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1 Introduction

In recent years, there have been intensive studies on the developments and applications
of quantum kinetic theory (QKT) for spin transport of relativistic fermions. In order
to study non-equilibrium transport phenomena beyond e.g. the renown chiral magnetic
effect (CME) [1–6] and chiral vortical effect (CVE) [7–11] in chiral matter composed of
massless Weyl fermions, the chiral kinetic theory (CKT) as a QKT that captures the
chiral anomaly [12, 13] and spin-orbit interaction could be constructed by introducing
the Berry phase as quantum corrections from the adiabatic approximation [14–18]. Al-
ternatively, by employing the Wigner-function approach based on quantum field theories
with the ~ expansion [19–21], the covariant CKT with systematic inclusions of both back-
ground electromagnetic fields and collisions involving quantum corrections has been later
obtained [22, 23]. There is a considerable number of related and follow-up work [24–38]. In
phenomenology, the CKT was broadly applied to relativistic heavy ion collisions [39–41],
Weyl semimetals [42–44], and neutrino transport in core-collapse supernovae [45, 46].
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On the other hand, due to the observations of spin polarization of Lambda hyperons
and spin alignments of vector mesons in heavy-ion experiments at RHIC and LHC [47–50]
motivated by refs. [51–53] in theory, further studies on the generalization of CKT to the
QKT for massive fermions has been carried out in order to understand the dynamical spin
polarization of strange quarks traveling through the quark gluon plasmas (QGP). In light of
the Wigner-function approaches, such a collisionless QKT to track entangled spin and charge
transport has been derived in refs. [54–57]. Later, the systematic inclusion of collisions
with quantum corrections was achieved by using the Kadanoff-Baym approach [58, 59]
and the extended phase space with non-local collisions [60, 61]. See also refs. [62–68]
for related studies of QKT and spin transport. In particular, from detailed balance of
effective models, the vanishing collision term in QKT yields the Wigner function with
vorticity correction that gives rise to spin polarization in global equilibrium [60, 67]. Such
a result matches the one previously found from different methods [53, 69] that provides the
modified Cooper-Frye formula dictated by thermal vorticity, which successfully describes
the global spin polarization observed by STAR collaboration after implementing numerical
simulations [70–74]. In fact, the vanishing collision term of the CKT with Coulomb scattering
yields the Wigner functions in local equilibrium, which incorporates extra corrections
such as shear and chemical-potential gradient effects [23]. These corrections for massive
fermions were later obtained by using the linear response theory [75, 76] and the statistical-
field theory [77] (see also refs. [78, 79]). Especially, the shear correction could lead to a
substantial contributions on local spin polarization [78, 80–84], which is crucial to explain
the experimental measurements [48]. However, it is also found that the local polarization
is sensitive to the equation of state and freeze-out temperature [78, 81]. Therefore, further
studies involving non-equilibrium corrections from collisions are still required.

Nevertheless, the role of gluons or color degrees of freedom that may potentially affect the
spin transport of quarks has been relatively overlooked in previous studies. Even though the
thermalized gluons could lead to the spin diffusion through classical collisional effects shown
in refs. [58, 66], the quantum correction as a source term triggering the spin polarization
from gluons is currently unknown.1 On the other hand, in addition to the scattering with
on-shell gluons, there exist dynamically generated chromo-electromagnetic fields originating
from Weibel-type instabilities in expanding QGP [87–89] that may potentially influence the
spin transport of quarks in heavy ion collisions. Such color fields could result in anomalous
dissipative transport that may dominate over the collisional effects in weakly coupled
quantum chromodynamics (QCD) as proposed in refs. [90, 91]. See also refs. [92, 93] for
the analogous effect upon heavy-quark transport. The possible impact upon spin transport
of quarks from color fields has been recently found by using a similar analysis [94], which in
particular stems from the parity-odd correlators of color fields that could be potentially
generated in different phases of heavy ion collisions from distinct mechanisms [95–99]. In
this paper, we present the derivation of QKT for massive quarks coupled with background
color fields applied in ref. [94] via the Wigner-function approach and effective power counting.

1There are studies for the construction of the QKT for polarized photons with possible generalization to
weakly-coupled gluons [85, 86], while the direct application to QGP is not yet feasible.
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More general results and details for the derivation of source terms in color-singlet Wigner
functions and kinetic equations responsible for spin polarization are shown. Furthermore, we
investigate the axial Ward identity from the axial charge current led by parity-odd color-field
correlators in the constant-field limit. In addition, we perform a similar analysis for massless
quarks by utilizing the CKT with background color fields constructed in ref. [37].

Since the application of the derived QKT to QGP relies on several assumptions, here we
briefly summarize the validity and critical approximations of our approach. Similar to the
generic QKT with ~ expansion, it is required the energy of a quasi-particle is much larger
than the gradient scale, εp � O(∂). For the QKT of massive quarks derived in section 3, it
is further subject to m � O(∂) with m being the quark mass due to a technical reason.
Our approach is applicable to weakly coupled QCD and the collision term is assumed to be
suppressed by sufficiently strong background color fields. Moreover, the other sources for
spin polarization pertinent to the fluid properties such as thermal vorticity are assumed
to be relatively small and thus neglected. In order to further solve for dynamical spin
polarization from kinetic equations, we further assume the correlation function of color
fields takes a Gaussian form depending on only the time difference in light of space-time
translational invariance and propose a hierarchy for different color-field correlators according
to the screening of chromo-electric fields.

This article is organized as follows: in section 2, we derive the master equations from
free-streaming Kadanoff-Baym equation for massive quarks under background color fields.
In section 3, we solve for the perturbative solution and kinetic equations up to O(~) with
effective power counting and further perform the color decomposition to separate the
color-singlet and color-octet components. In section 4, the spin diffusion and source terms
for the color-singlet kinetic equations and associated Wigner functions are obtained in weak
coupling. In section 5, the spin polarization, axial charge current, and axial Ward identity
are investigated based on postulated color-field correlators. In section 6, similar analyses
for massless quarks are shown. Finally, in section 7, we make the summary and discussions.

Throughout this paper we use the mostly minus signature of the Minkowski metric
ηµν = diag(1,−1,−1,−1) and the completely antisymmetric tensor εµνρλ with ε0123 = 1.
We use the notations A(µBν) ≡ AµBν +AνBµ and A[µBν] ≡ AµBν −AνBµ. We also define
F̃µν ≡ εµναβFαβ/2.

2 Master equations from the Kadanoff-Baym equation

To track the dynamical spin polarization for quarks in heavy ion collisions with non-Abelian
color fields in quark gluon plasmas (QGP) or even pre-equilibrium phases, we generalize the
so-called axial kinetic theory (AKT) constructed in refs. [56, 58], as a quantum kinetic theory
(QKT) to delineate the intertwined dynamics between charge and spin evolution of relativistic
fermions, to the case with background color fields in QCD. The AKT incorporates a scalar
kinetic equation (SKE) and an axial-vector kinetic equation (AKE) obtained from the
Wigner-function approach with the ~ expansion generally equivalent to a gradient expansion
capturing quantum corrections. In addition, we apply a slightly different approach based on
ref. [100] by deriving the perturbative solution for Wigner operators and the corresponding
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kinetic equations in operator form first, while taking ensemble average to obtain the Wigner
functions and the quantum-averaged kinetic equations in the end of calculations.

To consider a more rigorous generalization for the AKT from quantum electrodynamics
(QED) to QCD, we have to introduce extended Wigner functions incorporating color degrees
of freedom. According to ref. [100], the gauge-covariant Wigner operator of quarks is defined
as

S̀<(p,X) =
∫

d4Y

(2π)4 e
ip·Y
~ S<(X,Y ), (2.1)

where
S<(X,Y ) = ψ̄

(
X − Y

2

)
U

(
−Y2 , X

)
⊗ U

(
X,X + Y

2

)
ψ

(
X + Y

2

)
(2.2)

as a two-point operator for Dirac fermions. The quantum expectation value of the Wigner
operator, 〈S̀<(p,X)〉, by taking the ensemble average corresponds to the Wigner function.
Here U(x2, x1) denotes the gauge link with the path integration along a straight line between
two end points, x2 and x1, and the tensor product ⊗ implies that S<(X,Y ) is a matrix in
spinor and color spaces. Also, pµ represents the kinetic momentum. We will focus on the
lesser propagators of quarks throughout this paper and hence add the superscript < for the
Wigner operator. On the other hand, the dynamics of S̀< is governed by the Kadanoff-Baym
equation (See ref. [101] for a review),(

γµΠ̂µ −m+ i~
2 γ

µ∇̂µ
)
S̀< = i~

2
(
Σ< ? S> − Σ> ? S<

)
, (2.3)

where Σ< and Σ> represent the lesser and greater self energies in operator form, which
characterize the collisional effects. The notation ? denotes the Moyal product, whereas its
explicit definition is unimportant here. The explicit expressions of the operators, Π̂µ and
∇̂µ, will be shown later. In the absence of background fields, they simply reduce to Π̂µ = pµ
and ∇̂µ = ∂µ. Here we also neglect the real part of the retarded Wigner operator and of
the retarded self energy. The former is dropped for the quasi-particle approximation, while
the latter is omitted for simplicity2 At weak coupling, the collision term is of O(g4 ln g)
(e.g. [58, 66]), which could be suppressed by sufficiently strong background color fields,
superficially of O(g) and more precisely of O(g2) as will be shown in this work, giving rise
to the Lorentz force and anomalous force from the ~ correction. We hence focus on the
collisionless case in the present work. Now, the free-streaming Kadanoff-Baym equation in
QCD, dictating the dynamical evolution of Wigner operators, takes the form [100](
γµpµ −m+ i~

2 γ
µDµ

)
S̀< (2.4)

= − i~2 ∂
ν
p

(∫ 1

0
ds
(
1− s

2
)[
e−

i~
2 (1−s)∂p·DFνµ

]
S̀< + S̀<

∫ 1

0
ds

(1− s)
2

[
e
i~
2 s∂p·DFνµ

])
= − i~2 ∂

ν
pγ

µ
(
FνµS̀

< − 1
4[Fνµ, S̀<]c −

i~
6
(
∂p ·DFνµ

)
S̀< − i~

24[(∂p ·DFνµ), S̀<]c
)

+O(~3),

2The real part of the retarded self energy leads to the modification on the dispersion relation such as the
thermal mass. It may further yield a potential term in the kinetic equation when it depends on X. See
ref. [101] for detailed discussions. How such a term could possibly affect the spin transport requires further
studies, which is beyond the scope of current work.
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which can be rearranged as (
γµΠ̂µ −m+ i~

2 γ
µ∇̂µ

)
S̀< = 0, (2.5)

where

Π̂µS̀
< = pµS̀

< + i~
8 [Fνµ, ∂νp S̀<]c + ~2

12
(
∂p ·DFνµ

)
∂νp S̀

< +O(~3),

∇̂µS̀< = DµS̀
< + 1

2{Fνµ, ∂
ν
p S̀

<}c −
i~
24[(∂p ·DFνµ), ∂νp S̀<]c +O(~2). (2.6)

Here DµO = ∂µO + i[Aµ, O]c, Aµ = taAaµ, Fνµ = taF aνµ, and ta = λa/2 with λa the
Gell-Mann matrices. Also, { , }c and [ , ]c denote the anti-commutation and commutation
relations in color space. The collision term is of the higher order at weak coupling and
hence omitted.

