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Abstract: We study the entanglement entropy for time-like subsystem in two-dimensional
boundary conformal field theory (BCFT) both from the field theory and holographic point
of view. In field theory, we compute the time-like entanglement entropy of a pure time-like
interval at zero and finite temperature using the replica technique and analytical contin-
uation. We find that, similar to the ordinary space-like entanglement entropy in BCFT,
the time-like entropy also has a bulk phase and a boundary phase which corresponds re-
spectively to the dominance of the identity block in the bulk and boundary OPE channels.
However, we find that in Lorentzian BCFT, the time-like entanglement entropy posses a
third Regge phase which arises in the Regge limit of the interval, when one endpoint of the
time interval approaches the light cone of the mirror image of the other endpoint. We de-
termine the phase diagram for the time-like entanglement entropy. We find that while the
time-like entropy is complex in the bulk phase and has a boundary term in the boundary
phase, there is no boundary entropy in the Regge phase. Moreover, it can be real or com-
plex depending on which side the Regge limit is approached from. On the gravity side, we
obtain the holographic time-like entanglement entropy from the corresponding bulk dual
geometries and find exact agreement with the field theory results. The time-like entangle-
ment entropy may be useful to describe the entanglement of a quantum dot on a half line.
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1 Introduction

The AdS/CFT correspondence [1] provides an interesting relation between the d dimen-
sional conformal field theory (CFT) to that of quantum gravity on a (d+1) asymptotically
anti-de Sitter (AdS) spacetime. One can extend the AdS/CFT to the case where a CFT is
defined on a manifold with boundaries (e.g. CFT on a half plane). This class of CFTs with
a boundary is called a boundary conformal field theory (BCFT) when a part of conformal
symmetry (called boundary conformal symmetry) is preserved at the boundary [2–6]. The
holographic dual of such BCFTs are given by an asymptotically AdS spacetime truncated by
an end of the world (EOW) brane which satisfy either the Neumann boundary condition [7,
8] as it was originally proposed, the conformal boundary condition [9, 10] or the Dirichlet
boundary condition [11] which were found later to all define consistent holographic BCFT.

Owed to discovery of the Ryu-Takayanagi (RT) formula [12, 13] for the entanglement
entropy for bipartite pure states, the holographic study of quantum entanglement has
become one of the most active recent developments of AdS/CFT. The entanglement entropy
for such bipartite states can be obtained in a (1 + 1) dimensional conformal field theories
using a replica technique [14, 15]. The holographic entanglement entropy of a subregion
A in a dual CFT may be computed in terms of the area of the codimension two extremal
surface (ΓA) homologous to the boundary subregion as

SA = Area(ΓA)
4GN

. (1.1)
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This formula becomes more interesting in AdS/BCFT since the minimal surface can now
end on the EOW brane as first noted in [7, 8]. Moreover, depending on the position of the
interval A from the boundary, there will be competition between the bulk minimal surface
and the minimal surface that ends on the EOW brane and give rises to a phase transition
of the entanglement entropy since the two surfaces have different topology [9, 10]. In field
theory, this corresponds to the shift from the vacuum block dominance in the OPE of the
bulk channel OPE to the boundary channel [16].

Recently, the authors of [17] proposed a new quantity for the entanglement measure
for a time-like subsystem known as the time-like entanglement entropy.1 It is defined by
analytically continuing the entanglement entropy of a space-like subsystem A to the case
where the subsystem A becomes a time-like subsystem. The time-like entanglement entropy
(TEE) is found to have a complex value in a CFT2. Furthermore, it was shown that the
extremal surface for the holographic TEE consists of space-like and time-like parts which
give rises to the real part and the imaginary part of the time-like entanglement entropy
respectively. It was also argued that [17, 19] the TEE is a special example of pseudo
entropy [20–22]. See [23–38] for recent progress related to TEE.

The above developments lead naturally to an interesting question about the time-like
entanglement entropy in BCFT. In fact, from the point of view of BCFT and replica tech-
nique, the bulk phase and boundary phase of the entanglement entropy arises from the vac-
uum block dominance in the bulk and boundary channel of the OPE of the twist operators,
which occurs in the bulk limit (ξ → 0) and the boundary limit (ξ →∞) respectively. Here ξ
is the cross ratio for the two endpoints of the interval together with their images. Now in a
Lorentzian BCFT, the two point function is known to have a branch point singularity in the
Regge limit ξ → −1 [39], which arises when one endpoint of the time interval approaches the
light-cone of the mirror image of the other endpoint.2 Therefore, in addition to the bulk and
boundary limits, one can expect to find new interesting properties for the TEE in the Regge
limit of BCFT. The study of this richer phase structure of TEE in BCFT is one of the main
motivations of this paper. We find that unlike the usual space-like entropy which consists of
a bulk phase and a boundary phase, the TEE in BCFT has a new third phase which arises
in the Regge limit of the time-like interval. An interesting novel feature here is that the
TEE goes from real value to complex as the time interval goes pass the Regge limit point.

