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Abstract

This article introduces a systematic framework to understand (not to derive yet) the all-loop 4-particle 
amplituhedron in planar N =4 SYM, utilizing both positivity and the Mondrian diagrammatics. Its key 
idea is the simplest one so far: we can decouple one or more sets of loop variables (x, y, z, w) from the 
rest by just setting these variables to either zero or infinity so that their relevant positivity conditions are 
trivialized, then the all-loop consistency requires that we get lower loop amplituhedra as “residues”. These 
decoupling relations connect higher loop DCI integrals with the lower ones, enabling us to identify their 
coefficients starting from the 3-loop case. And surprisingly, the delicate mechanism of this process is the 
simple Mondrian rule D =X+Y , which forces those visually non-Mondrian DCI integrals to have the 
correct coefficients such that the amplituhedron can exactly reduce to the lower loop one. Examples cover 
all DCI integrals at L =3, 4, 5, 6, especially, the subtle 6-loop coefficients +2 and 0 are neatly explained in 
this way.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The amplituhedron proposal of planar N =4 SYM [1,2] is a novel reformulation which only 
uses positivity conditions for all physical poles to construct the amplitude or integrand. For given 
(n, k, L) where n is the number of external particles, (k+2) is the number of negative helicities 
and L is the loop order, the most generic loop amplituhedron is defined via

Y I
α = CαaZ

I
a , LI

(i)α = D(i)αaZ
I
a , (1.1)

here Cαa is the (k×n) positive Grassmannian encoding the tree-level information and D(i)αa is 
the (2 ×n) positive Grassmannian with respect to the i-th loop, and ZI

a is the kinematical data 
made of n generalized (k+4)-dimensional momentum twistors, which also obeys positivity as

〈Za1 . . .Zak+4〉 > 0 for a1 < . . . < ak+4, (1.2)

then the overall constraint is, all ordered minors of the matrix⎛
⎜⎜⎜⎝

D(i1)

...

D(il)

C

⎞
⎟⎟⎟⎠ (1.3)

are positive for any collection of D’s with 0 ≤l≤L. Through this positive constraint we can con-
struct the d log form encoding logarithmic singularities of the loop amplituhedron. In practice, 
we also need to know how to explicitly triangulate this geometric object, and the most recent 
sign-flip picture introduced in [3] gives a detailed prescription. However, in this work we will 
focus on the simplest all-loop case of only four particles, and hence we don’t need to use the sign 
flips.

In general, based on the definitions above, we require all physical poles to be positive:

〈YZiZi+1ZjZj+1〉 > 0, 〈YL(i)ZjZj+1〉 > 0, 〈YL(i)L(j)〉 > 0, (1.4)

but for the special 4-particle loop amplituhedron, there is only one sector: the MHV sector (or 
anti-MHV equivalently) of k=0, and these constraints simplify to

〈1234〉 > 0, 〈L(i)ZjZj+1〉 > 0, 〈L(i)L(j)〉 > 0, (1.5)

as there is no Y component. We can further choose the simple positive data, and parameterize 
D’s with positive variables (xi, yi, zi, wi) as

(Z1,Z2,Z3,Z4) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , D(i) =

(
1 xi 0 −wi

0 yi 1 zi

)
, (1.6)
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such that 〈L(i)ZjZj+1〉 >0 can be trivialized as (note the twisted cyclicity Z4+1=−Z1)

〈L(i)12〉 = wi, 〈L(i)23〉 = zi, 〈L(i)34〉 = yi, 〈L(i)14〉 = xi, (1.7)

and the only nontrivial constraint is

〈L(i)L(j)〉 = det

⎛
⎜⎜⎜⎝

1 xi 0 −wi

0 yi 1 zi

1 xj 0 −wj

0 yj 1 zj

⎞
⎟⎟⎟⎠ > 0. (1.8)

In summary, for the 4-particle amplituhedron or integrand at L-loop order, we have the mutual 
positivity condition for any two sets of loop variables labeled by i, j=1, . . . , L as

