
 

Neutrino mixing by modifying the Yukawa coupling structure
of constrained sequential dominance

Joy Ganguly* and Raghavendra Srikanth Hundi†

Department of Physics, Indian Institute of Technology Hyderabad, Kandi—502 285, India

(Received 1 July 2020; accepted 12 January 2021; published 8 February 2021)

In the constrained sequential dominance (CSD), tri-bimaximal mixing (TBM) pattern in the neutrino
sector has been explained, by proposing a certain Yukawa coupling structure for the right-handed neutrinos
of the model. However, from the current experimental data it is known that the values of neutrino mixing
angles are deviated from the TBM values. In order to explain this neutrino mixing, we first propose a
phenomenological model where we consider Yukawa couplings which are modified from that of CSD.
Essentially, we add small complex parameters to the Yukawa couplings of CSD. Using these modified
Yukawa couplings, we demonstrate that neutrino mixing angles can deviate from their TBM values. We
also construct a model, based on a flavor symmetry, in order to justify the modified form of Yukawa
couplings of our work.

DOI: 10.1103/PhysRevD.103.035007

I. INTRODUCTION

From various experimental observations it is known that
neutrinos have very small mass [1]. In a type I seesaw
mechanism, through the mediation of heavy right-handed
neutrinos, smallness of neutrino masses can be understood
[2,3]. To test this mechanism at the LHC the mass of the
right-handed neutrinos should be around 1 TeV. However,
with 1 TeV masses for right-handed neutrinos some tuning
in the Yukawa couplings may be required in order to fit the
tiny masses of neutrinos. Moreover, due to large number of
seesaw parameters this mechanism may not be predicted
from the experimental data. To alleviate the above men-
tioned problems, models based on sequential dominance
[4,5] with two right-handed neutrinos and one texture zero
in the neutrino Yukawa matrix have been proposed [6,7].
These models are named as CSD(n), which we describe
briefly below.
It is known that the neutrinos mix among them [1] and the

current oscillation data [8] suggest that the neutrino mixing
angles are close to the TBM pattern [9]. To explain these
mixing angles in themodels ofCSD(n), the two right-handed
neutrinos are proposed to have certain particular Yukawa
couplings with the three lepton doublets. To be specific, the
two right-handed neutrinos, up to proportionality factors, are

proposed to have the following Yukawa couplings: (0, 1, 1)
and ð1; n; n − 2Þ.Here,n is a positive integer but can be taken
to be real as well. For the case of n ¼ 1, the model predicts
that the three mixing angles will take the following TBM
values: sin θ12 ¼ 1ffiffi

3
p , sin θ23 ¼ 1ffiffi

2
p , sin θ13 ¼ 0. This case of

n ¼ 1 is originally named as constrained sequential domi-
nance (CSD), which was viable a decade ago. But this case
has been ruled out when Daya Bay and RENOmeasured the
θ13 and found it to be nonzero [10]. Among the other integer
values for n, only the models with n ¼ 3, 4 are compatible
with the current neutrino oscillation data [7].
In this work, we study on a possibility where we consider

modifications to model parameters of CSD and demon-
strate that the neutrino observables from the oscillation data
can be explained. As explained above that CSD is nothing
but CSD(n ¼ 1) and hence the Yukawa couplings in this
model are proportional to (0,1,1) and ð1; 1;−1Þ. In the next
section we will describe that with this particular form for
Yukawa couplings, the mixing angles for neutrinos can be
predicted to have the TBM values. Now, in order to get
deviations in neutrino mixing angles away from the TBM
values, we consider the Yukawa couplings of the two right-
handed neutrinos to be proportional to ðϵ1; 1þ ϵ2; 1þ ϵ3Þ
and ð1þϵ4;1þϵ5;−1þϵ6Þ. Here, ϵi; i ¼ 1;…; 6, are com-
plex numbers. By proposing above mentioned Yukawa
couplings for neutrinos, we are considering here a phe-
nomenological model. Now, in this phenomenological
model, in the limit where all ϵi → 0, our model should
give the results of CSD. As a result of this, we can expect
that for small parametric values of ϵi we should get
deviations in neutrino mixing angles away from the
TBM values. The reason for considering all ϵi to be small
is due to the fact that the observed mixing angles are close

*ph18resch11009@iith.ac.in
†rshundi@phy.iith.ac.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 103, 035007 (2021)

2470-0010=2021=103(3)=035007(14) 035007-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.035007&domain=pdf&date_stamp=2021-02-08
https://doi.org/10.1103/PhysRevD.103.035007
https://doi.org/10.1103/PhysRevD.103.035007
https://doi.org/10.1103/PhysRevD.103.035007
https://doi.org/10.1103/PhysRevD.103.035007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


to the TBM values. After assuming ϵi to be small, we study
if we can consistently fit the neutrino masses and mixing
angles, whose values are obtained from oscillation data.
Like in the model of CSD, in our model also only two

right-handed neutrinos are proposed. As a result of this, in
our model, one neutrino would be massless and the other
two can have nonzero masses. Hence, in this model, wewill
show that only normal hierarchy is possible for neutrino
masses. We can fit the nonzero masses of our model to
square root of solar (

ffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

sol

p
) and atmospheric (

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p
)

mass squared differences. From the global fits to neutrino
oscillation data we can see that there is a hierarchy between
Δm2

sol and Δm2
atm [8]. In fact, from the results of Ref. [8],

one can notice that
Δm2

sol
Δm2

atm
∼ sin2 θ13 ≈ 2 × 10−2. Because of

this, we take

ffiffiffiffiffiffiffiffiffi
Δm2

sol
Δm2

atm

r
and sin θ13 to be small, whose values

can be around 0.15.
As mentioned above, in our work, we are modifying the

neutrino Yukawa couplings of CSD model by introducing
small complex ϵi parameters. To be consistent with the
oscillation data, we assume that the magnitude of real and
imaginary parts of ϵi to be less than or of the order offfiffiffiffiffiffiffiffiffi

Δm2
sol

Δm2
atm

r
∼ sin θ13. After assuming this, we diagonalize the

seesaw formula for active neutrinos in our model, by
following an approximation procedure, where we expand
the seesaw formula in power series of ϵi. Recently, this kind
of diagonalization procedure has been used in a different
neutrinomassmodel [11]. In the context of this presentwork,
the usage and relevance of this diagonalization procedure
have been described in Secs. III and IV. Following this
diagonalization procedure, we derive expressions for neu-
trino masses and mixing angles in terms of ϵi. We show that
by keeping terms up to first order in ϵi of our analysis, we get
sin θ13 and sin θ23 − 1ffiffi

2
p to be nonzero but sin θ12 − 1ffiffi

3
p is

found to be undetermined. In order to know if sin θ12 − 1ffiffi
3

p

can be determined, we compute expressions in our analysis
up to second order in ϵi. Thereafter we demonstrate that
sin θ12 − 1ffiffi

3
p can also be determined by ϵi parameters. Using

the analytic expressions for neutrino masses and mixing
angles, in order to be compatible with current neutrino
oscillation data, we present numerical results and also
demonstrate that the assumptions made in our diagonaliza-
tion procedure are viable.
We study the above described work in a phenomeno-

logical model, where the neutrino Yukawa couplings of
this model are modified from that of CSD model. One
would like to know how such modified form for Yukawa
couplings could be possible in our model. In order to
address this point, toward the end of this paper, we
construct a model, based on symmetry groups, where we
explain the smallness of ϵi parameters and also justify the
structure of Yukawa couplings of our phenomenological

model. In order for this model to explain the structure of
Yukawa couplings, the scalar fields proposed in this model
need to acquire vacuum expectation values (vevs) with
hierarchically different magnitudes. To explain the hier-
archy in the vev of these scalar fields, we analyze the scalar
potential among these fields and give one solution to this
problem.
Deviations from TBM pattern has been studied in

sequential dominance models [5], where neutrino masses
and mixing angles are computed in a general framework of
type I seesaw model and then these results are applied to
models which satisfy sequential dominance conditions.
Here, our approach to the problem is different from that
of Ref. [5]. In this work, we first modify the Yukawa
coupling structure of CSD and then study the deviations
from TBM pattern. Moreover, our analysis is also different
from that of Ref. [5].
The paper is organized as follows. In the next section we

describe sequential dominance and the CSD model. In
Sec. III, we describe our phenomenological model and also
explain the approximation procedure for diagonalizing the
seesaw formula for neutrinos of this model. Using this
approximation procedure we demonstrate that the neutrino
mixing angles in our model deviate away from the TBM
pattern. In the same section, we compute expressions for
neutrino masses and mixing angles up to first order in our
approximation scheme. Second order corrections to the
above mentioned neutrino observables have been computed
in Sec. IV. In Sec. V, we give numerical results where we
demonstrate that our analytic expressions can fit the current
neutrino oscillation data. In Sec. VI, we construct a model
in order to justify the structure of Yukawa couplings of our
phenomenological model. We conclude in the last section.
In Appendix A, we have given detailed expressions related
to the second order corrections to the neutrino observables.
In Appendix B, we analyze the scalar potential of our
model in order to explain the hierarchy in the vevs of the
scalar fields.

