive and solve novel IBP relations in section 5.2, and finally, dwell

on the closely related factorization of d-dimensional two-loop vacuum integrals in the sub-

sequent appendix E. While the implementation of the computational methods is explicitly

discussed only at the two-loop level, all results are at least in principle straightforwardly

generalizable to an arbitrary loop order.

5.1 Integrals with only differentiated distribution functions

Let us first examine the evaluation of the boundary or inhomogeneous terms containing

only primed distribution functions n′
F. Using the contour prescription of eq. (2.14), we can

perform the Π+ substitutions akin to eq. (4.6) independently for the T → 0 limit of each

10For two-loop vacuum bubbles with integer-valued exponents, factorization will later be seen to emerge

through IBP relations (see appendix E below).
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temporal integral, which generates 2n independent terms from the contour integrals of an

n-loop diagram. The sign of each term is determined by the even/odd symmetry of the

integrand as indicated by eq. (2.14). Below, we detail this procedure at the two-loop level

focusing on the sunset integral of eq. (5.1).

Acting on Sα1α2α3 with two temporal derivatives gives rise to a term with two primed

distribution functions, i.e. an integral of the maximally primed type B. For the purpose of

abbreviating such expressions, we introduce nF-differentiating operators Dk that only act

on the distribution functions of the corresponding temporal momentum via

Dk

∮ f

k0

ñF(k0) =
∮ f

k0

ñ′
F(k0) . (5.2)

Consistently with the above discussion, we find altogether 22 = 4 separate terms in the

low-temperature limit, totaling

DpDq Ss1s2
α1α2α3

=
∫

p,q

∮ f

p0,q0

ps1
0 ñ′

F(p0)

[p2
0 + p2]α1

qs2
0 ñ′

F(q0)

[q2
0 + q2]α2

1

[(p0 − q0)2 + |p − q|2]α3

T →0
=

1

(2π)2

∫

p,q

ps1
0 qs2

0

[p2
0 + p2]α1 [q2

0 + q2]α2 [(p0 − q0)2 + |p − q|2]α3

∣∣∣∣p0 7→ µ Π+

q0 7→ µ Π+

−
1

(2π)2

∫

p,q

ps1
0 (−q0)s2

[p2
0 + p2]α1 [q2

0 + q2]α2 [(p0 + q0)2 + |p − q|2]α3

∣∣∣∣p0 7→ µ Π+

q0 7→ µ/Π+

−
1

(2π)2

∫

p,q

(−p0)s1qs2
0

[p2
0 + p2]α1 [q2

0 + q2]α2 [(p0 + q0)2 + |p − q|2]α3

∣∣∣∣p0 7→ µ/Π+

q0 7→ µ Π+

+
1

(2π)2

∫

p,q

(−p0)s1(−q0)s2

[p2
0 + p2]α1 [q2

0 + q2]α2 [(p0 − q0)2 + |p − q|2]α3

∣∣∣∣p0 7→ µ/Π+

q0 7→ µ/Π+

.

(5.3)

Each of the terms can be mapped into a form where the propagator masses of underlying

vacuum sunset Sα1α2α3(m1, m2, m3) obey the linear relation m1 + m2 = m3. This class of

massive Feynman integrals is typically referred to as collinear [32]. For their evaluation, we

use standard Feynman parametrization and carefully regulate the vanishing bosonic mass

scale11 related to (p0 ±q0) = O(κ) with the κ-regulator introduced in eq. (4.5). One curious

detail of this procedure is that for positive integer values of the exponent α3, associated

to the bosonic scale, each arising hypergeometric integral from eq. (D.7) can be shown to

factorize into a product of one-loop vacuum integrals. This is apparent for all four integrals

in eq. (5.3) wherein the complex-valued scales p0 and q0 allow for extracting contributions

proportional to p2
0 − q2

0 = O(κ). This factorization property at the two-loop level will be

addressed using a closed-form solution of the collinear vacuum sunset in appendix E and

at the hypergeometric function level in appendix D.1.

Next, we demonstrate in detail, how the above maximally primed integrals of type B

can be computed for Ss1s2
α1α2α3

using the strategy established in section 4. We do this by

11From the perspective of a d-dimensional momentum integral, the temporal part of the propagator plays

the role of a mass term, which explains this terminology.
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allowing the power of the temporal momentum components s1 + s2 in the numerator to

take arbitrary even or odd values. To this end, we first write eq. (5.3) in the form

DpDq Ss1s2
α1α3α2

=
∮

p0,q0

ps1
0 qs2

0 ñ′
F(p0)ñ′

F(q0)Sα1α3α2(p0, p0 − q0, q0)

T →0
=

1 + (−1)s1+s2

(2π)2
Re
[
ps1+s2

0 Sα1α3α2(p0, O(κ), p0)
]

p0 7→µ Π+

+
1 − (−1)s1+s2

(2π)2
Π+ Im

[
ps1+s2

0 Sα1α3α2(p0, O(κ), p0)
]

p0 7→µ Π+

−
(−1)s1 + (−1)s2

(2π)2
Re
[
ps1

0 qs2
0 Sα1α2α3(p0, q0, O(κ))

]
p0 7→ µ Π+

q0 7→ µ/Π+

+
(−1)s1 − (−1)s2

(2π)2
Π+ Im

[
ps1

0 qs2
0 Sα1α2α3(p0, q0, O(κ))

]
p0 7→ µ Π+

q0 7→ µ/Π+

, (5.4)

where we have only used the fact that s1 + s2 is an integer but note in addition that

the term corresponding to the imaginary (real) part here clearly vanishes for even (odd)

values of this parameter. Finally, the corresponding d-dimensional vacuum sunset integral

is evaluated in eq. (D.10).12

For concreteness, let us next inspect the simplest nontrivial sunset S111. After directly

evaluating the d-dimensional integral using (D.15), we observe that eq. (5.4) can be recast

as a product of two one-loop integrals. The result reads

DpDq S111 =
∮

p0,q0

ñ′
F(p0)ñ′

F(q0)S111(p0, p0 − q0, q0)

T →0
=

2

(2π)2
Re
[
S111(µΠ+, µΠ+, 0)

]
−

2

(2π)2
Re
[
S111(µΠ+, µ/Π+, 0)

]

= −
2(d − 3)

(d − 2)
I2(µ)I2(µ) . (5.5)

We note that in this expression, S111(µΠ+, µΠ+, 0) resembles the standard result for the

vacuum sunset with two real-valued mass scales [33], continued to complex scales,13 while

S111(µΠ+, µ/Π+, 0) needs to be evaluated with eq. (D.10). It is also worth pointing out

that akin to eq. (5.5), all type B terms originating from eq. (5.1) are seen to naturally

factorize into one-loop master integrals. For more details on these considerations and an

independent calculation applying the factorization of vacuum bubble diagrams [32], we

refer the reader to appendix D.1.

12Note that the ordering of the exponents {α1, α2, α3} and the temporal momentum scales {p0, q0, q0−p0}

are tied to one another, so that e.g. the replacement of α3 ↔ α2 and q0 − p0 ↔ q0 yields the spatial integral

Sα1α3α2 (p0, q0 − p0, q0) but does not change the value of the original Sα1α2α3 (p0, q0, q0 − p0). The spatial

integrals in eq. (5.4) are written to make the collinearity of the scales explicit (e.g. p0 + (q0 − p0) = q0)

which allows the direct application of the results of [32], further discussed in appendix E.
13The mass scales appearing in the propagators can be kept general in such a computation, with the

only necessary assumption being that the squared mass scales are not strictly negative (i.e. that they are

either complex-valued or positive and real). As shown in [26], this allows the necessary extraction of beta

functions on the complex plane [26].
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5.2 Integration-by-parts at two loops

Armed with the knowledge of the explicit expressions of the maximally primed terms intro-

duced above, we will next inspect the derivation of the (d+1)-dimensional IBP relations at

the two-loop level. Here, we will again concentrate on the sunset integrals of eq. (5.1), with

our aim being to relate them to simpler structures. To achieve this, we find it convenient

to study S111 in a slightly different manner from the strategy described in section 3, which

involves an IBP relation initially containing integrals of type C, containing both differenti-

ated and non-differentiated distribution functions. While this leads to a simple factorizing

result in this particular case, with more complicated propagator structures, we strongly

recommend the use of IBP relations containing only terms of type A and B.

The first nontrivial IBP relation arises upon taking a diagonal total derivative along

the temporal direction, which produces

0 =
( ∂

∂p0
◦ p0

)
Ss1s2

α1α2α3
= (1 + s1)Ss1s2

α1α2α3
+
∮ f

P,Q

ps1+1
0 qs2

0 ñ′
F(p0)ñF(q0)

[P 2]α1 [Q2]α2 [(P − Q)2]α3

− 2
∮ f

P,Q

{
α1(P − Q)2 p2

0 + α3P 2 p0(p0 − q0)

[P 2]α1+1[Q2]α2 [(P − Q)2]α3+1

}
ps1

0 qs2
0 ñF(p0)ñF(q0).

(5.6)

Applying next a diagonal total derivative in the spatial direction on the last term on the

right-hand side, it can be further recast into

− 2
(
α1Ss1+2,s2

α1+1,α2,α3
+ α3Ss1+2,s2

α1,α2,α3+1 + α3Ss1+1,s2+1
α1,α2,α3+1

)
(5.7)

=
[
(d − 2α1 − α3) −

∂

∂pi
◦ pi

]
Sα1α2α3 + α3

(
Ss1s2

α1,α2−1,α3+1 − Ss1s2
α1−1,α2,α3+1

)
,

where the spatial derivative term clearly vanishes.

Following the same strategy as for the diagonal temporal p0-derivatives, all other purely

temporal combinations from the bilinear set of eq. (3.8) generate a system of in total n2

linear relations at the n-loop level. Together with the n2 spatial IBP relations (ibp.2c)–

(ibp.2d) in appendix D.4, this gives rise to the following (d + 1)-dimensional IBP relations

for the two-loop fermionic sunset

(d + 1 − 2α1 − α3 + s1) + α33+(2− − 1−) + 1+Dp ≡

(
∂

∂Pµ
◦ Pµ

)
,

(ibp.2a)

(α3 − α1) + s11−2+ + α11+(3− − 2−) + α33+(2− − 1−) + 2+Dp ≡

(
∂

∂Pµ
◦ Qµ

)
,

(ibp.2b)

which are written in a more compact operator form, omitting Ss1s2
α1α2α3

onto which each

operator acts. The two remaining bilinear combinations corresponding to P ↔ Q can be

found through substitutions 1 ↔ 2.
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Here, we have employed standard IBP notation for the raising and lowering opera-

tors [34] for the denominator and {p0, q0} numerator powers via

n± Ss1s2
α1...α3

= Ss1s2
...αn±1... , for n = 1, . . . , 3 , (5.8)

n± Ss1s2
α1...α3

= S ...sn±1...
α1...α3

, for n = 1, . . . , 2 . (5.9)

The relations (ibp.2a)–(ibp.2b) represent the two-loop equivalent of the one-loop (d +

1)-dimensional IBP relation (ibp.1c). Independent of the number of loops, the system of

IBP equations is always linear, underdetermined, and inhomogeneous, as the finite-µ rela-

tions are characterized by their right-hand sides containing the Dk differential operators.

While no general closed-form solution of such infinite systems of equations can be found

with current methods, a typical approach to find a solution is to attempt solving for a

finite number of master integrals [35] using a finite set of starting integrals in the param-

eter space of {α1, α3, α3; s1, s2} for Ss1s2
α1α2α3

and its n′
F-version. The solution is then found

via Gaussian elimination implemented in a Laporta-type algorithm [25]. While this type

of a systematic approach, implemented using suitable programs for symbolic manipulation

(e.g. FORM [36]), typically quickly becomes indispensable at higher loop orders, below we

approach the two-loop problem iteratively by hand.

