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Abstract In this work, we further study a metric modified
theory of gravity which contains a non-minimal coupling
to matter, more precisely, we assume two functions of the
scalar curvature, f1 and f2, where the first one generalises
the Hilbert–Einstein action, while the second couples to the
matter Lagrangian. On the one hand, assuming a ΛCDM
background, we calculate analytical solutions for the func-
tions f1 and f2. We consider two setups: on the first one, we
fix f2 and compute f1 and on the second one, we fix f1 and
compute f2. Moreover, we do the analysis for two different
energy density contents, a matter dominated universe and a
general perfect fluid with a constant equation of state fuelling
the universe expansion. On the other hand, we complete our
study by performing a cosmographic analysis for f1 and f2.
We conclude that the gravitational coupling to matter can
drive the accelerated expansion of the universe.

1 Introduction

During the last decades modified theories of gravity have
gathered a lot of attention due to their potential to explain
certain cosmological phenomena [1–7]. These models arise
as an alternative to General Relativity (GR) to explain the
different events which occur throughout the whole evolu-
tion of the universe, from the primordial inflationary era to
the recent speed up of the universe. For example, Starobinsky
inflationary model [8] seats at the sweet spot ofPlanck obser-
vations [9]. In addition, in what refers to the theory behind
the late-time acceleration of the universe [10–12], there is no
consensus on a definitive candidate, however, modified theo-
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ries of gravity offer a big plethora of possibilities to describe
the recent speed up of the universe.

The simplest approach to describe a modified gravity the-
ory is within the framework of f (R) metric gravity, which
consists on generalising Hilbert–Einstein action to a general
function of the scalar curvature, R [2–4]. If, in addition, we
consider a coupling, though small, between the gravitational
sector and matter, we would be considering what is known as
f (R) non-minimally coupled theories, first proposed in [13].
Those theories have gathered quite some attention since some
years ago to describe different cosmological events. For a
non-exhaustive but representative variety of publications on
the topic please see [14–25]. More precisely, in [14], gravi-
tational baryogenesis is analysed finding compatible results
with observations whereas in [15] some inflationary scenar-
ios are studied and examples of observational predictions
are given for some of the most common potentials in order
to set limits on the scale of the non-minimal coupling. In
[16], the degeneracy of Lagrangian densities for a perfect
fluid is discussed. On the one hand, one of the motivations
of analysing this kind of models is their ability to answer for
the dark matter effects which are observed in our universe.
In [17], it is shown that with non-minimally coupled f (R)

theories it is possible to mimic known dark matter density
profiles through a specific power-law coupling. In [18] it is
shown how these theories can give rise to an additional con-
tribution to the field equations, as compared with GR, that
can play the role of dark matter. More recently in [19], ana-
lytical solutions to the modified field equations are derived
and, besides, constraints on the parameters of the model are
obtained by comparing their predicted profiles for visible and
dark matter with known ones. On the other hand, it is still
an unanswered question which gravitational theory could be
behind the late-time acceleration of the universe, within this
scope, f (R) non-minimally coupled theories have been also
studied as possible candidates for this accelerated behaviour

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09004-z&domain=pdf
mailto:maria.ortiz@ehu.eus
mailto:mariam.bouhmadi@ehu.eus
mailto:ruth.lazkoz@ehu.eus
mailto:vincenzo.salzano@usz.edu.pl


237 Page 2 of 10 Eur. Phys. J. C (2021) 81 :237

as observed nowadays [20–22]. In [23] the authors study
the evolution of the cosmological perturbations within this
kind of theories and an analysis of the large-scale structures
formed is carried. Matter density perturbations are also stud-
ied in [24], where some constraints on a specific model are
setted using the age of the oldest star clusters and primordial
nucleosynthesis bounds. Finally, in [25] it has been recently
performed a gravitational waves analysis within these mod-
els.

In our work, we farther analyse f (R) non-minimally cou-
pled theories as a mean to successfully describe the late-time
acceleration of the universe. We firstly construct two setups
within the framework of [13] which mimic a ΛCDM uni-
verse. The action describing this theory is described by two
functions, f1(R) and f2(R), the first one will play the role
of a typical f (R) metric theory and the second one is non-
minimally coupled to matter through a small coupling con-
stant, λ. In the first setup, we fix f2(R) = R and compute
f1(R) analytically, in the second one we reverse the roles,
i.e. we fix f1(R) = R−2κ2Λ and find an analytical solution
for f2(R). Besides, we analyse each setup for two different
energy-density contents and obtain the corresponding physi-
cal solutions analytically. Secondly, in order to get an order of
magnitude of the parameters of the model for the two setups
considered, we perform a cosmographic approach and we
map it to the current observational values fitting ΛCDM [9].
Moreover, we analyse in detail the physical meaning of the
coupling parameter, λ, which, as we will see later, can be
interpreted as a parameter intimately related to the late-time
speed up of the universe.