This article is organized as follows. In section 2 we briefly review about the time-like
entanglement entropy in AdS3/CFT2. In section 3 we review some of the salient features of
BCFT. In section 4 we obtain the time-like entanglement entropy of a pure time-like interval
at zero and finite temperature in a BCFT2. We identify the Regge phase and determine the
phase diagram for the TEE. In section 5 we compute the time-like entanglement entropy
using AdS3/BCFT2. The RT surface in the bulk phase consists of space-like and time-like
geodesics leading to a complex valued TEE. In the boundary phase, the RT surface consists
of two geodesics ending on the EOW brane and it gives a real valued TEE. Finally, the

1Note that it has been introduced earlier in the context of T T̄ deformed version of the AdS3/CFT2

correspondence in [18].
2We remark that the Regge limit, and hence the Regge phase of the TEE, is possible only in BCFT

when the interval is time-like.
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RT surface in the Regge phase is given by the geodesic joining the end point of interval
and ending on the plane perpendicular to the boundary. The geodesics lie along the plane
crossing one end point of the interval and mirror reflection of the other end point of the
interval. Remarkably, we obtain exact matches between the field theory replica technique
results and the bulk holographic computation of the TEE. Finally in section 6 we present
our summary and discussions.

2 Time-like entanglement entropy in AdS3/CFT2

In this section, we briefly review the time-like entanglement entropy for the configuration
of a time-like interval in AdS3/CFT2 framework [17]. Consider a generic space-like interval
A ≡ [(t1, x1), (t2, x2)] in a CFT2 whose time-like and space-like width are given by t12 = T0
and x12 = X0 respectively. Then, the entanglement entropy SA of an interval A may be
obtained using the replica technique as [14, 15]

SA = c

3 log

√
X2

0 − T 2
0

ε
, (2.1)

where ε is a UV cut-off and c is the central charge of the CFT. The time-like entanglement
entropy STA for a purely time-like interval A is obtained by analytically continuing the space-
like interval to a time-like interval followed by taking X0 = 0 in eq. (2.1) as follows [17]

STA = c

3 log
(
T0
ε

)
+ iπc

6 . (2.2)

It is observed that the above TEE takes complex values for the standard unitary CFTs.
At finite temperature T = 1/β, the entanglement entropy for a generic space-like

interval of width t12 and x12 at finite temperature is obtained by evaluating the two point
twist correlator on a cylinder of circumference β and the result is [14, 15]

SA = c

6 log
[
β2

π2ε2
sinh

(
π

β
(x12 + t12)

)
sinh

(
π

β
(x12 − t12)

)]
. (2.3)

Then, the time-like entanglement entropy for a purely time-like interval at finite tempera-
ture can be computed by taking x12 = 0 and t12 = T0 in eq. (2.3) as follows [17]

STA = c

3 log
[
β

πε
sinh πT0

β

]
+ iπc

6 . (2.4)

The above result for TEE at finite temperature also have complex value similar to the zero
temperature case.

Next we review the holographic time-like entanglement entropy of a time-like interval
in the AdS3/CFT2 scenario [17]. To this end, consider the Poincaré patch of a AdS3
spacetime (with AdS radius RAdS = 1) whose metric is given by

ds2 = dz2 − dt2 + dx2

z2 . (2.5)
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The time-like interval A of the boundary CFT2 has finite width T0 along the time direction
and fixed spatial coordinate in x direction described by x1 = x2. It is argued in [17] that
due to the lack of space-like geodesic connecting the boundary of time-like interval A,
one should use two space-like geodesics connecting the endpoints of A and null infinities
followed by a time-like geodesic which connects the endpoints of two space-like geodesics.
The holographic time-like entanglement entropy for the time-like interval is then given by
the length of these three geodesics. The equation for the space-like geodesic which connects
endpoints ∂A with null infinities is given by

t =
√
z2 + T 2

0 /4, (2.6)

which can identified as a semi-circle geodesic via the Wick rotation. On utilizing the RT for-
mula, the time-like entanglement entropy is given by the length of this space-like geodesic as

STA = 1
4GN

2T0

∫ ∞
ε

dz

2z
√
z2 + T 2

0 /4
= c

3 log T0
ε
, (2.7)

where c = 3
2GN is used [40]. It matches with the real part of the dual CFT2 result in

eq. (2.2). The imaginary part of the time-like entanglement entropy is obtained by embed-
ding the Poincaré patch in the global patch whose metric is given by

ds2 = − cosh2 ρdτ2 + dρ2 + sinh2 ρdθ2. (2.8)

Then, the imaginary part is given by the length of a time-like geodesic connecting two end-
points at ρ = 0 and τ = ±π

2 in the global coordinates. The length of this time-like geodesic
is πc/6 which matches with the imaginary part of dual CFT2 result as described in eq. (2.2).

For the time-like interval A of length T0 at a finite temperature, the gravity dual is
described by the planar BTZ black hole whose metric (with RAdS = 1) is given by

ds2 = −
(
r2 − r2

+

)
dt2 + dr2

r2 − r2
+

+ r2dx2, (2.9)

where r+ = 2π
β and β is the inverse temperature of the dual CFT2. Similarly, the time-

like entanglement entropy for a time-like interval A at a finite temperature is given by
the length of space-like and time-like extremal surfaces in the BTZ black hole background
which can be expressed as [17]

STA = c

3 log
[
β

πε
sinh

(
πT0
β

)]
+ iπc

6 , (2.10)

which agrees with the corresponding dual field theory result (2.4).