For concreteness, let us now focus on the specific choice of indices α1 = α2 = α3 = 1,

s1 = s2 = 0, which constitutes the S111 integral. In this case, the IBP relation (ibp.2a)

gives rise to an aesthetically pleasing linear dependence between differentiated and non-

differentiated integrals after applying the P ↔ Q symmetry between the loop momenta,

(d − 2)S111 = −

∮ f

P,Q

p0ñ′
F(p0)ñF(q0)

P 2Q2(P − Q)2
. (5.10)

Next, we linearly combine IBP relations by operating on the above expression for S111 with

a diagonal total derivative in both the Pµ- and (Pµ − Qµ)-directions. This results in the

relation

0 =

[
(d − 2)

∂

∂Pµ
◦ Pµ −

∂

∂Qµ
◦ (Qµ − Pµ) 1+Dp

]
S111

=
[
(d − 2)2 + (d − 2)3+(2− − 1−) + 2+(3− − 1−)1+Dp − 1+(2+ − 1+)DpDq

]
S111 ,

(5.11)

where the term 3+(2−−1−)S111 = S102−S012 can be shown to cancel on the integrand level

upon a relabeling of loop momenta. The integrals S012 and S102 also vanish individually

in the T → 0 limit, since they factorize into a fermionic and a vanishing bosonic one-loop

integral, as detailed in appendix D.2.

By explicitly writing the integrals in the above result, we arrive at the relation

(d − 2)2S111 = −

[∮ f

P

p0ñ′
F(p0)

P 2

][∮ f

Q

ñF(q0)

Q4

]

+
∮ f

P,Q

p0ñ′
F(p0)ñF(q0)

Q4(P − Q)2
+
∮ f

P,Q

p0(q0 − p0)

P 2Q2(P − Q)2
ñ′

F(p0)ñ′
F(q0) , (5.12)
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where on the right-hand side we identify a sum of three terms. Among them, the first inte-

gral clearly factorizes into two one-loop expressions, the second contains a shifted bosonic

propagator with momentum P − Q, and the third is a linear combination of type B terms

in eq. (D.17) which vanishes in the T → 0 limit. Upon closer inspection, detailed in ap-

pendix D.2, even the second integral can be shown to vanish as T → 0, since it contains a

µ-independent loop integral.

By removing the vanishing integrals from eq. (5.12) and using the one-loop (d + 1)-

dimensional IBP relation (ibp.1c), the low-temperature limit of the sunset integral is seen

to simplify to

S111
T →0
=

(d − 1)

(d − 2)2
I1(µ)I2(µ) . (5.13)

This result is in agreement with computations of the low-temperature pressure of QCD

(see e.g. appendix B of [10]) and can moreover be computed directly using the cutting

rules of [31], as we demonstrate in appendix D.3. As far as we are aware, the factorization

formula is, however, new. It is notably of different structure than the factorizing integrals

of odd-valued numerator exponents in eq. (D.28), which was derived using a set of spatial

IBP operators listed in eqs. (ibp.2c)–(ibp.2d) of appendix D.4. As a consequence, we can

relate the factorizing one-loop integrals with odd-valued numerator exponents to the even-

valued ones. This is technically not a linear relation among one-loop integrals and curiously

only gets generated at the two-loop level. At low temperatures, we find the relation

I2s1+1
α1+1 (µ) I2s2+1

α2
(µ) = −

(d − 2α1)

2α1

(d + 1 − 2α1 + 2s1)

(d − 2α1 + 2s1)

(d + 1 − 2α2 + 2s2)

(d + 2 − 2α2 + 2s2)
I2s1

α1
(µ) I2s2

α2
(µ) ,

(5.14)

which represents the T = 0 limit of a more complicated relation valid at all T and µ. Note

that in the opposing limit of µ = 0 but T 6= 0, integrals with odd-valued numerator powers

such as the left-hand side of (5.14) vanish, implying that the relation derived here will

necessarily obtain corrections at nonzero T .

While the above example led to a simple and aesthetically pleasing result, it was

not perfectly in line with the strategy we outlined in section 3, where we emphasized

the importance of the maximally primed type B terms. A more systematic and more

easily generalizable strategy in line with this idea is to consider exclusively differential

operators that contain temporal derivatives with respect to all fermionic loop momenta.

The vanishing of the total derivatives then leads to relations such as

( ∂

∂p0
◦ p0

)( ∂

∂q0
◦ (p0 − q0)

)
S111 =

∮

P,Q

∂2

∂p0∂q0

[
p0(p0 − q0)

P 2Q2(P − Q)2

]
ñF(p0)ñF(q0)

−

∮

P,Q

p0(p0 − q0)

P 2Q2(P − Q)2
ñ′

F(p0)ñ′
F(q0) , (5.15)

where only terms of type A and B are present.

To demonstrate the latter strategy in action, let us again consider the general fermionic

sunset Sα1α2α3 with no numerators. While the full (d + 1)-dimensional diagonal IBP re-

lations (ibp.2a)–(ibp.2b) already give rise to non-trivial relations, full IBP simplification
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is only possible via their combination with either the temporal or spatial IBP relations

generated from the bilinear set (3.8). By combining two consecutive diagonal d + 1 and

temporal derivatives, we indeed obtain

0 =
( ∂

∂Pµ
◦ Pµ

)( ∂

∂q0
◦ q0

)
Ss1−1,s2−1

α1α2α3

=
∮

P,Q

∂2

∂p0∂q0

[
ps1

0 qs2
0

[P 2]α1 [Q2]α2 [(P − Q)2]α3

]
ñF(p0)ñF(q0) − DpDq Ss1s2

α1α2α3
, (5.16)

which is the only relation we obtain given its symmetry under the exchange of P ↔ Q.

After using the relations (ibp.2a) and the temporal version of (ibp.2b), we carefully expand

all derivatives on the left-hand side of this equation and again combine the correspond-

ing spatial and temporal total derivatives following eq. (ibp.1c). After multiple steps of

straightforward algebra, the resulting expression (5.16) simplifies to a recurrence relation

between various sunset integrals Ss1s2
α1α2α3

that can be dressed in the finite-T form14

( ∂

∂Pµ
◦ Pµ

)( ∂

∂q0
◦ q0

)
Ss1−1,s2−1

α1α2α3
= D00 Ss1s2

α1α2α3
= 0 , (5.17)

where

D00 ≡ 2α1(α2 − α3)1+ + 2α2(α1 − α3)2+ + 2α3(d − 1 − α1 − α2 − 2α3 + s1)3+

+ 2α3(α11+2− + α22+1−)3+ − 2α1α21+2+3− − 2s1(α22+ + α33+)1−2+

+ s2(d − 2α1 − α3 + s1 + α3(2− − 1−)3+)1−2− − DpDq , (5.18)

and we have used the operator definitions of eqs. (5.2), (5.8) and (5.9). The right-hand side

of this expression can be studied using the factorization formulae derived in appendix D.1 or

the collinear integrand formulae given in [32] and their extensions discussed in appendix E.

As an interesting special case of the above result, we note that by setting once again

α1 = α2 = α3 = 1 and s1 = s2 = 0, the identity reduces to

2(d − 5)S112 + 4S202 − 2S220 = DpDq S111 . (5.19)

After removing the vanishing bosonic integral S202 and inserting the result of eq. (2.14),

the T → 0 limit of eq. (5.19) reads

2(d − 5)S112
T →0
→ 2[I2(µ)]2 −

2(d − 3)

(d − 2)
[I2(µ)]2 , (5.20)

given again in terms of eq. (4.1). By independently studying the lengthy spatial IBP

relation (D.27), we find a factorization into the one-loop integrals of eq. (3.3) and recover

a non-trivial result for general µ and T

S112 =
1

(d − 2)(d − 5)

([
I2(µ, T )

]2
− 2I2(µ, T )Ib

2(T )
)

, (5.21)

14This result arises by carefully removing explicit cancellations between terms arising from the initial

total derivative.
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which also agrees with the T 6= 0, µ = 0 result of [37]15 and wherein we use the superscript

b to denote the bosonic finite-temperature integral Ib
α(T ). It is also straightforward to take

the T → 0 limit from eq. (5.21), giving

S112
T →0
=

1

(d − 2)(d − 5)

[
I2(µ)

]2
, (5.22)

which is in agreement with eq. (5.20). We emphasize, though, that the derivation leading to

the more general spatial IBP relation requires a lengthy ansatz with 10 bilinear operators

[see eq. (D.27)] as opposed to the more compact one in eq. (5.16). We find this a very

promising observation from the point of view of the future evaluation T = 0 Feynman

integrals at higher loop levels.

6 Conclusions and outlook

As recently pointed out in [38], to improve from the present uncertainties in the model-

agnostic determination of the neutron-star-matter equation of state [28–30], the thermo-

dynamic properties of cold and dense quark matter need to be known at unprecedented

precision. In the absence of non-perturbative tools, perturbation theory plays a pronounced

role in efforts to reach this goal, with the most prominent individual challenge being the

extension of the weak-coupling expansion of the pressure of cold and dense unpaired quark

matter. While the current state of the art in this problem lies at an incomplete O(α3
s ) or-

der [17, 18, 39], all qualitative issues hindering the completion of this full order have been

resolved by now, so that only one numerical coefficient is lacking. This is the contribution

of the hard momentum scale µB to the O(α3
s ) pressure, encoded in the sum of all four-loop

vacuum, or bubble, diagrams of full QCD.

While conceptually a straightforward task, the practical evaluation of four-loop vac-

uum diagrams in a thermal setting presents an extremely complicated technical challenge.

Only a handful of simple individual diagrams have been successfully completed by now [40–

42], and they all correspond either to a scalar field theory or to very specific gauge-theory

topologies that greatly simplify the evaluation of the diagrams. The particular case of

dense fermionic matter in the T = 0 limit can, however, be seen to exhibit some simplifi-

cations, including the vanishing of diagrams with no fermion loops and the presence of a

convenient computational tool, the so-called cutting rules of [31]. It is, however, evident

that a successful evaluation of all four-loop vacuum diagrams in the theory necessitates

automated tools of computation, both in the identification and eventual evaluation of the

master integrals. Given the complexity of the task at hand, even minor advances, perhaps

leading to the successful evaluation of a handful of four-loop master integrals, would be

extremely valuable.

15This somewhat surprising result can be seen to stem from the d-dimensional integral involved: ac-

cording to [32], the massive two-loop integral Sα1α2α3 (m1, m2, m3) from eq. (3.6) factorizes into a linear

combination of products of two one-loop integrals Iαi (mi)Iαj (mj) as long as the mass scales involved satisfy

the “collinearity” condition m1 + m2 = m3 and αk ∈ N. The implications of this property, which crucially

holds even for complex-valued masses mk, is further discussed in appendix E.
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In the paper at hand, we have taken first preliminary steps towards generalizing one of

the most powerful methods of vacuum (T = µ = 0) perturbation theory to the context of

nonzero chemical potentials: integration-by-parts, or IBP, techniques. They provide linear

relations between master integrals, which are typically derived using the vanishing of (loop)

integrals over total derivatives and lead to a reduction in the overall number of masters. In

the thermal context, a problem can be seen to arise from additional boundary contributions

that are generated due to the breaking of Lorentz invariance and are related to the special

nature of the temporal direction. Our novel idea, presented in this article, is to generate

the full (d + 1)-dimensional IBP identities starting from a contour integral formulation of

thermal sums. This leads to the extra boundary terms being tractable in the small-T limit

due to the simple limiting behaviors of the bosonic and fermionic distribution functions

and their derivatives. Another key element of our approach is the use of the temperature

T as a natural regulator for specific types of infrared divergences that are encountered in

the strict T = 0 limit.

As part of our new framework, we introduce two deformations of the usual complex

contour of fermionic p0-integrals: eq. (2.12) or figure 1 (left) for convergent line integrals

involving non-differentiated distribution functions, and eq. (2.14) or figure 1 (right) for

thermal corrections involving δ-function limits. Their use requires the order of various

integrations to be interchangeable and leads to many simplifications as demonstrated in

sections 3–5. For the simplicity of presentation, the example calculations we present here

are restricted to one- and two-loop calculations involving massless propagators. The pro-

posed method is, however, more general, and we anticipate its true utility to manifest at

the three- and four-loop orders.