We then apply the decomposition based on the Clifford algebra [102] in spinor space,

S̀< = S + iPγ5 + Vµγµ +Aµγ5γµ + S
µν

2 Σµν , (2.7)

where Σµν = i[γµ, γν ]/2 and γ5 = iγ0γ1γ2γ3. In particular, the vector and axial-vector
components, Vµ(p,X) and Aµ(p,X), directly contributes to the vector charge current
and the axial charge current (also spin polarization), receptively. We hence focus on the
derivation of these two components. Inserting S̀< with the decomposition above into the
Kadanoff-Baym equation, one should derive 10 master equations. We can further write S,
P, and Sµν in terms of Vµ and Aµ via three of the master equations,

mS = Π̂ · V , (2.8)

mP = −~
2 ∇̂µA

µ, (2.9)

mSµν = −εµνρσΠ̂ρAσ + ~
2 ∇̂[µVν]. (2.10)

We accordingly obtain the rest of master equations as

∇̂ · V = 0, (2.11)

(Π̂µΠ̂ · V −m2Vµ) = −~
2 ενµρσ∇̂

νΠ̂ρAσ + ~2

4 ∇̂
ν∇̂[νVµ], (2.12)

Π̂ · A = 0, (2.13)

Π̂νVµ − Π̂µVν = ~
2 εµνρσ∇̂

ρAσ, (2.14)

(Π̂2 −m2)Aµ − Π̂σΠ̂µAσ = ~
2 ε

µνρσΠ̂σ∇̂νVρ −
~2

4 ∇̂
µ∇̂ · A, (2.15)

~∇̂σΠ̂σAµ − ~∇̂σΠ̂µAσ + ~Π̂µ∇̂σAσ = ~2

4 ε
µνρσ∇̂σ∇̂[νVρ], (2.16)

~
(
Π̂ · ∇̂Vµ + ∇̂µΠ̂νVν − Π̂ν∇̂µVν

)
= 2ενµρσ(Π̂νΠ̂ρ)Aσ. (2.17)
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See e.g. refs. [56, 58] for an analogous derivation in QED. However, for further simplification
in QCD, we may adopt the power counting in ref. [58] such that Vµ ∼ O(~0) and Aµ ∼ O(~)
due to the quantum nature of Aµ as the spin-current density in phase space and retain only
the leading-order contribution in the ~ expansion. The master equations then reduce to

∆̃ · V = 0, (2.18)
pµp · V −m2Vµ = 0, (2.19)

p[νVµ] = 0, (2.20)
p · A = 0, (2.21)

(p2 −m2)Aµ = ~
2 ε

µνρσpσ∆̃νVρ, (2.22)

p · ∆̃Aµ + 1
2{F

νµ,Aν}c = ~
2 ε

µνρσ∆̃σ∆̃νVρ, (2.23)

where ∆̃µO = DµO+{Fνµ∂νp , O}c/2 and we have dropped eq. (2.17) as a redundant equation
that can be obtained from the combination of other master equations. Eqs. (2.18)–(2.23)
are same as those in QED by simply replacing the operator ∆µ = ∂µ + Fνµ∂

ν
p in QED by

∆̃µ except for further corrections on eq. (2.23). By using

D[σDν]O = i[Fσν , O]c, D[σ{Fβν], ∂
β
p , O}c + {Fβ[σ, Dν]∂

β
pO} = {(D[σFβν]), ∂βpO}c,

{Fα[σ, {Fβν], ∂
α
p ∂

β
pO}}c = [Fα[σFβν], ∂

α
p ∂

β
pO]c, (2.24)

and hence

∆̃[σ∆̃ν]O = i[Fσν , O]c + 1
2{(D[σFβν]), ∂βpO}c + 1

4[Fα[σFβν], ∂
α
p ∂

β
pO]c. (2.25)

Eq. (2.23) becomes

p ·∆̃Aµ+ 1
2{F

νµ,Aν}c = ~
4 ε

µνρσ
(
{(DνFβρ), ∂βp Vσ}c + i[Fνρ,Vσ]c + 1

2[FανFβρ, ∂αp ∂βp Vσ]c
)
.

(2.26)

Following ref. [56], we can then apply the master equations to derive a perturbative solution
of Wigner operators and corresponding kinetic equations.

3 Perturbative solutions and effective kinetic equations

By using eqs. (2.18)–(2.23), we will derive the leading-order solution of Vµ and Aµ and the
corresponding SKE and AKE. Note that we will keep ~ as a parameter to specify the quan-
tum corrections while taking the power counting for Vµ ∼ O(~0) and Aµ ∼ O(~). Hereafter
all terms in equations will be of the same order of the ~ expansion unless specified otherwise.

3.1 Axial kinetic equation

From eqs. (2.19) and (2.20), the vector component now takes the bookkeeping form3

Vµ = 2πδ(p2 −m2)pµf̂V , (3.1)
3For brevity, we omit the sign function of energy in front of the dispersion relation, which is required to

incorporate the contributions from both fermions and anti-fermions.
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and the SKE from eq. (2.18) reads

δ(p2 −m2)pµ
(
Dµf̂V + 1

2{Fνµ, ∂
ν
p f̂V }c

)
= 0, (3.2)

which corresponds to the classical kinetic equation in ref. [100]. Here f̂V (p,X) denotes the
vector-charge operator, form which we have 〈f̂V (p,X)〉 = fV (p,X) as the vector charge
distribution function in phase space by taking the ensemble average. In light of refs. [56, 58],
from eqs. (2.21) and (2.22), the axial charge component becomes

Aµ = 2π
[
δ(p2 −m2)

(
âµ + ~Sµνm(n)∆̃ν f̂V

)
+ ~

2pνδ
′(p2 −m2){F̃µν , f̂V }c

]
, (3.3)

where δ′(x) ≡ ∂δ(x)/∂x and Sµνm(n) = εµναβpαnβ/(2(p · n+m)) represents the spin tensor
and contributes to the magnetization-current term with nµ being a timelike frame vector
coming from a choice of the spin basis.4 Here âµ(p,X) denotes the (effective) spin operator
in phase space with the constraint p · â = 0 when the quark is on-shell.5 Similarly, we
have 〈âµ(p,X)〉 = ãµ(p,X) as the (effective) spin four vector. Note that the magnetization-
current term is actually obtained by generalization from the case without background fields
as in the derivation for QED [56]. Accordingly, one may insert eq. (3.3) into eq. (2.26) to
derive the AKE with a general frame vector nµ = nµ(X), whereas the full kinetic equation
is rather complicated.

Nonetheless, to simplify the problem, we may instead work in the rest frame of massive
quarks by choosing nµ = nµr (p) = pµ/m [55] albeit the validity for m� O(∂). In the rest
frame, Sµνm(nr) = 0 and hence the magnetization-current term in eq. (3.3) vanishes. Here we
compute the ~ contributions on left-hand side of eq. (2.26),

1
2p · ∆̃

(
pνδ
′(p2 −m2){F̃µν , f̂V }c

)
+ δ′(p2 −m2)

2 {F νµ, {Fνρpρ, f̂V }}c

= δ′(p2 −m2)
2

(
pν{(p ·DF̃µν), f̂V }c + pν{F̃µν , p · ∆̃f̂V }+ pρpν

2 [[Fσρ, F̃µν ], ∂pσf̂V ]c

+ εµραβpρ{F ν
α , {Fβν , f̂V }}c

)
, (3.4)

where we employed
1
2{Fνρ, {F̃

µν , f̂V }}c = 1
2{F

νµ, {F̃ρν , f̂V }}c + εµραβ{F ν
α , {Fβν , f̂V }}c (3.5)

by using the Schouten identity. For the right-hand side, one could show

pσp
β

2 δ′(p2−m2)εµνρσ{(DνFβρ), f̂V }c (3.6)

= 1
2δ
′(p2−m2)

(
pν{(p ·D)F̃µν , f̂V }c +pσp

µ{DνF̃
σν , f̂V }c

)
− p

2

2 δ
′(p2−m2){DνF̃

µν , f̂V }c .

4Such a choice does not affect physical observables. See e.g. refs. [22, 56] for discussions.
5Note that the number-density operator becomes a 2 × 2 matrix in spin space, where the component

proportional to an identity matrix corresponds to f̂V and the other independent components can be written
as σ · Ŝ. Here σµ is the Pauli matrix and Ŝµ is related to âµ. We could combine pµ and Ŝµ to form âµ. See
appendix C of ref. [56] for the details of construction.
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We then derive a free-streaming effective AKE for massive quarks coupled with background
color fields,

0 = δ(p2 −m2)
(
p · ∆̃âµ + 1

2{F
νµ, âν}c −

i~
2 [F̃µνpν , f̂V ]c −

~εµνρσpσ
8 [FανFβρ, ∂αp ∂βp f̂V ]c

− ~
4 ε

µνρσpρ{(DσFβν), ∂βp f̂V }c
)

+ ~
2δ
′(p2 −m2)

(
pν{F̃µν , p · ∆̃f̂V }c

+ εµραβpρ{F ν
α , {Fβν , f̂V }}c + pρpν

2 [[Fσρ, F̃µν ], ∂σp f̂V ]c
)
, (3.7)

where we took the Bianchi identity DµF̃
µν = 0 for non-Abelian gauge fields.