3 Review of BCFT

In this section, we will briefly review the salient features of the boundary conformal field
theories [2, 6, 39, 41]. A boundary conformal field theory (BCFT) is a conformal field theory
(CFT) defined on a manifold with boundaries such that a part of conformal symmetry is
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preserved by the boundaries. There are many different possible choices of conformal-
invariant boundary conditions for a given CFT. When the BCFTd lives on the half-plane
Rd−1×R+ with a planar boundary, a BCFTd has the symmetry SO(d−1, 2) in Lorentzian
signature (or SO(d, 1) in Euclidean signature) which is the subgroup of original CFTd
symmetry group.

Consider a BCFT in d dimension space with a time independent planar boundary.
Denote the coordinates by x = (x0, ~x, x⊥) where x0 is the time coordinate, ~x are the
Euclidean coordinates parallel to the boundary and x⊥ is orthogonal to the boundary. The
one-point function in a BCFT behaves kinematically like a CFT two-point function which
is given by [2]

〈O(x)〉 = AO
(2x⊥)∆ , (3.1)

where the coefficient AO is a physical parameter depending on both the operator and the
boundary condition, and ∆ is the scaling dimension of the operator O. Similarly, the two-
point function of scalar operators in a BCFT behaves kinematically like a CFT four-point
function

〈O(x)O(y)〉 = 1
|4x⊥y⊥|∆

G(ξ) , (3.2)

and depends on an undetermined function of a single conformal-invariant cross-ratio ξ

ξ = (x− y)2

4x⊥y⊥
= ±(x0 − y0)2 + (~x− ~y)2 + (x⊥ − y⊥)2

4x⊥y⊥
. (3.3)

Here the + sign is for the Euclidean theory and the − sign is for the Lorentzian theory. The
cross ratio ξ takes positive values when the two operators live in the Euclidean signature
or are space-like separated in the Lorentzian signature. The two point correlation function
in a BCFT can be expanded in two different OPE limits namely the bulk limit ξ → 0 and
the boundary limit ξ → ±∞3 as

G(ξ) =
∑
O
λOg

B
∆O(ξ) =

∑
Ô

µÔg
b
∆Ô

(ξ), (3.4)

where gB and gb are the bulk and boundary conformal blocks respectively, and the sum is
over the set of bulk primary operators O or boundary primary operators Ô which appear
in the corresponding OPEs.

The Euclidean BCFT correlation function have singularities only when the operators
approach each other or when they approach the boundary (which can be thought as an
operator approaching their mirrored double across the boundary). When the two operators
approach each other and away from the boundary, the BCFT two-point function in the
bulk limit ξ → 0 behaves like [41]

〈O(x)O(y)〉 = 1
|x− y|2∆ + . . . , G(ξ) ∼ ξ−∆, as ξ → 0. (3.5)

3In Euclidean signature, the boundary limit is given by ξ → ∞. In Lorentzian signature and for a
time-like interval, it is also possible to reach the boundary in the limit of ξ → −∞.
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Similarly, the two point BCFT correlator in the boundary limit ξ →∞ when the operators
are much closer to the boundary than to each other, the correlator behaves like [41]

〈O(x)O(y)〉 = A2

|4x⊥y⊥|∆
+ . . . , G(ξ) ∼ A2, as ξ →∞ (3.6)

for some constant A. When the operators O(x) and O(y) are time-like separated in the
Lorentzian signature, the two point function can be obtained by an analytic continuation
of G(ξ) to the time-like region ξ < 0 around the branch-point at ξ = 0. Then, there exists
another singularity in the limit ξ = −1, known as Regge limit of the BCFT [39] where O(y)
approaches the light-cone of the mirror reflection of O(x) with the boundary behaving like
the mirror. The BCFT two point function diverges at the Regge limit ξ → −1 as [39, 41]

〈O(x)O(y)〉 = 1
|4x⊥y⊥|∆

1
(1 + ξ)∆ + . . . , G(ξ) ∼ (ξ + 1)−∆, as ξ → −1. (3.7)

As shown in [42], a CFT correlation function have singularities at the location of the
Landau diagrams where null particles interact at local vertices. One can argue similarly
that [41] the only singularities of a BCFT two-point function lie on the light-cone and its
reflection.

4 Time-like entanglement entropy in BCFT2

In this section, we compute the time-like entanglement entropy for a time-like interval
at zero and finite temperature in a two dimensional Lorentzian BCFT. We will do so by
first computing the entanglement entropy for a generic interval in Euclidean signature
followed by an analytical continuation to the Lorentzian signature to obtain the time-like
entanglement entropy.

4.1 Zero temperature

Consider the configuration depicted in figure 1 for an interval A ≡ [z1, z2] :=
[t1, x1), (t2, x2)] at zero temperature in a BCFT. The entanglement entropy for a generic
space-like interval A in a BCFT2 may be expressed in terms of twist field correlators using
the replica technique [14, 15] as

SA = lim
n→1

1
1− n log 〈σn(z1)σ̄n(z2)〉 , (4.1)

where the scaling dimensions of the twist fields σn and σ̄n are given by

∆n = ∆̄n = c

12

(
n− 1

n

)
. (4.2)

We note that for a purely time-like interval A at a distance x1 = x2 from the boundary
having time-like width To = t2 − t1, the cross-ratio which is given by

ξ = − T
2
0

4x2
1
, (4.3)
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Figure 1. Schematic of a generic interval A in two dimensional BCFT.

is always negative. It is instructive to illustrate the different limits of ξ by following the
value of T0 with respect to x1. When T0 � x1, we have ξ → 0− and we are in the bulk
limit. As T0 increase and reaches the region of 2x1, one of the two points of the interval
approaches the light cone of the image of the other point and we have the Regge limit
ξ → −1. Finally for T0 � x1, we arrive at the boundary limit ξ → −∞. This is different
from the other boundary limit ξ → ∞ which is obtained for a space-like interval. Let us
now consider these limits in detail.