II. SEQUENTIAL DOMINANCE AND CSD

The idea for CSD is motivated from sequential domi-
nance, which is briefly described below. Consider a minimal
extension to the standard model, where the additional fields
are three singlet right-handed neutrinos. After electroweak
symmetry breaking, charged leptons and neutrinos acquire
mixing mass matrices.We can consider a basis in which both
charged leptons and right-handed neutrinos have been
diagonalized. In this basis, the mass matrix for right-handed
neutrinos and the mixing mass matrix between left- and
right-handed neutrinos can be written, respectively, as

MR ¼

0
B@
Matm 0 0

0 Msol 0

0 0 Mdec

1
CA; mD¼

0
B@
d a a0

e b b0

f c c0

1
CA ð1Þ
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In the equation for mD, elements such as a, b, c, etc can be
viewed as neutrino Yukawa coupling multiplied by vev of
the Higgs field. Assuming that the masses for right-handed
neutrinos are much larger than the elements of Dirac mass
matrix, the seesaw formula for active neutrinos would be

mν ¼ mDM−1
R mT

D ð2Þ

From the seesaw formula we get three masses for active
neutrinos, which may be denoted by m1, m2, and m3.
The objective of sequential dominance is to achieve
m1 ≪ m2 ≪ m3, and thereby the model can predict normal
mass hierarchy for neutrinos. In order to achieve this
objective of sequential dominance, following assumptions
on the masses of right-handed neutrinos and the elements of
the Dirac mass matrix have been made [4,5]

Matm ≪Msol ≪Mdec;
je2j; jf2j; jefj

Matm
≫

xy
Msol

≫
x0y0

Mdec
ð3Þ

Here, x; y ∈ a, b, c and x0; y0 ∈ a0; b0; c0.
With the above mentioned assumptions of sequential

dominance, leading order expressions for neutrino masses
and mixing angles have been computed in Ref. [12]. Using
these expressions, the following set of conditions on the
model parameters have been proposed, in order to obtain
the TBM pattern for neutrino mixing angles [6].

jaj ¼ jbj ¼ jcj; jdj ¼ 0; jej ¼ jfj;
ϕ0
b ¼ 0; ϕ0

c ¼ π ð4Þ

Here, ϕ0
b and ϕ0

c denote sum of a combination of phases of
the elements in the Dirac mass matrix [6]. From the above
mentioned conditions we can notice that the elements in the
third column of mD and MR play no part in determining
the TBM pattern for neutrino mixing angles. In fact, from
the leading order expressions for neutrino masses and
mixing angles given in Ref. [12], we can see that the third
column elements ofmD andMR determine only the lightest
neutrino massm1. One can notice thatm1 is proportional to
1

Mdec
. Now, in the limit where the value ofMdec tends to very

large, we get m1 → 0. In this limiting process, the third
right-handed neutrino, whose mass isMdec, decouples from
our theory. Since the current experimental data can be
satisfied with m1 ¼ 0, in order to reduce the number of
degrees of freedom in this model, we can decouple away
the third column elements of mD and MR. Essentially,
in this process of decoupling, the number of right-handed
neutrinos reduce from three to two in the above described
model.
After performing the above mentioned decoupling, in the

resultant model, to satisfy the conditions of Eq. (4), the
Dirac and right-handed neutrino mass matrices can be
taken, respectively, as [6]

mD ¼

0
B@

0 a

e a

e −a

1
CA; MR ¼

�
Matm 0

0 Msol

�
ð5Þ

By plugging the above mentioned mD and MR in the
seesaw formula of Eq. (2), we can check that the mν can be
diagonalized as

UT
TBMmνUTBM ¼

0
B@

0 0 0

0 3a2
Msol

0

0 0 2e2
Matm

1
CA;

UTBM ¼

0
BBB@

ffiffi
2
3

q
1ffiffi
3

p 0

− 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

1ffiffi
6

p − 1ffiffi
3

p 1ffiffi
2

p

1
CCCA ð6Þ

From the unitary matrix UTBM, one can extract the three
neutrino mixing angles and we see that they will have the
TBM values.
We have demonstrated above that in a model with two

right-handed neutrinos, which is motivated by sequential
dominance, TBM pattern for neutrino mixing is possible.
This has been named as CSD [6]. One can notice that in this
process of obtaining TBM pattern, the columns of Dirac
mass matrix need to be aligned in some particular direc-
tions. This problem of alignment has been addressed in a
supersymmetric model which has some flavor symmetries
and flavon fields [6].

III. OUR MODEL AND DEVIATIONS
FROM TBM PATTERN

In the previous section we have described on how CSD
can predict TBM pattern for neutrino mixing angles. Since
this pattern is currently ruled out, we need to modify the
model of CSD. To achieve this, we initially consider a
phenomenological model where the field content is same as
that of CSD. But the difference between our model and the
CSD is that we propose a modified structure for Dirac mass
matrix, which is given below.

m0
D ¼ mD þ ΔmD; mD ¼

0
B@

0 a

e a

e −a

1
CA;

ΔmD ¼

0
B@

eϵ1 aϵ4
eϵ2 aϵ5
eϵ3 aϵ6

1
CA: ð7Þ

Here, ϵi; i ¼ 1;…; 6, are complex parameters. At this stage
we are suggesting the above form for Dirac mass matrix,
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purely from phenomenological point of view. We justify
this form of matrix by constructing a model for this in
Sec. VI. Regarding the Dirac mass matrix, we have
explained in the previous section that the elements of
this matrix should be viewed as a product of neutrino
Yukawa couplings and vev of the Higgs field. As a result
of this, the above Dirac mass matrix corresponds to the
fact that the Yukawa couplings of the two right-handed
neutrinos are proportional to ðϵ1; 1þ ϵ2; 1þ ϵ3Þ and
ð1þ ϵ4; 1þ ϵ5;−1þ ϵ6Þ. As we have argued in Sec. I,
with this form for Yukawa couplings we should expect to
get deviations for neutrino mixing angles away from the
TBM values.

As explained above that in our model, the form for Dirac
mass matrix is given by m0

D and hence the seesaw formula
for active neutrinos is

ms
ν ¼ m0

DM
−1
R ðm0

DÞT: ð8Þ

Since we are in a basis where charged leptons are
diagonalized, this seesaw formula should be diagonalized
by Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The PMNS matrix can be parametrized by the neutrino
mixing angles and the CP violating Dirac phase δCP. We
follow the PDG convention for this parametrization [13],
which is given below.

UPMNS ¼

0
B@

c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13
s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

1
CA ð9Þ

Here, cij ¼ cos θij and sij ¼ sin θij. As explained above
that in our model, with the form for m0

D of Eq. (7), we
should get deviations in the neutrino mixing angles away
from the TBM values. As a result of this, we should expect
s13, s12 − 1=

ffiffiffi
3

p
and s23 − 1=

ffiffiffi
2

p
to become nonzero. In

order to simplify our calculations, we parametrize s12 and
s23 as

s12 ¼
1ffiffiffi
3

p ð1þ rÞ; s23 ¼
1ffiffiffi
2

p ð1þ sÞ ð10Þ

The parametrization we have considered for neutrino
mixing angles is similar to that proposed in Refs. [14].
For a different parametrization of these neutrino mixing
angles, see Ref. [15]. We have known the 3σ ranges for the
square of the sine of the neutrino mixing angles, which are
obtained from the global fits to oscillation data [8]. From
these 3σ ranges, we can find the corresponding ranges for r
and s, which are found, respectively, as: ð−8.8 × 10−2;
2.5 × 10−2Þ and ð−8.2 × 10−2; 0.13Þ. The corresponding
allowed range for s13 is found to be narrow, whose values
are around 0.15. From the above mentioned ranges, we can
notice that the values for r and s are less than or of the order
of s13. As explained before that r, s and s13 will become
nonzero in our model, if we allow nonzero values for ϵi
parameters in m0

D. As a result of this, to be consistent with
our analysis, we assume that the real and imaginary parts of
ϵi to be less than or of the order of s13.
As described previously, seesaw formula for active

neutrinos in our model is given by Eq. (8) and this matrix
should be diagonalized by UPMNS. The relation for this
diagonalization can be written as

md
ν ≡UT

PMNSm
s
νUPMNS ¼ diagðm1; m2; m3Þ ð11Þ

Here, the matricesms
ν and UPMNS depend on variables ϵi, r,

s and s13, which are small. As a result of this, we can
expand ms

ν and UPMNS as power series in terms of these
small variables. First we expand ms

ν and UPMNS up to first
order in ϵi, r, s and s13. After doing that one can see thatmd

ν

need not be in diagonal form. But, since we expect this to
be of diagonal form, we demand that the off-diagonal
elements of md

ν to be zero. Thereby we get three relations
among ϵi, r, s, and s13. Solving these relations, we can
determine ϵi in terms of r, s, and s13. Now, from the
diagonal elements of md