The paper is organised as follows: In Sect. 2 we review
f (R) non-minimally coupled theories; in Sect. 3 we calcu-
late the analytical solutions for our theory in the two selected
setups; in Sect. 4 we perform a cosmographic analysis includ-
ing a study of the effects of the coupling constant on the value
of the cosmographic quantities and in Sect. 5, we sum up the
obtained results.

2 Non-minimally coupled f (R)

We consider a model which includes a non-minimal coupling
between geometry and matter. The action reads [13]

S =
∫ [

f1(R)

2κ2 + (1 + λ f2(R))L
] √−g d4x, (1)

where fi (R) (i = 1, 2) are arbitrary functions of the Ricci
scalar R, g is the determinant of the metric gμν , κ2 = 8πG,
λ is a coupling constant with length square units and L is the
matter Lagrangian density.

2.1 Field equations

From the variation of the action (1) with respect to the metric
one gets the modified Einstein’s equations [13]

F1Rμν − 1

2
f1gμν − (∇μ∇ν − gμν�

)
F1

= −2λκ2F2LRμν + 2λκ2 (∇μ∇ν − gμν�
)LF2

+(1 + λ f2)κ
2Tμν, (2)

where Fi (R) ≡ d fi (R)
dR (i = 1, 2), � = gμν∇μ∇ν , Tμν is

the energy momentum tensor and Rμν is the Ricci tensor.
Taking the covariant derivative of Eq. (2) one can deduce
the following modified conservation equation for the energy
momentum tensor [13]

∇μTμν = λF2

1 + λ f2
[gμνL − Tμν]∇μR. (3)

2.2 Dynamics of a homogeneous and isotropic Universe

Considering a perfect fluid in a spatially flat FLRW scenario

ds2 = −dt2 + a(t)2
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (4)

one can check if the energy momentum tensor is conserved
or not by taking the μ = 0 component of Eq. (3) (c.f. [20])

ρ̇ + 3H(P + ρ) = λF2

1 + λ f2
[−L − ρ]Ṙ, (5)

where · ≡ d/dt , ρ is the matter density, P is the pressure
and H = ȧ/a. From here, we note that if L = −ρ, ρ̇ is
conserved. We will assume this is the case from now on.

As we are interested in computing the dynamics of our
model, we take the t t component of Eq. (2) in order to obtain
the Friedmann equation [20]

3H2 = κ̃2(ρ + ρ f1 + ρ f2), (6)

where

κ̃2 ≡ κ2(1 + λ f2)

F1 + 2λκ2LF2
, (7)

ρ f1 ≡ −6H∂t F1 + F1R − f1
2κ2(1 + λ f2)

, (8)

ρ f2 ≡ −6Hλ∂t (LF2) + λLF2R

1 + λ f2
. (9)

The theory reduces to GR for f1 = R − 2Λκ2 and a van-
ishing f2, while for a vanishing f2 we recover the standard
metric f (R) theory. Here we have a second order differen-
tial equation on f1 and f2. We want to solve this equation
analytically, if possible. Our procedure will consist on fixing
a simple f1 ( f2) and solving for f2 ( f1).
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3 A ΛCDM geometry within non-minimally coupled
f (R) gravity

We are interested in solving Eq. (6) analytically. In order to do
this we consider reasonable to assume a ΛCDM expansion,
as in [26], i.e.

H2 = κ2

3

(ρ0

a3 + Λ
)

. (10)

Therefore, the scalar curvature reads

R = κ2
(ρ0

a3 + 4Λ
)

. (11)

Consequently,

a =
(

ρ0

R/κ2 − 4Λ

)1/3

, (12)

and

3H2 = R − 3κ2Λ. (13)

As we have two undetermined functions the way we are going
to proceed is to specify one of them and solve for the other
one. We are going to study the two simplest cases which seem
interesting to us:

– Set f2 = R and find f1.
– Set f1 = R − 2Λκ2 and find f2.

We also take L = −ρ, so the energy-momentum tensor is
conserved (see Eq. (3)), as already stated above. In addition,
in this work, we will study two different cases of fluids: dust
and a general perfect fluid.