I. Bulk limit. Consider first the case that the interval is far away from the boundary
such that ξ → 0. In this case, the dominant contribution of the two point function comes
from the bulk channel OPE. On utilizing the eq. (3.5), the two point twist in the bulk limit
may be written in the following form

〈σn(z1)σ̄n(z2)〉 = ε2∆n

|z1 − z2|2∆n
, (4.4)

where ε is a UV regulator. Now using the above eq. (4.4) in eq. (4.1), the entanglement
entropy for a generic space-like interval A in the Lorentzian signature is given by

SA = c

3 log
√

(x1 − x2)2 − (t1 − t2)2

ε
(4.5)

For a purely time-like interval with x1 = x2, the time-like entanglement entropy STA in the
bulk limit is given by

STA = c

3 log T0
ε

+ iπc

6 := SB, (4.6)

where here the superscript B stands for the bulk. We observe that the time-like entan-
glement entropy is complex in this phase and resembles the usual CFT2 result as given in
eq. (2.2). Note that the standard entanglement entropy in a BCFT2 also resembles the
entanglement entropy of an interval in a CFT2 in the bulk channel.

– 7 –
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Figure 2. Schematic of a time-like interval in the Regge limit.

II. Regge limit. As T0 increases, it will eventually reach the region T1 ≈ 2x1. Let us
parameterize the time interval by T0 = 2x1(1− δ/2). Due to time translational invariance,
we can take the purely time-like interval as A[(t1, x1), (t2, x2)] ≡ [(−x1, x1), (x1(1− δ), x1)].
See figure 2. In the leading order of small δ, the cross ratio ξ is given by

ξ = −(t2 − t1)2 + (x2 − x1)2

4x1x2
= −(1− δ) (4.7)

and the Regge limit is attained when the second end point of the interval proximate the
light cone of the mirror image of the first end point of the interval. Using the two point
function

〈σn(z1)σ̄n(z2)〉 = 1
|2x1|2∆n

1
(1 + ξ)∆n

, (4.8)

one obtains immediately the time-like entanglement entropy for the time-interval A in the
Regge limit as

STA =


c
3 log

(
2x1
ε

√
2− T0

x1

)
, for T0 → 2x−1 , i.e. ξ → −1+,

c
3 log

(
2x1
ε

√
T0
x1
− 2

)
+ iπc

6 , for T0 → 2x+
1 , i.e. ξ → −1−,

:= SR, (4.9)

where here the superscript R stands for Regge. Note that ξ = −1 is a branch point and
this explain why SR picks up an imaginary part as T0 crosses the value of 2x1. Physically,
the point z2 has gone from the inside of the light-cone of the image point z′1 to the outside.

III. Boundary limit. In the boundary limit, the two point twist correlator may be
expressed as

〈σn(z1)σ̄n(z2)〉 = g
2(1−n)
b ε2∆n

|4x1x2|∆n
, (4.10)

– 8 –
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where A = g
(1−n)
b arises from the replica technique for BCFT entanglement entropy com-

putations [16]. This gives the entanglement entropy for a generic interval A as

SA = c

6 log 2x1
ε

+ c

6 log 2x2
ε

+ 2 log gb, (4.11)

where the second term describes the boundary entropy which depends on the boundary
condition. Note that (4.11) is independent of the time t coordinate. Now taking x1 = x2
for a pure time-like interval, we obtain the time-like entanglement entropy

STA = c

3 log 2x1
ε

+ 2 log gb := Sb, (4.12)

where here the superscript b stands for the boundary. We see that the time-like entangle-
ment entropy is real in this phase and includes boundary entropy which is expected in the
boundary phase.

A couple of remarks are in order.

1. It is interesting that in contrast to the usual two phases of standard entanglement
entropy in BCFT2, we have a new phase of time-like entanglement entropy (4.9)
which arises from the light-cone singularities. This is possible only for a time-like
interval.

2. We remark that as the time-like entanglement entropy STA is obtained by taking the
log of the 2-point function (3.2) and G behaves as G ∼ ξ−∆n , (1 + ξ)−∆n , constant
A2 in the above said limits, it is clear that STA ∼ log G picks up a non vanishing
imaginary part in the bulk limit ξ → 0− and in the time-like side of the Regge limit
1 + ξ → 0−, i.e T0 ' 2x1.

3. It is instructive to follow the behavior of the time-like entanglement entropy and
discuss its phase transition. Without loss of generality, consider fixed x1 and let T0
changes. For small T0, STA is given by SB of (4.6). As T0 increases, cross over from
the bulk to the Regge behaviour occurs at:

SB = SR : T0 = 2(
√

3− 1)x1 := T ∗0 , (4.13)

where the equality of entropies is for the real part. As T0 continue to increase, it
eventually reaches the light-cone singularity point T0 ≈ 2x1 and passes it. Crossover
from the Regge behaviour to the boundary behaviour occurs at:

SR = Sb : T0 = (2 + g
12/c
b )x1 := T ∗∗0 . (4.14)

One can show that Sbdy ≥ 0 in an unitary BCFT and so T ∗0 < 2x1 ≤ T ∗∗0 . The
behaviour of the time-like entropy curves is shown in figure 3.