ν we get expressions for the three
neutrino masses in terms of model parameters. We follow
the above described methodology for diagonalizing the
seesaw formula of our model. However, while doing so,
one needs to take care of the small numbers that may arise
due to hierarchy in neutrino masses. Discussion related to
this is explained below.
In the limit where ϵi, r, s, and s13 tend to zero, from

Eq. (11) we get the leading order expressions for neutrino
masses, which are given below.

m1 ¼ 0; m2 ¼
3a2

Msol
; m3 ¼

2e2

Matm
: ð12Þ

The above result agree with that of CSD which is given in
Sec. II. Here, up to the leading order, the lightest neutrino
mass m1 is zero. However, we will show later that even
at subleading orders, m1 is still zero. This result is due to
the consequence of the fact that in our model we have
proposed only two right-handed neutrinos. As a result of
this, neutrino masses in our model can only have normal
mass hierarchy. Due to this, we can fit the expressions for
m2 and m3 to square root of solar (

ffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

sol

p
) and atmos-

pheric (
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p
) mass squared differences, respectively.
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Although the expressions in Eq. (12) are valid at leading
order, at subleading orders, expressions for m2 and m3 get
corrections which are proportional to ϵi, r, s, and s13. Since
ϵi, r, s, and s13 are small values, when we fit the
expressions for m2 and m3 to

ffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

sol

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p
respectively, we except to have the following order of
estimations.

a2

Msol
∼

ffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

sol

q
;

e2

Matm
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

q
: ð13Þ

We use the above mentioned order of estimations in the
diagonalization process of the seesaw formula of our
model. Regarding this, a point to be noticed here is that,
from the global fits to neutrino oscillation data [8], a
hierarchy is found between Δm2

sol and Δm2
atm. In fact, from

the results of Ref. [8], one can notice that

ffiffiffiffiffiffiffiffiffi
Δm2

sol
Δm2

atm

r
∼ s13.

This would imply that, in our model, m2=m3 ∼ s13. One
needs to incorporate the above mentioned order of esti-
mation in the diagonalization process of the seesaw formula
of our model. In order to incorporate this, we reexpress
Eq. (11) as

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p md
ν ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

Δm2
atm

p UT
PMNSm

s
νUPMNS

¼ diag

�
m1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p ;
m2ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p ;
m3ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p �
ð14Þ

Now, with the assumptions of Eq. (13), one can see that
1ffiffiffiffiffiffiffiffiffi
Δm2

atm

p md
ν can be expanded in power series of ϵi, r, s, s13,

and

ffiffiffiffiffiffiffiffiffi
Δm2

sol
Δm2

atm

r
. We explain below about this series expansion

and also the results obtained from such expansion.
Up to first order in ϵi, ms

ν can be expanded as

ms
ν ¼ ms

νð0Þ þms
νð1Þ; ð15Þ

ms
νð0Þ ¼ mDM−1

R mT
D;

ms
νð1Þ ¼ mDM−1

R ðΔmDÞT þ ΔmDM−1
R mT

D: ð16Þ

Similarly, up to first order in r, s, and s13, the expansion for
UPMNS is

UPMNS ¼ UTBM þ ΔU; ð17Þ

ΔU¼

0
BBB@

− rffiffi
6

p rffiffi
3

p e−iδCPs13

−rþsffiffi
6

p − eiδCP s13ffiffi
3

p − rþ2sþ ffiffi
2

p
eiδCP s13

2
ffiffi
3

p sffiffi
2

p

rþsffiffi
6

p − eiδCP s13ffiffi
3

p r−2s−
ffiffi
2

p
eiδCP s13

2
ffiffi
3

p − sffiffi
2

p

1
CCCA ð18Þ

Here, the form of UTBM can be seen in Eq. (6). After
substituting Eqs. (15) and (17) in Eq. (14) and with the
assumptions of Eq. (13), we can compute 1ffiffiffiffiffiffiffiffiffi

Δm2
atm

p md
ν up to

first order in ϵi, r, s, s13, and

ffiffiffiffiffiffiffiffiffi
Δm2

sol
Δm2

atm

r
. Terms up to first order

in 1ffiffiffiffiffiffiffiffiffi
Δm2

atm

p md
ν are given below.

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p md
ν ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p ðmd
νð0Þ þmd

νð1ÞÞ;

md
νð0Þ ¼

0
B@
0 0 0

0 3a2
Msol

0

0 0 2e2
Matm

1
CA;

md
νð1Þ ¼

0
B@
x011 x012 x013
x012 x022 x023
x013 x023 x033

1
CA;

x011¼0; x012¼0;

x013¼
e2ffiffiffi
6

p
Matm

½
ffiffiffi
2

p
ð2ϵ1−ϵ2þϵ3þ2sÞ−4eiδCPs13�;

x022¼0;

x023¼
e2ffiffiffi
3

p
Matm

½
ffiffiffi
2

p
ðϵ1þϵ2−ϵ3−2sÞ−2eiδCPs13�;

x033¼
2e2

Matm
:ðϵ2þϵ3Þ ð19Þ

Now, equating the diagonal elements on both sides of
Eq. (14), we get the expressions for the three neutrino
masses, which are given below

m1 ¼ 0; m2¼
3a2

Msol
; m3¼

2e2

Matm
þ2e2ðϵ2þ ϵ3Þ

Matm
ð20Þ

From the above equations we can see that only m3 get
correction at the first order level. Now, from the off-
diagonal elements of Eq. (14), we get the following
expressions.

ϵ1 ¼
ffiffiffi
2

p
eiδCPs13; ϵ2 − ϵ3 ¼ 2s ð21Þ

From the above two equations we can see that, in our
model, sin θ13 will be nonzero if we take ϵ1 ≠ 0. Similarly,
sin θ23 will deviate from its TBM value if we take either ϵ2
or ϵ3 to be nonzero. However, the deviation of sin θ12 from
its TBM value, which is quantified in terms of r, is
undetermined at the first order level corrections to the
diagonalization of our seesaw formula. As a result of this,
the parameters ϵ4, ϵ5 and ϵ6 are undetermined at this level.
We will show in the next section that these parameters can
be determined in terms of neutrino mixing angles by
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considering second order level corrections to the diago-
nalization of our seesaw formula.
Results obtained in Eq. (21) are consistent with that in

Partially CSD (PCSD) [16]. In the model of PCSD, the
structure of neutrino Yukawa couplings is similar to that in
our model. The Yukawa couplings in PCSD can be
obtained from that of our model by taking ϵ1 ≠ 0 and
all other ϵi to be zero. With this Yukawa coupling structure,
in the PCSD model, it is shown that sin θ13 ≠ 0 after
assuming TBM values for sin θ12 and sin θ23. These results
are obtained in PCSD model up to a leading order in
m2=m3. Results in previous paragraph are also obtained up
to this order. Although we have argued that the value of r is
undetermined up to this order, with out loss of generality, in
the beginning of the calculations, we can assume TBM
value for sin θ12 and choose zero values for ϵ4, ϵ5 and ϵ6. In
that case, we would still get the results of Eq. (21). Now if
we choose zero values for ϵ2 and ϵ3, that would imply TBM
value for sin θ23. Hence, results obtained in the previous
paragraph are consistent with that of PCSD model.
Moreover, it is to be noticed that the structure of our
model and the results obtained in this work generalizes that
of PCSD model. We have described above about the
relevance of the relations in Eq. (21). It should be noted
that, in our framework, these relations cannot be obtained
without making the assumptions of Eq. (13). In the next
section we further stress on the usage of these assumptions

and on the consistency of the results obtained with our
diagonalization procedure.

IV. SECOND ORDER CORRECTIONS

In the previous section, after considering first order
corrections to the diagonalization of the seesaw formula for
neutrinos, it is found that the deviation of sin θ12 from its
TBM value is found to be undetermined. To know if this
deviation can be determined in terms of model parameters,
we study here the second order corrections to the diago-
nalization of the seesaw formula for neutrino masses. In
order to do this we need to expand terms in 1ffiffiffiffiffiffiffiffiffi

Δm2
atm

p md
ν of

Eq. (14) up to second order in ϵi, r, s, s13 and

ffiffiffiffiffiffiffiffiffi
Δm2

sol
Δm2

atm

r
.