3.2 Color decomposition

Now, both the SKE and AKE in eqs. (3.2) and (3.7) are matrix equations in color space.
Nonetheless, only the color-single components of Vµ and Aµ (f̂V and âµ) directly contribute
to physical observables. For example, the vector and axial charge currents are defined as

JµV = 4
∫

d4p

(2π)4 trc(〈Vµ〉), Jµ5 = 4
∫

d4p

(2π)4 trc(〈Aµ〉), (3.8)

by taking the traces over color space and ensemble averages. Therefore, we may further
adopt the color decomposition for kinetic equations. We first consider the SKE with color
decomposition by taking f̂V = f̂ s

V I + f̂aV t
a, where I represents an identity matrix in color

space. Using

[ta, tb]c = ifabctc, {ta, tb}c = 2C̄2δ
abI+dabctc, tatb = C̄2δ

abI+(dabc+ ifabc) t
c

2 , (3.9)

with C̄2 = 1/(2Nc) and Nc = 3 being number of colors, eq. (3.2) becomes

0 = δ(p2 −m2)pµ
(
∂µ(f̂ s

V + f̂aV t
a)− gf bcataAbµf̂ cV + taF aνµ∂

ν
p f̂

s
V

+ C̄2F
a
νµ∂

ν
p f̂

a
V + dbca

2 taF bνµ∂
ν
p f̂

c
V

)
, (3.10)

which yields

δ(p2 −m2)Ks[f̂V ] = 0, (3.11)
δ(p2 −m2)Kao [f̂V ] = 0, (3.12)

where

Ks[O] ≡ pµ
(
∂µO

s + C̄2F
a
νµ∂

ν
pO

a
)
, (3.13)

Kao [O] ≡ pµ
(
∂µO

a − f bcaAbµOc + F aνµ∂
ν
pO

s + dbca

2 F bνµ∂
ν
pO

c

)
, (3.14)

for an arbitrary color object that can be decomposed into O = IOs + taOa. Eq. (3.11)
and (3.12) correspond to the Vlasov equations for the color-singlet and color-octet com-
ponents, respectively. Although the prefactors of the force terms in eqs. (3.11) and (3.12)
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are distinct from those in refs. [103, 104] due to different color decompositions for f̂V , the
combination of two kinetic equations still leads to equivalent results in physics.

Analogously, we may carry out the color decomposition for the AKE. For simplicity,
we focus on the AKE in the rest frame. In addition, we may apply the off-shell solution of
f̂V such that p · ∆̃f̂V = 0.6 It is more convenient to denote eq. (3.7) in the following form,

δ(p2 −m2)
(
Π̂µν âν + ~χ̂µf̂V

)
+ δ′(p2 −m2)~Θ̂µf̂V = 0, (3.15)

where

Π̂µν âν = p · ∆̃âµ + 1
2{F

νµ, âν}c,

χ̂µf̂V = −1
4

(
2i[F̃µνpν , f̂V ]c + εµνρσpσ

2 [FανFβρ, ∂αp ∂βp f̂V ]c + εµνρσpρ{(DσFβν), ∂βp f̂V }c
)
,

Θ̂µf̂V = εµραβ

2 pρ{F ν
α , {Fβν , f̂V }}c + pρpν

4 [[Fσρ, F̃µν ], ∂σp f̂V ]c. (3.16)

These terms above without and with ~ correspond to the classical contributions and quantum
corrections in the AKE,7 although they are of the same order in our power counting. Taking
âµ = âsµI + âaµta, it is found

Π̂µν âν =
[
p · ∂

(
âsµ + âaµta

)
− tapνf bcaAbν âµc + pν

2
(
2taF aρν∂ρp âsµ + 2C̄2F

a
ρν∂

ρ
p â

aµ

+ dbcataF bρν∂
ρ
p â

µ
c

)]
= Ks[âµ] + taKao [âµ]. (3.17)

For part of the quantum corrections, one finds

χ̂µf̂V = 1
4

{
2taf bcaF̃ bµνpν f̂ cV + εµνρσpσ

4 tafdeaf bcdF bανF
c
βρ∂

α
p ∂

β
p f̂

e
V

− εµνρσpρ
[(

(∂σF aβν)− f bcaAbσF cβν
)
ta∂βp f̂

s
V +

(
(∂σF dβν)− f bcdAbσF cβν

)(
2C̄2∂

β
p f̂

d
V

+ ddeata∂βp f̂
e
V

)]}
, (3.18)

which can be rearranged as

χ̂µfV = Qµs [f̂V ] + taQaµo [f̂V ], (3.19)

where
Qµs [O] ≡ −1

2
[
εµνρσpρ

(
(∂σF aβν)− f bcaAbσF cβν

)
C̄2∂

β
pO

a], (3.20)

6In practice, one has to solve for f̂V and âµ from the kinetic equations and input them into Wigner
operators to evaluate physical quantities. Introducing the on-shell f̂V and âµ first in kinetic equations or
later in Wigner operators should not affect the final results.

7More precisely, the quantum correction in our context refers to the gradient correction. The classical
part mentioned here should implicitly encode the quantum effect that generates nonzero âµ, while such a
term could also exist if we assume there is an external source irrelevant to the quantities of O(∂).
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and

Qaµo [O] ≡ 1
4

[
2f bcaF̃ bµνpνOc + εµνρσpσ

4 fdeaf bcdF bανF
c
βρ∂

α
p ∂

β
pO

e

− εµνρσpρ
(

2
(
(∂σF aβν)− f bcaAbσF cβν

)
∂βpOs +

(
(∂σF dβν)− f bcdAbσF cβν

)
ddea∂βpO

e
)]
.

(3.21)

Finally, it is found Θ̂µf̂V = taΘ̂aµ
o [f̂V ], where

Θ̂aµ
o [f̂V ] = εµραβ

2 pρ
(
2C̄2F

aν
α F bβν f̂

b
V + dabcddecF bνα F dβν f̂

e
V

)
− pρpν

4 f cdaf ebcF eσρF
b
µν∂

σ
p f̂

d
V .

(3.22)

Here we have used the symmetric property of dabc and it turns out that only part of the
color-octet components of Θ̂µf̂V remains. Accordingly, the color-singlet and color-octet
components of the AKE read

δ(p2 −m2)
(
Ks[âµ] + ~Qµs [f̂V ]

)
= 0, (3.23)

δ(p2 −m2)
(
Kao [âµ] + ~Qaµo [f̂V ]

)
+ ~δ′(p2 −m2)Θ̂aµ

o [f̂V ] = 0. (3.24)

4 Spin diffusion and source terms

Given eqs. (3.11), (3.12), (3.23), and (3.24), we may follow the approach in refs. [90, 91] to
combine the color-singlet and color-octet kinetic equations into a single equation for f̂ s

V or
for âsµ with effective diffusion terms and quantum corrections up to O(~) in weak coupling.
The same derivation has been presented in ref. [94]. More details for the derivation are
shown below.

Considering QCD at weak coupling and assuming the color-octet distribution functions
are subleading such that Oa ∼ O(g), we may approximate

Kao [O] ≈ pµ
(
∂µO

a − f bcaAbµOc + F aνµ∂
ν
pO

s
)
, (4.1)

Qaµo [O] ≈ −1
2
(
εµνρσpρ(∂σF aβν)∂βpOs

)
, (4.2)

up to O(g) except for maintaining the f bcaAbµ term associated with the gauge link. Whereby
eq. (3.12) gives rise to

f̂aV (p,X) = −i
∫
d4k

∫
d4X ′

(2π)4U
ab(X,X ′)e

ik·(X′−X)

p · k + iε
pµF bνµ(X ′)∂νp f̂ s

V (p,X ′), (4.3)

where
Uac(X,X ′) = exp

[
P

(∫ X

X′
fabcAbµ(s)dsµ

)]
(4.4)

parallel transports the gauge field from X ′ to X with P being the path ordering. Similarly,
from Kao [âµ] and Qaµo [f̂V ] in eqs. (4.1) and (4.2), eq. (3.24) results in

âaµ(p,X) = −i
∫
d4k

∫
d4X ′

(2π)4U
ab(X,X ′)e

ik·(X′−X)

p · k + iε

[
pµF bνµ(X ′)∂νp âsµ(p,X ′)

− ~
2 ε

µνρσpρ(∂σF bβν(X ′))∂βp f̂ s
V (p,X ′)

]
. (4.5)
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Replacing f̂aV in eq. (3.11) by eq. (4.3) with the relation,

1
p · k + iε

= −iπδ(p · k) + PV (1/p · k), (4.6)

where PV (x) represents the principle value of x, one obtains [91]

0 = δ(p2 −m2)
(
p · ∂f̂ s

V (p,X)− C̄2p
µF aνµ(X)∂νp

∫ p

k,X′
Uab(X,X ′)pβF bαβ(X ′)∂αp f̂ s

V (p,X ′)
)
,

(4.7)

where ∫ p

k,X′
≡
∫
d4k

∫
d4X ′

(2π)4 e
ik·(X′−X)(πδ(p · k) + iPV (1/p · k)

)
. (4.8)

When the correlations of field strengths are even functions with respect to X −X ′, only
the imaginary part of 1/(p · k + iε) contributes as considered in ref. [91]. However, the real
part of 1/(p · k + iε) could also gives a real contribution to f̂aV (p,X). See appendix A for a
detailed discussion. On the other hand, by inserting eq. (4.5) into eq. (3.23) and utilizing
eq. (4.3), it is found

0 = δ(p2−m2)
{
p·∂âsµ(p,X)−C̄2p

λF aκλ(X)∂κp
∫ p

k,X′
Uab(X,X ′)

[
pβF bαβ(X ′)∂αp âsµ(p,X ′)

− ~
2 ε

µνρσpρ(∂σF bβν(X ′))∂βp f̂ s
V (p,X ′)

]

+ ~C̄2
2 εµνρσpρ(∂σF aκν(X))∂κp

∫ p

k,X′
Uab(X,X ′)pβF bαβ(X ′)∂αp f̂ s

V (p,X ′)
}
. (4.9)

By taking the ensemble average, we may recast eq. (4.9) into

0 = δ(p2 −m2)
(
p · ∂ãsµ(p,X)− ∂κpDκ[ãsµ] + ~∂κp

(
A µ
κ [f s

V ]
))
, (4.10)

where
Dκ[O] = C̄2

∫ p

k,X′
pλpρ〈F aκλ(X)F aαρ(X ′)〉∂αpO(p,X ′) (4.11)

and

A µ
κ [O] = C̄2

2 εµνρσ
∫ p

k,X′
pλpρ

(
∂X′σ〈F aκλ(X)F aαν(X ′)〉+ ∂Xσ〈F aκν(X)F aαλ(X ′)〉

)
∂αpO(p,X ′).