We also note that in practical computations, our approach can (and should) be comple-

mented by purely spatial IBP relations, which have been studied in the past both in vacuum

and in thermal systems lacking chemical potential. At the two-loop order in particular,

the integrands of (d + 1)-dimensional bubble diagrams with chemical potentials experience

factorization in a manner similar to how d-dimensional real-valued vacuum bubbles can be

expressed as linear combinations of products of their collinear mass scales, m1 + m2 = m3

(see [32] and appendix E), with complex-valued temporal momenta now playing the role

of masses. An explicit example of the application of spatial IBP relations is given in ap-

pendix D.4, with emphasis on how relations derived at µ = 0 may differ from the µ 6= 0

ones due to symmetries broken by a nonzero chemical potential.

Finally, we note that while the spatial operators of eq. (D.27) can be used to derive

closed expressions for S11s for s ∈ {1, 2}, their (d+1)-dimensional counterparts in eqs. (5.11)

and (5.16) are noticeably simpler. Furthermore, the explicit one-loop factorizations arising

from temporal differentiations [eqs. (5.12)–(5.13) and (5.19)] differ from those obtained with

spatial IBPs, cf. eqs. (D.28) and (D.29). These features imply that our new framework is

capable of producing novel and useful results, a property that we expect to be particularly

pronounced at higher loop orders. While formally not a closed group action with respect

to differentiation, unlike the purely spatial differential operators, the temporal derivatives

are seen to complement the existing IBP framework.
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6.1 Future directions

To conclude our presentation, let us make a few remarks on the potential extensions and

applications of our main results, including some details of calculations at higher perturba-

tive orders. So far, our discussion has relied on the presence of only one physical scale (the

chemical potential µ) in the integrals considered. While this special case often suffices for

phenomenological applications in neutron-star physics, it should be noted that our generic

method can be straightforwardly generalized to the presence of flavor-dependent chemi-

cal potentials, nonzero fermion (or boson) masses, and even to n-point functions, i.e. the

presence of external momenta. The complexity of the novel δ-function integrals, however,

rapidly increases with the number of scales present, which we demonstrate in appendix B.2

where the one-loop integrals of section 4 are generalized to the case of nonzero masses.

While this exercise and its two-loop extension in eq. (E.7) can still be completed in a fairly

straightforward manner, introducing external momenta with non-vanishing temporal com-

ponents or considering topologies more complicated than the sunset one would invalidate

all the computational tools relying on collinearity.

At higher loop orders, practical calculations will inevitably rely on a large-scale au-

tomation of the IBP reduction algorithm. While we have not yet performed extensive

studies in this direction, we expect an automated approach to be fully compatible with

our strategy to generate relations where all new thermal terms are of type B, i.e. contain

a maximal number of differentiated distribution functions that reduce to delta functions

as T → 0. While the calculations will surely be technically more demanding than in our

treatment of the fermionic sunset integral in section 5, we expect important simplifications

to occur from the fact that the extra boundary terms have the form of complexified d-

dimensional massive integrals that can be evaluated with the standard methods of vacuum

field theory.

In an algorithmic implementation of the IBP approach, one faces an infinite, under-

determined system of inhomogeneous linear equations for the unknown integrals.16 In a

practical approach, we are typically only interested in a finite number of master integrals,

so instead of solving an infinite system at once, it is sufficient to only solve for a finite

number of integrals that also constitute a finite linear system of unknowns. This system

can in turn be solved via Gaussian elimination — or a variant of the so-called Laporta

algorithm [25]. For the fermionic sunset considered in section 5, this implies applying both

the diagonal (d+1)-dimensional identities (ibp.2a)–(ibp.2b), the spatial identities (ibp.2c)–

(ibp.2d), and their off-diagonal variations to a sufficiently large but finite set of integrals

such that all initial Feynman diagrams are expressed in terms of the masters. The com-

plexity of this process rapidly increases with the number of loops given that at the n-loop

level, the IBP-system of vacuum integrals is generated by 2n2 diagonal and 2n2 off-diagonal

identities.

As we want the master integrals to be as simple as possible, we propose an ordering

prescription that penalizes more complicated integrals during the reduction. In contrast

16Note that this discussion assumes that all Lorentz, group, and Dirac algebra have been taken care of

after the generation of Feynman diagrams and that the resulting integrals are scalarized.
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to the standard Laporta algorithm [25], and basing on our treatment of the fermionic

sunset Ss1s2
α1α2α3

(cf. eq. (5.1)), we propose the following ordering in a decreasing degree of

complexity:

(i) lowest number of primed distribution functions,

(ii) highest total power of temporal momenta in the numerator (s1 + s2),

(iii) highest total number of propagator powers in the denominator (α1 + · · · + α3).

With this type of an ordering, it is conceivable to implement a generalized Laporta algo-

rithm that respects the presence of the novel type B boundary terms at nonzero T and µ.

A practical implementation of the algorithm is beyond the scope of this preparatory study,

but we plan to tackle it in the near future as part of the evaluation of the four-loop vacuum

diagrams of QCD in the limit of vanishing temperature and nonzero chemical potentials.
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A Applying the Cauchy theorem to loop integrals

This appendix collects additional details on the constraints related to the Cauchy theorem

as it appears in sections 2–5. We also further detail the application of the Cauchy theorem

at the one-loop level.

A.1 Single propagator

The simplest integral encountered at the one-loop level is given by eq. (4.1). As an example,

we first revisit this integral, working in the parameter region where it converges:

Iα(µ) ≡ lim
T →0

Iα(µ, T ) = lim
T →0

∮ f

p0

∫

p

ñF(p0)

[p2
0 + p2]α

< ∞ , for
{1

2
< α < 1

∣∣∣ 2α − d > 1
}

.

(A.1)

A subset of the above parametric conditions for convergence arises from both the UV

behavior and novel µ-specific divergences occurring at p ∼ µ and p0 → 0. To track down the

regularity of the integral, we apply the low-temperature step function limit as in eq. (2.6)

to only consider the upper line integral. After a change of variables to move to the real

axis, we remove the regulator η, perform the d-dimensionally regularized integral, and then
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generalize the beta function on the complex plane following [26]. As a result, we obtain

the intermediate regulated expression

Iα(µ) =
∫ ∞

−∞

dp0

2π
Iα(p0 + iµ) =

(
eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

(4π)
d
2 Γ
(
α
)
Γ
(

d
2

)
∫ ∞

−∞

dp0

2π

[
(p0 + iµ)2

] d−2α
2 .

(A.2)

On the last line, we have clearly separated the UV convergence condition 2α − d > 0

arising from Euler’s Gamma function and d + 1 − 2α < 0 from the remaining integration.

Conversely, when starting with the p0-integration, the UV convergence requires that α > 1
2 .

The remaining parametric condition arises from eq. (2.10), which occurs at p = µ and p0 ∼ 0

on the first line of eq. (A.2). Let us reiterate the equation

∫ ǫ

−ǫ

dp0

2π

1

[p0 + iµ + ip]α[p0 + iµ − ip]α
=
∫ ǫ

−ǫ

dp0

2π

1

[p0 + 2iµ]α[p0]α
, (A.3)

and note that it only converges for α < 1.17 Combining these conditions, both the full

integral in the region of eq. (A.1) and also the p0-integral converge. The latter allows us

to use the Cauchy theorem in the computations.

It is worth noting that it would be possible to apply the Cauchy theorem already for

the original contour integral of eq. (A.1). While this integral does not play a role in our

computations involving δ-function entities, it is quite demonstrative, and to this end, we

next reverse the order of integration starting with the temporal integral. To start, we,

however, need to again remove the lower line integral and replace the distribution function

by unity for the upper one. Since everything apart from the above-mentioned occupation-

function limit is exponentially suppressed by e−βη (for η > 0, see eq. (2.6)), we can neglect

subleading terms, giving the thermally leading integral the convergent structure

Iα(µ) =
∫

p

[∫ iµ+iη

−∞+iµ+iη
+
∫ ∞+iµ+iη

iµ+iη

]
dp0

2π

1

[p2
0 + p2]α

+ O
(
e−βη) ,

=
∫

p

[∫ ∞−iµ

−iµ
+
∫ ∞+iµ

iµ

]
dp0

2π

1

[p2
0 + p2]α

. (A.4)

Given that the above integral is convergent, the η-regulator in the line integral could

be dropped, followed by changing p0 7→ −p0 in the first integral; this is the setup described

in section 2. As the integrand is even in p0, it does not visibly experience the sign change

as described in eq. (2.12). To find the most suitable alternative representation for both of

line integrals, we close the contours along the imaginary and real axes as in figure 1 (left).

Neglecting the finite segment at real positive infinity Re(p0) = ∞ is possible due to the

17We emphasize that the residue theorem yields physically correct results at α = 1 in agreement with the

analytic continuation from the results computed with the Cauchy theorem at α < 1 [26]. This property

does not extend to α > 1.
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convergence for α > 1
2 . This way, we find the minimal integral expression

Iα(µ) =
∫

p

[∫ ∞

−∞
−

∫ iµ

0
−

∫ −iµ

0

]
dp0

2π

1

[p2
0 + p2]α

= −2 Re
∫

p

∫ iµ

0

dp0

2π

1

[p2
0 + p2]α

= −2 Re
∫

p

θ(µ − p)
∫ iµ

0

dp0

2π

1

[p2
0 + p2]α

.

(A.5)

The real line integral vanishes in dimensional regularization, and we were able to simplify

the second line since all values p > µ explicitly yield imaginary values for the integral

inside the brackets. While the result is formally limited to a small subset of dimensions

and exponents, we can analytically continue it to almost the full parameter space, as

suggested in eq. (4.1).

At the one-loop level also another class of master integrals can appear depending if their

temporal momentum numerator powers are even (σ = 0) or odd (σ = 1). By combining

the Cauchy theorem and starting with the spatial integral, we obtain

I2s+σ
α (µ) = lim

T →0

∮ f

p0

∫

p

pσ
0 [p2

0]s ñF(p0)

[p2
0 + p2]α

=
(

eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

(4π)
d
2 Γ
(
α
)
[
−

∫ iµ

0
−

∫ −iµ

0

]
dp0

2π
pσ

0 [p2
0]

d
2

−α+s

= −iσ
(

eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

π(4π)
d
2 Γ
(
α
)

µd+1−2α+2s+σ

(
d + 1 − 2α + 2s + σ

) sin
[π

2
(d + 2 − 2α + 2s)

]
(A.6)

= −iσ
(

eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

(4π)
d
2 Γ
(
α
)
Γ
(
α − s − d

2

)
Γ
(

d
2 + 1 − α + s

)
µd+1−2α+2s+σ

(
d + 1 − 2α + 2s + σ

) ,

where I0
α(µ) ≡ Iα(µ).

A.2 Multiple propagators

As discussed in the main text, the Cauchy theorem approach generalizes to integrals with

multiple propagators and loops. In this section, we indeed extract convergence constraints

for multi-loop and multi-propagator structures similar to the one-loop case in eq. (A.1). To

this end, we consider an integral with a (d+1)-dimensional external momentum K = (k0, k)

with a complex-valued temporal component, relevant to thermal field theory calculations:

2

1

= Iα1α2(µ, T ) =
∮ f

P

ñF(p0)

[p2
0 + p2]α1

1

[(p0 − k0)2 + |p − k|2]α2
. (A.7)

The novel problematic divergence should now only occur at |p − k|2 ∼ [µ − Im(k0)]2 for

α2 ≥ 1. Therefore, we can even deal with multiple propagators and analytically continue

the result by applying the exponent regulation of appendix A.1.