4.2 Finite temperature

Next, let us compute the time-like entanglement entropy of an interval in two dimensional
CFT on the half line at finite temperature β−1. This can be obtained by computing the

– 9 –
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Figure 3. Phases of the time-like entanglement entropy ST
A in BCFT.

two point twist correlation function on a half cylinder (with w = x + iτ, x ≤ 0) where
the Euclidean time direction τ is compactified with period β. It is convenient to express
it in terms of the two point function on the interior of the unit disc z via the conformal
transformation w → z = e

2πw
β :

〈σn(w1, w̄1)σ̄n(w2, w̄2)〉cyl =
2∏
i=1

(
dz

dw

)∆n/2

w=wi

(
dz̄

dw̄

)∆̄n/2

w̄=w̄i
〈σn(z1, z̄1)σ̄n(z2, z̄2)〉disc , (4.15)

where the two point function on the unit disk4 of primary operators of dimensions ∆1 and
∆2 is given by [15, 43]

〈σ1(z1, z̄1)σ̄2(z2, z̄2)〉disc = 1
(1− z1z̄1)∆1(1− z2z̄2)∆2

G(ξ). (4.16)

Here ξ is the cross ratio
ξ = |z1 − z2||z̄1 − z̄2|

(1− z1z̄1)(1− z2z̄2) . (4.17)

and the function G(ξ) is known explicitly only in the bulk, boundary or Regge limit. The
entanglement entropy for a generic interval A = [w1, w2] on the cylinder is given by

SA = lim
n→1

1
1− n log 〈σn(w1, w̄1)σ̄n(w2, w̄2)〉cyl . (4.18)

As a result, we have three phases for the TEE at finite temperature similar to the zero
temperature case.

I. Bulk limit. For this case when the interval is far away from the boundary, we have
G(ξ) ∼ ξ−∆n and hence

SA = c

6 log
[(

β

πε

)2
sinh πw12

β
sinh πw̄12

β

]
, (4.19)

4The correlator on the unit disk can be obtained from the correlator on the upper half plane (UHP)
through the Möbius transformation as u = −i

(
z−1
z+1

)
.

– 10 –
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where w12 = −x12 + iτ12 and w̄12 = −x12− iτ12 are the interval length of A on the cylinder.
Now analytically continue to the Lorentzian signature via τ → it, we have

SA = c

6 log
[

1
2

(
β

πε

)2
(cosh 2πx12

β
− cosh 2πt12

β
)
]
. (4.20)

Setting x12 = 0 and t12 = T0, one obtain the time-like entanglement entropy for an interval
A at finite temperature

STA = c

3 log
[
β

πε
sinh

(
πT0
β

)]
+ iπc

6 . (4.21)

We observe that the above expression is same as the CFT result eq. (2.10) which is expected
because the interval is far away from the boundary in this phase.

II. Regge limit. In the Regge limit, we have G ∼ (1 + ξ)−∆n and the finite temperature
entanglement entropy for a generic interval in the Regge limit is given by

SA = c

6 log
[(

β

πε

)2 (
sinh π(w1 + w̄1)

β
sinh π(w2 + w̄2)

β
+ sinh πw12

β
sinh πw̄12

β

)]
. (4.22)

Analytically continuing to the Lorentzian signature via τ → it, we get the following time-
like entanglement entropy of a generic time-like interval as

SA = c

6 log
[(

β

πε

)2 (
sinh 2πx1

β
sinh 2πx2

β
− sinh π(x12 + t12)

β
sinh π(−x12 + t12)

β

)]
.

(4.23)
For a purely time like interval T0 placed at a distance x1 from the boundary, a light-cone
singularity is reached when the second end point of the interval A approaches the mirror
reflection of light cone of first point of the interval. Parameterize T0 = 2x1(1 − δ/2) as
before, the time-like entanglement entropy for a time interval at finite temperature in the
Regge limit is given by

STA =


c
6 log

(
β(2x1−T0)

πε2 sinh 4πx1
β

)
, for T0 → 2x−1 , i.e. ξ → −1+,

c
6 log

(
β(T0−2x1)

πε2 sinh 4πx1
β

)
+ iπc

6 , for T0 → 2x+
1 , i.e. ξ → −1−,

:= SR.

(4.24)
Note that this has the correct zero temperature limit (4.9) as expected. Note also that
the discontinuity of the imaginary part at the branch point is the same as in the zero
temperature case.

III. Boundary limit. As the interval get close to the boundary, we have G(ξ) = g
2(1−n)
b

in the UHP for the boundary limit and one obtains the entanglement entropy for a generic
interval at finite temperature as

SA = c

6 log
[(

β

πε

)2
sinh π(w1 + w̄1)

β
sinh π(w2 + w̄2)

β

]
+ 2 log gb. (4.25)
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Analytically continuing to the Lorentzian signature and take w1 + w̄1 = −2x1, w2 + w̄2 =
−2x2 in the above expression we get

SA = c

6 log
[(

β

πε

)2
sinh 2πx1

β
sinh 2πx2

β

]
+ 2 log gb. (4.26)

Note that this is independent of the time coordinates. The time-like entanglement entropy
for a purely time-like interval at finite temperature in this phase may now be obtained by
taking x1 = x2 in eq. (4.26) and we obtain

STA = c

3 log
(
β

πε
sinh 2πx1

β

)
+ 2 log gb. (4.27)

We observe that the time-like entanglement entropy is real in this phase unlike the previous
phase.