(4.12)
Here we have dropped the term proportional to εµνρσ∂σF aρν(X) = O(g2) and used 〈Ôf̂ s

V 〉 =
〈Ô〉〈f̂ s

V 〉 and 〈Ôâsµ〉 = 〈Ô〉〈âsµ〉 with Ô an arbitrary operator based on the quasi-particle
approximation. Also, we introduce the color-field correlator with the insertion of a gauge link,

〈F aκλ(X)F aαρ(X ′)〉 ≡ 〈F aκλ(X)Uab(X,X ′)F bαρ(X ′)〉, (4.13)

which comes from the ensemble average of the gauge field and color-octet distribution
function. Note that the background color fields in eq. (4.13) in QGP originates from soft
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gluons emitted by stochastic sources or induced by the Weibel-type plasma instability,
whereas the influence from quantum fluctuations of hard gluons characterized by on-shell
gluonic Wigner functions are encoded in Σ≶ in the collision term delineating the interaction
with the probe strange quark with hard-momentum exchange. Such a scale separation
results in the Fokker-Plank equation plus hard scattering kernel in kinetic theory [105, 106].
Recall that the color-singlet SKE in eq. (4.7) with the same approximations reads [91]

0 = δ(p2 −m2)
(
p · ∂f s

V (p,X)− ∂κpDκ[f sV ]
)

= 0. (4.14)

One finds that both eqs. (4.10) and (4.14) have similar diffusion terms, ∂κpDκ[ãsµ] and
∂κpDκ[f sV ], while eq. (4.10) further incorporates the quantum correction, ~∂κp

(
A µ
κ [f s

V ]
)
, as

a source term for dynamical spin polarization.
In addition, from eq. (3.3), the color-singlet component of the axial-vector Wigner

function, 〈Asµ〉 = trc(〈Aµ〉)/Nc, in the rest frame reads

〈Asµ〉 = 2π
[
δ(p2 −m2)ãsµ + ~C̄2

2
(
∂pνδ(p2 −m2)

)
〈F̃ aµν f̂aV 〉

]

= 2π
[
δ(p2 −m2)

(
ãsµ − ~C̄2

2 〈F̃
aµν∂pν f̂

a
V 〉
)

+ ~C̄2
2 ∂pν

(
δ(p2 −m2)〈F̃ aµν f̂aV 〉

)]
.

(4.15)

In order to obtain the spectrum of spin polarization for on-shell fermions, we have to
integrate over p · n̄ with n̄µ = (1,0) being a timelike vector to define the particle energy. It
turns out that∫

dp0
2π 〈A

sµ〉 = 1
2εp

(
ãsµ − ~C̄2

2 〈F̃
aµν∂pν f̂

a
V 〉
)
p0=εp

+ ~C̄2
4 ∂p⊥ν

(
〈F̃ aµν f̂aV 〉

εp

)
p0=εp

, (4.16)

where pµ⊥ ≡ (ηµν − n̄µn̄ν)pν , |p| =
√
−p2
⊥, and εp ≡

√
|p|2 +m2. Here we only consider the

particle with positive energy. Consequently, we could introduce the color singlet of the
on-shell axial charge current density in phase space,

Asµ(p, X) ≡
∫
dp0
2π 〈A

sµ〉 = 1
2εp

(
ãsµ + ~C̄2AµQ

)
p0=εp , (4.17)

where AµQ = AµQ1 +AµQ2 and

AµQ1 =
[
∂pκ
2

∫ p

k,X′
pβ〈F̃ aµκ(X)F aαβ(X ′)〉∂αp f s

V (p,X ′)
]
p0=εp

, (4.18)

AµQ2 = −εp2 ∂p⊥κ
[ ∫ p

k,X′
p̂β〈F̃ aµκ(X)F aαβ(X ′)〉∂αp f s

V (p,X ′)
]
p0=εp

= 1
2ε2p

(p⊥κ − ε2p∂p⊥κ)
[ ∫ p

k,X′
pβ〈F̃ aµκ(X)F aαβ(X ′)〉∂αp f s

V (p,X ′)
]
p0=εp

, (4.19)

with p̂µ ≡ pµ/p0.
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One should solve for f s
V (p,X) and ãsµ from eqs. (4.14) and (4.10), respectively, and

input the solutions to eq. (4.17) for evaluating the spin polarization spectrum governed by
the modified Cooper-Frye formula over the freeze-out hypersurface Σµ [53, 69],

Pµ(p) =
∫
dΣ · pÂsµ(p, X)

2m
∫
dΣ · pf s

V (p, X) , (4.20)

where Âsµ(p, X) = 2εpAsµ(p, X) and we have imposed the on-shell condition with positive
energy. In ref. [94], there is a mistake for the omission of AµQ2.

5 Spin polarization and axial Ward identity

Although the genuine color-field correlators have to be obtained through the real-time
simulations in heavy ion collisions, we may propose an approximated form based on the
physical arguments as presented in ref. [94]. Here we provide details for the analysis therein
and further discuss the constant-field limit, which is not a realistic situation in heavy ion
collisions but an ideal case for theoretical interest. We will focus on the source terms giving
rise to spin polarization, while the diffusion term in the SKE has been studied in ref. [91]
and the one in the AKE takes a similar form. Note that what we study here is a non-
equilibrium (more precisely, near-equilibrium) effect on spin polarization in particular due to
the involvement of color electric fields. The detailed balance for hard collisions could yield
an equilibrium result for spin polarization proportional to thermal vorticity. The anomalous
spin polarization from color fields should be regraded as a non-equilibrium correction on
top of the equilibrium one, whereas the hydrodynamic gradient terms are assumed to be
suppressed compared to the magnitude of color fields in the following analysis. One could in
principle include other non-equilibrium corrections from the hard scattering kernel of QKT
in e.g. refs. [38, 68] with non-QCD effective models. In practice, we focus on high-energy
collisions such that the thermal vorticity and other gradient terms are expected to be
negligible, which is supported by the suppressed spin polarization of Λ hyperons in LHC.

5.1 Spin polarization and axial charge currents

Physically, considering (space-time) translational invariance, we may assume
〈F aκλ(X)F aαρ(X ′)〉 only depends on X −X ′. More precisely, we may set 〈F aκλ(X)F aαρ(X ′)〉 =
〈F aκλ(X ′)F aαρ(X)〉 = 〈F aκλF aαρ〉Φ(X −X ′).8 Introducing new coordinates, X̄ = (X +X ′)/2
and δX = X −X ′, one finds ∂X = ∂X̄/2 + ∂δX and ∂X′ = ∂X̄/2− ∂δX . By employing the
relation in eq. (A.21), the dynamical source term stemming from quantum corrections in
eq. (4.10) becomes

∂κp
(
A µ
κ [f s

V ]
)

=− C̄2
2 εµνρσ

∫ p

k,δX

[
∂δXσ

(
pρ〈F aλν (X)F aαλ(X ′)〉+pλ〈F aρλ(X)F aαν(X ′)〉

)
∂αp f

s
V (p)

+pλpρ∂δXσ
(
〈F aκλ(X)F aαν(X ′)〉−〈F aκν(X)F aαλ(X ′)〉

)
∂κp∂

α
p f

s
V (p)

]
+χ1+χ2

=− C̄2
2 εµνρσ

∫ p

k,δX

(
pρ〈F aλν F aαλ〉+pλ〈F aρλF aαν〉

)(
∂δXσΦ(δX)

)
∂αp f

s
V (p)+χ1+χ2,

(5.1)
8Note that the Bianchi identity DµFµν = 0 should yields kµ〈F̃ aµνF aαρ〉 = kν〈F̃ aµνF aαρ〉 = 0 as the constraint

under this approximation.
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where
∫ p
k,X′ =

∫ p
k,δX ≡

∫
d4k

∫ d4δX
(2π)4 e

−ik·δX(πδ(p · k) + iPV (1/p · k)
)
and we have used

〈F a[κνF
a
α]λ〉∂

κ
p∂

α
p f

s
V (p) = 0. Here

χ1 = −A µ
0 [f s

V (p)]
p0

= C̄2
2p0

εµνρσ
∫ p

k,δX
pλpρ〈F a0[λF

a
αν]〉

(
∂δXσΦ(δX)

)
∂αp f

s
V (p) (5.2)

and

χ2 = − C̄2
2p0

εµνρσ
∫ p

k,δX
δX0p

λpρ〈F aκ[λF
a
αν]〉

(
∂δXγ

⊥
∂δXσΦ(δX)

) [
∂pκ

(
pγ⊥
p0

)]
∂αp f

s
V (p), (5.3)

while their contributions will vanish in the following approximations.
We may now introduce the chromo-electric and chromo-magnetic fields explicitly via

F aκλ = −εκλξηBaξn̄η + Ea[κn̄λ], F̃ aµκ = Ba[µn̄κ] + εµκξηEaξ n̄η. (5.4)

When assuming the hierarchy |〈Ba
µB

a
ν 〉| � |〈EaµBa

ν 〉| � |〈EaµEaν 〉|, stemming from the
screening of chromo-electric field as opposed to the chromo-magnetic field albeit in the static
case [107] and amplification of the latter from plasma instability in anisotropic QGP [88],
the color-singlet SKE is satisfied by f s

V (p) = feq(p · u) ≡ 1/(eβ(p·u−µ) + 1) in equilibrium
with uµ the fluid four velocity and β = 1/T the inverse of temperature.9 For the parity-odd
correlation, we further assume the symmetric condition 〈EaµBa

ν 〉 = 〈Ba
µE

a
ν 〉 for simplification.

One could further derive the deviation of f s
V near local equilibrium to extract the anomalous

transport coefficient from the diffusion term [91]. We may focus on the spin polarization
when the charge distribution of quarks reaches local equilibrium with negligible corrections
from spacetime gradients of fluid velocity, temperature, and chemical potential. Assuming
the absence of initial spin polarization in the non-equilibrium phase, the spin diffusion term
is then relatively negligible than the source term. The suppression of the diffusion term will
be explicitly shown later. Accordingly, eq. (4.10) reduces to

0 = δ(p2 −m2)
[
p · ∂ãsµ(p,X) + ~∂κp

(
A µ
κ [f s

V ]
)
eq

]
, (5.5)

where χ1 vanishes and we find

∂κp
(
A µ
κ [f s

V ]
)
eq≈−

C̄2
2

∫ p

k,δX

(
∂p0feq(p0)

)[
〈BaµEaν〉pνu·∂δX+〈Ba ·Ea〉u[µpν]∂δXν−〈BaρEaν〉

×uµpν∂δXρ+εµνρσuρ(〈EaνEaλ〉pλ−〈Ea ·Ea〉pν)∂δXσ
]
Φ(δX)+χ2 (5.6)

by working in the fluid rest frame (not to be confused with the frame choice for the spin
basis) such that uµ ≈ (1,u) with |u| � 1. Here we have taken uµ ≈ n̄µ and introduced
the condition 〈Baµ(X)Eaβ(X ′)〉 = 〈Eaβ(X)Baµ(X ′)〉. When further imposing the spatial
homogeneity of the field-strength correlators such that Φ(δX) = Φ(δX0) and accordingly

9Nonzero 〈EaµBaν 〉 or 〈EaµEaν 〉 can further lead to non-equilibrium corrections such that δf s
V (p) = f s

V (p)−
feq(p · u) 6= 0, but these corrections will be at O(g2) and suppressed at weak coupling.
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χ2 = 0, it is found

∂κp
(
A µ
κ [f s

V ]
)
eq = − C̄2

2

∫
dk0

∫
dδX0

2π e−ik0δX0

[
πδ(p0k0) + iPV

( 1
p0k0

)] (
∂p0feq(p0)

