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Abstract: We construct holographic Janus solutions, which describe a conformal interface in the theory of M2-

branes, in four-dimensional gauged supergravities using a perturbative method. In particular, we study three Einstein-

scalar systems and their BPS equations, which are derived by Bobev, Pilch, and Warner (2014). The actions of our in-

terest are all consistent truncations of D =11 supergravity, chosen to be invariant under SO(4)xS0(4),

SUB)xU)xU(1), and G, symmetry subgroups of S O(8). The utility of our semi-analytic result is illustrated by

the calculation of minimal area surface and the associated holographic entanglement entropy.
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1 Introduction

Conformal field theories constitute an important sub-
set of quantum field theories owing to their extended
symmetry algebra, which includes in particular the scale
transformation. Because of scale invariance, conformal
field theories are crucial in the study of critical phenom-
ena near the phase transition. Another reason why there
has been significant interest on conformal field theory
over the past few decades is the holographic principle, in
particular the AdS/CFT correspondence [1]. According to
it, a strongly-coupled conformal field theory with a large
number of degrees of freedom can have a dual descrip-
tion as a weakly-coupled Einstein-like gravity in one
higher spacetime dimensions. For careful discussions on
the requirement for the conformal field theory to have a
gravity dual, see e.g. [2, 3]. Operators in conformal field
theory have their dual fields in the gravity counterpart,
and an elaborate prescription for calculation of correla-
tion functions thereof has been established and passed a
number of non-trivial tests [4].

Subsequently, researchers attempted to turn on some
deformation in the duality pairs to break the scale invari-
ance and see if the correspondence still holds. Janus con-
figuration [5,6] is one of the most interesting examples,
where we select a relevant operator and make the dual
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field in AdS side position-dependent. Typically we intro-
duce a co-dimension one defect, or interface, and differ-
ent values for scalars on each side implies that some of
the coupling constants jump across the interface. For the
first example considered in [5], on the gauge theory side,
we have N =4 super Yang-Mills theory in 3+1 dimen-
sions, and across the 2+1 dimensional interface the gauge
coupling assumes different values. On the gravity side,
we have to consider so-called domain wall-like solutions,
and due to the inherent nonlinearity of Einstein gravity,
the field equations are typically reduced to a system of
non-linear ordinary differential equations. To obtain an
exact solution is thus usually not possible because of non-
linearity. Indeed, most previous studies on the construc-
tion of Janus solutions on the gravity side have relied on
numerical integration [6-21]. Notable exceptions include
the S O(4) xS O(4)-symmetric truncated model in Sec. 3.1
and the integrable BPS equations in a recent work [22].
Recently, we proposed a new perturbative approach
for similar systems of non-linear ordinary differential
equations derived from Einstein gravity coupled to scalar
fields, in the context of AdS/CFT correspondence [23].
This technique was successfully applied to several Ein-
stein-scalar systems in Euclidean signature space [23-25]
which describes mass deformations of several dual con-
formal field theories in the large-N limit [26-30]. In par-
ticular, the matching of the sphere partition function for
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N =2* mass-deformed super Yang-Mills and its super-
gravity dual is now more firmly established through ex-
act evaluation of a few leading-order expansion coeffi-
cients [23]. For N = 1* deformations, the first non-trivial
coefficients in the series of expansion of the sphere parti-
tion function is analytically computed [24]. For the dual-
ity proposal of mass-deformed Brandhuber-Oz theory
[31], we managed to re-sum the series expansion form of
the sphere partition function as a function of mass and ar-
gued that the result does not agree with the large-N limit
of the field theory side computation [23]. The main goal
of this study is to illustrate that the same technique can
also be successfully applied to holographic Janus solu-
tions. Using our semi-analytic solutions, we calculate the
holographic entanglement entropy [32,33] as a function
of the perturbation parameter, which controls the mag-
nitude of the deformation away from the AdS vacuum.
Let us explain the setup in more detail. We will con-
sider, for concreteness, the Janus solutions in three con-
sistently  truncated Einstein-scalar systems from
N =8, D =4 maximal supergravity with the S O(8) gauge
group [34]. The dual field theory is the well-known
Chern-Simons matter theory living on M2-branes, the ac-
tion of which was first explicitly written down by Ahar-
ony, Bergman, Jafferis, and Maldacena (ABJM) in Ref.
[35]. Instead of the full SO(8) gauged supergravity, we
are interested in various truncated models, focusing on
specific mass deformations. Such truncated supergravity
models were constructed and analyzed in Ref. [7], which
we closely follow and consider the BPS equations presen-
ted thereof. We are only concerned with the bosonic sec-
tor, as we seek classical solutions. All three models have
a single complex scalar field, which is invariant under a
certain subgroup of the global symmetry SO(8) C E;().
They will be referred to as SO4)xS04), SU3)x U(1)x
U(1), and G, models. The scalar fields, although they are
consistently referred to as z to maintain the generality of
the discussion, are dual to different mass terms in the AB-
M theory, which preserves the different symmetry sub-
group of S O(8) that is the R-symmetry of the dual super-
symmetric field theory. We are interested in conformal
defects, which means that the Lorentz symmetry along
the defect is also promoted to conformal symmetry, and
our gravity ansatz is AdSj3-sliced, instead of the
Minkowski space. We treat the scalar fields as perturba-
tion and solve the field equations exactly at each order.
The boundary condition we impose is that the solution
must be asymptotically AdS 4 in UV, and regular in IR.
The utility of the perturbative approach is best illus-
trated when holographic calculations are compared to the
field theory side result using supersymmetric localization
[36], where we take the Euclidean signature and place the
theory typically on the sphere. This was the reason the
BPS equations in [26—30] were obtained in the Euclidean