3.1 Finding f1 with f2 = R

Inserting Eqs. (11)–(13) in Eq. (6) and letting f1 as an unde-
termined function of R and f2 = R one obtains

a2(R) f ′′
1 + a1(R) f ′

1 + a0 f1 = κ2

3
(ρ + ρλ) , (14)

where the prime stands for the derivative with respect to R
and

a2(R) ≡ −
(
R − 3κ2Λ

) (
R − 4κ2Λ

)
, (15)

a1(R) ≡
(
R

6
− κ2Λ

)
, (16)

a0 ≡ 1

6
, (17)

ρλ ≡ 2λ(R − 3κ2Λ)

(
3
dρ

dR
(R − 4κ2Λ) + ρ

)
. (18)

The first step is to find the homogeneous solution of the dif-
ferential equation (14). We can see that the homogeneous part
fo Eq. (14) is an hypergeometric differential equation and,

in fact, it coincides with the differential equation obtained in
minimal f (R) gravity, which has been already computed in
the literature. In [26] it was wrongly stated that there cannot
be any real valued function of Ricci scalar that can mimic a
ΛCDM expansion for a vacuum universe but one can see the
alternative approach in [27], where an exhaustive analysis of
the solutions is performed. Just notice that these solutions
are given in terms of hypergeometric functions, so the con-
vergence and integral representation of these functions in the
physically possible regions must be adequately studied. In
our case we are interested in the late-universe Cosmology,
and the solution can be written as [28]

f1 = c0

(
Λ

R − 4Λ

)p+−1

×2F1

(
q+, p+ − 1; r+;− −Λ

R − 4Λ

)
, (19)

where c0, p+, q+ and r+ are real constants and c0 ≡ −ω̄1,
according to the notation in [27]. The fact of having just one
independent solution with the integration constant c0 is due to
the divergence that appears in the other linearly independent
solution when R → ∞. To avoid this troublesome issue,
we set to zero the other integration constant. See [27] for
more details. As we can notice, the terms including ρ are
exclusively on the right hand side of the differential equation
(14), so the homogeneous solution is the same no matter the
chosen content but the particular solution will change. We
have calculated the particular solution for the two different
cases stated above: dust and a general perfect fluid with a
constant equation of state (EoS).

3.1.1 Dust: ρ = ρm

The first scenario we consider is a universe which contains
just ordinary baryionic matter and cold dark matter. In this
case the matter density can be written as

ρ = R

k2 − 4Λ. (20)

Inserting this into Eq. (14) one gets

a2(R) f ′′
1 + a1(R) f ′

1 + a0 f1

= 4

3
λa2(R) + 1

3

(
R − 4κ2Λ

)
. (21)

One can compute a particular solution by proposing a sec-
ond order polynomial on R. Then one finds

f1 = 2Λκ2
(

4κ2Λλ − 1
)

+
(

1 − 4κ2Λλ
)
R + 8

9
λR2. (22)

If λ = 0, we recover GR: f1 = R−2Λκ2. We see that by con-
sidering a vanishing cosmological constant Λ and a constant
coupling the matter and the curvature term induces in this
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case a particular solution f1 which is similar to Starobinsky
inflationary model [8], eventhough this latter scenario refers
to the early universe. In this particular case λ is proportional
to the square of the scalaron mass.

3.1.2 Perfect fluid with constant EoS: ρ = ρw

Now we consider that the geometry still corresponds to a
ΛCDM universe but filled with a perfect fluid with constant
EoS w; i.e. its energy density reads:

ρ = ρ0

a3(1+w)
. (23)

Therefore, by recalling Eq. (12), we obtain

ρ = ρ0

(
ρ0

R
κ2 − 4Λ

)−(1+w)

. (24)

Then, the Friedmann equation reads

a2(R) f ′′
1 + a1(R) f ′

1 + a0 f1

= −1

3
ρ−w

0 a2(R)(R/κ2 − 4Λ)w

×
(

1

R − 3κ2Λ
+ 2λ − 6(1 + w)λ

)
. (25)

If w = 0, we recover Eq. (21). We have not been able to
find a particular solution for a general w so we will consider
w = −1/3 as an example. This case is interesting as it lies at
the boundary of the set of matter fields that obey the strong
energy condition. In GR such fluids give rise to a Milne Uni-
verse which is a coasting universe, and the Ricci scalar is
proportional to the square of the Hubble parameter. For this
specific EoS one gets

f1 = a
(
R/κ2 − 4Λ

)2/3

+ b
(
R − 3κ2Λ

) (
R/κ2 − 4Λ

)2/3
, (26)

where

a ≡ κ2 3
√

ρ0

3

(
3κ2λΛ + 2

)
,

b ≡ κ2λ 3
√

ρ0.