Each loop order introduces one additional contour integral, akin to the two-loop level

discussion in section 5. As at the one-loop level, we study the convergence properties of
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eq. (5.1), and write the strict (naive) low-temperature limits in terms of the upper line

integrals of the contours:

lim
T →0

∮ f

p0,q0

ñF(p0)

[p2
0 + p2]α1

ñF(q0)

[q2
0 + q2]α2

1

[(p0 − q0)2 + |p − q|2]α3

=
∫ ∞+iµ

−∞+iµ

dp0

(2π)

dq0

(2π)

1

[p2
0 + p2]α1 [q2

0 + q2]α2 [(p0 − q0)2 + |p − q|2]α3
. (A.8)

The first two (fermionic) propagators are similar in their behavior when p = µ for α1 ≥ 1

and q = µ for α2 ≥ 1. The third (bosonic) propagator on the other hand diverges in

the hyperplane |p − q| = 0 for α3 ≥ 1, similar to the other two cases but shifted from

the position near the origin by the length of p0 or q0 depending on the chosen integration

variable. Again, by neglecting these divergences, not only the integral becomes dependent

on the integration order but also the dimensionally regularized loop momenta. Thus, the

conditions α1, α2, α3 < 1 are necessary (but not sufficient) to be able to apply the Cauchy

theorem. Further conditions are needed to treat the UV behavior of both zero-components

of the (d + 1)-loop momenta. For this purpose, we use the Feynman parametrization

1

Aα1
1 Aα2

2

=
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ 1

0
dz

zα1−1(1 − z)α2−1

[zA1 + (1 − z)A2]α1+α2
, (A.9)

which is valid for α1, α2 > 0. Parametrizing the second and third propagator in this fashion

yields

(A.8) =
Γ
(
α23)

Γ
(
α2)Γ

(
α3)

∫ 1

0
dx xα2−1(1 − x)α3−1 (A.10)

×

∫ ∞+iµ

−∞+iµ

dp0

(2π)

dq0

(2π)

1

[p2
0 + p2]α1 [(q0 − xp0)2 + x(1 − x)p2

0 + x|p − q|2 + (1 − x)q2]α23
,

where we apply the compact notation α{i} =
∑

j∈{i} αj .

The UV behavior of the integral is contained in the q0-integral if 1
2 − α23 < 0. To

consider this behavior explicitly, we change the integration variables according to u(q0) =

q0 − xp0 for fixed values of x and p0, and focus on the innermost integral

∫ ∞+(1−x)iµ

−∞+(1−x)iµ

du[
u2 + x(1 − x)p2

0 + x|p − q|2 + (1 − x)q2
]α23

. (A.11)

The UV behavior of this expression can be studied easier by moving the line integral to run

along the real axis which gives rise to a beta function as in our Cauchy theorem prescription.

Hence, the computation reduces to evaluating

2
∫ ∞

0

du[
u2 + x(1 − x)p2

0 + x|p − q|2 + (1 − x)q2
]α23

=
Γ
(
α23 − 1

2

)
Γ
(

1
2

)

Γ
(
α23

)
[
x(1 − x)p2

0 + x|p − q|2 + (1 − x)q2
] 1

2
−α23

, (A.12)

where we used a complex-valued generalization of Euler’s beta function to find the given

representation (see e.g. section III of [26]).
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Extracting all of the elements contributing to the remaining p0-integration above, we

need to consider another Feynman parametrization:

∫ ∞+iµ

−∞+iµ

dp0

[p2
0 + p2]α1

1
[
p2

0 + 1
1−x |p − q|2 + q2

x

]α23− 1
2

=
Γ
(
α123 − 1

2

)

Γ
(
α1
)
Γ
(
α23 − 1

2

)
∫ 1

0
dy yα23− 3

2 (1 − y)α1−1

×

∫ ∞+iµ

−∞+iµ

dp0
[
p2

0 + (1 − y)p2 + y
1−x |p − q|2 + yq2

x

]α123− 1
2

. (A.13)

The UV behavior of this integral can again be extracted after a reflection of the p0-integral

to the real axis and the evaluation of the corresponding beta function. The resulting

hypergeometric integral structure

(A.8) 7→
Γ
(
α123 − 1

)
Γ
(

1
2

)2

Γ
(
α1
)
Γ
(
α2
)
Γ
(
α3
)
Γ
(
α23

)
∫ 1

0
dx dy xα12− 3

2 (1 − x)α13− 3
2 yα23− 3

2 (1 − y)α1−1

×
[
x(1 − x)(1 − y)p2 + xy|p − q|2 + (1 − x)yq2

]1−α123
, (A.14)

is well-defined for α123 −1 > 0, αi<j > 1
2 and αi > 0 for {i, j} ∈ {1, 2, 3}. These constraints

are complemented by the above-mentioned conditions αi < 1, associated with the IR

behavior of the propagator structure.

Applying total derivatives to any full expression such as eq. (5.1) can organically

generate different propagator powers. However, differentiation can not be successfully

applied directly to formulae, in which the zero-temperature limit has been previously taken

such that the distribution function is fully removed; see eq. (A.5). Indeed, differentiated

distribution functions generate essential corrections arising from the finite-temperature

regulation as implied in eq. (2.8). In the presence of such δ-function limits, the Cauchy

theorem does not need to be applied to find a closed-form result. A more convenient

prescription involves a clever splitting of the original contour in two (see section 2) and

the completion of the two line integral halves. This approach is faithful to the original

conditions of the fermionic sum-integral and allows a simple substitution procedure to

replace highly non-trivial complex contour computations.

B One-loop master integral with a mass scale

In [26], two methods were introduced for approaching the computation of the fermion one-

loop master integral involving a single imaginary scale iµ. The integration order, where one

starts from the spatial integral, excels in directly treating the (potential) p ≃ µ divergence

for general α > 1 through a generalization of Euler’s beta function. Adding another (mass)

scale to the propagator would merely shift the location of the (potential) novel divergence

while other properties stay similar, so that in the T = 0 limit, the massive variant

Is
α(µ, m, T ) ≡

∮ f

P

ps
0 ñF(p0)

[p2
0 + p2 + m2]α

, (B.1)

– 26 –



J
H
E
P
0
8
(
2
0
2
3
)
2
1
2

where Iα(µ, m, T ) ≡ I0
α(µ, m, T ). The massive integral has the same convergence properties

as the massless integral, with convergence achieved in the triangle-shaped subregion of

eq. (A.1). In the opposing case of m > µ, we on the other hand automatically avoid not

only the p ≃ µ divergence, but also any µ dependence on the result as will be explicitly

demonstrated below.

In this appendix, we explicitly compute the low-temperature limit of eq. (B.1) using the

regulatory methods of [26] as well as hypergeometric algebra. Subsequently, we construct

a generalization of the IBP relation of eq. (4.2) in the low-temperature limit, including the

additional mass scale.

B.1 Direct computation

In analogy with the zero-mass case of our eq. (4.3) (see also [26]), computing first the

d-dimensional dimensionally regularized spatial integral in eq. (B.1) yields

Iα(µ, m, T ) =
(

eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

(4π)
d
2 Γ(α)

∮ f

p0

ñF(p0)
[
p2

0 + m2
] d−2α

2

T →0
=

(
eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

π(4π)
d
2 Γ
(
α
) Re

∫ ∞

0
dp0

[
(p0 + iµ)2 + m2

] d−2α
2

=
(

eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

Γ
(
α
) µd+1−2α

π(4π)
d
2

Re
∫ ∞

0
dp0

[
(p0 + i)2 +

(m

µ

)2
] d−2α

2

,

(B.2)

wherein we simultaneously scaled out the chemical potential and took the low-temperature

limit by discarding the lower part of the contour as it is exponentially suppressed. The

remaining integral is most straightforwardly evaluated using the Cauchy theorem, assuming

the usual convergence region of eq. (A.1). To this end, we apply eq. (2.12) and write

∫ ∞

0
dp0

[
(p0 + i)2 +

(m

µ

)2
] d−2α

2

=
[∫ ∞

0
dp0 −

∫ i

0
dp0

][
p2

0 +
(m

µ

)2
] d−2α

2

(B.3)

=
(m2

µ2

) d+1−2α
2 Γ

(
3
2

)
Γ
(
α − d+1

2

)

Γ
(
α − d

2

) −
i

2

∫ 1

0
dx x− 1

2

[(m

µ

)2
− x

] d−2α
2

.

First inspecting the case m > µ, we note that the last term above is purely imaginary.

Inserting the real part of the remaining expression into eq. (B.2) yields then

Iα(m > µ) =
∫

P

1

[P 2 + m2]α
=
(

eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d+1

2

)

Γ
(
α
) [m2]

d+1−2α
2

(4π)
d+1

2

, (B.4)

which agrees with the massive vacuum integral Iα(m) from eq. (3.5), in (d+1) dimensions,

with no chemical potential dependence present.
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For m < µ, we proceed somewhat differently by first simplifying the last term in

eq. (B.3) according to

i

2

∫ 1

0
dx x− 1

2

[(
m

µ

)2

− x

] d−2α
2

= i

(
m2

µ2

) d−2α
2

2F1

[
1

2
, α −

d

2
;
3

2
;

µ2

m2

]

= i

(
m2

µ2
− 1

) d−2α
2

2F1

[
1, α −

d

2
;
3

2
;

µ2

µ2 − m2

]
, (B.5)

where on the last line we applied the so-called Pfaff transformation of [43].18 The mo-

tivation for this transformation stems from the series expansion of the hypergeometric

function 2F1 [a, b; c; z] only converging when its last argument satisfies z < 1. To obtain an

expression satisfying this constraint, we further apply the transformation [43–45]

2F1 [a, b; c; z] =
Γ(c)Γ(−a − b + c)

Γ(c − a)Γ(c − b) 2F1 [a, b; a + b − c + 1; 1 − z]

+
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
(1 − z)c−a−b

2F1 [c − a, c − b; −a − b + c + 1; 1 − z] ,

(B.6)

which allows us to write

i

2

∫ 1

0
dx x− 1

2

[(
m

µ

)2

− x

] d−2α
2

=
i

d + 1 − 2α

(
m2

µ2
− 1

) d−2α
2

2F1

[
1, α −

d

2
; α −

d − 1

2
; −

m2

µ2 − m2

]

+ i

(
m2

µ2

) d−2α
2
(

m2

m2 − µ2

) 1
2
(

µ2 − m2

µ2

) 1
2 Γ
(

3
2

)
Γ
(
α − d+1

2

)

Γ
(
α − d

2

) (B.7)

7→

(
Π+
)d+1−2α

d + 1 − 2α

(
1 −

m2

µ2

) d−2α
2

2F1

[
1, α −

d

2
; α −

d − 1

2
; −

m2

µ2 − m2

]

+
(
Π+
) (

Π+
)−1

(
m2

µ2

) d+1−2α
2 Γ

(
3
2

)
Γ
(
α − d+1

2

)

Γ
(
α − d

2

) . (B.8)

In the second iteration, we regulated the complex-valued power functions using Π+ ≡

exp
[

iπ
2 (1 + κ)

]
as defined in eq. (4.5).

Taking now the real part of the above expression and the κ-regulator to vanish, we

can write for m < µ

Re
{

i

2

∫ 1

0
dx x− 1

2

[(m

µ

)2
− x

] d−2α
2
}

=
cos

[
π(d+1−2α)

2

]

(d + 1 − 2α)

×
(
1 −

m2

µ2

) d−2α
2

2F1

[
1, α −

d

2
; α −

d − 1

2
; −

m2

µ2 − m2

]

+
(m2

µ2

) d+1−2α
2 Γ

(
3
2

)
Γ
(
α − d+1

2

)

Γ
(
α − d

2

) , (B.9)

18This transformation [43] reads 2F1 [a, b; c; z] = (1 − z)−b
2F1

[
c − a, b; c; z

z−1

]
.
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where we extracted the real part via Re(Π+)s ∼ cos(π(1+κ)s/2) for s ∈ R. As a final step,

we use Euler’s reflection formula on the trigonometric function and combine this expression

with eqs. (B.2)–(B.4), which upon further simplifying the result with eq. (4.1) leads to

Iα(m < µ) = Iα(µ)
(
1 −

m2

µ2

) d−2α
2

2F1

[
1, α −

d

2
; α −

d − 1

2
; −

m2

µ2 − m2

]
. (B.10)

This expression allows studying the m ≪ µ regime in detail, and in particular, leads us to

verify that the m → 0 limit indeed yields eq. (4.1) and that the result for Iα(µ, m, T ) is

continuous in the limit m → µ−. The latter follows from the result

(
1 −

m2

µ2

) d−2α
2

2F1

[
1, α −

d

2
; α −

d − 1

2
; −

m2

µ2 − m2

]
m→µ−
−→

Γ
(

d
2 + 1 − α

)
Γ
(
α − d−1

2

)

Γ
(

1
2

) ,

(B.11)

provided convergence is enforced by the parameter constraints in eq. (A.1). In combination

with eq. (B.10), this shows the continuous limit Iα(m < µ) = limm→µ− Iα(m > µ).