signature with the sphere-sliced metric ansatz. In contrast,
Janus solutions in holography are constructed in Lorentzi-
an signature, so it is not clear to us whether we can com-
pare the result to a localization computation result. We
thus choose to calculate holographic entanglement en-
tropy, which is the minimal area of a spatial surface
[32,33]. Although we do not attempt to do the field the-
ory side computation in this article, we believe it should
be possible, at least in weakly-coupled regime and simple
geometry of the entanglement region, using e.g. the rep-
lica trick [37] and explicit form of the ABJM action.

This paper is constructed as follows. In Sec. 2, we in-
troduce the notation and present the Einstein-scalar ac-
tions and their associated BPS equations. Section 3 is the
main part, where we solve the BPS equations treating
scalar fields as perturbations to AdS vacuum. We also
consider the backreaction, and higher order solutions with
the right boundary condition are also obtained analytic-
ally. In Sec. 4, we calculate the holographic entangle-
ment entropy for Janus solutions constructed in Sec. 3,
again solving the minimal-surface condition perturbat-
ively. We conclude in Sec. 4 with discussions.

2 Actions and BPS equations

In this section, we closely follow and summarize the
setup in Ref. [7], as a preparation for our perturbative
analysis that will be presented in the following section.
The authors of Ref. [7] presented three distinct subsect-
ors of N =8, SO(8)-gauged supergravity in D = 4, by re-
quiring invariance under certain symmetry subgroups of
the global symmetry E;(). They all have a complex scal-
ar field coupled to Einstein gravity, and schematically
share the following form.

1
e L= SR-K2'? - &*P(z,2). (1)

In the above, e denotes the Jacobian determinant of the
metric tensor, g is the gauging parameter, i.e., coupling
constant, and # is the scalar potential. The actions enjoy
the NV = 1 supergravity structure in four dimensions when
the fermionic sector is appropriately added, and the com-
plex scalar z with conjugate 7 parameterize a Kéhler man-
ifold S L(2,R)/S O(2), with a Kéhler potential

K = —klog(1 —z72). )
The metric in the internal space is conventionally calcu-
lated by K- = 0.0-K = k/(1 —zz)?, and k is a constant that
indicates the representation in which SL(2,R) is embed-
ded inside the larger symmetry group E7»;y of N =8
gauged supergravity in four-dimensions. In contrast, the
scalar potential is given in terms of the holomorphic su-
perpotential ‘V(z),

P = K(KEV VYV - 3VV) = 4KZ0,Wa:-W - 3W?, (3)
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where W = VeX VYV . In Ref. [7], the authors considered
the dual of a specific linear combination of mass terms on
the gauge field theory side, preserving SO(4)xS0(4),
SUB)xU)xU(1), and G, symmetry, respectively. Al-
though we use the same symbol, one should keep in mind
that z,z are thus dual to different mass terms in the dual
field theory. For each model, the essential information is
given in the table below.