〈L(i)L(j)〉 ≡ Dij = (xj − xi)(zi − zj ) + (yj − yi)(wi − wj) > 0, (1.9)

where positive variables xi, yi, zi, wi and Dij are all possible physical poles. Though the domi-
nating principle is simple and symmetric up to all loops, as the loop order increases, its calcula-
tional complexity grows explosively due to the highly nontrivial intertwining of all L(L −1)/2
positivity conditions. Therefore it is more practical to seek new perspectives or techniques 
other than confronting the direct calculation. This, however, does not imply the direct calcu-
lation is impossible, as a better interpretation might redefine the problem so that the meaning 
of “direct” is more trivialized. This work shows how a simpler problem got complicated, then 
returns to its plain form after we switch to the correct perspective extracted from all the pre-
vious clues. So it is natural to expect the ultimate solution of 4-particle amplituhedron turns 
out to be even simpler, and hidden elegant patterns like the Mondrian story await to be discov-
ered.

The most recent progress includes the direct calculation of the 3-loop case [4], the all-loop 
Mondrian diagrammatics [5] for a subset of dual conformally invariant (DCI) loop integrals of 
which pole structures can be Mondrianized, and the positive cuts [6] as a simplified approach 
to identify coefficients of a given basis of DCI integrals. This work continues to explore the 4-
particle amplituhedron at higher loop orders, as we will introduce a new systematic framework 
to more clearly integrate positivity with the Mondrian diagrammatics. Note that, though we will 
use some terminologies already involved in the previous works, such as “Mondrian diagram-
matics”, in this new setting their meanings are slightly different. To make the current work as 
self-contained as possible, we will redefine the frequently used terms so it is not necessary to 
recall them back in [4–6].

The key idea here is straightforward: we can decouple one or more sets of loop variables 
(xi, yi, zi, wi) from the rest by setting them to either zero or infinity to trivialize the relevant 
positivity conditions, then the all-loop consistency requires that we get lower loop amplituhedra 
as residues. Using these decoupling relations to connect DCI integrals of different loop orders, 
we can identify coefficients of DCI integrals at L ≥4 starting from the 3-loop case. And it is 
the simple Mondrian rule D=X+Y that accounts for this delicate mechanism and forces those 
visually non-Mondrian DCI integrals to have the correct coefficients.

To begin to rebuild everything, forgetting all later advances, we can return to the original 
definition of this problem [1,2]. First let’s introduce a convenient convention for the following 
derivations: we will use the dimensionless ratio as the integrand, for example, in the 2-loop 
integral [2]
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Fig. 1. Diagrams of DCI integrals corresponding to the first six terms in R3. In our convention, faces x, z, y, w locate at 
the left, right, top and bottom of the diagram respectively.

∫
dx1

x1

dy1

y1

dz1

z1

dw1

w1

dx2

x2

dy2

y2

dz2

z2

dw2

w2
R where R = x2z1 + x1z2 + y2w1 + y1w2

D12
,

(1.10)

R is the integrand we will extensively manipulate. In other words, the full integral is made up of 
the d log measure of all positive variables and this ratio R. In particular, the 1-loop integrand is 
trivially 1 as there is no mutual positivity to be imposed. With this convention, when the integral 
is evaluated at either zero or infinity with respect to some variables, there is no extra factor to be 
added to the residual integrand, and the d log measure of those unfixed variables can be dropped 
for convenience.

Then what use does this residue evaluation at zero or infinity have, which seems trivial com-
pared to the positive cuts [6]? If we simply set xj →∞ and zj =0 in

Dij = (xj − xi)(zi − zj ) + (yj − yi)(wi − wj) → ∞ zi + (yj − yi)(wi − wj), (1.11)

Dij becomes trivially positive, since the positivity of zi is magnified by a positive infinity factor.
Let’s be more concrete and immediately look at the 3-loop case: x3→∞ and z3=0 lead to

Di3 → ∞ zi + (y3 − yi)(wi − w3), (1.12)

so D13, D23 are positive, and we may claim that the third loop “decouples” from the rest two 
loops while positivity of D12 remains to be imposed. Now according to the integrands defined 
above (in terms of the 3-loop result R3 given in [4], see Fig. 1), namely

R2 = x2z1 + x1z2 + y2w1 + y1w2

D12
, (1.13)

R3 = x2x3z1z2 + y2y3w1w2

D12D23

+ x2
3z1z2 y2w1 + x2x3z

2
1 y3w2 + x2z1 y2

3w1w2 + x3z2 y2y3w
2
1

D12D13D23

+ (5 permutations of 1,2,3)