Here we can check that by making λ = 0 one recovers the
prefect fluid solution in minimally coupled f (R) theories
given in [26].

Finally, due to the linearity of the differential equation
(25), as the coefficients ai do not depend on the fluid, it is easy
to see that the particular solution for a universe containing
both dust and a perfect fluid with EoS w = −1/3 is the sum
of the previous particular solutions, i.e. Eqs. (22) and (26).

3.2 Finding f2 with f1 = R − 2κ2Λ

In this case we fix f1 and let f2 as an undetermined function.
We have to solve the following differential equation

6λ
[

ρa2(R) f ′′
2 −

(
ρa1(R) − a2(R)

dρ

dR

)
f ′
2 − a0ρ f2

]

= ρ + Λ − R − 3κ2Λ

κ2 . (27)

Let us notice that if λ = 0, one obtains that the content of
the universe can just be dust

ρ = R

κ2 − 4Λ. (28)

This is consistent with Eq. (10), as we are assuming a ΛCDM
background. Let us note that in this case ρ cannot be collected
as a simple inhomogeneous term in the differential equation
(27). Then, in this case, both the homogeneous and particular
solutions will be affected by the choice of ρ. We will solve
this equation for dust and for a perfect fluid with a constant
EoS.

3.2.1 Dust: ρ = ρm

The former differential equation (27) for a universe filled
with baryonic matter and cold dark matter reads

6λ
(
R − 4κ2Λ

)

×
(
a2(R) f ′′

2 +
(

5

6
R − 2κ2Λ

)
f ′
2 − a0 f2

)
= 0. (29)

As we can notice, the right hand side will be always zero no
matter the coupling constant one chooses. Assuming λ �= 0
we note that we have an homogeneous differential equation
with the following analytical solutions:

f2 = c1
3
√
R − 4κ2Λ

+ 6

5
c2

√
R − 3κ2Λ

+9

5
c2

√
R − 3κ2Λ 2F1

(
5

6
, 1; 4

3
; 4 − R

κ2Λ

)
, (30)

where c1 and c2 are integration constants and can be fixed
by setting initial conditions on f2 and f ′

2. The integral rep-
resentation of the hypergometric function is well defined in
the range 4κ2Λ ≤ R < ∞ [28], and as we are interested in
the physical range, that is, R ≥ 4κ2Λ, this term is perfectly
defined. One should have special care with the c1 term, as
in the limit R → 4κ2Λ one would have zero at the denom-
inator. However, given that this term appears in the action
multiplied by the Lagrangian, it can be proven that the grav-
itational action is finite. Our solution is therefore perfectly
defined.
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3.2.2 Perfect fluid with constant EoS: ρ = ρw

Now the equation which has to be solved is

6λ
[
a2(R) f ′′

2 +
[
a1(R) − (w + 1)

(
R − 3κ2Λ

)]
f ′
2

+a0 f2] = −1 +
(

ρ0
R
κ2 − 4Λ

)w

. (31)

If w = 0, one recovers, of course, the differential equation
for a dust dominated universe, Eq. (29). If λ = 0, one gets
ρ0 = R/κ2 − 4Λ, so this would be the only solution fixing
f1 = R − 2Λκ2. Firstly, let us take a closer look at the
homogeneous equation

λ
[
a2(R) f ′′

2 +
(
a1(R) − (w + 1)

(
R − 3κ2Λ

) )
f ′
2 (32)

+a0 f2] = 0. (33)

As the right hand side does not depend on the coupling con-
stant, the specific election of λ will not affect the homoge-
neous solution. Assuming λ �= 0 and performing the change
of variable

x = R

k2Λ
− 3, (34)

we can rewrite the previous equation as follows:

(1 − x)x f ′′
2 +

[
1

6
(x − 3) − (w + 1)x

]
f ′
2 + f2

6
= 0. (35)

We have found a solution which is valid for any value of w

which is given by:

f2,h = C1 2F1

(
a1, b1, c1; R

κ2Λ
− 3

)