The above result has a logical interpretation even outside of the parametric values,

for which the limit m → µ remains formally convergent. Denoting χ = µ2 − m2, we

recognize that eq. (B.11) is the O(χ0) term of a series expansion around χ = 0, with all

other terms being of order O
(
χk
)

or O
(
χ

d−2α
2

+k
)

with k ∈ Z+. Whenever Iα(m > µ) is

UV-convergent, both subsets only contain positive powers, and similarly to our analytical

continuation of the Euler gamma functions in Iα(m > µ), we may regulate both the

dimension and denominator exponent parameters to remove all terms except for the one

shown in eq. (B.11).

B.2 Integration-by-parts with two scales

Integration-by-parts relations can also be derived for massive integrals as in eq. (B.1).

Given the full solution in eq. (B.10), we expect to find inhomogeneous equations for master

integral structures for m < µ. For eq. (B.1), the IBP approach aligns with the discussion

of section 4. By acting on the massive master integral with diagonal spatial and temporal

total derivatives, we find

0 =
( ∂

∂pi
◦ pi

)
Is

α(µ, m, T )

= (d − 2α)Is
α(µ, m, T ) + 2αm2Is

α+1(µ, m, T ) + 2αIs+2
α+1(µ, m, T ) , (B.12a)

0 =
( ∂

∂p0
◦ p0

)
Is

α(µ, m, T )

= (1 + s)Is
α(µ, m, T ) − 2αIs+2

α+1(µ, m, T ) +
∮ f

P

ps+1
0 ñ′

F(p0)

[p2
0 + p2 + m2]α

, (B.12b)

0 =
( ∂

∂Pµ
◦ Pµ

)
Is

α(µ, m, T )

= (d + 1 − 2α + s)Is
α(µ, m, T ) + 2αm2Is

α+1(µ, m, T ) +
∮ f

P

ps+1
0 ñ′

F(p0)

[p2
0 + p2 + m2]α

, (B.12c)
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where in the last line we combined spatial and temporal total derivatives into a d + 1

dimensional total derivative bilinear akin to identity (ibp.1c). After setting s = 0, we

again discern two hierarchy regimes:

Hierarchy m > µ. In the low-temperature limit, the right-hand side vanishes such that

∮ f

p0

∫

p

p0ñ′
F(p0)

[p2
0 + p2 + m2]α

T →0
=

(
eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

π(4π)
d
2 Γ
(
α
) Re

{
iµ[m2 − µ2]

d−2α
2

}
= 0, (B.13)

where we have used the results of section 4. This naturally implies the familiar recursion

from zero-temperature scalar field theory, i.e.

Iα+1(m > µ) = −
d + 1 − 2α

2αm2
Iα(m > µ) . (B.14)

Hierarchy m < µ. In the opposite regime, we regulate the power-law term and the

imaginary unit as above to find

∮ f

p0

∫

p

p0ñ′
F(p0)

[p2
0 + p2 + m2]α

T →0
=

(
eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

π(4π)
d
2 Γ
(
α
) Re

{
µ[µ2 − m2]

d−2α
2

(
Π+
) d+1−2α

2
}

= −(d + 1 − 2α) Iα(µ)
(
1 −

m2

µ2

) d−2α
2

, (B.15)

where we again used the Π+ convention of eq. (4.5). This implies the validity of the identity

(d + 1 − 2α) Iα(m < µ) + 2αm2Iα+1(m < µ) = (d + 1 − 2α) Iα(µ)
(
1 −

m2

µ2

) d−2α
2

. (B.16)

C One-loop consistency checks and additional examples

This appendix complements the results of section 4 by providing consistency checks related

to known standard properties of dimensionally regularized loop integrals. In particular, we

focus on the one-loop result given in eq. (4.1) as well as its finite-temperature generalization

Iα(µ, T ) =
∮ f

p0

ñF(p0) Iα(p0)
T →0
=

(
eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

Γ
(
α
)

∮ f

p0

ñF(p0)[p2
0]

d−2α
2 . (C.1)

Along the way, we also discuss the role of chemical potential in parametric differentiation

and its relation to symmetries at the one-loop order. We further emphasize that our

results should be formally considered analytical continuations of mathematically convergent

integrals, which in the low-temperature regime again implies parametric constraints akin

to eq. (A.1).

C.1 Linear algebra and loop-momentum differentiation

For the sake of completeness, let us first demonstrate that the fermionic one-loop master

integral allows the application of various linear decompositions while keeping the result
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intact. For this purpose, we multiply eq. (C.1) by unity 1 = (p2
0 + p2)/[p2

0 + p2] and first

evaluate the spatial integral, producing

Iα(µ, T ) =
∮ f

p0

p2
0 ñF(p0)

∫

p

1

[p2
0 + p2]α+1

+
∮ f

p0

ñF(p0)
∫

p

p2

[p2
0 + p2]α+1

=
(

eγEΛ̄2

4π

) 3−d
2

[
Γ
(
α + 1 − d

2

)

(4π)
d
2 Γ
(
α + 1

) +
(2π)2Γ

(
d
2 + 1

)
Γ
(
α − d

2

)

π(4π)
d+2

2 Γ
(

d
2

)
Γ
(
α + 1

)

] ∮ f

p0

ñF(p0)[p2
0]

d−2α
2

=

[(
1 −

d

2α

)
+

d

2α

]
Iα(µ, T ) . (C.2)

After moving to numerator structures containing exclusively spatial structures, all required

symmetries arise from the dimensionally regularized beta function.

In section 4, we also discussed the effect of the diagonal total derivative operator
∂

∂p0
◦ p0, where one simplification was found in the vanishing of total spatial derivatives,

or conversely the generated boundary terms. This is a central element in dimensionally

regularized integral algebra, and here we apply the one-loop master integral to confirm this

result explicitly. By first performing the spatial integration, we retain all differential and

linear algebra within the innermost integral. The diagonal operator can be re-written such

that ∮ f

p0

ñF(p0)
∫

p

∂ip
i =

∮ f

p0

ñF(p0)
∫

p

(
d + pi∂i

)
. (C.3)

Upon performing the innermost integral, this operator structure introduces two terms: one

proportional to the master integral and another with increased radial power, of which the

latter can be geometrically interpreted as a master integral in a higher dimension. To this

end, the total spatial derivative acting on the integrand of eq. (C.1) results in19

0 = d Iα(d, µ, T ) − (2α)
Ωd

Ωd+2
(2π)2Iα+1(d + 2, µ, T )

= d Iα(d, µ, T ) − 4π ·
d

2
· (2α)Iα+1(d + 2, µ, T ) . (C.4)

We emphasize that a naive application of the residue theorem at T = 0 (cf. [26]) would not

agree with this relation.20

The results listed above and in section 4 give great insight into expressions with trivial

or quadratic numerator structures. To address the subset of cases with numerator struc-

tures linear in the zero-components of momenta, let us next discuss the case of the temporal

derivative ∂
∂p0

, which acts on the distribution function. Unlike the bilinear operators intro-

duced in section 3, such an operator allows for relating primed (n′
F) integrals to ones with

linear numerator structures that cannot be further simplified using linear algebra from

19To simplify the computation, we vary the spatial dimensionality of the master integral, Iα(d, µ, T ), and

write it explicitly in the superscript.
20A naive application of the residue theorem to eq. (4.1) results in Inaive

α (d, µ, T = 0) =

−
(

eγE Λ̄2

4π

) 3−d
2 Γ(α−1/2)

(4π)d/2
√

πΓ(α)Γ(d/2)

µd+1−2α

d+1−2α
, which leads to a non-vanishing right-hand side of eq. (C.4).
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other total derivatives. The simplest such structure is the temporal integro-differential

relation in eq. (ibp.1b) for a fixed numerator parameter s = −1

∂

∂p0
Iα(µ, T ) = −2αI1

α+1(µ, T ) +
∮ f

P

ñ′
F(p0)

[p2
0 + p2]α

, (C.5)

which can again be confirmed to vanish by direct computation of both expressions on the

right-hand side. The first integral on the right-hand side is given by eq. (A.6), which was

evaluated using the methods introduced in section III of [26]. By combining the Cauchy

theorem and starting with the spatial integral, we obtain

2αI1
α+1(µ)

T →0
= i

(
eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

π(4π)
d
2 Γ(α)

µd−2α sin
[π

2
(d − 2α)

]
. (C.6)

The second expression in eq. (C.5) can be computed using methods introduced in sections 2

and 4, yielding

∮ f

p0

∫

p

ñ′
F(p0)

[p2
0 + p2]α

T →0
= i

(
eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

π(4π)
d
2 Γ
(
α
)µd−2α sin

[π

2
(d − 2α)

]
= 2αI1

α+1(µ) ,

(C.7)

which indeed agrees with eq. (C.6), causing eq. (C.5) to vanish as expected. This is

another consistency check between the two contour methods introduced in section 2 for

the evaluation of the loop integrals in eqs. (2.12) and (2.14).

C.2 Parametric differentiation

Parametric differentiation or Feynman’s trick can also be used to associate most single-

scale (µ) one-loop integrals to the master integral Iα(µ). The practical value of such an

operation relies heavily on the assumption that the differentiated structure can be dealt

with more easily than the non-differentiated one, and that there are no scale-invariant

contributions removed by the differentiation. As for the latter concern, we note that the

integrals discussed in this work contain two independent scales, µ and T , the latter of

which is taken to an unessential limit (and hence should not contribute in a meaningful

way to the results we are seeking). To this end, the µ-differentiation can only miss fully

scale-independent, O(µ0), contributions to the integral in question.21

In the low-temperature limit, the distribution functions bring no scale to the energy

dimension of the full integral while their derivatives lower it by one, so that all loop integrals

of interest take the form of a power of µ. The η-regulators are on the other hand suppressed

in our explicit results, whose low-temperature limits take forms such as

lim
T →0

∮ f

p0

∫

p

ps
0 pγ

[p2
0 + p2]α

ñF(p0) ∼ µd+γ+s+1−2α , (C.8)

lim
T →0

∮ f

p0

∫

p

ps
0 pγ

[p2
0 + p2]α

ñ′
F(p0) ∼ µd+γ+s−2α . (C.9)

21The situation is different for integrals with, e.g., both mass and chemical potential scales. In these

cases, each parametric differentiation carries the risk of canceling out a part of the full solution. Such a

case can be found in appendix B for the scale hierarchy m > µ.
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Accordingly, the presence of dimensional regularization should be sufficient to avoid any

loss of information in parametric differentiation.

At the one-loop level, Feynman’s trick can be used both as another consistency check as

well as in the derivation of µ-dependent symmetries extending beyond the low-temperature

limit. While the full solution is explicitly temperature-dependent, the only parameter we

can differentiate is the chemical potential, which leads to non-unique identities involving

the null space of ∂µ, such as

∂

∂µ

∮ f

P

ñF(p0)

[p2
0 + p2]α

=
∂

∂µ

{∮ f

P

ñF(p0)

[p2
0 + p2]α

−

∮ f, µ=0

P

nF [iβp0]

[p2
0 + p2]α

}
. (C.10)

For multi-loop computations and when applied directly, the trick generates differential

equations to replace the inhomogeneous recursive equations, corresponding to the power-

law behavior of the result in µ.22 While computations involving parametric differentiation

are not central to our work, we add a few examples below to demonstrate their connection

to the formulae used here and in [26].