Details related to this expansion and the analysis from that
is explained below.
Expansion forms

ν andUPMNS, up to second order in ϵi, r,
s, and s13 are given below

ms
ν ¼ ms

νð0Þ þms
νð1Þ þms

νð2Þ;

ms
νð2Þ ¼ ΔmDM−1

R ðΔmDÞT; ð22Þ

UPMNS ¼ UTBM þ ΔU þ Δ2U; ð23Þ

Δ2U ¼

0
BBBBB@

− 3r2þ4s2
13

4
ffiffi
6

p − s2
13

2
ffiffi
3

p 0ffiffi
2

p ðrsþs2Þþðr−2sÞs13eiδCP
2
ffiffi
3

p −3r2þ4rs−8s2−4
ffiffi
2

p ðrþsÞs13eiδCP
8
ffiffi
3

p − s2
13

2
ffiffi
2

pffiffi
2

p
rsþðrþ2sÞs13eiδCP

2
ffiffi
3

p 3r2þ4rs−4
ffiffi
2

p ðr−sÞs13eiδCP
8
ffiffi
3

p − 2s2þs2
13

2
ffiffi
2

p

1
CCCCCA ð24Þ

Here, the expressions for ms
νð0Þ; m

s
νð1Þ, and ΔU can be found

in Eqs. (16) and (18), while UTBM can be seen in Eq. (6).
After substituting the above described expansions forms

ν and
UPMNS in Eq. (14), and also after using Eq. (13), 1ffiffiffiffiffiffiffiffiffi

Δm2
atm

p md
ν

can be computed up to second order in ϵi, r, s, s13, andffiffiffiffiffiffiffiffiffi
Δm2

sol
Δm2

atm

r
. The full expressions for second order terms in

1ffiffiffiffiffiffiffiffiffi
Δm2

atm

p md
ν are given in Appendix A. Now, after using the

results of Eq. (21) in Eq. (A1), the second order terms in
1ffiffiffiffiffiffiffiffiffi
Δm2

atm

p md
ν will be simplified. These are given below.

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p md
νð2Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p
0
B@

x0011 x0012 x0013
x0012 x0022 x0023
x0013 x0023 x0033

1
CA;

x0011 ¼ 0; x0012 ¼
a2ffiffiffi
2

p
Msol

ð2ϵ4 − ϵ5 þ ϵ6 − 3rÞ;

x0013 ¼
e2ffiffiffi
3

p
Matm

× ½sð3s − 2
ffiffiffi
2

p
eiδCPs13Þ þ 2ϵ3ðs −

ffiffiffi
2

p
eiδCPs13Þ�;

x0022 ¼
2a2

Msol
ðϵ4 þ ϵ5 − ϵ6Þ;

x0023 ¼
ffiffiffi
3

p
a2

2Msol
½

ffiffiffi
2

p
ðϵ5 þ ϵ6 þ 2sÞ þ 2e−iδCPs13�

−
e2ffiffiffi
3

p
Matm

½2ϵ3ð
ffiffiffi
2

p
sþ eiδCPs13Þ

þ sð3
ffiffiffi
2

p
sþ 2eiδCPs13Þ�;

x0033 ¼
2e2

Matm
ðϵ23 þ 2ϵ3sþ 2s2 þ s213Þ: ð25Þ

Now, after equating the diagonal elements on both sides of
Eq. (14), we get corrections up to second order to neutrino
masses, which are given below.
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m1 ¼ 0; m2 ¼
3a2

Msol
þ 2a2

Msol
ðϵ4 þ ϵ5 − ϵ6Þ;

m3 ¼
2e2

Matm
þ 4e2

Matm
ðϵ3 þ sÞ

þ 2e2

Matm
ðs213 þ ϵ23 þ 2ϵ3sþ 2s2Þ: ð26Þ

After demanding that the off-diagonal elements of 1ffiffiffiffiffiffiffiffiffi
Δm2

atm

p md
ν

should be zero, we get the following three relations.

2ϵ4 − ϵ5 þ ϵ6 ¼ 3r; ð27Þ

sð3s − 2
ffiffiffi
2

p
eiδCPs13Þ þ 2ϵ3ðs −

ffiffiffi
2

p
eiδCPs13Þ ¼ 0; ð28Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

sol

Δm2
atm

s
eiϕ½

ffiffiffi
2

p
ðϵ5þ ϵ6þ2sÞþ2e−iδCPs13�

− ½2ϵ3ð
ffiffiffi
2

p
sþeiδCPs13Þþ sð3

ffiffiffi
2

p
sþ2eiδCPs13Þ� ¼ 0: ð29Þ

While obtaining Eq. (29), we have used the expressions for
m2 and m3 of Eq. (26). Here, ϕ is the Majorana phase
difference in the neutrino masses m2 and m3.
From the expressions for neutrinos masses which are

given in Eq. (26), we can see that the lightest neutrino mass
is m1 ¼ 0. As already explained before, this result follows
from the fact that there exists only two right-handed
neutrinos in our model. But technically, this result will
follow after using the relations of Eq. (21) in Eq. (A1).
Since the relations in Eq. (21) are obtained after making the
assumptions in Eq. (13), we can notice here on the
consistency of the obtained results with our diagonalization
procedure, which is described in the previous section. It is
stated above that the lightest neutrino mass is zero in our
model, and hence, only normal mass hierarchy is possible
for neutrino masses. As a result of this the expressions for
m2 and m3 of Eq. (26) can be fitted to

ffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

sol

p
andffiffiffiffiffiffiffiffiffiffiffiffiffi

Δm2
atm

p
respectively. While doing this fitting, we can

notice that terms involving ϵi, s13 and s give small
corrections. Hence, we can see that a2

Msol
and e2

Matm
can be

of the order of
ffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

sol

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p
respectively. This

result agrees with the assumption we have made in Eq. (13).
Another point to be noticed here is that both the expressions
for m2 and m3 depend on the complex ϵi parameters. As a
result of this, both m2 and m3 can be complex. But since
neutrino masses should be real, the complex phases in m2

and m3 can be absorbed into Majorana phases. Or else,
another possibility is that we can choose the parameters a
and e to be complex in such a way that m2 and m3

can be real. In this later case, the Majorana phases will
become zero.
Regarding the neutrino mixing angles, we have

explained in the previous section that the deviation in

sin θ12 from its TBM value is undetermined at the first order
level corrections to diagonalization of the seesaw formula
for neutrinos. But now after considering second order
corrections, from Eq. (27) we can see that this deviation
can be determined in terms of ϵ4, ϵ5, and ϵ6. In fact, out of
these three ϵ parameters, only two can be determined by
solving Eqs. (27)–(29). We can see that by solving Eq. (28),
we can compute ϵ3 in terms of s13, s, and δCP. Now, by
solving Eqs. (27) and (29), any two of the ϵ4, ϵ5, and ϵ6 can
be found in terms of the neutrino masses and mixing
angles. One among the ϵ4, ϵ5, and ϵ6 is still a free
parameter, but it should be chosen to be small in order
to be consistent with our analysis on neutrino mixing
angles. After combining the results of Eqs. (21), (27)–(29),
we can see that all the three neutrino mixing angles get
deviations from their TBM values. Moreover, these devia-
tions can be fitted to experimental values by choosing
appropriate parametric space for ϵi, which is the subject of
the next section.

V. NUMERICAL RESULTS

We have explained how deviations from TBM pattern
can be achieved by introducing the ϵi parameters in Eq. (7).
Here, we numerically evaluate these parameters in order to
be consistent with the neutrino oscillation data. In this
regard, in our analysis, we have taken the best fit values for
the two mass-squared differences among the neutrinos,
which are given below [8].

Δm2
sol ¼ 7.39 × 10−5 eV2;

Δm2
atm ¼ 2.525 × 10−3 eV2: ð30Þ

In the analysis, we have varied the three neutrino mixing
angles and the CP violating Dirac phase δCP over the 3σ
ranges. These ranges are given below [8].

sin2θ12∶ 0.275→ 0.350; sin2θ23∶ 0.418→ 0.627;

sin2θ13∶ 0.02045→ 0.02439; δCP∶ 125°→ 392°: ð31Þ

As described in the previous section, using the allowed
values for neutrino oscillation observables, we can compute
the ϵi parameters. Since these parameters are complex, we
have resolved them in to real and imaginary parts, whose
expressions are given below.

ϵi ¼ ReðϵiÞ þ iImðϵiÞ: ð32Þ

In order to be compatible with the above mentioned
neutrino oscillation observables, we have obtained the
allowed ranges for ReðϵiÞ and ImðϵiÞ. These results are
given in Table I. In this table, the allowed ranges for real
and imaginary parts of ϵ5 and ϵ6 are obtained by fixing the
values for ϵ4 and also by taking the phase ϕ ¼ 0. Moreover,
in this table, the allowed ranges for Imðϵ2Þ; Imðϵ3Þ are
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same. This result follows from Eq. (21), which implies
Imðϵ2Þ ¼ Imðϵ3Þ. From the results given in Table I, we
notice that except for Reðϵ5Þ and Reðϵ6Þ, the magnitude of
other parameters are less than about

ffiffiffi
2

p
s13 ∼ 0.221. The

magnitudes of Reðϵ5Þ and Reðϵ6Þ can become as large as
0.46 and 0.37 respectively, for the case of ϕ ¼ 0 and
ϵ4 ¼ 0.1. We have varied ϕ away from zero, by fixing
ϵ4 ¼ 0.1, and have computed real and imaginary parts of ϵ5
and ϵ6. In these cases, we have found that the maximum
values for jReðϵ5Þj and jReðϵ6Þj to be lying between about
0.37 and 0.63, whereas, the maximum values for jImðϵ5Þj
and jImðϵ6Þj are found to be less than 0.2.
We have explained previously that the diagonalization of