SO@xS0@) SUB)xUM)xU(1) G
k 1 3 7
V/V2 1 2+1 T+ +1

We turn to the metric ansatz and the associated BPS
equations. Physically, we are interested in co-dimension
one conformal interfaces, so the spacetime is required to
include AdS ;. We choose the following metric ansatz:

ds? = di? + ™ ds*(AdS 5), 4)

where  ds*(AdS3) = dr? — cosh?(r/€)de? + sinh?(r/ O)2d¢?,
with curvature radius £. When ¢4 = (L/€)? cosh?(u/L), the
above metric becomes exactly AdS4 with curvature radi-
us L.

Using the standard parametrization z := ¢ tanha, one
can easily verify that the field equations of (1) are re-
duced to the following one-dimensional action:

L= [3(A')2 - k[(a’)2 + ‘l—l sinhz(Za)({')z] _gZP] - 53_2€A’
®

where (o)’ = d(e)/du. The scalar potential can be written
in terms of superpotential W

1[{ow)? 4 (oW )
LN | AL N S (A1 I ) 6
(Ba/) " sinh?>(2a) ( (95) ] W ©

k
One can also substitute the ansatz into the Killing spinor
equations and demand the existence of non-trivial solu-
tions. The analysis of Ref. [7] concludes that the follow-
ing first-order differential relations,

, 1 (A \OW? k(e 1 1 oW?
A bl vl vl brsowzywterr dar- e N O))
2k\W?2) da  k\ € JsinhQa) W2 d¢
(__2 A’ L w2 kfe™y 1 1 ow?
~ k\W?)sinh?Qa) 0, k\ ¢ )sinh(2a) W2 da ’
()

are sufficient for supersymmetry and the field equations
to be satisfied when combined with a constraint

(A/)Z - gZ WZ _ 5_26_2A. (9)
For all truncated models, we consider that at trivial AdS 4
vacuum the scalar fields @, vanish, and their field equa-
tions are trivially satisfied. In contrast, Eq. (9) is satisfied

for 24 = (L/€)? cosh?(u/L), where L is related to the vacu-
um value of W= V2 and L' = V2g. x = 1 is associated

with the choice of the Killing spinor projection rule, and we
take x = —1 for concreteness. This solution, when uplifted
corresponds to AdS4xS’ in D=11 supergravity with
maximal supersymmetry. There are additional 4dS, vacua
in G, symmetric case, which will be considered in Sec. 3.3.

Our strategy is, as illustrated in Refs. [23-25], to
handle the BPS equations perturbatively. The AdS vacu-
um is treated as a reference solution at zeroth order, and
scalar excitations will be treated as small perturbations at
first, and their backreaction to the metric as well as their
self-interaction will be studied iteratively order-by-order
in the perturbation parameter. There is a subtlety though.
It seems that the phase part of the scalar, ¢, is given a
non-trivial kink-like profile already at zeroth order. Be-
cause the modulus « will be kept zero at zeroth order, this
does not make the entire complex scalar z non-vanishing,
but this type of zeroth order deformation is essential for
non-trivial Janus-like solutions.

Furthermore, there will be in general three integra-
tion constants we can turn on for the single-scalar mod-
els of our interest. Among them, what is most crucial is
the one corresponding to the strength of the perturbation,
while the remaining two are location of the center of
Janus in the spacetime and the internal (a,¢)-space. This
property is to be contrasted with the supergravity solu-
tions for the mass-deformed partition function [23-25],
where each integration constant is dual to a mass para-
meter on the field theory side.

3 Perturbative solutions
3.1 SO4)xS0O(4) case

In this case, k=1 and it seems that one can integrate
the BPS equations exactly. Thus, this example serves as a
touchstone for the utility of our proposed method, just
like the perturbative re-construction of exact solutions
[26] in the holographic mass-deformed ABJM theory
[23]. The scalar potential and the superpotential are

2
W= ,——. 10
1—|z)? (10
The action allows a conserved Noether charge, because it
is independent of ¢.

Q = e*sinh?(2e)¢’ = const. an
We will be able to express this integration constant in
terms of the perturbative parameter. According to the

analysis of Ref. [7], the BPS equations are, in addition to
the universal constraint (9),

P = —-2(cosh2a +2),

a’ = —tanhaA’, (12)
e )
= Tsech a. (13)

They are easily integrated [7], and the branch of solu-
tions that include the AdS vacuum take the following form.
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V1-a?
gA(/J) = C()Sh( \/Eg(ll _MIR))’
V2gt
a 1

VI=a2 cosh(V2g(u - ur))
tan(£ — {ir) = V1 — a? sinh( V2g(u — ur)).- (14)

Here, we have three integration constants, as already
mentioned: a < 1 represents the strength of the deforma-
tion, and together with (g they determine the size and
direction of the Janus configuration in the internal space
(a,¢). ur denotes the center of the Janus along the u-dir-
ection.