+C2

(
R

κ2Λ
− 3

)7/6

2
F1

(
a2, b2, c2; R

κ2Λ
− 3

)
,

(36)

with

a1 = w1 − w̃, (37)

b1 = w1 + w̃, (38)

c1 = −1

6
, (39)

a2 = w2 − w̃, (40)

b2 = w2 + w̃, (41)

c2 = 13

6
. (42)

where we have defined w1 ≡ − 1
12 + w

2 , w2 ≡ 13
12 + w

2 and

w̃ ≡ 1
12

√
25 − 12w + 36w2. Here we are giving the solution

around the point R = 3k2Λ. As we stressed before, we are
interested only in the physical region, that is, R ≥ 4κ2Λ, and
in this region the variable x defined in Eq. (34), goes from 1 to

Fig. 1 A numerical solution of Eq. (31) for w = −1/3 and λ = 10−5.
We have set the initial conditions as λ f2(x = 1.5) = 1 and λ f ′

2(x =
1.5) = 10−1. The solution covers the range from the present till z =
8.92; i.e x = 450. The vertical axis is the coupling λ f2 while the
horizontal axis is x = R

κ2Λ
− 3

∞. The condition for a well-defined integral representation
in our case would apply to the region (−∞, 1) [28]. In order
to have our solution defined within those limits, we change
the variable to 1−x , as it is set in [28]. Rewriting the solution
Eq. (36), we have:

f2,h = C1 2F1

(
a1, b1, 1 + a1 + b1 − c1; 4 − R

κ2Λ

)

+C2

(
4 − R

κ2Λ

)−w

2F1

(
c2 − a2, c2 − b2, 1 + c2 − a2 − b2; 4 − R

κ2Λ

)
.

(43)

The following step would be to find an analytical particular
solution. In order to find a particular solution one would have
to solve Eq. (31). The problem is that it is not straight for-
ward to find an analytical solution for this equation, not even
for a specific w, however one can always find it by solving
it numerically. In Fig. 1 we show a numerical example of
the total solution of Eq. (31). We have set w = −1/3 and
λ = 10−5. Besides, we have chosen small positive values for
the initial conditions of f2 and f ′

2 so that the coupling does
not take too large values and does not change its sign. The
example we present here is valid for the range which goes
from today until z � 9.

4 Cosmography within non-minimally coupled f (R)

gravity

In this section, we apply the cosmographic approach described
in [29–36] and adapt it to non-minimally coupled f (R) grav-
ity. In order to reduce the arbitrariness and complete our
study we have considered the same two scenarios discussed
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before. In the first one, we set f2(R) = R so we can rename
f ≡ f1 for simplicity. In the second one, we will consider
f1(R) = R − 2κ2Λ renaming f ≡ f2 when doing the com-
putations. We will consider that the universe is filled by dust.
The procedure we will follow is the one described, for exam-
ple, in [36], where firstly one has to write the scalar curvature
and derivatives in terms of the cosmographic parameters:

R = 6H2(1 − q), (44)

Ṙ = 6H3( j − q − 2), (45)

R̈ = 6H4(s + q2 + 8q + 6), (46)
...
R = 6H5(l − s − 2(q + 4) j − 6(3q + 8)q − 24). (47)

4.1 Fixing f1 for f2 = R

The first step is to use the modified Friedman Eq. (6) and Ray-
chaudhury equations to obtain expressions for f and fRRR .
We obtain the Raychaudhury equation by taking the deriva-
tive of the Friedmann equation, Eq. (6) and the generalised
conservation equation 5. We rewrite Friedmann and Ray-
chadhury equations as follows:

f = κ22ρ + (R − 6H2) fR − 6H Ṙ fRR

−24H2λκ2ρ, (48)

fRRR = − 1

Ṙ2

[
κ2ρ + 2Ḣ fR + (R̈ − H Ṙ) fRR

+ λκ2ρ(8Ḣ − 12H2)
]
. (49)

Differentiating the Raychaudhury equation with respect to
the cosmic time, we obtain the third equation that we need:

Ḧ = κ2

2

[
3H + Ṙ

fRR
fR

]
ρ

fR
−

...
R − Ḣ Ṙ − H R̈

2

fRR
fR

+ R̈ Ṙ − H Ṙ2

2

(
fRR
fR

)2

−3R̈ Ṙ − H Ṙ2

2

fRRR
fR

+ Ṙ3

2

fRRR fRR
f 2
R

− Ṙ3

2

fRRRR
fR

− λκ2ρ

2 fR

(
g1(t) + fRR

fR
g2(t)