One can similarly discuss the crossover of the entropies. The phase diagram is sim-
ilar to the zero temperature case qualitatively except that the crossover position is now
temperature dependent. We will omit the details here.

5 Holographic time-like entanglement entropy in AdS3/BCFT2

We now obtain the holographic time-like entanglement entropy in the context of
AdS3/BCFT2 which involves the computation of bulk extremal curves (geodesics). We
further show that the holographic TEE matches exactly with the dual field theory results.

5.1 AdS/BCFT duality

BCFTs [4, 6] describe physical systems with boundaries at the critical point. In addition
to the traditional field theory techniques, a novel non-perturbative AdS/BCFT correspon-
dence was originally introduced by Takayanagi [7] based on the idea of holography. At the
level of classical gravity, the action for AdS/BCFT is given by

I = 1
16πGN

∫
N
dd+1x

√
|g|(R− 2Λ) + 1

8πGN

∫
Q
ddy

√
|h|(K − T ), (5.1)

where K is the extrinsic curvature, T is the tension of end-of-the-world (EOW) brane Q
and hij is the induced metric on Q. The original proposal of Takayanagi [7] is to take on
Q the Neumann boundary condition (NBC)

NBC : Kij − (K − T )hij = 0. (5.2)

The NBC imposes conditions on the end-of-the-world brane Q [7, 8, 44] as well as the bulk
Einstein metric [45]. In addition to this, one may impose alternative boundary conditions
for AdS/BCFT such as the conformal boundary condition (CBC) [9, 10] which fixes the
conformal geometry and the trace of the extrinsic curvature of Q

CBC : K = d

d− 1T. (5.3)
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One may also impose the Dirichlet boundary condition (DBC) [11], all of which define
consistent theory of AdS/BCFT. For the special case of BCFTd on a half space, say x ≥ 0,
the bulk geometry is given by a portion of AdSd+1. In the Poincaré coordinates (take AdS
radius to be 1 for convenience)

ds2 = 1
z2 (dz2 + dx2

i ) , (5.4)

where the bulk geometry is given by a wedge with the EOW brane located at x = z sinh ρ0.
Here ρ0 is determined in term of the “tension” T as T = (d− 1) tanh ρ0. Note that for flat
boundary, all three BC give the same EOW brane [9–11]. However the holographic BCFT
are still different in general as the spectrum of graviton fluctuations on the EOW brane
is different for the different choice of BC. This, for example, results in different two point
functions for the respective holographic BCFTs [46]. The existence of massive gravitons
also leads to some puzzling behaviour for the island proposal as was pointed out originally
in [47, 48].

Having reviewed about the AdS/BCFT duality, we now turn our attention to the
computation of holographic time-like entanglement entropy for a time-like interval at zero
and finite temperature in holographic BCFT2.

5.2 Zero temperature

Consider a pure time-like interval A in the dual BCFT2 at a fixed distance x = x1 from the
boundary. We have three possible choices of RT surface for this configuration depending
on the size and distance from the boundary of an interval which are described below.

Phase I: bulk phase. In this phase, the interval is far away from the boundary such
that the RT surface consists of two space-like geodesics and one time-like geodesic similar
to section 2. This configuration is depicted in figure 4. So the holographic time-like
entanglement entropy for an interval having length T0 along the time direction in this
phase may be expressed as

STA = c

3 log T0
ε

+ iπc

6 , (5.5)

where the real part comes from the length of two hyperbola going to future infinity (t =
+∞, z = +∞) and past infinity (t = −∞, z = +∞); and the imaginary part comes from
the geodesic joining the future and past infinities. The above result agrees exactly with
the corresponding dual BCFT2 result eq. (4.6).

Phase II: Regge phase. For this phase, the end points of the purely time-like interval
on the boundary can be parametrized as A[(t1, x1), (t2, x2)] ≡ [(−x1, x1), (x1(1− δ), x1)]
with δ = 2 − T0/x1. Consider first the case of T0 < 2x1 with δ > 0. In this case, the RT
surface is given by two geodesics where each geodesic joins the one end point of the interval
and ends on the plane perpendicular to the boundary as shown in figure 5. The geodesics
lie along the t = ±mx+ c plane. The plane passing through the points (t2, x2) and mirror
image of (t1, x1), i.e (t1,−x1), is described by

t = mx+ c, m = 1− δ

2 , (5.6)
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Figure 4. RT surfaces for configuration of a time-like interval in the bulk phase.