the seesaw formula of our model is done by assuming that
the magnitudes of real and imaginary parts of ϵi to be less

than or of the order of

ffiffiffiffiffiffiffiffiffi
Δm2

sol
Δm2

atm

r
∼ sin θ13. From the numerical

results presented above, we can notice that, real and
imaginary parts of ϵi satisfy the above mentioned
assumption, except for Reðϵ5Þ and Reðϵ6Þ. The maximum
values for jReðϵ5Þj and jReðϵ6Þj can be about 0.4, depend-
ing on ϵ4 and ϕ values. At these maximum values, the
analytic expressions presented in previous sections may not
give accurate results, since square of 0.4 is not negligible in
comparison to unity. One can notice that ϵ5 and ϵ6
contribute linearly to neutrino oscillation observables in
the second order corrections of our analysis. As a result of
this, corrections at the third order level to the above
mentioned observables are not negligible around these
maximum values. On the other hand, one would like to
know, if by restricting the values of jReðϵ5Þj and jReðϵ6Þj to
be small, the analytic expressions of previous sections are
sufficient enough to give accurate numerical results. For
this reason, we have computed allowed values for neutrino
mixing angles and δCP by demanding jReðϵ5Þj and jReðϵ6Þj
to be less than 0.23 for the case of ϕ ¼ 0 and ϵ4 ¼ 0.1.
These results are given in Figure 1. Now, after combining
the results of Table I, one can notice that in the allowed
regions of Fig. 1, the magnitudes of real and imaginary
parts of all ϵi are less than 0.23, which is about

ffiffiffi
2

p
s13.

Hence, in the allowed regions of Figure 1, ϵi satisfy the
assumptions we have made in order to diagonalize the
seesaw formula of our model.

We have discretized the axes of s213; s
2
23; s

2
12; δCP in order

to obtain the results in Figure 1. From this figure, one can
notice that the allowed range for s213 is almost uncon-
strained. However, the allowed regions for s223 and s212 are
constrained for some specific values of δCP. A notable
feature from Fig. 1 is that points with s212 ¼ 0.275 are
excluded for any value of δCP. Although the results in
Figure 1 are obtained for ϕ ¼ 0 and ϵ4 ¼ 0.1, a similar
analysis can be done for any other values of ϕ and ϵ4.
Hence, in our work, we can find a region where ϵi
parameters are small and consistently explain the deviation
from TBM pattern in the neutrino sector.
Recently, results from global fits to neutrino oscillation

data have been updated in Ref. [17]. These results prefer
normal hierarchy for neutrino masses. In our framework,
which is based on CSD, the analytic results from previous
section show that neutrino masses have normal hierarchy.
Hence, the prediction of our CSD scenario is favorable by
the recent neutrino oscillation data. In the case of normal
mass hierarchy, recent results from neutrino oscillation data
prefer second octant for sin2 θ23 with the best fit value of
0.566 [17]. The CP violating phase δCP, in the above case,
has a best fit value of 1.2π [17]. From the results given in
Fig. 1, we notice lower octant values for sin2 θ23 are
excluded for δCP around π. Hence, the numerical results
of our work are compatible with the recent neutrino
oscillation data.

VI. A MODEL FOR OUR DIRAC MASS MATRIX

In this section, we construct a model in order to justify
the structure of our Dirac mass matrix of Eq. (7) and also
explain the small values for ϵi. For this purpose, we
introduce a flavor symmetry SUð3Þ and also the following
scalar fields: ϕa;ϕs;ϕ0

a;ϕ0
s. These scalar fields are singlets

under the standard model gauge group, but otherwise,
charged under the SUð3Þ. The lepton doublets L, where we
have suppressed generation index, are charged under this
flavor symmetry. The Higgs doublet H and the two right-
handed neutrinos νatmR , νsolR are singlets under SUð3Þ. To get
the masses for right-handed neutrinos, we introduce the
following additional scalar fields, which are standard model
gauge singlets: χa, χs. To explain the smallness of ϵi

TABLE I. Allowed ranges for the real and imaginary parts of the ϵi parameters. For details, see the text.

Reðϵ1Þ Imðϵ1Þ Reðϵ2Þ Imðϵ2Þ, Imðϵ3Þ Reðϵ3Þ
ð−0.221; 0.221Þ ð−0.221; 0.182Þ ð−0.106; 0.225Þ ð−0.064; 0.064Þ ð−0.15; 0.095Þ

ϕ ϵ4 Reðϵ5Þ Imðϵ5Þ Reðϵ6Þ Imðϵ6Þ
0 0.1 ð−0.084; 0.462Þ ð−0.119; 0.101Þ ð−0.375; 0.168Þ ð−0.119; 0.101Þ
0 −0.1 ð−0.282; 0.26Þ ð−0.119; 0.101Þ ð−0.175; 0.367Þ ð−0.119; 0.101Þ
0 0.1i ð−0.182; 0.362Þ ð−0.019; 0.199Þ ð−0.275; 0.267Þ ð−0.219; 0.001Þ
0 −0.1i ð−0.182; 0.362Þ ð−0.219; 0.001Þ ð−0.275; 0.267Þ ð−0.019; 0.199Þ
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parameters, we propose the scalar field ξ which is a
standard model gauge singlet. To forbid unwanted inter-
actions in our model we introduce a discreet symmetry
Z3 × Z0

3. In Table II, charges assignments of the fields,
which are relevant to neutrino sector, are given. With these
charge assignments, the leading terms in the Lagrangian are

L ¼ ϕa

MP
L̄νatmR H þ ϕs

MP
L̄νsolR H

þ ξ

MP

ϕ0
a

MP
L̄νatmR H þ ξ

MP

ϕ0
s

MP
L̄νsolR H

þ χa
2
ðνatmR ÞcνatmR þ χs

2
ðνsolR ÞcνsolR þ H:c: ð33Þ

Here, MP ∼ 2 × 1018 GeV is the reduced Planck scale,
which is the cutoff scale for this model. The reason for
choosing the Planck scale as the cutoff of the model is
explained later this section.
The first four terms of Eq. (33) generate effective

Yukawa couplings for neutrinos after the following scalar
fields acquire vevs: ϕa;ϕs;ϕ0

a;ϕ0
s; ξ. The vevs of ϕa;ϕs

give leading contribution to effective Yukawa couplings. In
order to explain the structure of Dirac mass matrix of
Eq. (7) we assume that these vevs to have the following
pattern

hϕai
MP

¼ ya

0
B@

0

1

1

1
CA;

hϕsi
MP

¼ ys

0
B@

1

1

−1

1
CA ð34Þ

Here, ya, ys are dimensionless quantities. The above pattern
of vevs can be obtained by tuning parameters in the scalar
potential of this model, which is described in the next
section. It is to be noted that the problem related to vev
pattern of Eq. (34) has been addressed in Ref. [6]. The vevs
of ϕ0

a;ϕ0
s; ξ give subleading contribution to Yukawa cou-

plings for neutrinos. Here, we need not assume any pattern
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S
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2
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FIG. 1. Allowed regions in neutrino mixing angles and δCP by demanding jReðϵ5Þj and jReðϵ6Þj to be less than 0.23, for the case of
ϕ ¼ 0 and ϵ4 ¼ 0.1. δCP is expressed in degrees.

TABLE II. Charge assignments of the relevant fields under the
flavor symmetry SUð3Þ × Z3 × Z0

3 are given. Here, ω ¼ e2πi=3.
For other details, see the text.

ϕa ϕs ϕ0
a ϕ0

s ξ χa χs νatmR νsolR L H

SUð3Þ 3 3 3 3 1 1 1 1 1 3 1
Z3 ω ω2 ω ω2 1 ω2 ω ω2 ω 1 1
Z0
3 ω2 ω2 ω ω ω ω ω ω ω 1 1
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for the vevs of ϕ0
a;ϕ0

s. Hence, after writing hξi
MP

¼ ϵ, we
can have

hξi
MP

hϕ0
ai

MP
¼ ya

0
B@

y1
y2
y3

1
CAϵ ¼ ya

0
B@

ϵ1

ϵ2

ϵ3

1
CA;

hξi
MP

hϕ0
si

MP
¼ ys

0
B@

y01
y02
y03

1
CAϵ ¼ ys

0
B@

ϵ4

ϵ5

ϵ6

1
CA: ð35Þ

Here, yi; y0i, where i ¼ 1;…; 3, are Oð1Þ parameters. By

taking hξi
MP

¼ ϵ ∼ 0.1, we get all ϵi to be around 0.1. We can
see that the smallness of ϵi parameters can be explained if
the field ξ acquire vev around one order less than the MP.
Now, using Eqs. (34) and (35) in Eq. (33), after electroweak
symmetry breaking, we get the structure of Dirac mass
matrix which is proposed in Eq. (7). Finally, the last two
terms of Eq. (33) give diagonal masses to right-handed
neutrinos, after the fields χa, χs acquire vevs.
In the above, by proposing a model, we have explained

the mass structures of Dirac and right-handed neutrinos
of this work. In order to explain these mass structures,
the extra scalar fields proposed in this model need to
acquire vevs and thereby break the flavor symmetry
SUð3Þ × Z3 × Z0

3 spontaneously. Here we quantify the
scales of these vevs. It is stated above that hχai and hχsi
generate masses for right-handed neutrinos. Requiring that
these masses to be around 1 TeV, we should have:
hχai; hχsi ∼ 1 TeV. One motivation for choosing TeV scale
masses for right-handed neutrinos is that they can be
detected in the LHC experiment. Another motivation for
choosing the above mass scale for right-handed neutrinos is
shortly explained below. The vev of ξ can be found from the
fact that it explains the smallness of ϵi parameters. In order
to explain this smallness, we have described above that we
need to have hξi

MP
∼ 0.1. From this we get hξi ∼ 1017 GeV.