)
, (50)

where

g1(t) = 36H3 − 48H Ḣ + 8Ḧ , (51)

g2(t) = 12H2 Ṙ − 8Ḣ Ṙ. (52)

Since at present we expect f (R) to not deviate too much from
GR, we can approximate our theory by its Taylor expansion
around R0 up to second order1, being R0 the present value
of the scalar curvature:

1 Although in reference [36], the authors carried the analysis up to third
order, we carry here the expansion only up to O(R − R0)

3. This way
we do not need to fix fR = 1.

f (R) � f (R0) + fR(R0)(R − R0)

+ fRR(R0)

2
(R − R0)

2 + O(R − R0)
3. (53)

Then, we can ignore the terms containing fRRR and fRRRR in
Eq. (50). Now we have three equations and we can express f ,
fR and fRR in terms of the cosmographic parameters using
Eqs. (44)–(47) and

Ḣ = −H2(1 + q), (54)

Ḧ = H3( j + 3q + 2), (55)

which come from the basic formulas of cosmography. Please
note that from now on, Ωm and all the cosmographic param-
eters refers to quantities evaluated today. The cosmographic
adimensional quantities we compute are given by

f (R0)

6H2
0

= A0Ωm + λH2
0 ΩmC0

D
, (56)

fR(R0) = A1Ωm + λH2
0 ΩmC1

D
, (57)

fRR(R0)

(6H2
0 )−1

= A2Ωm + λH2
0 ΩmC2

D
, (58)

where the explicit expression of the coefficients Ai ,Ci with
i = 1, 2, 3 and D are shown in the Appendix.

We can get an order of magnitude of the cosmographic
parameters by computing them for a given dark energy phe-
nomenological parameterisation. The best and simplest one
is the ΛCDM model [30],

j = 1, (59)

q = 3Ωm

2
− 1, (60)

s = 1 − 9Ωm

2
. (61)

Afterwards, we took the latestPlanck results [37] to compute
the cosmographic parameters choosing a specific value for2

λ :

Ωm = 0.315,

q = −0.540,

j = 1,

s = −0.379,

λH2
0 = 1

1015
. (62)

One obtains:

f (R0)

6H2
0

= 0.84675 (63)

2 Despite not having quantitative information about the order of mag-
nitude of the coupling parameter, we estimate it to be sufficiently small
so that it does not produce a drastic deviation from Einstein-Hilbert
action.
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fR(R0) = 1, (64)
fRR(R0)

(6H2
0 )−1

= 3.98651 · 10−15. (65)

It can be shown that if the model is close enough to ΛCDM,
then f and fR are decreasing functions of λ. We have
assumed the latest Planck data [37]. Likewise, it can be
shown that fRR is an increasing function of λ. Consequently,
and under the assumption f2(R) = R, this result can be inter-
preted as follows: the larger is the non-minimal coupling in
the action Eq. (1), the smaller is the pure gravitational part;
i.e. f1(R).

4.2 Fixing f2 for f1 = R − 2κ2Λ

Following a procedure similar to the one used previously, i.e.
starting from the Friedmann equation and getting the Ray-
chaudhury equation, we obtain

κ2λρ f = κ2λρ(12H2 + R) fR

−6κλρH Ṙ fRR + 3H2 − κ2Λ − κ2ρ, (66)

2κ2λρ Ṙ2 fRRR = κ2ρ(1 + f λ) + κ2λρ
(

2Ḣ − 24H2
)
fR

+κ2λρ(14H R̈ − 2R̈) fRR + 2Ḣ . (67)

One can note that if one sets λ = 0, one gets 3H2 = κ2(ρ +
Λ) from the Friedmann equation and 2Ḣ = −κ2ρ from the
Raychaudhury equation. This is completely consistent with
the background we are considering (please c.f. Eq. (10)).