)
×
(
〈BaµEaν〉pν − 〈Ba · Ea〉pµ⊥

)
∂δX0Φ(δX0)

= − C̄2
4

∫
dδX0

(1 + sgn(δX0))
p0

(
∂p0feq(p0)

)(
〈BaµEaν〉pν − 〈Ba · Ea〉pµ⊥

)
× ∂δX0Φ(δX0). (5.7)

Notably, when Φ(x)|x→±∞ = 0, one can carry out the integration by parts for the equation
above and derive

∂κp
(
A µ
κ [f s

V ]
)
eq = C̄2Φ(0)

2p0

(
∂p0feq(p0)

)(
〈BaµEaν〉pν − 〈Ba · Ea〉pµ⊥

)
. (5.8)

Setting
Φ(δX0) = e−δX

2
0/τ

2
c (5.9)

as the Gaussian form with τc the correlation time, we further obtain

∂κp
(
A µ
κ [f s

V ]
)
eq = C̄2

2p0

(
∂p0feq(p0)

)(
〈BaµEaν〉pν − 〈Ba · Ea〉pµ⊥

)
. (5.10)

Since now ∂κp
(
A µ
κ [f s

V ]
)
eq is independent of X, ãsµ will be a function linear to time. More

precisely, by solving eq. (5.5) with eq. (5.10), we obtain10

ãsµ(t, p) = −~C̄2(t− t0)
2p2

0
Φ(0)

(
∂p0feq(p0)

)(
〈BaµEaν〉pν − 〈Ba · Ea〉pµ⊥

)
= −~C̄2(t− t0)

2p2
0

(
∂p0feq(p0)

)(
〈BaµEaν〉pν − 〈Ba · Ea〉pµ⊥

)
, (5.11)

for ãµ(t0, p) = 0. This secular solution stems from only the δX dependence of color-field
correlators. Notwithstanding the ostensible τc independence of eq. (5.10), the source term
should vanish when color-field correlators become constant. That is, ∂κp

(
A µ
κ [f s

V ]
)
eq → 0

when τc →∞. In a finite system, there exists an upper bound for |δX| determined by the
size of the system. When τc is greater than the system size, Φ(δX0) is peaked at δX0 = 0
and the source term in the AKE is suppressed. In heavy ion collisions, one may instead
assume an approximately infinite system.

In principle, at a sufficiently long time, ãsµ is no longer small and the diffusion term
should start to play a role. According to the proposed hierarchy, the diffusion term in the
color-singlet AKE is given by

∂κpDκ[ãsµ] ≈ C̄2εαβγκενρλσu
αuν∂βp

∫ p

k,X′
〈Baκ(X)Baσ(X ′)〉pγpλ∂ρp ãsµ

= C̄2
√
πτm

2p0
εαβγκενρλσu

αuν〈BaκBaσ〉∂βp
(
pγpλ∂ρp ã

sµ), (5.12)

10The 〈BaµEaν〉pν term below will be in fact 〈EaµBaν〉pν without using the symmetric correlation
〈BaµEaν〉 = 〈BaνEaµ〉.
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where we derive the second equality by assuming 〈Baκ(X)Baσ(X ′)〉 = 〈BaκBaσ〉e−δX2
0/τ

2
m .

Conducting a simple power counting, ∂κpDκ[ãsµ] becomes comparable to p · ∂ãsµ when

(t− t0)τm|〈BaκBaσ〉| ∼ p2
0. (5.13)

Based on the kinetic region we considered for the ~ expansion, p2
0 � |Baµ|, we may in

general neglect the diffusion term given no other sources for spin polarization. Nevertheless,
the suppression of the diffusion term is also valid because of the properties of postulated
color fields, which may not be always the case in a more general condition.

Moreover, nonzero spin polarization could be engendered by the explicit ~ term in
eq. (4.17), which could be regarded as a non-dynamical source term for spin polarization,
even when the dynamical source term in the AKE is suppressed. We will analyze such
a contribution from eq. (4.17) in the following paragraphs. When f s

V (p) is in thermal
equilibrium, one obtains

AµQ1 = −1
2

[ ∫ p

k,X′
〈F̃ aµκ(X)Eaβ(X ′)〉

(
δβκ + uκ(pβ∂0 − p̂β)

)
∂p0feq(p0)

]
p0=εp

+ ξ1 (5.14)

and

AµQ2 =− 1
2ε2p

(p⊥κ−ε2p∂p⊥κ)
[∫ p

k,X′
pβ〈F̃ aµκ(X)Eaβ(X ′)〉∂p0feq(p0)

]
p0=εp

+ξ2

=−1
2

[∫ p

k,X′
〈F̃ aµκ(X)Eaβ(X ′)〉

(
p̂⊥κp̂

β(2−p0∂p0)−δβκ
)
∂p0feq(p0)

]
p0=εp

+ξ2 (5.15)

by working in the fluid-rest frame and using eq. (A.22). Here

ξ1 = −1
2

[ ∫ p

k,X′
δX0∂δX⊥ρ〈F̃

aµκ(X)Eaβ(X ′)〉pβ
(
∂p0feq(p0)

)
∂pκ

(
pρ⊥
p0

)]
p0=εp

(5.16)

and

ξ2 = 1
2

[ ∫ p

k,X′
δX0∂δX⊥ρ〈F̃

aµκ(X)Eaβ(X ′)〉pβ∂p0feq(p0)
]
p0=εp

∂p⊥κ

(
pρ⊥
εp

)
(5.17)

Further taking 〈Eaµ(X)Baβ(X ′)〉=〈Eaµ(X ′)Baβ(X)〉,〈Eaµ(X)Eaβ(X ′)〉=〈Eaµ(X ′)Eaβ(X)〉,
and Φ(δX) = Φ(δX0) such that ξ1 = ξ2 = 0 and using the relation,

F̃ aµβ(X)F aαβ(X ′) = δµαE
a(X) ·Ba(X ′) + n̄µn̄α

(
Ba(X) · Ea(X ′)− Ea(X) ·Ba(X ′)

)
+Baµ(X)Eaα(X ′)− Eaα(X)Baµ(X ′), (5.18)

with the symmetric correlation 〈Eaµ(X)Baβ(X ′) = 〈Eaβ(X)Baµ(X ′)〉, it is found

AµQ1(p, X) ≈
[ ∫

dδX0
(1 + sgn(δX0))

4p0
Φ(δX0)

(
〈Ea ·Ba〉uµ − 〈BaµEaβ〉(pβ∂p0 − p̂β)

)
× ∂p0feq(p0)

]
p0=εp

, (5.19)
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and

AµQ2(p, X) ≈
[ ∫

dδX0
(1 + sgn(δX0))

4p0
Φ(δX0)

((
p̂αp̂β〈EaαBa

β〉uµ + ενµραuν p̂ρp̂
β〈EaαEaβ〉

)
× (2− p0∂p0)− 〈Ea ·Ba〉uµ

)
∂p0feq(p0)

]
p0=εp

, (5.20)

which yield

AµQ(p, X) = π1/2τc
4ε3p

[(
pαpβ〈EaαBa

β〉uµ + εµαρνuνpρ〈EaαEaβ〉
)
(2pβ − ε2p∂βp )

− 〈BaµEaβ〉εp(ε2p∂pβ − pβ)
]
∂εpfeq(εp) (5.21)

for Φ(δX0) = e−δX
2
0/τ

2
c , where we have used εp∂

β
p⊥
G(εp) = pβ⊥∂εpG(εp) for an arbitrary

function G(εp). In AµQ2, we further have nonzero contribution from 〈EaνEaβ〉 as a parity-even
correlator, while it is attached to εµαρνuν p̂ρ and hence the overall parity-odd contribution
is induced. Such a term could be understood as the combination of the Lorentz force and
spin Hall effect, whereas it is subdominant according to our assumption that the average
magnitude of color magnetic fields is larger than of color electric fields. This term also
vanishes when assuming 〈EaαEaβ〉 ∼ δαβ for the correlation of only parallel color fields. When
combining the contribution from ãsµ in eq. (5.11), one finds

Âsµ(p,X) = ~C̄2
4ε3p

{√
πτc
[
(pαpβ〈EaαBa

β〉uµ+εµαρνuνpρ〈EaαEaβ〉)(2pβ−ε2p∂βp )−〈BaµEaν〉

×εp(ε2p∂pν−pν)
]
+2(t−t0)εp

(
〈Ea ·Ba〉pµ⊥−〈B

aµEaν〉pν
)}
∂εpfeq(εp). (5.22)

When considering the non-relativistic limit such that |pµ⊥| � εp, we further obtain

Âsµ(p, X) ≈ −~C̄2
4εp
√
πτc〈BaµEaν〉pν∂εpfeq(εp), (5.23)

where one component of the non-dynamical source term dominates. Such a term stems
from the combination of spin polarization induced by a color magnetic field and the Lorentz
force driven by a color electric field. We may further evaluate the axial charge current via
eq. (3.8), where only AµQ1 contributes. One hence obtains

Jµ5 = 2~
∫

d4p

(2π)3
δ(p2 −m2)

4p · u
√
πτc〈Ea ·Ba〉uµ∂p·ufeq(p · u). (5.24)

Here the contribution from ãsµ in eq. (5.11) does not affect Jµ5 .