Let us illustrate how these solutions can be construc-
ted perturbatively. Using the form of AdS vacuum and
also from the consideration of scalar fluctuation equa-
tions, we find that the following expansion in e is most
convenient.

o =sech(4) D wme, =Y awe,

oddn>1

sinha =

evenn>0

AW =%cosh(%)[1 £y ﬂn(u)e"]. (15)
evenn>2
The restriction to odd/even powers is possible owing to
the invariance under @ — —a, and when one utilizes the
re-parametrization freedom of e. This implies that e4,a
are even functions in w. In the above ansatz, we are re-
stricted to the case where the position of the Janus defect
wr is small: we will see shortly that g ~ O(€?) can be in-
cluded. We substitute Eq. (15) into the BPS equations and
demand they are satisfied for all €.
Equating zeroth order terms in €, we have

Zo(u) = £ +tan™! (sinh(%)), (16)

where /, is an arbitrary real number that yields the value
of ¢ at IR. At first order in €, the equation for «; is, up to
rescaling of e,

aj(w)=1. (17)
Then at second order in €, we have

L) = 4o —ﬂ(z)seCh(%)— %tanh(%)seCh(%), (18)

1
ﬂz(ﬂ)=—§—ﬂ<2)taﬂh(%)’ (19)

where {2, y(2) are integral constants. The constant y() is
related to the integration constant in (14) via ur = p)€>.
In contrast, {(;) can be absorbed into .. The third order
solution for « is

cq it L 2(&)
a3(u) =a@) + > 6sech 7) (20)

Because a3 is the homogeneous solution, we can freely
choose its value and set it to zero. This amounts to identi-
fying a = €, and we can obviously continue to do this to

higher orders and rediscover (14). In particular, one can
check that e is just a constant (V1 —€2) times the zeroth
order solution (except for a shift by ur). We also verify
that the Noether charge is indeed constant, and consistent
with

e sinh?2a = 2a%g 72073, (1)

up to O(e'?).

3.2 TheSU@B)xU1)xU(Q) case

In this case, the scalar potential and the real superpo-
tential are given as follows,
V22 +1)
(1—z2)32
with k= 3. As # is independent of ¢ here, we have a No-
ether charge.

P =—-6cosh2a, W= (22)

0 = ¢* sinh?2a. (23)
The BPS equations are, in addition to the universal con-
straint (9),
3 sinh @ cosha(sinh4a cos 3 + cosh4a + 3)A,
2W2
e A sinh?2asin3¢
20W? ’

7’

24

_ sinh2asin 3§A, N e A(sinh4a cos3¢ +coshda +3)
oW 2UW2 '

4

(25)
We note that the real superpotential ¥ is given as

w2 = (4 sinh® 2@ cos 3¢ + 15 cosh 2a + cosh 6a) /8. (26)

Unlike the S O(4) x § O(4)-symmetric case, these equa-
tions are difficult to solve exactly. Since W? is not even
under @ — —a, it is not an even function in u, and our per-
turbation ansatz is given as follows (i.e. perturbative
modes of « are not restricted to odd powers of € any
more, and the modes of ¢ include even as well as odd
powers).

() =sech('%)2a/n(y)e”,
n=1

{4 = elwe’,
n=0

L n
AW =?cosh(%)[l+;ﬂn(,u)e ) 27

Note that W? is O(e?), which implies the O(e”) part of the
equation is exactly the same as the S O(4) xS O(4) model
and we have again

Zo(u) = &, +tan™! (sinh(%)). (28)

Naturally, the equations for a,A are satisfied at O(e®) for
vacuum configurations.
We find the following solutions for O(e).
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a1 () = aq), (29)
4i(u) g“(l)+a(1)sech ( )(smh(L)cos%*

smhz(L)sm3§*), (30)

Ay () = —u(l)tanh(%). 31

Without losing generality, we can set (1) = 1, and ;) can
be set to zero, as it can be absorbed into re-definition of
£« And gy can likewise be set to zero, as it corresponds
to the translational freedom in p.