We obtain a third equation deriving the Raychaudhury
equation with respect to the cosmic time,

−6
(
H Ḧ + Ḣ2

)
= 3κ2ρ(Ḣ − 3H2)

+κ2λρ
[ (

−9H2 + 3Ḣ
)
f

+
(

216H4 − 162H2 Ḣ + 24H Ḧ + 6Ḣ2
)
fR

+
(
−198H3 Ṙ + 60H2 R̈ + 66H Ḣ Ṙ − 6H

...
R

−6Ḣ R̈ + Ṙ(Ṙ − 6Ḧ)
)
fRR

+
(

60H2 Ṙ2 − 18H Ṙ R̈ − 6Ḣ Ṙ2
)
fRRR

−6Ṙ3H fRRRR
]
. (68)

As explained before, we can ignore the terms containing
fRRRR and fRRR . Using an approach analogous to the one in
Sect. 4.1, we can express f , fR and fRR in terms of the cos-
mographic parameters considering baryonic and dark matter
as the only density content. Again, note that from now on,
Ωm and all the cosmographic parameters refers to quantities
evaluated at present. Similarly to what we did in the previous
subsection, we compute the following adimensional quanti-
ties:

Fig. 2 Here the adimensional quantities given in Eqs. (69)–(71) are
represented as a function of ΩΛ

λΩm f (R0) =
A0Ωm + B0 + C0

κ2Λ

H2
0

3D
, (69)

λΩm
fR(R0)

(6H2
0 )−1

=
A1Ωm + B1 + C1

κ2Λ

H2
0

D
, (70)

λΩm
fRR(R0)

(6H2
0 )−2

=
A2Ωm + B2 + C2

κ2Λ

H2
0

D
, (71)

where the values of the coefficients appear explicitly in the
Appendix.

Computing the parameters for a ΛCDM model, one gets

λΩm f (R0) = 0, (72)

λΩm
fR(R0)

(6H2
0 )−1

= 0, (73)

λΩm
fRR(R0)

(6H2
0 )−2

= 0. (74)

This result is completely consistent with our model. Having
a very carefull look at Eq. (66) one can see that the only
way to have a ΛCDM background is when λ is exactly zero.
Nevertheless, we are interested in having a small non-null
coupling constant. This means that we have to relax the con-
dition ΩΛ = 1 − Ωm and leave ΩΛ unfixed. The value of
the coupling constant would affect the value of the density of
the cosmological constant. In order to see it qualitatively we
draw Fig. 2. It is straight forward to notice that in the limit
λ → 0, the value of ΩΛ tends to exactly 1−Ωm . Something
interesting that one can also observe is that the larger is the
coupling constant λ, the smaller is the dark energy density
ΩΛ. This is a very desirable feature, as one of the motivations
of introducing a coupling to matter is that such a coupling
could alleviate the dark energy puzzle.
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5 Results

In this work, we have considered a modified gravity model
characterised by having a non-minimal coupling to matter.
A good representative of this kind of models was first pro-
posed in [13] and it corresponds to a metric gravity extension
of the well known f (R) gravity. Within this framework, we
have two functions: f1(R), uncoupled to matter and gener-
alising Hilbert-Einstein action, and f2(R), which takes into
account the coupling of gravity to matter (see Eq. (1)). Our
main interest resides on getting exact analytical solutions for
this theory in the context of the late-time Cosmology. For
this purpose, we have selected two simple and physically
meaningful scenarios; i.e. we have obtained two f (R) non-
minimally coupled models that mimic a ΛCDM setup.

For the first case, we have chosen f2(R) = R, i.e. a small
coupling of gravity to matter. Then, f1(R) has to satisfy Eq.
(14). Solving this equation, we have obtained a physically
meaningful solution which exactly mimics a ΛCDM expan-
sion for a vacuum universe, which is in contrast with what
it is claimed in [26]. Then, we have considered that the uni-
verse is filled up with an energy-density content and we have
analysed two different scenarios. For a matter-dominated uni-
verse, the solution is described by the usual R−2κ2Λ plus a
polynomical correction on R driven by the coupling constant,
λ. It is interesting to notice how in this solution it naturally
appears a term which acts as an effective cosmological con-
stant. For a general perfect fluid-dominated universe with a
constant EoS, we have been able to find an analytical solu-
tion once we have chosen the specific EoS w = −1/3, which
can be interpreted as an energy-density mimicking an open
universe. The obtained solution is an algebraic expression
depending on R and it is given in Eq. (26).

For the second case, we have chosen f1(R) = R−2κ2Λ.
Then f2(R) has to satisfy Eq. (27). We have analysed the two
setups previously considered. For the the matter-dominated
universe, the solution we have found is given by a hypergeo-
metric function and includes some algebraic corrections on
R (see Eq. (30)). We have carried a detailed analysis ensuring
the convergence of the Lagrangian in the range which is phys-
ically meaningful. For the general perfect fluid-dominated
universe, we have been able to find an homogeneous solution
which, in fact, is valid for every constant EoS, w. However,
we have not been able to find an analytical particular solu-
tion, though, it is possible to get it numerically. In Fig. 1 we
present an example.