5.2 Axial Ward identity

It is obvious that Jµ5 in eq. (5.24) is independent of X and thus ∂µJµ5 = 0. It is however useful
to investigate the vanishing axial Ward identity from eq. (5.14). When 〈Ba(X) · Ea(X ′)〉
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only depends on δX, it is found

∂Xµ

∫ p

k,X′
〈Ba(X) · Ea(X ′)〉 =

∫ p

k,δX
(−ikµ + ∂δXµ)〈Ba(X) · Ea(X ′)〉

= i

∫
d4k

d4δX

(2π)4 e
−ik·δX kµ + i∂δXµ

p · k + iε
〈Ba(X) · Ea(X ′)〉. (5.25)

From the integration by part, i∂δXµ in the integrand above could be replaced by −kµ
and thus we find ∂µJ

µ
5 (X) = 0 for finite τc. Nevertheless, when τc → ∞ such that

〈Ba(X) ·Ea(X ′)〉 → 〈Ba ·Ea〉 as the constant-field limit, i∂δXµ in the integrand of eq. (5.25)
no longer contributes and we find

∂µJ
µ
5 (X) = 2~

∫
d4k

d4δX

(2π)4 e
−ik·δX〈Ba · Ea〉

∫
d4p

(2π)3 sgn(p0) δ(p
2 −m2)

2(p · k + iε)k0∂p0feq(p0),

(5.26)
where we further insert sgn(p0) as a sign function for energy to include the contribution
from anti-quarks. In fact, the ultraviolet contribution from anti-fermions is essential to
reproduce the term associated with the chiral anomaly [23]. Now, the δX integral can be
evaluated independently, ∫

d4δX

(2π)4 e
ik·δX = δ4(k). (5.27)

For the remaining p and k integrals, one may make the decomposition,∫
d4kδ4(k)

∫
d4p

(2π)3 sgn(p0) δ(p
2 −m2)

2(p · k + iε)k0∂p0feq(p0) = I1 + I2, (5.28)

where the real part of (p · k + iε)−1 contributes to11

I1 =
∫

d4p

(2π)3 sgn(p0)δ(p
2 −m2)
2p · k k0∂p0feq(p0)

∣∣∣
kµ→0

=
∫

d3p

(2π)34ε2p
d

dεp

[
feq(εp)− feq(−εp)

]
(5.29)

with εp =
√
|p|2 +m2, and the imaginary part of (p · k + iε)−1 yields

I2 = −i
∫

d4p

(2π)3 sgn(p0)δ(p
2 −m2)

2 k0πδ(p · k)∂p0feq(p0)
∣∣∣
kµ→0

= 0. (5.30)

In the end, we obtain an axial Ward identity as

∂µJ
µ
5 (X) = ~〈Ba · Ea〉

∫ ∞
0

d|p||p|2

4π2ε2p

d

dεp

[
feq(εp)− feq(−εp)

]
. (5.31)

As briefly discussed in ref. [94], the vanishing axial Ward identity at finite τc corresponds to
a triangle diagram with two gluon legs connected and zero momentum flow from the axial
vertex. However, when τc →∞, two legs break apart and allow the momentum exchanges.
See figure 1 for a schematic description.

11Here we first take limk→0 and then limk0→0. In fact, for constant color fields, we may reduce
∫ p
k,X′ to

just the one-dimensional integral as
∫ p
k,X′ ≡

∫
dk0
∫ dX′

0
(2π)e

ik0(X′
0−X0)i(p0k0 + iε)−1 and hence the k and X ′

integrals are redundant since it is natural to assume faV and ãµa only depend on time.
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Figure 1. The triangle diagram with finite τc and with τc → ∞ in the constant-field limit. The
blobs denote the axial vertices and the wiggly line with a cross at the center represents the correlator
of color fields originating from the medium.

It is found ∂µJ
µ
5 (X) 6= 0 as opposed to the conservation of a vector charge current,

∂µJ
µ
V (X) = 0, implied by eq. (4.14) since the diffusion term can be recast into a total

momentum derivative including the attached δ(p2−m2) due to pκDκ[O] = 0. Now, eq. (5.31)
seems to be in connection to the chiral anomaly but it also receives the finite-mass correction.
Recall that

∂µJ
µ
5 (X) = −E ·B2π2 + 2m〈ψ̄iγ5ψ〉 (5.32)

for massive fermions, where we consider the Abelian gauge fields for simplicity yet the
similar feature holds for non-Abeleian cases. Here the pseudo-scalar condensate results
in further modifications when m 6= 0. However, it is anticipated that ∂µJµ5 (X) = 0 when
m→∞. For example, in the vacuum with constant electromagnetic fields, it is found [108],

〈ψ̄iγ5ψ〉 = E ·B
4π2m

(
1− e−πm2/|E|

)
(5.33)

and hence
∂µJ

µ
5 (X) = −E ·B2π2 e−πm

2/|E|. (5.34)

As shown in eq. (5.31), ∂µJµ5 (X) = 0 when m→∞. In fact, from eq. (5.31), we can extract
the pseudo-scalar condensate,

〈ψ̄iγ5ψ〉 = −~〈Ba · Ea〉
8mπ2

∫ ∞
0

d|p|
(

1− |p|
εp

)
d

d|p|
[
feq(εp)− feq(−εp)

]
, (5.35)

such that eq. (5.31) is decomposed as

∂µJ
µ
5 (X) = −~〈B

a · Ea〉
4π2 + 2m〈ψ̄iγ5ψ〉, (5.36)

where the first term on the right-hand side above is given by
~
2 〈B

a · Ea〉
∫ ∞

0

d|p|
4π2

d

d|p|
[
feq(|p|)− feq(−|p|)

]
= ~

4π2 〈B
a · Ea〉

[
feq(|p|)− feq(−|p|)

]∣∣∣|p|=∞
|p|=0

= − ~
4π2 〈B

a · Ea〉. (5.37)
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Naively, when taking m→ 0, it seems m〈ψ̄iγ5ψ〉 → 0 and the non-Abelian axial anomaly is
reproduced in the massless limit. Nevertheless, since we work in the rest frame nµ = nµr (p),
the result is in principle subject to a finite-mass regime m2 � |Ea|, |Ba|. We may have to
examine the massless limit more rigorously as will be demonstrated in the follow-up section.

6 Massless fermions

In order to investigate the influence of chromo-electromagnetic fields upon light quarks in
QGP. We further analyze the similar effects on spin polarization of massless quarks via the
CKT with non-Abelian gauge fields to complement the previous study for massive quarks.

6.1 Derivation of the effective AKE

For massless fermions, it is more convenient to work in the chiral bases and the master
equations reduce to

∇̂ · Ws = 0, (6.1)
Π̂ · Ws = 0, (6.2)

Π̂νWsµ − Π̂µWsν = s~
2 εµνρσ∇̂

ρWσ
s , (6.3)

where Wsµ(p,X) denote the chiral components of Wigner operators (lesser propagators) for
massless fermions with s = 1 and s = −1 for right and left handed fermions (not to confuse
with the superscript s for color singlet). Unlike the case for Dirac fermions, Ws are 2× 2
matrices in spinor space, which can be decomposed as W+ = σ̄µW+µ and W− = σµW−µ,
where σµ = (1,σ) and σ̄µ = (1,−σ) with σi being Pauli matrices. Based on the ~ expansion,
the master equations explicit read

D ·Ws+
1
2{Fνµ,∂

ν
pWµ

s }c−
i~
24[(∂p ·DFνµ),∂νpWµ

s ]c = 0, (6.4)

pµWµ
s + i~

8 [Fνµ,∂νpWµ
s ]c = 0, (6.5)

p[νWsµ]+
i~
8 [Fρ[ν ,∂

ρ
pWsµ]]c = s~

2 εµνρσ
(
DρWσ

s + 1
2{Fνµ,∂

ν
pWσ

s }c
)
,

(6.6)

up to O(~). By contracting eq. (6.6) with nµ, one can derive the Wigner operator satisfying
the constrain in eq. (6.5). It is found

Wµ
s = 2π

[
δ(p2)

(
pµf̂s + s~Sµν(n)∆̃ν f̂s

)
+ s~

2 pνδ
′(p2){F̃µν , f̂s}c + i~

8

(
pµδ′(p2)pρ[Fνρ, ∂νp f̂s]c

+ [F ρµ, ∂pρδ(p2)f̂s]c −
2δ(p2)
p · n

[Fµνnν , f̂s]c
)]

(6.7)

up to O(~), where Sµν(n) = Sµνm(n)|m=0 represents the spin tensor for massless fermions. When
making a conversion to the vector and axial-vector basis by (V/A)µ = (Wµ

+ ± W
µ
−)/2,
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one finds

Aµ = 2π
[
δ(p2)

(
pµf̂A + ~Sµν(n)∆̃ν f̂V

)
+ ~

2pνδ
′(p2){F̃µν , f̂V }c + i~

8

(
pµδ′(p2)pρ[Fνρ, ∂νp f̂A]c

+ [F ρµ, ∂pρδ(p2)f̂A]c −
2δ(p2)
p · n

[Fµνnν , f̂A]c
)]
, (6.8)

where f̂V/A = (f̂+ ± f̂−)/2. Notably, the ~ terms related to commutators in color space are
all linear to f̂A. As a result, implementing the power counting f̂V ∼ O(~0) and f̂A ∼ O(~),
such terms involving commutators are suppressed. Similarly, the contribution from the last
term on the left hand side of eq. (6.4) in AKE is now of O(~2) and hence omitted. That is,
the effective AKE is given by

∆̃ · A = D · A+ 1
2{Fνµ, ∂

ν
pAµ}c = 0, (6.9)

with
Aµ = 2π

[
δ(p2)

(
pµf̂A + ~Sµν(n)∆̃ν f̂V

)
+ ~

2pνδ
′(p2){F̃µν , f̂V }c

]
, (6.10)

which corresponds to the massless limit of eq. (3.3) with âµ = pµf̂A due to the spin locking
by helicity. Note that the Aµ in eq. (6.10) is consistent with the result in ref. [37].12 As
opposed to the massive case, one is now unable to choose the particle rest frame for nµ.
Consequently, the magnetization-current term pertinent to Sµν(n) or the so-called side-jump
term [17, 22] in the massless limit will be always involved. For Vµ, we simply retain the
leading-order term of O(~0) and thus have Vµ = 2πδ(p2)pµf̂V . Also, the SKE is same as
eq. (3.2) with the massless on-shell condition.

Inserting eq. (6.10) into eq. (6.9), the AKE turns out to be

0 = δ(p2)
(
p · ∆̃f̂A + ~

(
∆̃µS

µν
(n)
)
∆̃ν f̂V + ~Sµν(n)∆̃µ∆̃ν f̂V

)
+ ~δ′(p2)Sµν(n)p

ρ{Fρµ, ∆̃ν f̂V }

+ ~
2δ
′(p2)pν∆̃µ{F̃µν , f̂V }c + ~

4
(
∂ρppνδ

′(p2)
)
{Fρµ, {F̃µν , f̂V }}c

)
. (6.11)

We may now compute each term above. For the ~ corrections pertinent to δ(p2), it is found(
∆̃µS

µν
(n)
)
∆̃ν f̂V = (∂µSµν(n))∆̃ν f̂V + 1

2p · n
(
{F̃ νβnβ , ∆̃ν f̂V }c− Sµν(n){n

ρFρµ, ∆̃ν f̂V }c
)
, (6.12)

and

Sµν(n)∆̃µ∆̃ν f̂V =
Sµν(n)

2

(
i[Fµν , f̂V ]c+ 1

2{(D[µFβν]),∂βp f̂V }c+ 1
4[Fα[µFβν],∂

α
p ∂

β
p f̂V ]c

)
. (6.13)

On the other hand, for δ′(p2) related terms, we acquire

δ′(p2)Sµν(n)p
ρ{Fρµ, ∆̃ν f̂V } = −δ

′(p2)pν
2 {F̃µν , ∆̃µf̂V }c + δ′(p2)pµnν

2p · n {F̃µν , p · ∆̃f̂V }c

− δ(p2)
2p · n{F̃

νβnβ , ∆̃ν f̂V }c (6.14)