Finally, the vevs of ϕa;ϕs;ϕ0
a;ϕ0

s can be determined from
the reasoning that they generate effective Yukawa cou-
plings for neutrinos. Since we have taken right-handed
neutrino masses to be around 1 TeV, from seesaw formula
for active neutrinos, we can estimate the magnitude of
Yukawa couplings for neutrinos by having the active
neutrino masses to be of Oð0.1Þ eV. From this estimation,
we have found that hϕai; hϕsi; hϕ0

ai; hϕ0
si ∼ 1012 GeV.

After finding the vevs of the additional scalar fields of
this model, we notice that there is a large hierarchy among
these vevs. We can achieve this hierarchy, in this model, by
appropriately fixing the relevant parameters in the scalar
potential among the above mentioned scalar fields.
Analysis related to the scalar potential of our model is
presented in Appendix B.
It is stated that MP is the cutoff scale for the above

described model. One can notice that the hierarchy between

hξi andMP is very less. However, the hierarchy in the vevs
of other scalar fields such as ϕa;ϕs;ϕ0

a;ϕ0
s; χa; χs is very

large with respect toMP. Here, we explain this hierarchy by
motivating the above described model from supersymmetry
[18]. Since supersymmetry is not exact symmetry, one
possibility is to break supersymmetry spontaneously by
hidden sector fields and the effects of this breaking are
mediated to visible sector via gravity mediated interactions
[18]. Models based on this mechanism are known as
supergravity models, where hidden sector fields can inter-
act with visible sector fields with Planck scale suppressed
nonrenormalizable terms. In these models, hidden sector
fields can acquire vevs around the intermediate scale of
Λ ∼ 1011 GeV and the TeV scale can be generated by Λ2

MP
.

Based on this, models have been proposed in order to
conceive TeV scale masses for right-handed neutrinos [19].
In our model, which is described above, the vevs for χa, χs
are around TeV and the vevs for ϕa;ϕs;ϕ0

a;ϕ0
s are close to

the intermediate scale. Hence, we can explain the hierarchy
in the vev of these fields by embedding our model in a
supergravity setup. In fact, for this reason we have chosen
MP as the cutoff scale to our model.
Above, we have motivated the hierarchy in the vevs of

scalar fields of our model from a supergravity setup. On the
other hand, in order to achieve this hierarchy in the current
framework, we have carried out an analysis on the scalar
potential of our model in Appendix B. In this appendix, we
have given the invariant scalar potential under the flavor
symmetry SUð3Þ × Z3 × Z0

3. After minimizing this scalar
potential, the vevs of various scalar fields of our model have
been determined. It is shown in Appendix B that by tuning
the parameters of the scalar potential, the required hier-
archy among the vevs of the scalar fields can be achieved. It
has been argued that the desired vacuum alignment for ϕa
and ϕs can be achieved by tuning the necessary parameters
in the scalar potential. Although the scalar potential in
Appendix B is at tree level, due to large number of
parameters, the above mentioned vacuum alignment is still
possible even after including the radiative corrections to the
scalar potential. It is described in Appendix B that in order
to achieve the desired hierarchy in the vevs of scalar fields,
some couplings in the scalar potential should be suppressed
to as low as 10−32. To explain the smallness of these
couplings, one can extend the flavor symmetry of our
model to SUð3Þ × Z3 × Z0

3 × Z2 × Z0
2. We have noticed

that under the additional symmetry Z2 × Z0
2, charge assign-

ments for fields can be done in such a way that terms in
Eq. (33) are allowed but the terms in the scalar potential
with couplings of the order of 10−32 are forbidden. After
doing that, one can motivate the smallness of these
couplings as a soft breaking of the additional flavor
symmetry Z2 × Z0

2. To explain the smallness of other
couplings in the scalar potential, either one can extend
the above flavor symmetry or one needs to device a new
mechanism.
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It is described previously that apart from the Higgs field,
rest of the scalar fields are charged under the flavor
symmetry SUð3Þ × Z3 × Z0

3. This symmetry is spontane-
ously broken by the vevs of the scalar fields. Since these
fields are complex, apart from the Higgs boson, a total of
thirty real scalar fields exist in our model. By choosing the
flavor symmetry SUð3Þ to be gauged, after spontaneous
symmetry breaking, apart from the Higgs boson, twenty
two real scalar fields remain in our model. All these fields
have mixing masses. We estimate the masses for these
fields to be around the scales at which they acquire vevs.
The gauge bosons of the flavor symmetry SUð3Þ can get
masses around 1012 GeV. Since lepton doublets are
charged under the flavor SUð3Þ, the above gauge bosons
have couplings to leptons. A study on the phenomenology
of the additional fields of our model is out of the scope of
this work.

VII. CONCLUSIONS

In this work, we have attempted to explain the neutrino
mixing in order to be consistent with the current neutrino

oscillation data. From the current data, it is known that
θ13 ≠ 0, and hence, the neutrino mixing angles deviate
away from the TBM pattern. Earlier, to explain the TBM
pattern in neutrino sector, CSD model has been proposed.
Here, we have considered a phenomenological model,
where we have modified the neutrino Yukawa couplings
of CSD model, by introducing small ϵi parameters which
are complex. We have assumed real and imaginary parts of

ϵi to be less than or of the order of sin θ13 ∼
ffiffiffiffiffiffiffiffiffi
Δm2

sol
Δm2

atm

r
.

Thereafter, we have followed an approximation procedure
in order to diagonalize the seesaw formula for light
neutrinos in our model. We have computed expressions,
up to second order level, to neutrino masses and mixing
angles in terms of small ϵi parameters. Using these
expressions we have demonstrated that neutrino mixing
angles can deviate away from their TBM values by
appropriately choosing the ϵi values. Finally, we have
constructed a model in order to justify the neutrino
Yukawa coupling structure of our phenomenologi-
cal model.

APPENDIX A: FULL EXPRESSIONS AT SECOND ORDER CORRECTIONS

The full form of second order terms in 1ffiffiffiffiffiffiffiffiffi
Δm2

atm

p md
ν are given below.

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p md
νð2Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

atm

p
0
B@

x0011 x0012 x0013
x0012 x0022 x0023
x0013 x0023 x0033

1
CA;

x0011 ¼
e2

6Matm
½4ϵ21 þ ϵ22 þ ðϵ3 þ 2sÞ2 − 4

ffiffiffi
2

p
eiδCPs13ðϵ3 þ 2sÞ þ 8e2iδCPs213

− 2ϵ2ðϵ3 þ 2s− 2
ffiffiffi
2

p
eiδCPs13Þ − 4ϵ1ðϵ2 − ϵ3 − 2sþ 2

ffiffiffi
2

p
eiδCPs13Þ�;

x0012 ¼
a2ffiffiffi
2

p
Msol

ð2ϵ4 − ϵ5 þ ϵ6 − 3rÞ þ e2

6Matm
½

ffiffiffi
2

p
ð2ϵ21 − ϵ22Þ−

ffiffiffi
2

p
ðϵ3 þ 2sÞ2

þ 2eiδCPs13ðϵ3 þ 2sÞ þ 4
ffiffiffi
2

p
e2iδCPs213 þ ϵ1ð

ffiffiffi
2

p
ðϵ2 − ϵ3 − 2sÞ− 8eiδCPs13Þ þ 2ϵ2ð

ffiffiffi
2

p
ðϵ3 þ 2sÞ− eiδCPs13Þ�;

x0013 ¼
e2ffiffiffi
2

p
Msol

½−ϵ22 þ ϵ23 þ 2ϵ1ðϵ2 þ ϵ3 − rÞ þ 2ϵ3rþ 4ϵ3sþ 4rsþ 2s2 − 4
ffiffiffi
2

p
eiδCPs13ϵ3

þ 2
ffiffiffi
2

p
eiδCPs13r− 2ϵ2ðr− 2sþ 2

ffiffiffi
2

p
eiδCPs13Þ�;