Substituting the O(e) results into O(e*) equations and
proceeding in the same manner, we have

a>(u) = sech? (%)(sinh(%)sin%* —cos 35*), (32)

& (y) =tanh? ( ) Sin 6,

+ 1 (1 - 3cosh(2—’u))tanh( )sech%( )00564’*,
4 L L

(33)

Ho(u) = ~5 (34)

We again made use of the re-definition freedom of e, and
the integral constant for A, is fixed as we require A’ =0
atu=0.

At the third order in €, we find

3(u) = —sech“(L)[6(sinh(‘—L‘)—3sinh(3f“))sin6g*

2u 2(H
+6(7cosh(f)+3)cos6{*—20c0sh (Z)} 35)

{3(,u)— (sech( )(16sech3(%)—4556:ch(’%)
+ 32) - S)Sin3§* + i4 (3256Ch6 (E) —96sech? (%)
+99sech2(L) 35)sm9§,k 4tanh( )sech(l—l)

tanh( )sech(%)

X (3ZSech4 ( L) 80sech’ ( ) + 63) c0s 9,

X (lésechz( ) 31)(:053(*

(36)

As(w) =— gtanh(%)(sech3 (%) - l)sin3§’,k
+ é (Zcosh(%{) +cosh(4L ) +9) sech? (L)cos3§’*
(37

We do not present the solutions at higher orders,
however it is evident that it is just the repetition of a sim-
ilar integration problem. Using the higher-order results,
the Noether charge is found to be

417 , 417
e sinh? 20 =——€?

7 v cos.(3g“,,<)e3

2
+ 6i(cos(6§*) - 3)64

653 (64 sin(3Z.)

+235¢c08(3¢,) — 63 c0s(94,))e
+0(ef). (38)
Note that this is dependent on /,, the initial condition of

{. The phase still changes by 7 between p=-co and
u = oo, as in the previous case of S O(4) xS O(4).

Ag = lim () =) =7+ o(€). (39)

One can draw various Janus curves in the
(acos,asind)-plane, and some samples are presented in
Fig. 1. Because all the solutions flow to @ =0 as u — +oo,
they make a contractible loop. When compared with the
plots presented in Ref. [1], our perturbative method re-
stricts us to solutions homotopic to the AdS vacuum,
whereas otherwise we find good agreements. Having
Al=n for SO@)xSO@) and SUB)xU(1)x U(1) im-
plies that the points at u=+oco are smoothly joined at
z=0. As we will see in the following subsection, this is
not the case for G,.

3.3 The G; case

For this truncation, we have k = 7 and in terms of a, ¢,
the (super)-potential is given as follows.

1 1
P =3 sinh’ 2acos 7¢ + o cosh’ 2a

x (56 sinh* 2arcos(4¢) - 68 cosh4a
+25cosh(8a) — 149)

+ 17—6 sinh® 2a (2(cosh4a + 3) cos 3¢

+(7coshda+17)cos?), (40)
W=vV2 (cosh7 @ + 7 cosh® asinh* ae*¢

+7cosh* @ sinh® e + sinh’ e’). (41)

Because the potential has an explicit dependence on the
phase ¢, this model does not enjoy a conserved charge,
unlike previous examples.

Writing down the BPS equations is straightforward,
and because they are rather lengthy, we choose to releg-
ate the formulas to Appendix A. What is important to
note is that, unlike previous examples, this model in-
cludes five non-trivial AdS fixed points, in addition to the
trivial vacuum at @ =0: There is a non-supersymmetric

. . 1
point with S O(7)* symmetry (blue dot) at a = 3 log5 and
{=0. Two non-supersymmetric points appear with

1
SO(7)” symmetry (orange dots) at a = 5arccsch2 and
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T . . .
= £ There are two supersymmetric G,-invariant

. 1
points, G5, (red dots) at azzarcsinh(wlﬁ) and

l= iarccos% \/3— V3. Their distribution in the z,z plane
is shown in Fig. 1.