(1.14)

for L =2, 3, the residue of R3 at x3 =∞, z3 =0 is exactly R2! This simple relation reflects the 
consistency of 4-particle amplituhedron as expected. We can further make it a bit more nontrivial 
by similarly setting y3=∞, w3=0, then

Di3 = 1

ε
(zi + wi), (1.15)

where the infinitesimal ε is used to characterize the divergence of both x3 and y3. Now the same 
relation R3 →R2 also holds but in a more interesting way as we will explain. Both situations 
above in fact encode the new Mondrian diagrammatics: in the first case a rectangle-like loop 
is removed, while in the second a corner-like loop is removed, as visualized in Fig. 2. For the 
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Fig. 2. Rectangle removal x3 =∞, z3 =0 and corner removal x3 =y3 =∞, z3 =w3 =0. Note the rectangle removal is a 
special (and simplified) inverse operation of the rung rule [7].

rectangle removal, as shown in the 1st line of Fig. 2, two examples of non-vanishing contributions 
are given, from which the reduction from R3 to R2 can be transparently seen. The non-vanishing 
criterion of a diagram is, its third loop must have contacts with the external faces y, z, w (here 
we keep using the convention in [4–6], namely faces x, z, y, w locate at the left, right, top and 
bottom of the diagram respectively). Similarly for the corner removal, a diagram must let its 
third loop have contacts with the external faces z, w in order to be non-vanishing. Of course, the 
rectangle or corner removal can have different choices of orientation by dihedral symmetry but 
without loss of generality, we stick to y, z, w and z, w for consistency as above.

However, unlike the rectangle removal for which each 3-loop diagram simply reduces to a 
2-loop one, the corner removal leads to more interesting relations among different 3-loop dia-
grams, as they together reduce to a 2-loop counterpart. As shown in the 2nd line of Fig. 2, after 
removing the third loop, these three diagrams reduce to the same 2-loop diagram but with various 
prefactors, of which the sum is unity:

z2

z2 + w2
+ z1

z1 + w1

w2

z2 + w2
+ w1

z1 + w1

w2

z2 + w2
= 1, (1.16)

if we define

Xi = zi

zi + wi

, Yi = wi

zi + wi

, Di = Xi + Yi = 1, (1.17)

this is exactly the Mondrian completeness relation [5], which is trivial to prove:

D1X2 + X1Y2 + Y1Y2 = D1D2. (1.18)

Diagrammatically Mondrian factors Xi, Yi, Di mean loop 3 has a horizontal contact, vertical 
contact or no contact with loop i =1, 2 respectively. From these easy examples of two types 
of loop removal, we see how the Mondrian diagrammatics helps understand the interconnections 
among different diagrams of various DCI topologies (including their coefficients) in an extremely 
neat way.

2. Nontrivialities at 4-loop

Next, we are curious to see how this wishfully simple mechanism deals with the more sophis-
ticated 4-loop case, since it involves DCI topologies with coefficient −1 and non-Mondrian pole 
structure (recall that for a Mondrian diagram, all internal lines can be oriented either horizontally 
or vertically), both of which are absent at lower loop orders. First of all, let’s recall the 4-loop 
DCI topologies as given in Fig. 3.

Here topologies T1, . . . , T7 are Mondrian while T8 is not. As we have known, T7 and T8 are 
associated with coefficient −1, and T1, . . . , T6 are associated with +1, moreover, T4 has a Dij
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Fig. 3. 4-loop DCI topologies (see [7]). The red curve denotes a rung rule factor Dij , while rung rule factors x, y, z, w
are diagrammatically suppressed for convenience. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Fig. 4. Block removal and the cancelation between T6 and T7 in R4→R2.

factor in the numerator of its integrand. To see why these coefficients are so, we can pretend 
that they are still unknown yet and denote them by s1, . . . , s8. Immediately, we can perform the 
rectangle removal of loop 4. More rigorously speaking, we impose the limit

x4 = 1

ε
, z4 = 0 where ε → 0 (2.1)

in the 4-loop integrand R4, which takes into account DCI loop integrals of all possible orienta-
tions given by dihedral symmetry (the number of which can be 8, 4, 2, or 1 for each topology) 
and all 4! permutations of loop numbers [7]. Then in the expansion