x0022 ¼
2a2

Msol
ðϵ4 þ ϵ5 − ϵ6Þ þ

e2

3Matm
½ϵ21 þ ϵ22 þ ðϵ3 þ 2sÞ2 þ 2

ffiffiffi
2

p
eiδCPs13ðϵ3 þ 2sÞ

þ 2e2iδCPs213 þ 2ϵ1ðϵ2 − ϵ3 − 2s−
ffiffiffi
2

p
eiδCPs13Þ − 2ϵ2ðϵ3 þ 2sþ

ffiffiffi
2

p
eiδCPs13Þ�;

x0023 ¼
ffiffiffi
3

p
a2

2Msol
½

ffiffiffi
2

p
ðϵ5 þ ϵ6 þ 2sÞ þ 2e−iδCPs13� þ

e2

2
ffiffiffi
3

p
Matm

½
ffiffiffi
2

p
ðϵ22 − ϵ23 þ ϵ3rÞ

þ
ffiffiffi
2

p
ϵ1ðϵ2 þ ϵ3 þ 2rÞ −

ffiffiffi
2

p
ð4ϵ3s− 2rsþ 2s2Þ− 4eiδCPs13ðϵ3 þ rÞ− ϵ2ð

ffiffiffi
2

p
rþ 4

ffiffiffi
2

p
sþ 4eiδCPs13Þ�;

x0033 ¼
e2

2Matm
½4

ffiffiffi
2

p
ϵ1s13e−iδCP þ ϵ22 þ ϵ23 − 4ϵ3sþ 2ϵ2ðϵ3 þ 2sÞ− 4ðs2 þ s213Þ�: ðA1Þ
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APPENDIX B: ANALYSIS OF SCALAR POTENTIAL

Here we analyze the scalar potential of the model, which is described in Sec. VI. The invariant scalar potential of this
model is given below.

V ¼ m2
ϕa
ϕ†
aϕa þm2

ϕs
ϕ†
sϕs þm2

ϕ0
a
ϕ0†
a ϕ0

a þm2
ϕ0
s
ϕ0†
s ϕ0

s þm2
χaχ

�
aχa þm2

χsχ
�
sχs þm2

ξξ
�ξ

þm2
HH

†H þ λϕa
ðϕ†

aϕaÞ2 þ λϕs
ðϕ†

sϕsÞ2 þ λϕ0
a
ðϕ0†

a ϕ0
aÞ2 þ λϕ0

s
ðϕ0†

s ϕ0
sÞ2 þ λχaðχ�aχaÞ2

þ λχsðχ�sχsÞ2 þ λξðξ�ξÞ2 þ λHðH†HÞ2 þ λϕaHðϕ†
aϕaÞðH†HÞ þ λϕsHðϕ†

sϕsÞðH†HÞ
þ λϕ0

aHðϕ0†
a ϕ0

aÞðH†HÞ þ λϕ0
sHðϕ0†

s ϕ0
sÞðH†HÞ þ λχaHðχ�aχaÞðH†HÞ þ λχsHðχ�sχsÞðH†HÞ

þ λξHðξ�ξÞðH†HÞ þ ½a1ðϕ†
aϕ0

aÞξþ a2ðϕ†
aϕ0

sÞχa þ a3ðϕ†
sϕ0

aÞχs þ a4ðϕ†
sϕ0

sÞξþ a5χaχsξ

þ a6ξ3 þ a7χ3a þ a8χ3s þ H:c:� þ b1ðϕ†
aϕaÞðϕ†

sϕsÞ þ b2ðϕ†
aϕaÞðϕ0†

a ϕ0
aÞ þ b3ðϕ†

aϕaÞðϕ0†
s ϕ0

sÞ
þ b4ðϕ†

sϕsÞðϕ0†
a ϕ0

aÞ þ b5ðϕ†
sϕsÞðϕ0†

s ϕ0
sÞ þ b6ðϕ0†

a ϕ0
aÞðϕ0†

s ϕ0
sÞ þ b7ðϕ†

aϕ0
sÞðϕ0†

s ϕaÞ
þ b8ðϕ†

aϕsÞðϕ†
sϕaÞ þ ½b9ðϕ†

sϕaÞðϕ0†
a ϕ0

sÞ þ b10ðϕ†
sϕ0

sÞðϕ0†
a ϕaÞ þ H:c:� þ b11ðϕ†

sϕ0
aÞðϕ0†

a ϕsÞ
þ b12ðϕ0†

s ϕsÞðϕ†
sϕ0

sÞ þ b13ðϕ0†
s ϕ0

aÞðϕ0†
a ϕ0

sÞ þ b14ðϕ†
aϕ0

aÞðϕ0†
a ϕaÞ þ c1ðϕ†

aϕaÞξ�ξþ c2ðϕ†
sϕsÞξ�ξ

þ c3ðϕ0†
a ϕ0

aÞξ�ξþ c4ðϕ0†
s ϕ0

sÞξ�ξþ c5ðϕ†
aϕaÞχ�aχa þ c6ðϕ†

sϕsÞχ�aχa þ c7ðϕ0†
a ϕ0

aÞχ�aχa
þ c8ðϕ0†

s ϕ0
sÞχ�aχa þ c9ðϕ†

aϕaÞχ�sχs þ c10ðϕ†
sϕsÞχ�sχs þ c11ðϕ0†

a ϕ0
aÞχ�sχs þ c12ðϕ0†

s ϕ0
sÞχ�sχs

þ ½c13ðϕ†
aϕsÞχ�aχs þ c14ðϕ†

sϕaÞξ�χs þ c15ðϕ†
aϕsÞξ�χa þ c16ðϕ†

aϕ0
aÞχ�aχ�s þ c17ðϕ0†

s ϕaÞχsξ
þ c18ðϕ†

sϕ0
aÞχ�aξ� þ c19ðϕ0†

a ϕsÞχsχs þ c20ðϕ0†
s ϕsÞχaχs þ c21ðϕ0†

a ϕ0
sÞξ�χa þ c22ðϕ0†

a ϕ0
sÞχ�aχs

þ c23ðϕ0†
a ϕ0

sÞχ�sξþ c24ðϕ0†
s ϕaÞχaχa þ c25ðϕ†

aϕ0
aÞξ�ξ� þ c26ðϕ†

sϕ0
sÞξ�ξ� þ H:c:�

þ d1ξ�ξχ�aχa þ d2ξ�ξχ�sχs þ d3χ�sχsχ�aχa þ ½d4ξ�ξ�χaχs þ d5ξ�χ�aχsχs þ d6ξ�χ�sχaχa þ H:c:� ðB1Þ

In the above equation, the parameters in the first eight terms have mass-squared dimensions and the a parameters have
dimensions of mass. Rest of the parameters in Eq. (B1) are dimensionless. After minimizing the above scalar potential,
different scalar fields of the model acquire vevs, which satisfy the following relations.

m2
H þ 2λHhH†Hi þ λϕaHhϕ†

aϕai þ λϕsHhϕ†
sϕsi þ λϕ0

aHhϕ0†
a ϕ0

ai þ λϕ0
sHhϕ0†

s ϕ0
si

þ λχaHhχ�aχai þ λχsHhχ�sχsi þ λξHhξ�ξi ¼ 0; ðB2Þ

½m2
χa þ 2λχahχ�aχai þ c5hϕ†

aϕai þ c6hϕ†
sϕsi þ c7hϕ0†

a ϕ0
ai þ c8hϕ0†

s ϕ0
si þ d3hχ�sχsi þ d1hξ�ξi

þ λχaHhH†Hi�hχ�ai þ a2hϕ†
aϕ0

si þ ½c�13hϕ†
sϕai þ c�22hϕ0†

s ϕ0
ai þ d�5hξχ�si�hχ�si þ ½c15hϕ†

aϕsi
þ c21hϕ0†

a ϕ0
si�hξ�i þ c�18hϕ0†

a ϕsihξi þ ½a5hξi þ c�16hϕ0†
a ϕai þ c20hϕ0†

s ϕsi þ d4hξ�ξ�i�hχsi
þ ½2c24hϕ0†

s ϕai þ 2d6hξ�χ�si�hχai ¼ 0; ðB3Þ

½m2
χs þ 2λχshχ�sχsi þ c9hϕ†

aϕai þ c10hϕ†
sϕsi þ c11hϕ0†

a ϕ0
ai þ c12hϕ0†

s ϕ0
si þ d2hξ�ξi

þ d3hχ�aχai þ λχsHhH†Hi�hχ�si þ a3hϕ†
sϕ0

ai þ ½c13hϕ†
aϕsi þ c22hϕ0†

a ϕ0
si�hχ�ai

þ ½c14hϕ†
sϕai þ c�23hϕ0†

s ϕ0
ai�hξ�i þ ½a5hξi þ c�16hϕ0†

a ϕai þ c20hϕ0†
s ϕsi þ d4hξ�ξ�i�hχai

þ ½c17hϕ0†
s ϕai þ d�6hχ�aχ�ai�hξi þ ½3a8hχsi þ 2c19hϕ0†

a ϕsi þ 2d5hξ�χ�ai�hχsi ¼ 0; ðB4Þ

½m2
ξ þ 2λξhξ�ξi þ c1hϕ†

aϕai þ c2hϕ†
sϕsi þ c3hϕ0†

a ϕ0
ai þ c4hϕ0†

s ϕ0
si þ d1hχ�aχai þ d2hχ�sχsi

þ λξHhH†Hi�hξ�i þ a1hϕ†
aϕ0

ai þ a4hϕ†
sϕ0

si þ ½c�14hϕ†
aϕsi þ c23hϕ0†

a ϕ0
si þ d�5hχaχ�si�hχ�si

þ ½c�15hϕ†
sϕai þ c�21hϕ0†

s ϕ0
ai�hχ�ai þ ½c17hϕ0†

s ϕai þ d�6hχ�aχ�ai þ a5hχai�hχsi þ c�18hϕ0†
a ϕsihχai

þ ½3a6hξi þ 2c�25hϕ0†
a ϕai þ 2c�26hϕ0†

s ϕsi þ 2d�4hχ�aχ�si�hξi ¼ 0; ðB5Þ
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½m2
ϕa