Figure 5. RT surfaces for configuration of a time-like interval in the Regge phase.

where m is the slope and c is some constant. The induced metric on this plane can be
written as

ds2 = −dt
2 + dz2 + dx2

z2 = (1−m2)dx2 + dz2

z2

= dy2 + dz2

z2 ,

(5.7)
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where we have defined y =
√

1−m2x. Observe that the above metric in (y, z) coordinate
looks like a time slice of AdS3 geometry in Poincaré coordinates. So, the length of the
geodesic Γ from the point (y1, z1) to a point on the perpendicular plane (y2, z2) (which is
located at x = 0) along this plane is given by5

L = cosh−1
[

(y2 − y1)2 + z2
1 + z2

2
2z1z2

]

≈ log
[
δx2

1 + z2

εz

]
,

(5.9)

where the point on the boundary and perpendicular plane is given by (y1, z1) = (
√
δx1, ε)

and (y2, z2) = (0, z) respectively. After extremization of L with respect to z, we get the
length of the geodesic as follows

L = log 2x1
√
δ

ε
. (5.10)

The length of other geodesic which lie along the plane passing through the points (t1, x1)
and (t2,−x2) can be computed similarly and have the same length as L. So, we now
obtain the holographic time-like entanglement entropy which is given by the sum of these
two geodesics after using the RT formula as

STA = c

3 log
(

2x1
ε

√
2− T0

x1

)
. (5.11)

This agrees precisely with the corresponding dual field theory result eq. (4.9). Similarly
one can discuss the Regge limit from the other side T0 > 2x1 with δ < 0. The computation
is the same as above except now we have to take the negative root of the inverse cosh in
eq. (5.9) for a time-like geodesic. As a result, we obtain the corresponding dual theory
result (4.9) with the constant imaginary part. We remark that in field theory, the Regge
phase of the TEE arises from the singular behaviour of the twist operator two point function
in the Regge limit. On the gravity side, this arises from a particular RT geodesic which
becomes null in the limit.

Phase III: boundary phase. Finally we consider the boundary phase where the interval
is closer to the boundary. In this phase, the RT surface end on the brane as shown in
figure 6. The length of each geodesic Γ which is at a constant time slice is given by [7]

L = log 2x1
ε

+ ρ0, (5.12)

where ρ0 = tanh−1(T ). So the holographic time-like entanglement entropy for a time-like
interval A may obtained using the RT formula as

STA = c

3 log 2x1
ε

+ c

3ρ0, (5.13)

5The geodesic distance between two points (t1, x1, z1) and (t2, x2, z2) in the Poincaré patch of AdS3 is
given by the standard formula

L = cosh−1
[
−(t2 − t1)2 + (x2 − x1)2 + z2

1 + z2
2

2z1z2

]
. (5.8)

– 15 –



J
H
E
P
0
6
(
2
0
2
3
)
1
7
3

Figure 6. RT surfaces for configuration of a time-like interval in the boundary phase.

where the second term describes the boundary entropy [7]. It is T ≥ 0 for unitary theory
and so Sbdy ≥ 0. We observe that the holographic time-like entanglement entropy in this
phase also matches with dual BCFT result as described in eq. (4.12).

It is interesting to note that the topology of the RT surfaces are different for each of
the three cases. This prompts us to interpret the crossover behaviour of entropies as phase
transition of the entropies. Note that the bulk and boundary phases for the holographic
time-like entropy is similar to the usual holographic entanglement entropy in AdS3/BCFT2.
The bulk phase corresponds to the connected RT surface while the boundary phase corre-
sponds to the disconnected RT surface. The appearance of the Regge phase is unique to the
time-like entanglement entropy and is related to the existence of geodesics lying along the
plane that joins one end point and the mirror reflection of other end point of the interval.

5.3 Finite temperature

We consider BCFT2 in a half line at a finite temperature. In this case, the only known
dual bulk solution is for Sbdy = T = 0 which is the BTZ black hole as described in eq. (2.9)
truncated by a tensionless EOW brane perpendicular to the boundary along the x = 0
direction.6 For a finite temperature BCFT on a half line with vanishing boundary entropy,
we have three phase of the RT surface for the holographic time-like entropy which is similar
to the zero temperature case, as follows.

6We note that for a general non-zero T , the holographic dual of a BCFT on an interval at finite tem-
perature can be constructed by a part of two kind of bulk geometries i.e thermal AdS3 and the BTZ black
hole [7]. There exist a Hawking-Page transition at a certain temperature between these two geometries
which depends on the brane tension. It would be interesting to obtain the TEE in this kind of setting
which we leave to the future.
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Phase I: bulk phase. In this phase, the RT surface consists of two space-like and one
time-like extremal surface in a BTZ geometry similar to the CFT case as described in
section 2. So, the holographic time-like entanglement entropy for a time-like interval of
length T0 in this phase is given by

STA = c

3 log
[
β

πε
sinh

(
π

β
T0

)]
+ iπc

6 , (5.14)

where the imaginary contribution comes from the time-like geodesic. The above TEE
matches with the corresponding dual field theory result in eq. (4.21).

Phase II: Regge phase. For this phase, we have two RT surfaces with each geodesic
connecting the end point of the interval and end on the perpendicular EOW brane, lying
along the plane t = mx + c similar to corresponding zero temperature case. Since the
EOW brane is perpendicular to boundary, the length of each geodesic is half of the geodesic
connecting the point (t2, r2, x2) and mirror image of (t1, r1, x1) which is (t1, r1,−x1). The
geodesic length between two the points (t1, r1, x1) and (t2, r2, x2) in the BTZ black hole
geometry can be expressed as

L = cosh−1

r1r2
r2

+
cosh r+(x2 − x1)−

√√√√( r2
1
r2

+
− 1

)√√√√( r2
2
r2

+
− 1

)
cosh r+(t2 − t1)

 . (5.15)