R4(ε) = R4(0) + O(ε), (2.2)

the leading term R4(0) depends on s1, s2, s3, s4, s5 only, and R4(0) =R3 when s1=s2=s3=s4=
s5 =1 as expected. From the Mondrian diagrammatic perspective, this is trivial to understand 
as a 4-loop example of the rectangle removal. In fact we can further generalize the rectangle to 
remove more loops at a time, which will justify the existence of T6, T7. As visualized in Fig. 4, 
we now remove a block containing loop 3, 4 by imposing

x3 = x4 = 1

ε
, z3 = z4 = y3 = w4 = 0, (2.3)

so that for i=1, 2

Di3 = Di4 = 1
zi, D34 = y4w3, (2.4)
ε
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Fig. 5. New features of the 4-loop corner removal.

note that ε helps regularize the expression (∞ −∞) in D34 and renders this factor vanish. Then 
loop 3, 4 decouple from the rest two loops, and in the expansion

R4,2(ε) = R4,2(0) + O(ε) (2.5)

where the additional subscript 2 of R4 denotes removing two loops at a time, we find

R4,2(0) = s3 (x2z1 + x1z2) + (2 s6 + s7)(y2w1 + y1w2)

D12
, (2.6)

which equals R2 when s3=s6=1 and s7=−1. This is also easy to understand diagrammatically, 
and the interesting combination (2s6 + s7) explains why we need a minus sign for the cross 
topology T7: the block removal of loop 3, 4 of two different orientations of T6 gives the same 
2-loop diagram, therefore one must be eliminated in order to maintain R4,2(0) =R2 while all 
orientations of T6 and T7 are used exactly once, as shown in Fig. 4. This cancelation mechanism is 
somehow analogous to the cancelation between the cross and the brick-wall patterns in Mondrian 
diagrammatics [5], and we will see more examples at higher loop orders reflecting the same 
essence.

Now only s8 awaits to be explained and we must use the corner removal to detect this non-
Mondrian topology T8, since it has no rectangle or block to be properly removed. Similarly, for 
removing loop 4 we impose the limit

x4 = y4 = 1

ε
, z4 = w4 = 0, (2.7)

then in the expansion R4(ε) =R4(0) +O(ε), we find

R4(0) − R3 ∝ 1 + s8, (2.8)

to maintain the consistency we must take s8=−1. This is easy to understand if we look at T4, T8
together among others, as the Dij factor in the numerator of T4’s integrand requires a counter 
term for producing the correct Mondrian factor. More concretely, in the 1st line of Fig. 5, the 
relevant two diagrams give

x2x3x4z1z2z3 y3w2

D12D13D23D24D34
(D14 − y4w1) = z2

z2 + w2

z3

z3 + w3
× x2x3z

2
1 y3w2

D12D13D23
+ O(ε) (2.9)

after using

D14 − y4w1 = 1

ε
(z1 + w1) − 1

ε
w1 = 1

ε
z1, (2.10)

where
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z2

z2 + w2

z3

z3 + w3
= X2X3 (2.11)

is the desired Mondrian factor, which characterizes the contacting relation between loop 4 in the 
diagram of topology T4 and its 3-loop sub-diagram (or the resulting 3-loop diagram at the RHS).

Moreover, the cancelation between T6 and T7 in the 4-loop corner removal R4 →R3 again 
holds, as the relevant three diagrams in the 2nd line of Fig. 5 lead to the combination

x4z1 + y4w1 − D14 = 1

ε
z1 + 1

ε
w1 − 1

ε
(z1 + w1) = 0, (2.12)

which is exactly isomorphic to the cancelation between the cross and the brick-wall patterns in 
Mondrian diagrammatics [5].

Let’s summarize the nontrivialities in the 4-loop case via understanding s1, . . . , s8. First, it is 
useful to generalize the rectangle removal to the block removal, in order to check the consistency 
of decoupling more than one loop at a time. At 6-loop order we will also need the block removal 
of three loops, and so on. Next, topologies T7, T8 with coefficient −1 serve as counter terms of 
those with +1, and while T7 has a clear meaning in Mondrian diagrammatics, T8 appears to be 
the necessary company of T4 which has a nontrivial Dij factor in its integrand. At 5-loop order 
and higher, even a company topology or a group of company topologies will have its further 
company. While the contributing topologies are more diverse, the overall Mondrian consistency 
is maintained by these company topologies.