Similarly to many previous computations presented in this work, we need to first keep

the temperature nonzero to ensure that we do not miss important contributions to our

integrals that might vanish upon differentiation at exactly T = 0. Without any loss of

information, we can then write the partial differentiation of the distribution function as

∮ f

p0

ñ′
F(p0)p0

∫

p

1

[p2 + p2
0]α

=
∮ f

p0

i
∂

∂µ
[ñF(p0)]

∫

p

ip0

[p2 + p2
0]α

,

with
∂

∂µ
ñF(p0) = −i

∂

∂p0
ñF(p0),

(C.11)

and subsequently, move the differentiation outside the p0-integral due to the closed nature

of the integration contour. By differentiating the low-temperature limit corresponding to

the rest of the integrand on the right-hand side, we find using methods discussed above

∂

∂µ

{
lim
T →0

∮ f

p0

ñF(p0)
∫

p

ip0

[p2 + p2
0]α

}

= −
∂

∂µ

{(
eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

π(4π)
d
2 Γ
(
α
)

µd+2−2α

(d + 2 − 2α)
cos

[
π

2
(d + 3 − 2α)

]}

= −(d + 1 − 2α)Iα(µ)

= lim
T →0

∮ f

p0

ñ′
F(p0)p0

∫

p

1

[p2 + p2
0]α

. (C.12)

As stated above, this implies that the parametric differentiation encompasses all terms con-

taining explicit µ-dependence. Furthermore, we note that the order of the zero-temperature

limit and parametric differentiation does not affect the result. Using this flexibility with

22If multiple distribution functions are present, the µ-differentiation is considerably less useful. The prob-

lems can be partially alleviated by introducing an independent chemical potential for each loop momentum,

but this complicates the structure of the master integrals.
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the limits, we can also confirm the result derived for master integrals equipped with linear

p0-structures:

i
∂

∂µ
Iα(µ) = −i

(
eγEΛ̄2

4π

) 3−d
2 µd−2α

(4π)
d
2 Γ
(
α
)
Γ
(

d
2 + 1 − α

) , (C.13)

which indeed agrees with eq. (C.7).

Finally, we note that we can rather easily derive additional formulae for similar master

integrals, including e.g.

lim
T →0

∮ f

p0

ñ′
F(p0)p0

∫

p

1

[p2 + p2
0]α

= −
1

2(α − 1)

∂2

∂µ2
Iα−1(µ) , (C.14)

and that we can discern from eqs. (4.1) and (4.2) — or eq. (C.13) — that the p0-numerator

in eq. (C.12) can be replaced by µ such that

−µ
∂

∂µ
Iα(µ)

eq. (C.13)
= (iµ) × lim

T →0

∮ f

p0

ñ′
F(p0)

∫

p

1

[p2 + p2
0]α

eq. (4.2)
= lim

T →0

∮ f

p0

ñ′
F(p0)p0

∫

p

1

[p2 + p2
0]α

(ibp.1c)
=

[
Pµ ◦

∂

∂Pµ
+ 2α

]
Iα(µ) . (C.15)

Here, we applied eq. (ibp.1c) on the last line to re-write the relation in terms of the

operator Pµ ◦ ∂
∂Pµ

which is reversed to operators of the set in eq. (3.8). This relation

further demonstrates the non-trivial nature of the p0 = ±iµ substitutions arising from

eq. (2.14) in the low-temperature limit. The relevant details of the delta function limits

and contours have been discussed already in sections 2 and 4.

D Additional details of two-loop IBP computations

In this appendix, we present several extensions and consistency checks for the computations

presented in sec 5. In the first part, we introduce conventions for the spatial integrations

taking place in eq. (5.4) and similar relations, while in the second subsection, we study

in more detail the vanishing integrals that contain propagators with shifted bosonic mo-

menta. The third subsection then evaluates the group of two-loop integrals {S11s | s ∈ N}

at T = 0, using the cutting rule toolkit from [31] and providing a comparison point for our

independent evaluation of such diagrams. The last subsection finally utilizes spatial IBP

operators from [37] to derive IBP relations for the integrals S111 and S112 that explicitly

differ from what one would expect at µ = 0. These results act as further cross-checks of

our full (d + 1)-dimensional IBP relations (5.13) and (5.22).

D.1 Vacuum integrals with complex mass scales

Let us begin by considering the one-loop integral of eq. (4.6) and the two-loop integrals

of eq. (5.4) without explicit replacements. Akin to section 4 of [26], we may regulate the

quadratic scales using iµ 7→ Π+µ from eq. (4.5), which allows using the generalized Euler
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beta functions in the dimensionally regularized radial integrations. At the one- and two-

loop levels, the initial spatial momentum integration corresponds to vacuum integrals of

the type

Sα1α2α3(m1, m2, 0) =
(

eγEΛ̄2

4π

)3−d Γ
(
α123 − d

)
Γ
(

d
2 − α3

)
Γ
(
α13 − d

2

)
Γ
(
α23 − d

2

)

Γ
(
α1
)
Γ
(
α2
)
Γ
(

d
2

)
Γ
(
α123 + α3 − d

)

×
[m2

1]d−α123

(4π)d 2F1

[
α23 −

d

2
, α123 − d; α123 + α3 − d; 1 −

m2
2

m2
1

]
,

(D.1)

S111(m1, m2, m1 + m2) =
1

2

(d − 2)

(d − 3)

[
I1(m1)

m1

I1(m2)

m2
−

I1(m1)

m1

I1(m3)

m3
−

I1(m2)

m2

I1(m3)

m3

]
,

(D.2)

S121(m1, m2, m1 + m2) =
1

4

(d − 2)

(d − 5)

[
I1(m1)

m2
1

I1(m3)

m2
3

+
(
(d − 4)

m3

m2
− 1

)I1(m2)

m2
2

I1(m3)

m2
3

−
(
(d − 4)

m1

m2
+ 1

)I1(m1)

m2
1

I1(m2)

m2
2

]
, (D.3)

where in the first integral one assumes the hierarchy m2
1 ≥ m2

2 and in the latter two cases

the collinear relation m3 = m1 + m2 that gives rise to the factorization of the vacuum

sunset reported in [32, 46].

In the evaluation of the maximally primed type B integrals of section 5.1, we may

apply the above collinear results because one of the three complex mass scales in the

corresponding d-dimensional integrals always vanishes due to the substitutions of p0 and

q0 in relations such as eq. (5.4). The specific mapping between the masses mi appearing

above and the momenta p0, q0, and p0 ± q0 is determined by the integral in question,

typically leading to only one of the three terms in eqs. (D.2) and (D.3) obtaining a nonzero

value. To remove the vanishing mass scale from the denominator, we typically use the one-

loop massive vacuum IBP relation Iα+1(m) = −(d − 2α)/(2αm2)Iα(m) (see appendix E),

which leads to two cases

S111(p0, 0, p0) = −
2

(d − 3)(d − 2)

[
p0I2(p0)

]2
, for p0 − q0 = 0 , (D.4)

S111(p0, q0, 0) =
2

(d − 3)(d − 2)

[
p0I2(p0)

][
q0I2(q0)

]
, for p0 + q0 = 0 . (D.5)

To finally arrive at results such as eq. (5.5), we must still connect the temporal momentum

components to the substitutions µ(Π+)±1. In this way, eq. (D.4) is associated with the

p0 = q0 = µΠ+ substitution in the first term on the right-hand side of eq. (5.4), while

eq. (D.5) is associated with the second term there.

One more subtlety, however, remains: for S111(µΠ+, µ/Π+, O(κ)), a straightforward

generalization of the hypergeometric expression (D.1) would provide a complex-valued

result for an integral that is by construction its own complex conjugate. To remedy this,
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we must return to the defining integral (obtained after shifting p 7→ p + q)

Sα1α2α3(p0, q0, O(κ)) =
∫

p,q

1

[|p + q|2 + p2
0]α1 [q2 + q2

0]α2 [p2 + O(κ)]α3
, (D.6)

where we can use standard Feynman parametrization if α1, α2 > 0. By regulating again

the complex-valued mass scales such that i 7→ Π+, we may straightforwardly evaluate the

two spatial loop integrations, obtaining a hypergeometric integral of the form

Sα1α2α3(p0, q0, 0) =
(

eγEΛ̄2

4π

)3−d Γ
(
α123 − d

)
Γ
(

d
2 − α3

)

(4π)dΓ
(
α1
)
Γ
(
α2
)
Γ
(

d
2

)
∫ 1

0
dx

xα23− d
2

−1(1 − x)α13− d
2

−1

[
xq2

0 + (1 − x)p2
0

]α123−d
,

(D.7)

where again α{i} =
∑

j={i} αj .

To proceed from here, let us next assume that α3 ∈ N. Since the denominator and

numerator powers differ by (α23 − d
2) + (α13 − d

2) − (α123 − d) = α3 for the remaining

hypergeometric integral, we can rewrite its integrand by multiplying with unity

[xq2
0 + (1 − x)p2

0]α3

[xq2
0 + (1 − x)p2

0]α3
=

[p2
0 + (q2

0 − p2
0)x]α3

[xq2
0 + (1 − x)p2

0]α3
=

[p2
0 + O(κ)x]α3

[xq2
0 + (1 − x)p2

0]α3
, (D.8)

where the subtraction p2
0 − q2

0 = O(κ) is proportional to the κ-regulator scale. Writing

the numerator of the multiplier in terms of a binomial expansion, we may then remove the

contribution proportional to the regulator, obtaining

∫ 1

0
dx

xα23− d
2

−1(1 − x)α13− d
2

−1

[
xq2

0 + (1 − x)p2
0

]α123−d

=
α3∑

k=0

(
α3

k

)
[p2

0]k[q2
0 − p2

0]α3−k
∫ 1

0
dx

xα3+α23− d
2

−k−1(1 − x)α13− d
2

−1

[
xq2

0 + (1 − x)p2
0

]α3+α123−d

=
Γ
(
α23 − d

2

)
Γ
(
α13 − d

2

)

Γ (α3 + α123 − d)

[p2
0]α3

[p2
0]α13− d

2 [q2
0]α23− d

2

+ O(κ) , (D.9)

where we have reversed the Feynman parametrization of eq. (A.9) to find the factorization

explicitly manifested.

Collecting the above results, we recognize that for α3 ∈ N, we can write

Sα1α2α3(p0, q0, 0)

=
(

eγEΛ̄2

4π

)3−d Γ
(
α123 − d

)
Γ
(

d
2 − α3

)

Γ
(
α1
)
Γ
(
α2
)
Γ
(

d
2

)
Γ
(
α23 − d

2

)
Γ
(
α13 − d

2

)

Γ
(
α3 + α123 − d

) [p2
0]

d
2

−α1 [q2
0]

d
2

−α23

(4π)d
,

(D.10)

where the binomial expansion in eq. (D.9) has clearly broken the symmetry between p0 and

q0. A more symmetric result can be reinstated by writing the solution arising from (D.9)

trigonometrically using [q2
0]n = cos(πn)µ2n for n ∈ N. With this parametrization, we

obtain

[p2
0]

d
2

−α1 [q2
0]

d
2

−α23 = µ2(d−α123)
{

cos
[
π (d − α123)

]
± i sin

[
π (d − α123)

]}
, (D.11)
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for p0 = q0 = (Π+)±1µ and

[p2
0]

d
2

−α1 [q2
0]

d
2

−α23 =
µ2(d−α123)

2

{
cos
[
π (α23 − α1)

]
+ cos

[
π (α2 − α13)

]}

± i
µ2(d−α123)

2

{
sin
[
π (α23 − α1)

]
+ sin

[
π (α2 − α13)

]}
, (D.12)

for p0 = (Π+)±1µ and q0 = (Π+)∓1µ.