The end point of the time-like interval A for this phase is given by
A[(t1, r1, x1), (t2, r2, x2)] ≡ [(−x1, r∞, x1), (x1(1 − δ), r∞, x1)] with T0 = 2x1(1 − δ/2)
for this configuration. Consider first the case δ > 0, the length of geodesic connecting
(t2, r2, x2) = (x1(1 − δ), r∞, x1) and (t1, r1,−x1) = (−x1, r∞,−x1) can be obtained using
the eq. (5.15) in the limit δ → 0 as

L = cosh−1
[(

βr∞
2π

)2
cosh 2π

β
2x1 −

((
βr∞
2π

)2
− 1

)
cosh 2π

β
(2x1(1− δ/2))

]

= log
(
β(2x1 − T0)

πε2
sinh 4πx1

β

)
,

(5.16)

where r∞ � 1 is related to the UV cut off as r∞ = 1/ε. Similarly, length of the geodesic
connecting (t1, r1, x1) and (t2, r2,−x2) gives the same (5.16). So the holographic time-
like entanglement entropy for this phase may be obtained using the RT formula as STA =

1
4GN (L2 + L

2 ) and

STA = c

6 log
(
β(2x1 − T0)

πε2
sinh 4πx1

β

)
. (5.17)

This result agrees exactly with the corresponding BCFT2 result obtained in eq. (4.24).
Similarly, one can consider approaching the Regge limit from the side of T0 > 2x1 with
δ < 0. The computation is the same as above and we obtain the corresponding dual theory
result (4.24) with the constant imaginary part.
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Phase III: boundary phase. Similar to the above discussion, we have two RT surfaces
ending on the perpendicular EOW brane in phase II. The length of this geodesic connecting
the interval and brane in a BTZ geometry can be obtained via mapping the BTZ geometry
to the Poincaré patch of the AdS3 space time as follows

L = 1
4GN

log
(
β

πε
sinh 2πx1

β

)
, (5.18)

where the pure time-like interval is located at x = x1 distance from the boundary and the
length of both geodesics are equal since they both lie at different time slice but at equal
distance from the boundary. Then the holographic time-like entanglement entropy for an
interval A can be obtained using the RT formula as

STA = 2L = c

3 log
(
β

πε
sinh 2πx1

β

)
. (5.19)

It agrees with the corresponding dual field theory result in eq. (4.27) as Sbdy = 0.

6 Summary and discussion

To summarize, we have obtained the time-like entanglement entropy for a pure time-like
interval in the context of AdS3/BCFT2. We first computed the time-like entanglement
entropy in a BCFT2 which involves the analytical continuation of the standard space-like
entanglement entropy to a time-like interval. We observed that the TEE of a time-like
interval at zero temperature has three phases in contrast to the two phases of the standard
entanglement entropy in a BCFT. The new Regge phase is unique to the time-like interval
when one end point of the interval approaches the light cone of the mirror reflection of
other end point. We further computed the TEE of an interval on a half line at a finite
temperature and found that it has similar three phases. The TEE has a constant and
temperature independent imaginary part in the bulk limit of small T0 and in the Regge
limit of T0 → 2x+

1 , and is otherwise real.
Subsequently, we computed the time-like entanglement entropy for a time-like interval

holographically from the bulk dual to the zero and finite temperature BCFT2. This
involves the computation of RT surface (extremal curves) in the bulk geometry. For
the zero temperature case, the bulk dual is described by a part of the AdS3 geometry
truncated by an EOW brane. It is observed that the holographic TEE is described by
three choices of the RT surface. The bulk and the boundary phases consists of connected
and disconnected RT surface which is similar to the usual holographic entanglement
entropy cases. The RT surface for the Regge phase is obtained by considering the two
geodesics that go along the plane joining one end point and the mirror reflection of the
other end point of the interval. These two geodesics meet at the plane perpendicular to
the boundary and join together to form the desired RT surface. We also considered the
finite temperature case where the bulk dual is BTZ black hole cut off by a perpendicular
tensionless EOW brane and observed that it also has three phases. Interestingly, we
observed that the holographic TEE agrees precisely with the dual field theory results at
both zero and finite temperature cases in the gravity approximation.
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In this paper, we find interesting phase structure for the TEE in BCFT. However, a
basic definition of TEE directly in terms of the field theory Hilbert space without employing
analytic continuation or holographic minimal surfaces is lacking. It is interesting to consider
concrete example of quantum system and try to demonstrate the physical relevance of
TEE. As such, we note that physically the pure time interval in BCFT2 describes the
configuration of a quantum dot on a half line. Our results for the TEE should describe
some kind of entanglement of a partial history of the dot with it’s complement. As the
quantum dot is an easily accessible system, one may be able to observe discontinuity for
some measurables at the transition points identified from the phase diagram of TEE. This
will give a possible demonstration of the physical relevance of the TEE.

Previously, it has been argued that the TEE in CFT can be properly understood as a
pseudo entropy. It will be interesting to consider this generalization properly to clarify the
connection of TEE in a BCFT with the pseudo entropy. It will also be extremely interesting
to explore the island formalism for TEE in the context of Island/BCFT correspondence
along the lines of [49–51]. The study of time-like entanglement entropy is expected to shed
new insights in our understanding of the black hole interior and the emergence of spacetime
geometry from quantum entanglement. We note that the signature for an asymptotic
observer get swapped as one passes the horizon which suggests that the time-like entropy
may play an important role in the understanding of quantum entanglement in the interior
of the black hole. We leave these interesting issue for future investigations.
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