3. Rectangle and block removals at 5-loop

To see more nontrivial examples of various patterns found at L =3, 4, and to check whether 
new features or exceptions appear, we move on to the 5-loop case. First let’s recall the 5-loop 
DCI topologies as given in Fig. 6, where all 34 topologies are reorganized for later convenience 
while the same labels used in [6] are kept.

Note that according to the classification in [5], T1, . . . , T14 are of the ladder type and 
T17, . . . , T24 are of the cross and brick-wall types. The coefficients or signs of these topologies 
can be immediately determined by the rule that each cross pattern contributes −1 multiplicatively 
(otherwise 1), explicitly we have

s1 = s2 = s3 = s4 = s5 = s6 = s7 = s8 = s9 = s10 = s11 = s12 = s13 = s14 = 1, (3.1)

s17 = s20 = −1, s18 = s19 = s21 = s22 = s23 = s24 = 1. (3.2)

Additionally, each of T25, T26 has an obvious attached rectangle, therefore their signs automati-
cally follow that of T8 in the 4-loop case, namely s25=s26=−1.

Upon these inputs, we find the rectangle removal of loop 5

x5 = 1

ε
, z5 = 0 (3.3)

leads to R5(0) =R4 as expected. And the block removal of loop 4, 5

x4 = x5 = 1

ε
, z4 = z5 = y4 = w5 = 0 (3.4)

leads to

R5,2(0) − R3 ∝ 2 s15 + s16 + 2 s32 + s33, (3.5)
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Fig. 6. 5-loop DCI topologies (see [8]). The red curves denote Dij factors, while x, y, z, w factors for T15 and T32 are 
also indicated for clarity.

Fig. 7. Identification of s15, s16: removing loop 4,5 with additional cuts on loop 1,3.

which should be zero as required by the consistency. To confirm this guess and to further fully 
understand the 5-loop case, let’s identify s15, s16 and s27, . . . , s34 one by one, similar to the 
identification of s8 in the 4-loop case.

4. Identifications of the rest coefficients

First of all, s28, s29, s30 can be trivially determined by the 4-loop knowledge. Obviously, T28
is the company topology of T10, similar to the fact that T8 is the company topology of T4 in 
the 4-loop case, as the T10, T28 pair is the counterpart of the T4, T8 pair plus one rung. Similarly, 
T29, T30 are the company topologies of T19, note that T29 has one rung rule factor and T30 has two 
substitution rule factors which result from the corresponding rung rule factor of T19. Therefore 
we simply have s28=s29=s30=−1.

Now let’s consider s15, s16 which are a bit tricky. To separate s15, s16 from other unknown 
coefficients, we impose as many cuts as possible around the rim of a particular T15 diagram, as 
shown in Fig. 7, and then use a special two-step expansion. To disentangle s15 and s16, we also 
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Fig. 8. Identification of s31, s32, s33: removing loop 4,5 with additional cuts on loop 1,3.

relax one external cut, namely y1=0 here, and the reason to do so will be clear shortly. Explicitly, 
we impose the limit

x5 = z4 = 1

ε1
, y5 = w4 = 1

ε2
, y4 = x4 = x3 = w3 = w5 = z5 = z1 = 0, (4.1)

then in the two-step expansion (note the order of expansions matters as we intentionally utilize 
the x5, z4 factors of this diagram to separate it from other sub-leading contributions)

R′
5(ε1, ε2) = R′

5(0, ε2) + O(ε1), R′
5(0, ε2) = R′

5(0,0) + O(ε2), (4.2)

where the prime denotes additional cuts x3=w3=z1=0 besides removing loop 4,5 as indicated 
in Fig. 7, we find

R′
5(0,0)−R′

3 ∝ (s15 + s16) y1w1 − (2 s15 + s16 −1) y3w1 − (2 s15 + s16 +2 s32 + s33) x1z3.