12There are extra ~ terms proportional to fA in ref. [37], while these terms are at O(~2) with our power
counting and accordingly omitted.
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by using the Schouten identity and p2δ′(p2) = −δ(p2). Also, one finds
δ′(p2)

2 pν∆̃µ{F̃µν , f̂V }c = δ′(p2)
2 pν

(
{F̃µν , ∆̃µf̂V }c + 1

2[[Fµρ, F̃µν ], ∂ρp f̂V ]c
)

(6.15)

by using

[A,{B,C}] = {B, [A,C]}+{[A,B],C}, {A,{B,C}}= {B,{A,C}}+[[A,B],C]. (6.16)

Finally, the last term is given by
1
4
(
∂ρppνδ

′(p2)
)
{Fρµ, {F̃µν , f̂V }}c

= 1
4
(
δ′(p2){Fνµ, {F̃µν , f̂V }}c + 2pνpρδ′′(p2){Fρµ, {F̃µν , f̂V }}c

)
= 1

2δ
′′(p2)pνpρ[[F̃µν , Fρµ], f̂V ]c, (6.17)

where we have used

2pνpρ{Fρµ, {F̃µν , f̂V }}c = −p
2

2 {Fµν{F̃
µν , f̂V }}c + 2pνpρ[[F̃µν , Fρµ], f̂V ]c (6.18)

obtained from the Schouten identity and p2δ′′(p2) = −2δ′(p2). Combining all terms
together, We eventually derive a free-streaming effective AKE for massless quarks coupled
with background color fields

0 = δ(p2)
[
p · ∆̃f̂A + ~(∂µSµν(n))∆̃ν f̂V + ~

2p · nS
µν
(n){n

ρFµρ, ∆̃ν f̂V }c +
~Sµν(n)

2

(
i[Fµν , f̂V ]c

+ 1
2{(D[µFβν]), ∂βp f̂V }c + 1

4[Fα[µFβν], ∂
α
p ∂

β
p f̂V ]c

)]
+ ~δ′(p2)pµnν

2p · n {F̃µν , p · ∆̃f̂V }c

+ ~δ′(p2)
4 pν [[Fµρ, F̃µν ], ∂ρp f̂V ]c + ~δ′′(p2)

2 pνp
ρ[[Fµρ, F̃µν ], f̂V ]c. (6.19)

6.2 Spin diffusion and source terms

Implementing the color decomposition f̂V/A = f̂ s
V/AI + f̂aV/At

a and taking p · ∆̃f̂V = 0 from
the off-shell SKE, the color-singlet and color-octet components of the AKE are given by

0 = δ(p2)
[
pµKsµ[f̂A] + ~(∂µSµν(n))Ksν [f̂V ] +

~Sµν(n)
2p · nC̄2n

ρF aµρ
(
2∂νfaV + dabcF bλν∂

λ
p f̂

c
V

)
+ ~Sµν(n)C̄2

(
(∂µF aβν)− fabcAbµF cβν

)
∂βp f̂

a
V

]
, (6.20)

and

0 = δ(p2)
[
pµKaoµ[f̂A] + ~(∂µSµν(n))K

a
oµ[f̂V ] + ~

2p · nS
µν
(n)n

ρ(2F aµρKsν [f̂V ] + dabcF bµρKcoν [f̂V ]
)

+ ~Sµν(n)
(
(∂µF aβν)− fabcAbµF cβν

)
∂βp f̂

s
V

−
~Sµν(n)

2

(
fabcF bµν − dabc

(
(∂µF bβν)− f befAeνF

f
βν

)
∂βp + fabcf bef

4 F eαµF
f
βν∂

α
p ∂

β
p

)
f̂ cV

]

− ~
4pνf

abcf befF eµρF̃
fµν
(
δ′(p2 −m2)∂ρp + 2pρδ′′(p2 −m2)

)
f̂ cV , (6.21)
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where

Ksµ[O] ≡ ∂µOs + C̄2F
a
νµ∂

ν
pO

a,

Kaoµ[O] ≡ ∂µOa − f bcaAbµOc + F aνµ∂
ν
pO

s + dbca

2 F bνµ∂
ν
pO

c. (6.22)

Given Oa ∼ O(g), eq. (6.21) leads to

0≈ pµ
(
∂µf̂

a
A−f bcaAbµf̂ cA+F aνµ∂νp f̂ s

V

)
+~(∂µSµν(n))∂ν f̂

a
V +~Sµν(n)

(
nρF aµρ
p·n

∂ν+(∂µF aβν)∂βp
)
f̂ sV

(6.23)

and thus

f̂aA(p,X) =−
∫ ab,p

k,X′

[
pµF bνµ(X ′)∂νp +~Sµν(n)

(
nρF bµρ(X ′)

p ·n
∂X′ν +

(
∂X′µF

a
βν(X ′)

)
∂βp

)]
f̂ sV (p,X ′)

+
∫ ab,p

k,X′
~(∂X′µSµν(n))∂X′ν

∫ bc,p

k′,X′′

[
pαF cβα(X ′′)∂βX′′pf̂

s
V (p,X ′′)

]
(6.24)

up to O(g), where we have employed eq. (4.3) to rewrite f̂aV in terms of f̂ sV . For simplicity,
we may work with a constant frame vector. Then eq. (6.20) becomes

0 ≈ δ(p2)
[
p · ∂f̂ s

A + C̄2p
µF aνµ∂

ν
p f̂

a
A +

~Sµν(n)
p · n

C̄2n
ρF aµρ∂ν f̂

a
V + ~Sµν(n)C̄2(∂µF aρν)∂ρp f̂aV

]
(6.25)

up to O(g2). By replacing f̂aV/A with f̂ s
V/A and taking the ensemble averages, we eventually

derive
0 = δ(p2)

(
p · ∂f s

A(p,X)− ∂κpDκ[f s
A] + ~∂σpBσ[f s

V ] + ~Sµν(n)Cµν [f s
V ]
)
, (6.26)

where

Bσ[O] = C̄2p
ρSµν(n)

∫ p

k,X′

[(
∂X′µ〈F aσρ(X)F aνλ(X ′)〉

)
∂λp −

nλ

p · n
〈F aσρ(X)F aνλ(X ′)〉∂X′µ

]
O(p,X ′)

(6.27)

and

Cµν [O] = C̄2p
ρ
∫ p

k,X′

[
nλ

p · n
∂X′µ〈F aνλ(X)F aσρ(X ′)〉+ ∂Xµ〈F aνλ(X)F aσρ(X ′)〉∂λp

]
∂σpO(p,X ′).

(6.28)
Here we have utilized

C̄2p
µ〈F aνµ∂νp f̂aA〉 = ~C̄2p

ρ∂σp

{
Sµν(n)

∫ p

k,X′

[(
∂X′µ〈F aσρ(X)F aνλ(X ′)〉

)
∂λp

− nλ

p · n
〈F aσρ(X)F aνλ(X ′)〉∂X′µ

]
f s
V (p,X ′)

}
, (6.29)

~Sµν(n)
p · n

C̄2n
ρ〈F aµρ∂ν f̂aV 〉 =

~Sµν(n)
p · n

C̄2n
λ〈F aνλ(X)∂Xµ

∫ p

k,X′
F aσρ(X ′)〉∂σp f s

V (p,X ′), (6.30)

~Sµν(n)C̄2〈(∂µF aρν)∂ρp f̂aV 〉 = ~C̄2S
µν
(n)∂

λ
p

∫ p

k,X′
pρ∂Xµ〈F aνλ(X)F aσρ(X ′)〉∂σp f s

V (p,X ′), (6.31)
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and have assumed the relation

∂Xµ

∫ p

k,X′
G(X ′) = −i

∫ p

k,X′
kµG(X ′) =

∫ p

k,X′
∂X′µG(X ′) (6.32)

given eik·X′G(X ′)
∣∣
X′µ=±∞ = 0 for an arbitrary function G(X ′) is applicable for eq. (6.30).

Although the ~ correction, corresponding to the source term for dynamical spin polarization,
in the AKE for massless quarks takes a slightly different form compared to that for massive
fermions, they both stem from spacetime variations of color fields. On the other hand, the
color-singlet axial-vector component of the Wigner function reads

〈Asµ〉 = 2π
{
δ(p2)

[
pµf s

A + ~Sµν(n)
(
∂νf

s
V + C̄2〈F aρν∂ρp f̂aV 〉

)
− ~C̄2

2 〈F̃
aµν∂pν f̂

a
V 〉
]

+ ~C̄2
2 ∂pν

(
δ(p2)〈F̃ aµν f̂aV 〉

)}
, (6.33)

which yields the color singlet of the on-shell axial charge current density in phase space,

Asµ(p, X) ≡
∫
dp0
2π 〈A

sµ〉 = 1
2|p|

(
pµf s

A + ~C̄2ÃµQ
)
p0=|p|, (6.34)

where ÃµQ = ÃµQ1
+ ÃµQ2 + ÃµQ3 with ÃµQ1 = AµQ1|m=0, ÃµQ2 = AµQ2|m=0, and

ÃµQ3(p, X) = −
[
Sµν(n)∂

ρ
p

∫ p

k,X′
pβ〈F aρν(X)Fαβ(X ′)〉∂αp f s

V (p,X ′)
]
p0=|p|

, (6.35)

which also contain the source terms coming from ~ corrections for spin polarization.

6.3 Spin polarization, axial charge currents, and axial Ward identity

We may now also investigate the spin polarization, axial charge current, and axial Ward
identity of massless fermions for f s

V near equilibrium with negligible gradient corrections in
hydrodynamics. In such a case, it is more convenient to choose nµ = uµ and work in the
fluid rest frame.13 We re-emphasize that the Wigner function is however independent of
the choice of a frame. Moreover, we may consider the color-field correlators only depending
on δX0 with the temporal direction now defined in the fluid rest frame. Notably, since
Sµν(n)∂δXνΦ(δX0) = 0 for nµ = uµ ≈ (1,0), it turns out that the source term in eq. (6.26)
vanishes in our particular setup. In such a case, f sA should simply diffuse to zero in
equilibrium given no vortical corrections. When f s

V is in equilibrium and f s
A = 0, eq. (6.33)

reduces to
Âsµ(p, X) = ~C̄2

(
ÃµQ1(p, X) + ÃµQ2(p, X) + ÃµQ3(p, X)

)
, (6.36)

where ÃµQ1(p, X) + ÃµQ2(p, X) is nothing but eq. (5.21) with m = 0, and

ÃµQ3(p, X) = π1/2τc
2p0

Sµν(n)〈E
a
νE

a
β〉p̂β

(
1− p0∂p0

)
∂p0feq(p0)

∣∣∣
p0=|p|

(6.37)

13Similar to finding the local-equilibrium distribution functions in CKT [23], such a frame choice is made
and the distribution function in an arbitrary frame can be derived from the modified frame transformation.
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by similarly assuming Φ(δX0) = e−δX
2
0/τ

2
c and working in the fluid-rest frame. When

dropping the subleading correlation function of two color electric fields, the non-dynamical
source term for spin polarization of massless quarks matches the one of massive quarks by
simply taking m = 0.