The result we have arrived at is equivalent to performing the binomial expansion

symmetrically in terms of both p0 and q0, but cannot be straightforwardly extended to

α3 ∈ R+. This can be seen by carefully studying Newton’s extension to the binomial

theorem in the context of eq. (D.9). Indeed, for α3 ∈ (0, 1), p0 = µΠ+ and q0 = µ(Π+)−1,

we obtain

∫ 1

0
dx

xα23− d
2

−1(1 − x)α13− d
2

−1

[
xq2

0 + (1 − x)p2
0

]α3+α123−d

[
xq2

0 + (1 − x)p2
0

]α3

= µ2α3

∫ 1
2

0
dx

xα23− d
2

−1(1 − x)α13− d
2

−1

[
xq2

0 + (1 − x)p2
0

]α3+α123−d

[
−1 + iπκ(1 − 2x) + O(κ2)

]α3

+ µ2α3

∫ 1

1
2

dx
xα23− d

2
−1(1 − x)α13− d

2
−1

[
xq2

0 + (1 − x)p2
0

]α3+α123−d

[
−1 − iπκ(2x − 1) + O(κ2)

]α3
, (D.13)

where we have paid close attention to the signs of the O(κ) terms, according to which the

integral has been split in two. In the end, we can collect the leading contributions from

both integration intervals such that

(D.13) = µ2α3

{
cos(πα3)

∫ 1

0
dx + i sin(πα3)

[∫ 1
2

0
dx −

∫ 1

1
2

dx

]}
xα23− d

2
−1(1 − x)α13− d

2
−1

[
xq2

0 + (1 − x)p2
0

]α3+α123−d
,

(D.14)

which retains the familiar factorizing structure of eq. (D.10) when α3 ∈ N.

A natural generalization to eq. (D.10) is found by adding a mass m ∈ R+ to the

propagators. Such a scale can be inserted to both fermionic propagators of eq. (D.6)

(associated to p0 and q0) while still conserving the binomial expansion condition (p2
0 +

m2)− (q2
0 +m2) = O(κ). The regulator κ can be fitted such that for µ > m we may replace

Π+µ 7→ Π+
√

µ2 − m2 in the thermal integral akin to the one-loop example of appendix B.

For m > µ, the result on the other hand trivializes to the classical real-valued sunset with

only one scale p2
0 = q2

0 = m2 − µ2 > 0. We emphasize, though, that the m > µ hierarchy

leads to the vanishing of the type B term due to subtractions akin to eq. (5.3), making the

corresponding IBP relation independent of µ.

Next, we apply eq. (D.10) to an explicit evaluation of the sunset S111 with both Fermi-

Dirac distributions differentiated. In practice, we write the integrand in terms of the

spatial integral S111(p0, q0, 0) and use the contour deformations from eq. (2.14) to recover
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the solution to eq. (5.5),

DpDq S111 =
∮

p0,q0

ñ′
F(p0)ñ′

F(q0)S111(q0, p0 − q0, p0)

T →0
=

d − 2

d − 3

(
eγEΛ̄2

4π

)3−d µ2(d−2)

(4π)d

Γ2
(
1 − d

2

)

(2π)2

(
cos[π(d − 2)] − 1

)

= −

(
eγEΛ̄2

4π

)3−d µ2(d−2)

(4π)d

1

Γ
(

d
2

)
Γ
(

d
2 − 1

)
(d − 3)

, (D.15)

where standard trigonometric formulae and Euler’s reflection formula have been applied.

Similarly, it is straightforward to extend the result to the full class of maximally differ-

entiated two-loop vacuum bubbles, for which α1, α2 ∈ R+ and α3 ∈ N. Applying again

eq. (D.10), we obtain

DpDq Sα1α2α3 =
∮

p0,q0

ñ′
F(p0)ñ′

F(q0)Sα2α3α1
(q0, p0 − q0, p0)

T →0
=

(
eγEΛ̄2

4π

)3−d Γ
(
α123 − d

)
Γ
(

d
2 − α3

)

(4π)dΓ
(
α1
)
Γ
(
α2
)
Γ
(

d
2

)
Γ
(
α23 − d

2

)
Γ
(
α13 − d

2

)

Γ
(
α3 + α123 − d

)

×(−1)α3
2µ2(d−α123)

(2π)2

(
cos
[
π(d − α12)

]
− cos

[
π(α1 − α2)

])
. (D.16)

Finally, we note that numerators with integer powers of temporal momentum compo-

nents {p0} can be implemented through eq. (5.4) and hence do not introduce any further

complications. Following the conventions of section 5, the two type B terms required in

the derivation of S111 read

DpDqS11
111

T =0
= DpDqS20

111
T =0
= −µ2DpDqS111

T =0
=

2(d − 3)

(d − 2)
µ2 I2(µ)I2(µ) . (D.17)

D.2 Momentum-shifted bosonic propagators

Next, we take a closer look at the zero-temperature limits of the integrals S102 and S012,

appearing in eq. (5.7). Following the convention of eq. (2.3), we may write

= Sα10 α2 =
∮ f

P,Q

ñF(p0)ñF(q0)

[p2
0 + p2]α1 [(p0 − q0)2 + |p − q|2]α2

=
∑∫

{P }

1

[p2
n + p2]α1

∑∫

{Q}

1

[(pn − qm)2 + |p − q|2]α2

=
∑∫

{P }

1

[p2
n + p2]α1

∑∫

R

1

[r2
m + r2]α2

=
∮ f

P

ñF(p0)

[p2
0 + p2]α1

∮ b

R

nB [iβr0]

[r2
0 + r2]α2

,

(D.18)

where we have used the sum-integral definitions of eq. (2.3) and noted the bosonic nature

of the momentum R ≡ Q − P . To proceed to the low-temperature limit, we first perform

the spatial integral and then compute the remaining zero-component integral through the
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step function limit of nB in eq. (2.6) (cf. section III of [26]):

∮ b

p0

nB [iβp0] Iα(p0) = 2
(

eγEΛ̄2

4π

) 3−d
2 Γ

(
α − d

2

)

(4π)
d
2 Γ
(
α
) Re

∫ ∞+iη

iη

dp0

2π
[p2

0]
d
2

−α

= −

(
eγEΛ̄2

4π

) 3−d
2 1

(4π)
d
2 Γ
(
α
)
Γ
(

d
2 + 1 − α

)
ηd+1−2α

(d + 1 − 2α)
= Iα(µ)

∣∣∣
µ→η

.

(D.19)

The above expression formally corresponds to the fermionic one-loop integral of

eq. (4.1). Its dependence on the powers of the regulator scale η (from the contour) indicates

the factorizing of the R-integral in eq. (D.18), leading to the entire diagram vanishing in

dimensional regularization.23 This result is retained also with a numerator linear in q0

after splitting the computation into two upon writing q0 = r0 + p0. An integral with a

p0-numerator also follows the same steps as above while an integral with an r0-numerator

involves an imaginary part taken during the remaining r0-integral, similar to eq. (C.6).

Next, we inspect the closely related integral of eq. (5.12), which contains one primed

and one unprimed distribution function, marking our first example of a simple type C

integral. Using the formulae of section 5, we obtain for it

∮ f

p0,q0

∫

p,q

ñF(p0) q0ñ′
F(q0)

[p2
0 + p2]α1 [(p0 − q0)2 + |p − q|2]α2

=
∮ f

p0

ñF(p0)Iα(p0)
∮ f

q0

q0ñ′
F(q0)Iα(p0 − q0) ,

(D.20)

where the right-hand side follows after performing the d-dimensional spatial integrals. Fo-

cusing next on the remaining two integrals, we change the integration variable of the

q0-integral via q0 7→ r0 = q0 − p0 and also split the p0-integral using the line integral

description. This leads to

∮ f

p0

[p2
0]

d
2

−α1 ñF(p0)
∮ f

q0

q0[(p0 − q0)2]
d
2

−α2 ñ′
F(q0) =

−

∫ ∞+iµ+iηp

−∞+iµ+iηp

dp0

2π
[p2

0]
d
2

−α1 ñF(p0)
∮ b,−

r0

(r0 + p0)[r2
0]

d
2

−α2 ñ′
F(r0 + p0)

+
∫ ∞+iµ−iηp

−∞+iµ−iηp

dp0

2π
[p2

0]
d
2

−α1 ñF(p0)
∮ b,+

r0

(r0 + p0)[r2
0]

d
2

−α2 ñ′
F(r0 + p0) , (D.21)

where ηp is the regulator on the p-integral contour and the ± symbols correspond to the

±iηp shifts of the bosonic contour along the imaginary axis. In the T → 0 limit, the

leading behaviour of distribution functions is solely determined by the imaginary part of

loop momenta [cf. eq. (2.8)],

ñ′
F(r0 + p0) = iβn′

F

{
iβ[Re(r0 + p0) + i Im(r0) ± iηp]

} T →0
= −iδ[Im(r0) ± ηp] , (D.22)

23Taking the limit η → 0 before letting the dimensional regulator vanish results in a vanishing scaleless

integral as expected for T = 0 bosonic integrals.
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which we can be immediately applied given that all the momentum dependence outside

of distribution functions is of the form of generalized monomials24 and where the p0 line

integrals fix the value of Im(p0). Thus, the r0 integration akin to eq. (2.14) becomes

∮ b,+

r0

[r2
0]

d
2

−α2 ñ′
F(r0 + p0)

∣∣∣
Im(p0)=iµ−iηp

→ i

∫ iηq+iηp

−iηq+iηp

dr0

2π
[r2

0]
d
2

−α2δ[Im(r0) − ηp]

+ i

∫ iηq−iηp

−iηq−iηp

dr0

2π
[r2

0]
d
2

−α2δ[− Im(r0) − ηp] ,

(D.23)

which shows the proprtionality to the regulator in the form ∝ ηd−2α2
p . Similarly, each term

in eq. (D.21), through the evaluation of the r0 integrals, contains a factorizing dependence

on the regulator powers. As in the previous example of eq. (D.19), this indicates that the

full integral vanishes in dimensional regularization — a property that is trivially retained

for unit-valued numerators. Should we take the additional regulator ηp to zero beforehand,

the integral containing δ-sequence expressions in the T → 0 limit would on the other hand

be identical to one with a bosonic δ-sequence (as generated by differentiation).

D.3 Evaluation of the sunset integral with cutting rules

For the sake of completeness, we present next an alternative evaluation of the standard

sunset integral at T = 0 using the so-called cutting rules of [31]. By setting α1 = α2 = 1

and α3 = s ∈ N in eq. (5.1), we are indeed able to take the zero-temperature limit and

compute the remaining integral using the residue theorem [26, 31], evaluating multiple

integrals at once. We emphasize, however, that raising either of the other two exponent

parameters α1, α2 to values higher than unity would require the introduction of corrections

akin to the differentiated distribution functions discussed in section 2.

In the application of the cutting rules, we write the residues as cuts along the fermionic

propagators, obtaining thereby the expression

S11s
T →0
=

∫

p,q

∫ ∞

−∞

dp0

(2π)

dq0

(2π)

1

[(p0 + iµ)2 + p2][(q0 + iµ)2 + q2][(p0 − q0)2 + |p − q|2]s

=
∫

P,Q

1

P 2Q2[(P − Q)2]s
− 2

∫

p

θ(µ − p)

2p

[∫

Q

1

Q2[(Q − P )2]s

]

p0 7→ip

+
∫

p,q

θ(µ − p)θ(µ − q)

4pq

1

[(P − Q)2]s

∣∣∣∣p0 7→ ip
q0 7→ iq

, (D.24)

where we again use capital letters to signify Euclidean (d + 1)-momenta integrated over

R
d+1 using dimensional regularization. The first of the three terms on the right-hand side

of this expression is said to correspond to a 0-cut, the second to a 1-cut, and the third to

a 2-cut contribution to the Feynman integral.