(4.3)

To maintain the consistency we must have s15+s16=0 and 2s15+s16=1, so s15=1 and s16=−1, 
which explains why y1 must be non-vanishing, otherwise we cannot identify s15, s16 with merely 
2s15+s16=1. As we have assumed 2s15+s16+2s32+s33=0 in the previous section, this condition 
reduces to 2s32+s33=−1 which awaits to be confirmed.

Next, we can identify s31, s32, s33 upon the inputs of s15, s16, s30 in a similar way. Picking a 
particular T32 diagram as given in Fig. 8, we impose the limit

z4 = w4 = z5 = y5 = 1

ε
, y4 = x4 = x5 = w5 = w3 = z3 = z1 = 0, (4.4)

and note the external cut of y1 is relaxed, then in the expansion R′
5(ε) =R′

5(0) +O(ε) we find

R′
5(0) − R′

3 ∝ (1 + s31) x2x3y1 + (s32 + s33) x2y1(x3 − w1)

+ (1 + 2 s32 + s33) x2(x1x3 + y3w1), (4.5)

so the consistency requires s31 = s32 =−1 and s33 =1. Again, y1 must be non-vanishing, oth-
erwise we can merely know one condition. Now we have confirmed 2s32+s33 =−1 and hence 
2s15+s16+2s32+s33=0.

Then for s27, we can pick a particular T27 diagram as given in Fig. 9 and impose the limit

z4 = w4 = x5 = y5 = 1

ε
, y1 = y4 = x4 = w3 = w5 = z5 = 0, (4.6)

now upon the inputs of s15, s16 and s28, . . . , s33, we find

R′
5(0) − R′

3 ∝ 1 + s27, (4.7)

therefore s27=−1.
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Fig. 9. Identification of s27: removing loop 4,5 with additional cuts on loop 1,3.

Fig. 10. Identification of s34: removing loop 4,5 with additional cuts on loop 1,3.

Finally for s34, we can pick a particular T34 diagram as given in Fig. 10 and impose the limit

z4 = w4 = z5 = y5 = 1

ε
, y4 = x4 = x5 = w5 = z3 = z1 = 0, (4.8)

upon the inputs of s15, s16 and s30, . . . , s33 we find

R′
5(0) − R′

3 ∝ s34 − 1, (4.9)

therefore s34=1. In summary, in this section we have proved that

s15 = 1, s16 = −1, s27 = s28 = s29 = s30 = s31 = s32 = −1, s33 = s34 = 1, (4.10)

together with the previous section, all 34 coefficients of 5-loop DCI topologies are now identified.

5. Nontrivial Mondrian diagrammatic relations at 5-loop

Knowing all these coefficients, we then proceed further to understand them, for example, why 
a coefficient is −1 instead of 1, which should not be just an incidental result of imposing cuts at 
either zero or infinity. Once we find the Mondrian interconnections among various DCI topolo-
gies, their coefficients will become a natural consequence of these simple relations extracted 
from the previous derivations.

More concretely, we would like to explain the universal decoupling relation using one corner 
removal, which, unlike the rectangle or block removal, can cover all topologies. The limit to be 
imposed is simple:

x5 = y5 = 1

ε
, z5 = w5 = 0, (5.1)

namely removing loop 5, then in the expansion R5(ε) =R5(0) +O(ε) we find R5(0) =R4. How-
ever, this is not the end of the story since R5(0) =R4 is a redundant relation and it can be further 
dissected into many much more transparent sub-relations, as diagrammatically shown in Figs. 11
and 12.

In Fig. 11, all nontrivial corner removals of 5-loop DCI topologies are indicated. We will 
focus on groups of corners denoted by 1, . . . , 7, while groups denoted by A, . . . , F are the direct 
extensions of the corner removals of T4, T8 in the 4-loop case (see Fig. 5). The rest unmentioned 
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Fig. 11. Nontrivial corners of 5-loop DCI topologies. Groups A, . . . , F in black denote relations that are direct extensions 
of the 4-loop case. Groups 1, . . . , 7 in red denote new relations at 5-loop.

corners are as trivial as the 3-loop corners or 4-loop corners except those of T4, T8, as they locate 
in visually Mondrian topologies and do not involve the Dij factor.