One can analogously evaluate the axial charge current for finite τc, which reads

Jµ5 (X) = −2~
∫

d4p

(2π)3
δ(p2)

2

∫ p

k,X′
〈Baρ(X)Eaρ (X ′)〉βuµfeq(p · u)(1− feq(p · u))

= 2~
∫

d4p

(2π)3
δ(p2)
4p · u

√
πτc〈Ea ·Ba〉uµ∂p·ufeq(p · u) (6.38)

and agrees with the result for massive fermions by taking m = 0 and hence ∂ · J5 = 0. In
the limit for τc →∞, following the previous calculations for massive fermions and taking
〈Baρ(X)Eaρ (X ′)〉 = 〈Ba · Ea〉, it turns out that

∂µJ
µ
5 (X) = − ~

4π2 〈B
a · Ea〉, (6.39)

which corresponds to the non-Abelian axial anomaly as expected.

7 Summary and discussions

Here we briefly summarize the primary findings. We have derived the AKE containing
a classical spin diffusion term and a source term from quantum corrections that could
possibly trigger spin polarization for massive quarks (with mass greater than the gradient
scales) as shown in eq. (4.10). A similar equation for massless quarks is also derived in
eq. (6.26). On the other hand, there also exist explicit quantum corrections in Wigner
functions, which severe as the additional source terms to generate spin polarization shown
in eqs. (4.17) and (6.34) for massive and massless quarks, respectively. Given postulated
color-field correlators based on spacetime translational invariance and spatial homogeneity,
the parity-odd correlators of color fields, depending on their time difference can dominantly
generate nonzero spin polarization as shown in eq. (5.22) for massive fermions near thermal
equilibrium. Such a contribution further results in a nonzero axial charge current or more
precisely the axial charge density in the fluid rest frame. This constant axial charge current
also gives the vanishing axial Ward identity with finite correlation time of the color-field
correlators. However, in the constant-field limit with infinite correlation time, the nonzero
axial Ward identity associated with the pseudo-scalar condensate at finite temperature is
acquired as shown in eq. (5.36). For massless fermions, a particular frame choice leads to
the vanishing dynamical source term in AKE, while there exists a similar non-dynamical
source term for spin polarization in the Wigner function. Note that the choice of a frame
is simply for the technical reason, which does not affect the physical observables in the
end. The axial Ward identity reduces to the expected axial anomaly as manifested by
eq. (6.39) in the constant-field limit as anticipated. In order to make a smooth connection
between the results of the massive and massless quarks, it is necessary to further work out
the AKT of massive quarks in a proper frame for arbitrary mass such as nµ = uµ for f sV
near equilibrium.
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In phenomenology, as proposed in ref. [94], such spin polarization of quarks engendered
by color-field correlators could potentially affect the spin alignment of vector mesons observed
in heavy ion collisions [49, 50] as an unsettled question in theory (see refs. [109–112] for
other theoretical explanations). In order to make direct comparisons with experimental
data, it is necessary to incorporate the color-field correlators from real-time simulations
with prescribed initial conditions. According to the approximations adopted in ref. [94] and
this work, the parity-odd correlator between a chromo-magnetic field and a chromo-electric
field is essential to generate spin polarization for massive quarks. However, due to the
event-by-event fluctuations of the sign for such a correlator, the anomalous spin polarization
by turbulent color fields may contribute to spin alignment of vector mesons, coming from
the product of spin polarization for a quark and for an anti-quark, without affecting the
spin polarization of Lambda hyperons. Further studies on simulations or more practical
estimation of color-field correlators and the generalization of present QKT with source
terms to arbitrary quark mass will be needed.
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A Details of integration

In this appendix, we will consider the relevant integral of an arbitrary function G̃(p,X,X ′) =
G(p,X, δX). For brevity, we will simply denote G(p,X, δX) = G(X, δX), while the p
dependence has to be taken into account in the end. We now consider the integral

Ik,X′ ≡
∫
d4k

∫
d4X ′

(2π)4
eik·(X

′−X)

p · k
G̃(X,X ′) =

∫
d4k

∫
d4δX

(2π)4
e−ik·δX

p · k
G(X, δX), (A.1)

where δX ≡ X −X ′. Assigning pµ = (p0, 0, 0, pz), it is found

Ik,X′ =
∫
d4δX

(2π)2

∫
dk0dkz

e−ik0δX0+ikzδXz

p0k0 − pzkz
δ2(δXT)G(X, δX)

=
∫
d4δX

(2π)2

∫
dkzdk̃0

e
−ik̃0δX0−i pzkzp0

δX0+ikzδXz

p0k̃0
δ2(δXT)G(X, δX)

= −iπ
∫
d4δX

(2π) δ
(
pz
p0
δX0 − δXz

) sgn(δX0)
p0

δ2(δXT)G(X, δX), (A.2)

where δXT are the transverse components of δXµ with respect to pµ, k̃0 = k0 − pzkz/p0,
and we have utilized the Fourier transform∫ ∞

−∞
dxe−ikx/x = −iπsgn(k). (A.3)
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Integrating over δXT and δXz, one finally obtains

Ik,X′ = − i

2p0

∫
dδX0

[
sgn(δX0)G(X, δX)

]
δXT=0,δXz=pzδX0/p0

. (A.4)

It turns out that Ik,X′ is non-vanishing only when G(X, δX) is an odd function of δX0 or
of δXz.

On the contrary, we shall consider the integral

I+
k,X′ ≡ lim

ε→0

∫
d4k

∫
d4δX

(2π)4
e−ik·δX

p · k + iε
G(X, δX), (A.5)

where ε > 0. By employing the decomposition,

1
p · k + iε

= p · k
(p · k)2 + ε2

− iε

(p · k)2 + ε2
, (A.6)

we may also decompose I+
k,X′ into

I+
k,X′ = I

+(1)
k,X′ + I

+(2)
k,X′ , (A.7)

where
I

+(1)
k,X′ = lim

ε→0

∫
d4k

∫
d4δX

(2π)4
p · ke−ik·δX

(p · k)2 + ε2
G(X, δX) (A.8)

and
I

+(2)
k,X′ = lim

ε→0

∫
d4k

∫
d4δX

(2π)4
−iεe−ik·δX

(p · k)2 + ε2
G(X, δX). (A.9)

Using
lim
ε→0

ε

x2 + ε2
= πδ(x), (A.10)

one immediately finds

I
+(2)
k,X′ = −iπ

∫
d4k

∫
d4δX

(2π)4 δ(p · k)e−ik·δXG(X, δX). (A.11)

To evaluate I+(1)
k,X′ , we assign pµ = (p0, 0, 0, pz) and hence

I
+(1)
k,X′ = lim

ε→0

∫
dk0dkz

∫
dδX0dδXz

(2π)2
(p0k0 − pzkz)e−ik0δX0+ikzδXz

(p0k0 − pzkz)2 + ε2
G(X, δX)|δXx,y=0,

(A.12)
where we have integrated over kx,y and then δXx,y. We then first take the limit of the
integrand,

lim
ε→0

(p0k0 − pzkz)e−ik0δX0+ikzδXz

(p0k0 − pzkz)2 + ε2
= e−ik0δX0+ikzδXz

(p0k0 − pzkz)
(A.13)

and subsequently integrate over k0 by using∫ ∞
−∞

dke−ikx/(k + a) = −iπsgn(x)eika. (A.14)
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It is found

I
+(1)
k,X′ = −iπ

∫
dkz

∫
dδX0dδXz

(2π)2
sgn(δX0)

p0
eikz(δXz−δX0pz/p0)G(X, δX)|δXx,y=0

= −iπ
∫
dδX0dδXz

(2π)
sgn(δX0)

p0
δ
(
δXz − δX0pz/p0

)
G(X, δX)|δXx,y=0

= − i

2p0

∫
dδX0

[
sgn(δX0)G(X, δX)

]
δXx,y=0,δXz=pzδXz/p0

, (A.15)

which agrees with eq. (A.4). Similarly, from eq. (A.11), one can also obtain

I
+(2)
k,X′ = − i

2p0

∫
dδX0G(X, δX)|δXx,y=0,δXz=pzδX0/p0 , (A.16)

and hence

I+
k,X′ = − i

2p0

∫
dδX0

(
1 + sgn(δX0)

)
G(X, δX)|δXx,y=0,δXz=pzδX0/p0 . (A.17)

Eventually, the principle value part of 1/(p·k+iε) should still contribute to the integral I+
k,X′ .

Nevertheless, when G(X, δX) is an even function of δX0,z, only I+(2)
k,X′ yields a non-vanishing

result. The conclusion is then consistent with the finding in ref. [91].
Recall that G(X, δX) = G(p,X, δX). Given

I+
k,X′ = −i

∫ p

k,X′
G(X, δX) = − i

2p0

∫
dδX0

(
1 + sgn(δX0)

)
G(X, δX)|δXc , (A.18)

where δXc ≡ {δXx,y = 0, δXz = pzδX0/p0}, it is found

∂pκI
+
k,X′ = −δ

0
κ

p0
I+
k,X′ −

i

2p0

∫
dδX0

(
1 + sgn(δX0)

)
∂pκ
(
G(X, δX)|δXc

)
. (A.19)

Using the chain rule,

∂pκ
(
G(X, δX)|δXc

)
=
(
∂pκG(X, δX)

)
δXc

+
(
∂δXzG(X, δX)

)
δXc

δX0∂pκ(pz/p0), (A.20)

one finds another useful relation,

∂pκ

∫ p

k,X′
G(X, δX) = −δ

0
κ

p0

∫ p

k,X′
G(X, δX) +

∫ p

k,X′
∂pκG(X, δX)

+
∫ p

k,X′
δX0

∂G(X, δX)
∂δXµ

⊥
∂pκ

(
pµ⊥
p0

)
(A.21)

for the off-shell integral. When imposing the on-shell condition first, an analogous relation
reads

∂pκ

(∫ p

k,X′
G(X, δX)

)
p0=εp

= −p⊥κ
ε2p

∫ p

k,X′
G(X, δX)p0=εp +

∫ p

k,X′
∂p⊥κG(X, δX)p0=εp

+
∫ p

k,X′
δX0

(
∂G(X, δX)
∂δXµ

⊥

)
p0=εp

∂p⊥κ

(
pµ⊥
εp

)
, (A.22)

where
∫ p
k,X′ =

∫ p
k,X′

∣∣
p0=εp .
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