Given that all scaleless integrals vanish in dimensional regularization, the 0-cut con-

tribution on the second line above clearly vanishes, and the same can be seen to be true

24Monomials do not introduce problematic poles and allow a straightforward taking of the naive T → 0

limit in both differentiated and non-differentiated distributions.
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for the 1-cut term given that the substitution enforces P 2 = 0. For a general exponent, s,

the remaining integral and also the full result therefore becomes

∫

p,q

θ(µ − p)θ(µ − q)

4pq

1

[(P − Q)2]s

∣∣∣∣p0 7→ ip
q0 7→ iq

=
∫

p,q

θ(µ − p)θ(µ − q)

22+spq (pq − p · q)s

=
(

eγEΛ̄2

4π

)3−d 1

22+s(2π)2d

[
2π

d
2

Γ
(

d
2

)
][

2π
d−1

2

Γ
(

d−1
2

)
]

×

[∫ µ

0
dq qd−2−s

]2[∫ 1

−1
dz

(1 − z2)
d−3

2

(1 − z)s

]
,

where the angular parameter in the dot product reads z = p · q/(pq). To evaluate the

z-integral, we next change the integration variable as z 7→ y = (1 + z)/2 to obtain a scaled

Euler’s beta function

∫ 1

−1
dz

(1 − z2)
d−3

2

(1 − z)s
=

2d−2−sΓ
(

d−1−2s
2

)
Γ
(

d−1
2

)

Γ
(
d − 1 − s

) , (D.25)

again regularized in d dimensions. After finally utilizing Legendre’s duplication formula,

we can substitute 2d−2−2sΓ
(

d−1−2s
2

)
= Γ

(
1
2

)
Γ(d − 1 − 2s)/Γ

(
d
2 − s

)
and obtain for the

value of the zero-temperature fermionic sunset in d dimensions

S11s
T →0
=

(d − 1)

(d − 1 − s)

Γ(s + 1)Γ(d − 2s)

Γ(d − s)
I1(µ)Is+1(µ) , (D.26)

where we applied the one-loop result of eq. (4.1). It is easy to verify that the full result

indeed reproduces our earlier expressions for S111 in eq. (5.13) and for S112 in eq. (5.22).

D.4 Sunset integral and spatial IBP relations

In section 5.2, we derived factorizing low-temperature results for the fermionic sunset

integrals S111 and S112 in eqs. (5.13) and (5.22), respectively. At nonzero temperature

but vanishing chemical potentials, the sunset S111 is on the other hand known to vanish

identically, as demonstrated in [24, 37] using spatial IBP relations and initially argued up

to O(ǫ) in [47]. Given the non-vanishing nature of our corresponding T = 0, µ 6= 0 results,

it is interesting to compare these calculations and attempt to pinpoint the reason for the

observed difference.

To gain further insights into the sunset integral, we apply the diagonal spatial IBP

identities from the set (3.8) using an in-house Laporta-type reduction [25], implemented in

FORM [36]. The relations are homogeneous and can be written compactly in operator form

(again omitting the two loop master integral Ss1s2
α1α2α3

on which each operator acts) as

(d − 2α1 − α3) + α33+(2− − 1−)

+2α11+1+1+ + 2α33+(1+1+ − 1+2+) ≡

(
∂

∂pi
◦ pi

)
, (ibp.2c)

(α3 − α1) + α11+(3− − 2−) + α33+(2− − 1−)

+2α11+1+2+ − 2α33+(2+2+ − 1+2+) ≡

(
∂

∂pi
◦ qi

)
, (ibp.2d)
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where the two remaining bilinear combinations can be found via the substitution 1 ↔ 2

corresponding to pi ↔ qi. These relations can be combined to yield operator ansätze leading

to an explicit one-loop factorization of two-loop expressions with collinear temporal scales.

The ansatz we choose reads (cf. [37])

0 =

{(
∂

∂pi
◦ pi

)[
(d − 2s) − 2+

(
2 · 1+2+ + 3− − 1−

)]
+
(

∂

∂pi
◦ qi

)[
2 · 1+1+ − 1−

]
2+

+
(

∂

∂qi
◦ pi

)[
(d − 2s) + 1+

(
2 · 1+2+ − (s − 1)3−

)]
−

(
∂

∂qi
◦ qi

)[
2 · 1+1+

]
1+

}
S11s .

(D.27)

Choosing now s = 1 and s = 2, this result reduces to the identities25

(d − 2)(d − 3)S111 = −2
[
I1

2 (µ, T )
]2

, (D.28)

(d − 2)(d − 5)S112 =
[
I2(µ, T )

]2
− 2I2(µ, T )Ib

2(T ) , (D.29)

where we dubbed bosonic integrals with the superscript b and utilized the master integrals

of eq. (A.6) and where the fully bosonic integrals Ib
α(T ) vanish here in the T → 0 limit.

By inspecting eqs. (D.28) and (D.29), we immediately recover the high-temperature

fermionic result of [37] using the fact that sum-integrals of the form

∮ f

P

ps
0 ñF(p0)

[P 2]α
≡
∑∫

{P }

ps
n

[p2
n + p2]α

(D.30)

identically vanish for odd values of s at µ = 0. At T = 0, µ 6= 0, such integrals, however,

produce nonzero results (see eqs. (C.5)–(C.6)), which reflects the breaking of the charge

conjugation symmetry by nonzero chemical potentials. This highlights the fact that IBP

relations derived in vacuum or at T 6= 0 but µ = 0 cannot be directly applied to nonzero

densities.

Lastly, we note that we may use the IBP relation (D.27) (enacted on S111) as a fur-

ther cross-check of our results. Indeed, a straightforward calculation utilizing eq. (C.13)

produces

S111 = −
2

(d − 2)(d − 3)

[∮ f

P

p0ñF(p0)

P 4

]2

T →0
= −

2

(d − 2)(d − 3)

[
i

2
∂µI1(µ)

]2

=
(d − 1)

(d − 2)2
I1(µ)I2(µ) , (D.31)

where the final line can be seen to fully agree with our earlier results given in eqs. (5.13)

and (D.26).

25The quadratic dependence on the dimension arises from contractions of the form
∫

p

∂
∂pk

pk =
∫

p
d.
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E Two-loop factorization at finite density

In section 5, we encountered the partially unexpected factorization of two-loop thermal

vacuum integrals into a sum of products of one-loop integrals, the immediate consequences

of which we will now investigate further. Such a property has been known to hold for

d-dimensional T = µ = 0 sunset integrals with a collinear mass signature [32, 46],

Sα1α2α3(m1, m2, m3) =
∑

i<j

cijm
fij

i m
gij

j , for collinear masses m3 = m1 + m2 . (E.1)

The coefficients, cij , and exponents {fij , gij} have recently been determined in a closed form

for integer-valued exponents αn ∈ N in [32] and agree with values previously suggested by

recursion formulae such as two-loop vacuum IBP reduction. In our present context, it is

a nontrivial and very interesting question, to which extent such a factorization extends to

the description of the thermal sunset Sα1α2α3(µ, T ) in terms of products of the one-loop

integrals Iα(µ, T ). In the following, we present such a generalization using the formalism

of sections 2 and 3.

For integer-valued exponents of Sα1α2α3 in eq. (5.1), the corresponding vacuum sun-

set (3.6) features exactly the factorizing collinear mass signature of [32]. To apply such a

formula in the context of complex scales and for q0 > p0 > 0 (cf. eqs. (3.5) and (3.6)), we

want to recast their results in a form where no temporal momenta appear in the denomi-

nator. This can be achieved through identities such as

S111(p0, q0 − p0, q0) =
2

(d − 3)(d − 2)

[
−p0q0I2(p0)I2(q0) − q0(q0−p0)I2(q0−p0)I2(q0)

+ p0(q0 − p0)I2(p0)I2(q0−p0)
]

, (E.2)

S121(p0, q0 − p0, q0) =
1

(d − 5)(d − 2)

[
I2(p0)I2(q0) − I2(p0)I2(q0−p0) − I2(q0)I2(q0−p0)

]

−
4

(d − 5)(d − 2)

[
(q0−p0)I3(q0−p0)

][
q0I2(q0) − p0I2(p0)

]
, (E.3)

which can be derived using the d-dimensional one-loop massive vacuum IBP relation

Iα+1(m) = −(d − 2α)/(2αm2)Iα(m) on eq. (D.2) for S111 and eq. (D.3) for S121.

Starting from the factorization observed in eq. (E.2), we can analytically continue such

expressions to complex values following the work of [26]. In particular, we assume that

the linear numerator terms can be analytically continued to complex values, keeping the

even/odd property of Ss1s2
α1α2α3

for general values of s1, s2. To demonstrate the validity of

this assumption, we can compute the T → 0 limit of the sunset integrals S111 and S112

using eq. (E.2), obtaining

S111 = −
2

(d − 3)(d − 2)

[
I1

2 (µ, T )
]2 T →0

=
(d − 1)

(d − 2)2
I1(µ)I2(µ) , (E.4)

S112 = +
1

(d − 5)(d − 2)

([
I2(µ, T )

]2
− 2I2(µ, T )Ib

2(T )
)

T →0
=

1

(d − 5)(d − 2)

[
I2(µ)

]2
.

(E.5)
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Given the antisymmetry between p0 ↔ q0, all terms of the underlying spatial inte-

grand (E.2) and the lower row of eq. (E.3), that contain odd bosonic one-loop integrals,

can be seen to vanish. The low-temperature limit limT →0 I1
2 (µ, T ) = I1

2 (µ) can fur-

thermore be evaluated using eq. (5.14) or directly as in eq. (A.6), while the remaining

limT →0 Iα(µ, T ) = Iα(µ) follows from eq. (4.1). Both relations were of course already

confirmed using only IBP relations in eqs. (5.13) and (5.21), respectively.

Finally, we note that due to the factorization (via collinear scales) of the d-dimensional

vacuum sunset Sα1α2α3 for α1, . . . α3 ∈ N [32], it is in fact all thermal two-loop bubbles

Sα1α2α3 and not just the above special cases that factorize, and this appears to happen

for arbitrary values of T and µ. Specific examples of this generic result include the low-

temperature regime of T → 0 but µ 6= 0, where the factorization emerges explicitly as

observed in section 5.1, as well as the high-temperature regime T 6= 0 but µ = 0, where the

factorization was demonstrated already in [24, 48] for a few special cases. The factorization

becomes particularly transparent in the IBP approach, where it is automatically built in the

relations (ibp.2a)–(ibp.2d); see section 5.2 and the appendix D.1. We emphasize, however,

that it is not a universal property of multi-loop thermal integrals nor do we expect it to

generalize to higher loop orders or massive propagators. Even in these cases, the maximally

primed type B integrals and the corresponding δ-functions nevertheless remain tractable

at low temperatures, thus simplifying the corresponding computations.

One example of possible extensions of the above results is the two-loop fermionic sunset

with equal positive mass scales m2 and chemical potential µ in the fermionic propagators,

Sα1α2α3(µ, mf , T ) =
∮ f

P,Q

ñF(p0)

[p2
0 + p2 + m2

f ]α1

ñF(q0)

[q2
0 + q2 + m2

f ]α2

1

[(p0 − q0)2 + |p − q|2]α3
.

(E.6)

Evaluating this integral directly using factorization is not possible, since the d-dimensional

integral is no longer collinear. Its maximally primed expression, however, still has this

property and can thus be evaluated directly using Feynman parametrization and the cor-

responding hypergeometric integral (D.10) or using the factorization observed in [32]. The

result can be given readily for µ > m in the form

DpDq S111(µ, m, T )
T →0
= −

2(d − 3)

(d − 2)

[
I2

(√
µ2 − m2

f

)]2
, (E.7)

while for m > µ it is observed to vanish; see appendices B and D.1 for more context and

details. Such differentiated integrals are again seen to appear as a part of (d+1)-dimensional

IBP reduction akin to eq. (5.16) or (5.18), thus contributing to the determination of the

full massive thermal integral.
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