In Fig. 12, groups 1, . . . , 7 are further separated into three types so that we can more clearly 
understand their nontrivialities, let’s select one example from each type to elaborate these del-
icate relations. In the 1st diagrammatic equality, the 1st and 3rd diagrams have Mondrian pole 
structures, and in these two diagrams the removed loop has horizontal contacts with loop 1,2 
while its contact with the unlabeled loop on top of loop 1 is horizontal in the 1st diagram and 
vertical in the 3rd. Naively this should give

X1X2X3 + X1X2Y3 = X1X2D3 = X1X2 (5.2)

according to the definitions in (1.17), which uses a Mondrian completeness relation and here 3 
denotes the unlabeled loop. However, the Dij factors in the 1st and 3rd diagrams complicate this 
relation and that’s why we also need the 2nd and 4th diagrams with minus signs to offset that, 
then we can exactly get the neat result at the RHS with Mondrian factor X1X2. The 2nd and 3rd 
diagrammatic equalities share the same feature of needing non-Mondrian company topologies, 
to offset the extra complexity brought by the Dij factors. However, such a company topology 
does not have one-to-one correspondence to a particular Mondrian topology, unlike the T4, T8
pair at 4-loop.

For the 4th diagrammatic equality, under the corner removal, schematically it is proportional 
to X+Y−D, so it simply vanishes. The 5th equality follows exactly the same cancelation mech-
anism, though it is not so obvious as the 4th.

For the 6th diagrammatic equality, under the corner removal three non-Mondrian diagrams 
sum to a 4-loop non-Mondrian diagram, due to
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Fig. 12. New Mondrian diagrammatic relations at 5-loop: groups 1, 2, 3 are the relations with obvious Mondrian pole 
structures, groups 4, 5 are the vanishing or canceling relations and groups 6, 7 are the relations of non-Mondrian company 
topologies.

Fig. 13. Deformation to manifest Mondrian factor D1X2Y3.

D1Y2 + Y1X2 + X1X2 = D1D2 = 1. (5.3)

Though the resulting 4-loop diagram is not Mondrian, its contact with the 5th loop is still Mon-
drian, so that we can use the Mondrian completeness relation. The 7th equality is similar but 
more nontrivial as

D1D2Y3 − D1X2Y3 + D1Y2X3 + Y1X2D3 + X1X2D3 = D1D2D3 = 1, (5.4)

note the 2nd diagram has a plus sign so it contributes a minus in the Mondrian completeness 
relation, as the resulting 4-loop diagram also has a minus sign. The Mondrian factor D1X2Y3
from this diagram is not obvious in the sense of horizontal and vertical contacts, but we can 
deform its external profile to manifest this, as shown in Fig. 13. Now the external profile of 
this 5-loop diagram is not a rectangle, but we can see a familiar 4-loop non-Mondrian diagram 
hidden in it. With Mondrian factor D1X2Y3 clarified, which is the desired result for offsetting 
two D1X2Y3 factors from the rest four diagrams, we see the Mondrian diagrammatics works 
more effectively than naive visual intuition. A final remark is, the 2nd diagram also serves as a 
company topology of the rest four, similar to the complexity of the first three identities.
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Fig. 14. The two plus signs in red of the first topology add up to +2, while the plus and minus signs in blue of the second 
topology add up to 0, in three relevant Mondrian diagrammatic relations.

6. Coefficients +2 and 0 at 6-loop

Finally we can take a glance at the 6-loop case, by investigating the coefficients of two special 
6-loop DCI topologies. First of all, the 6-loop amplituhedron or integrand involves 229 non-
vanishing contributions of DCI topologies, among which 125 have Mondrian pole structures as 
listed in Appendix B of [5], while the rest 104 non-Mondrian ones are the company topologies 
in the sense of corner removal. Interestingly, we also need six vanishing DCI topologies, namely 
those with coefficient 0, for a complete understanding of the 6-loop corner removal. All these 
topologies with coefficients can be found in the original result [9].

Similar to the 5-loop case we have extensively described, the new Mondrian diagrammatic 
relations at 6-loop also can be separated into three types: those with obvious Mondrian pole 
structures, the vanishing or canceling ones and those of non-Mondrian company topologies. Now 
we consider two particular 6-loop DCI topologies with three relevant Mondrian diagrammatic 
relations, as shown in Fig. 14.