þ 2λϕa
hϕ†

aϕai þ b1hϕ†
sϕsi þ b2hϕ0†

a ϕ0
ai þ b3hϕ0†

s ϕ0
si þ c1hξ�ξi þ c5hχ�aχai þ c9hχ�sχsi

þ λϕaHhH†Hi�hϕ†
ai þ ½a�1hξ�i þ b10hϕ†

sϕ0
si þ b14hϕ†

aϕ0
ai þ c�16hχaχsi þ c�25hξξi�hϕ0†

a i
þ ½b8hϕ†

aϕsi þ b9hϕ0†
a ϕ0

si þ c�13hχ�sχai þ c14hξ�χsi þ c�15hχ�aξi�hϕ†
si þ ½a�2hχ�ai þ b7hϕ†

aϕ0
si

þ c17hχsξi þ c24hχaχai�hϕ0†
s i ¼ 0; ðB6Þ

½m2
ϕs
þ 2λϕs

hϕ†
sϕsi þ b1hϕ†

aϕai þ b4hϕ0†
a ϕ0

ai þ b5hϕ0†
s ϕ0

si þ c2hξ�ξi þ c6hχ�aχai þ c10hχ�sχsi
þ λϕsHhH†Hi�hϕ†

si þ ½a�3hχ�si þ b11hϕ†
sϕ0

ai þ c�18hχaξi þ c19hχsχsi�hϕ0†
a i þ ½a�4hξ�i

þ b�10hϕ†
aϕ0

ai þ b12hϕ†
sϕ0

si þ c20hχaχsi þ c�26hξξi�hϕ0†
s i þ ½b8hϕ†

sϕai þ b�9hϕ0†
s ϕ0

ai þ c13hχ�aχsi
þ c�14hχ�sξi þ c15hξ�χa�hϕ†

ai ¼ 0; ðB7Þ

½m2
ϕ0
a
þ 2λϕ0

a
hϕ0†

a ϕ0
ai þ b2hϕ†

aϕai þ b4hϕ†
sϕsi þ b6hϕ0†

s ϕ0
si þ c3hξ�ξi þ c7hχ�aχai þ c11hχ�sχsi

þ λϕ0
aHhH†Hi�hϕ0†

a i þ ½a1hξi þ b�10hϕ0†
s ϕsi þ b14hϕ0†

a ϕai þ c16hχ�aχ�si þ c25hξ�ξ�i�hϕ†
ai

þ ½a3hχsi þ b11hϕ0†
a ϕsi þ c18hχ�aξ�i þ c�19hχ�sχ�si�hϕ†

si þ ½b13hϕ0†
a ϕ0

si þ b�9hϕ†
aϕsi þ c�21hξχ�ai

þ c�22hχaχ�si þ c�23hχsξ�i�hϕ0†
s i ¼ 0; ðB8Þ

½m2
ϕ0
s
þ 2λϕ0

s
hϕ0†

s ϕ0
si þ b3hϕ†

aϕai þ b5hϕ†
sϕsi þ b6hϕ0†

a ϕ0
ai þ c4hξ�ξi þ c8hχ�aχai þ c12hχ�sχsi

þ λϕ0
sHhH†Hi�hϕ0†

s i þ ½a2hχai þ b7hϕ0†
s ϕai þ c�17hχ�sξ�i þ c�24hχ�aχ�ai�hϕ†

ai þ ½a4hξi þ b10hϕ0†
a ϕai

þ b12hϕ0†
s ϕsi þ c�20hχ�aχ�si þ c26hξ�ξ�i�hϕ†

si þ ½b9hϕ†
sϕai þ b13hϕ0†

s ϕ0
ai þ c21hξ�χai þ c22hχ�aχsi

þ c23hχ�sξi�hϕ0†
a i ¼ 0: ðB9Þ

In Sec. VI, in order to obtain correct phenomenology in
the neutrino sector, the order magnitude of the vevs of
different scalar fields of our model have been estimated.
Since these vevs are determined by the Eqs. (B2) − (B9),
one has to adjust the unknown parameters of these relations
in such a way that the above mentioned order of magnitude
for these vevs can be obtained. In order to fix these
parameters, we first assume that the mass-square param-
eters in Eq. (B1) should be around the square of the vevs of
the corresponding fields. This assumption is based on the
fact that after spontaneous symmetry breaking, a scalar
field acquires mass around the scale at which the symmetry
is broken. As a result of this, we take the scales of the mass-
square parameters as:

m2
H ∼ ð100 GeVÞ2; m2

χa ; m2
χs ∼ ð1 TeVÞ2;

m2
ϕa
; m2

ϕs
; m2

ϕ0
a
; m2

ϕ0
s
∼ ð1012 GeVÞ2;

m2
ξ ∼ ð1017 GeVÞ2: ðB10Þ

Now, in order to achieve the desired magnitude of the vevs
for the scalar fields, we can estimate the unknown param-
eters of Eqs. (B2) − (B9). These are given below.

λH;λχa ;λχs ;λξ;λϕa
;λϕs

;λϕ0
a
;λϕ0

s
∼1;

λϕaH;λϕsH;λϕ0
aH;λϕ0

sH∼10−20;

λχaH;λχsH∼10−2; λξH∼10−30;

a1;a4∼107GeV; a2;a3∼10−15GeV;

a5∼10−11GeV; a6∼1017GeV;

a7;a8∼103GeV; b1;…;b14∼1;

c1;c2;c3;c4;c25;c26∼10−10;

c5;c6;c7;c8;c9;c10;c11;c12;c13;c16;c19;c20;c22;c24∼10−18;

c14;c15;c17;c18;c21;c23∼10−32;

d1;d2;d4∼10−28; d3∼1; d5;d6∼10−14: ðB11Þ

From the above mentioned values for the unknown param-
eters, we notice that some couplings need to be suppressed
in order to achieve the desired hierarchy in the vevs of the
scalar fields of our model.
Some parameters in the potential of Eq. (B1) can be

complex. As a result of this, after solving Eqs. (B2) − (B9),
except for the Higgs field, rest of the fields can acquire
complex vevs. We will explain about the vacuum alignment
for ϕa and ϕs shortly below. Assuming this vacuum
alignment, using the above mentioned complex vevs in
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our model of previous section, Dirac and Majorana mass
matrices for neutrinos are generated with complex ele-
ments. Hence, the following parameters are complex: a, e,
ϵi,Matm, andMsol. With these complex parameters, we can
explain the neutrino masses and mixing angles and it is
described in Sec. IV that the phases of these parameters
can be fixed in order to get real values for the neutrino
masses. On the other hand, to explain the neutrino
oscillation data, it is sufficient to make ϵi to be complex
and rest of the above mentioned parameters can be chosen
to be real. To achieve this particular case, we choose
the following parameters of Eq. (B1) to be complex:
a1; a4; a5; a6; c14; c15; c17; c18; c21; c23; c25; c26; d4; d5; d6.
The phases of these parameters can be adjusted in such a
way that only hξi can be complex and rest of the scalar
fields have real vevs. As a result of this, only ϵi become
complex and rest of the parameters of Dirac and Majorana

mass matrices can be real. It is explained before that the
scalar fields ϕa and ϕs need to acquire vevs in some
particular directions, in order to obtain TBM pattern in the
neutrino sector. The vev for these fields are determined by
solving Eqs. (B6) − (B9). The unknown parameters in
these equations should be fine-tuned in such a way that the
vevs for ϕa and ϕs can acquire the desired directions. One
can notice that, in order to do this fine-tuning, enough
number of parameters exist in Eqs. (B6) − (B9). Hence, in
our scenario, the desired vacuum alignment for ϕa and ϕs
can be achieved. The scalar potential given in Eq. (B1) is at
tree level. This potential can get corrections at loop level.
Since loop effects give small corrections to the tree level
potential and due to large number of parameters in our
model, we can still fine-tune these parameters in order to
get the necessary vacuum alignment for the above scalar
fields.
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