Finally, to complete our study and extract further infor-
mation about the two analysed models, we have performed a
cosmographic analysis. For the first case, we have obtained
that the quantities f and fR are decreasing functions of λ and

this can be interpreted as follows “the stronger is the coupling
to matter, the weaker is the weight of the pure gravitational
part of the action”. For the second case, the obtained result
leads us to the conclusion that the only choice which allows
for an exact ΛCDM background corresponds to λ = 0. Then,
in order to allow a non-zero value of λ, we have to let the
parameter ΩΛ free. The way λ affects the value of ΩΛ shows
a desirable result because the larger is λ, the smaller is ΩΛ.
This satisfies the main motivation of our work, as the non-
minimally coupled term can mimic the role of a dynamical
dark energy, being responsible of the late-time acceleration
of the universe. Please, notice that the cosmographic recon-
struction carried in our work is one with respect to the scalar
curvature; i.e. we obtain f1(R) and f2(R). An alternative
approach is to carry out a cosmographic reconstruction with
respect to the redshift, i.e. obtaining f1(z) and f2(z). This has
been carried out in [38] showing how f modified gravity can
match the acceleration-deceleration transition in agreement
with the large-scale structure formation. Of course, in our
case given that we do not have an algebraic expression for
H(z), this would have to be tackled numerically. We leave
this interesting approach for a future work where we will not
only tackle theoretical issues as was done here but where we
will further constrain our model observationally.
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Appendix

We summarise the cosmographic approach we used in Sect. 4.

5.1 Cosmography: Fixing f1(R) for f2 = R

We started using Eqs. (48)–(50), where we substitute R and
its derivatives using Eqs. (44)–(47). Then we carried a similar
procedure by substituting the time derivative of the Hubble
rate, H , using Eqs. (54) and (55), on the resulting equations.
Finally, we evaluated the three resulting equations at present
time and deduced Eqs. (56)–(58), where

A0 = −4 j2 − 5 jq2 − 18 jq − 2 js + 24 j − 15q3 + 6q2

+q s + 60q + 12 , (75)

C0 = 12

{
2 j2(q + 2) + j

[
q

(
q(4q + 5) − 2(s + 6)

)

+2(s − 24)

]
+ 3q

[
q

(
6q2 + q − 12

)
− 4

]

−q(14q + 13)s + 36

}
, (76)

A1 = 3
(

3 jq + 12 j + 15q2 + 26q − s + 4
)

, (77)

C1 = −12

[
2 j2 + j

(
q(4q + 33) − 2s + 54

)

+q
(

18q2 + 9q − 14s − 48
)

− 15(s + 4)

]
, (78)

A2 = 6(−1 + j), (79)

C2 = 72

[
− j + 4q(q + 2) + 5

]
, (80)

D = 2

[
j2 + 3(1 + q)2(4 + 5q)

+ j
(
3 + 2q(3 + q) − s

) − qs

]
. (81)

A.1: Cosmography: fixing f2(R) for f1 = R − 2κ2Λ

Following a similar procedure to the one explained above we
got Eqs. (69)–(71), where

A0 = −12

{
4 j2 + 3(12 + s) − j

[
6 + q(6 + 7q) + s

]

+q

[
3q(32 + 9q) + 2(51 + s)

]}
, (82)

B0 = −
(

− 1062 − 12 j2(1 + 2q)

+6 j

{
− 18 + q

[
− 21 + q(38 + 7q)

]}

−9q

{
26 + q

[
− 49 + q(69 + 22q)

]}

+6(15 + j − 8q)(−1 + q)s

)
, (83)

C0 = −
{

978 + 28 j2 + q

[
1146 + 9q(21 + q) − 16s

]

+84s − 2 j (48 − 9q + 5q2 + 2s)

}
, (84)

A1 = 0 , (85)

B1 = −8 j2 + 2 j

[
7q(q + 3) + s + 12

]

−q

[
3q(22q + 83) + 16(s + 6)

]
+ 6(s + 13), (86)

C1 = −33q2 + 6 j (2 + q) − 2(53 + 70q + 4s), (87)

A2 = 0 , (88)

B2 = −12

[
j − 2q(2q + 1) + 1

]
, (89)

C2 = 4(5 + j + 6q) , (90)

D = 4

{
4 j2 + 3(12 + s) − j

(
6 + q(6 + 7q) + s

)

+q

[
3q(32 + 9q) + 2(51 + s)

]}
. (91)
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