The first topology is the 2nd diagram in the 1st relation, or the 2nd diagram in the 2nd relation, 
as each of them serves as a company topology of the 1st diagram in the 1st or 2nd relation, 
following exactly the same mechanism of T4, T8 pair at 4-loop (see Fig. 5). Since this topology 
appears twice and in both situations it has a plus sign, its overall coefficient is simply +2 as we 
add up these two pluses!

Similarly, the second topology is the 3rd diagram in the 1st relation, as a company topology 
for the other corner of the 1st diagram, or the 5th diagram in the 3rd relation, and note that they 
belong to the same topology though drawn differently. In these two situations it has a plus and a 
minus respectively, so they cancel and its overall coefficient is 0! One may find the 3rd relation 
unfamiliar, but it is simply the 7th relation in Fig. 12 if we remove the 6th loop as indicated in 
Fig. 14. Imagine the deformation in Fig. 13 to better visualize this analogy, one will find this 
6-loop relation completely trivial based on its 5-loop counterpart with an overall sign reverse for 
all topologies. Then the two special coefficients +2 and 0 are neatly explained, and the 0’s of 
other 6-loop DCI topologies have similar origins (while there is only one 6-loop DCI topology 
with coefficient +2).
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7. Conclusion and outlook

Through substantial examples of DCI integrals at L =3, 4, 5, 6, we discover new interconnec-
tions among 4-particle amplituhedra of different loop orders, the latter are defined by L(L −1)/2
conditions

Dij = (xj − xi)(zi − zj ) + (yj − yi)(wi − wj) > 0, (7.1)

which are symmetric up to all loops. For a higher loop amplituhedron, we can use rectangle, 
block and corner removals to trivialize Dij >0 conditions involving one or more sets of loop 
variables (xi, yi, zi, wi), so it can reduce to a lower loop one. In this way, we can establish a 
global view of the all-loop 4-particle amplituhedron, in particular, we find the coefficients of 
DCI integrals of different loop orders which seem to be independent, in fact follow an “inherit-
ing” pattern and it can explain many ±1 coefficients. Also at the same loop order, coefficients 
of different DCI topologies are constrained by the simple combinatorial rule: the Mondrian 
completeness relation. Its underlying mathematics is to repeatedly use D=X+Y , as D, X, Y
characterize the contacting relations between the removed loop and other loops. To ensure 
this completeness relation, we also need non-Mondrian (company) DCI topologies as counter 
terms.

The integration of the all-loop consistency of 4-particle amplituhedron and Mondrian dia-
grammatics can explain all coefficients of DCI topologies at L =3, 4, 5, 6, providing a more 
transparent supplementary understanding of the results generated by the soft-collinear bootstrap 
[9]. Its simplicity results from the definition of amplituhedron with its properties under certain 
limits, and it is an desirable future direction to develop an equally simple direct construction of 
the basis of DCI integrals based on this insight.

Historically, since the well known rung rule at 2-loop order [10], there have been various 
rules relating L-loop and (L +1)-loop amplitudes. Besides the algebraic approach [9] above 
which imposes the correct soft-behavior of the logarithm of the amplitude, they also include the 
correlator-inspired relations used in [11] which generalize the rung rule and introduce other rules, 
and the square plus triangle rules in [13]. It is interesting to note that there are some graphical 
similarities between the square plus triangle rules and the rectangle (block) plus corner rules. 
However, mathematically they appear to be quite different at the current stage of understanding, 
as the physical meanings of, for example, positive infinity and Mondrian completeness relation 
await to be explored. We would like to again emphasize that, at least up to 6-loop, the corner 
removal alone can account for all coefficients.

At 7-loop order there is no novelty other than +2 and 0 coefficients [9], while starting from 
the 8-loop case fractional coefficients begin to appear [12,13]. Therefore we expect a nontrivial 
generalization of the Mondrian diagrammatic relations at L ≥8, but they should be not too exotic 
since these coefficients are still rational. Finally, we would like to explore how the Mondrian 
consistency connecting amplituhedra of different loop orders can be extended to the generic case 
of more than four particles [3,14,15], and what it can tell us about the generic case from the 
4-particle knowledge [16].
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