Although the equations are apparently more complic-
ated, one can proceed perturbatively as with the previous
example. The zeroth order behavior is the same, and at
first order with an appropriate choice of €, we have

a () =1, (42)

£1(u) =3sech? (‘—L‘)(sinh(’z‘)cos 3.
_sinh? (%) sin 34*), 3)
Ar(u) =0. (44)

Second order results are as follows.

a>(u) = 3sech® (%)(sinh(%)smS{* —cos 34’*), (45)

am :% tanh (%) sech’ (%) [72 sinh? (%) sin6Z.
2
+18 (1 - 3cosh(—'u)) cos6s, —8 sinh(li)
L L

2
X (cosh(f'u) + 5) sind¢, + 32 cosh? (’%)

+32c0s44, ]+ 31— 12tan" e, (46)
7
Ho(p) = ~5 (47)

Third order results can be found in the Appendix A.

It is worthwhile to compare our results with numeric-
al constructions in Ref. [7]. With a general choice of ini-
tial conditions, the scalar fields may run off to infinity,
and for very special choices, one may obtain domain wall

Fig. 1.

solutions connecting two distinct AdS vacua. Such solu-
tions can be treated as a limiting case of Janus configura-
tion: € near a critical value, with £, = 0. The Janus config-
uration then starts with @ =0 at u = —oo, stopping by the
two Go-symmetric vacua (red dots in the right panel of
Fig. 1) before returning to @ =0 at u = co. However, this
locus is not differentiable in the (a,¢) plane (¢f- Fig. 7 in
Ref. [7]), and we expect our perturbative method to break
down there. (i.e. the series in € ceases to be uniformly
convergent.)

In this model, there is no conserved Noether charge,
and accordingly Al # n in general. Explicit calculations
give

A= lim (¢(1) = {(=p)) = 7 — bme”
—157(cos(Z,) —3cos(3L))e +O(e).  (48)

Namely, the two end points y = oo meet at @ =0 with a
cusp.

4 Entanglement entropy

As an application of our perturbative solutions, we
will construct minimal area surfaces and the associated
holographic entanglement entropy [32,33] from the regu-

Area

larized area via Sygg = Go We note that a similar study
N

has appeared in e.g., [38,39] for (non)-supersymmetric
solutions, and one of the authors has considered the eval-
uation of perturbatively obtained time-dependent gravity
solutions in Ref. [40].

Our choice for the AdS 4 metric is

ds? =dp?® + (L/€)* cosh?(u/L)
X (dr? — cosh?(r/€)df + €2 sinh®(r/0)dg?),  (49)

and we choose a disk of radius ry on the boundary =0

(color online) From left to right, the figures illustrate Janus solutions in polar coordinates of ae’, for SO4)xS04),

SU()xU(1)xU(1), and G,-symmetrically truncated models, respectively. Different colors denote different values of e, i.e.
0.1,0.18,0.25 for SO(4)xS04), 0.1,0.15,0.2 for SUB)x U(1)xU(1), and 0.1,0.125,0.14 for G,. Gray lines represent constant-# con-
tours. The maximally supersymmetric vacuum is located at the origin, and on the right panel additional supersymmetric and non-su-
persymmetric fixed points are also specified in blue, red, and orange colors.
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Fig. 2. (color online) Minimal area as holographic entangle-
ment entropy when the boundary metric is AdS.

and centered at r = 0 as the entanglement region (Fig. 2).
Then, the holographic entanglement entropy is given in

terms of
o I_,l . r
Area=2xL | d h(—) h(—)
rea JT. L r COS L Sin €

Tty o

Through variation, one obtains a non-linear second-
order differential equation for u(r), whose solution can be
found owing to the embedding of AdS, inside R%3 (see
Appendix B for extension to general dimensions).

tanh(%):ccosh(g), (51)

where 0 < ¢ < 1 and otherwise it is an arbitrary constant. It
is easy to see that the entanglement region is small (large)
when ¢ ~ 1 (¢ ~ 0). Substituting the solution into the area
(50) and introducing a cutoff § = (1 — tanh(umax /L))'/?, one
obtains

N -2 -
Area=27rL2( Gl 3V, 5V 053]
\/Ec 0 4\/50 32\/§c
+0(8%). (52)

It is well known that the entanglement entropy follows
perimeter law for conformal field theories, and we see
that it is indeed the case here from the behavior of the di-
vergent part (6!) for small entanglement region (c ~ 1).

Because we are going to expand around the explicit
solution (51), it will be convenient to switch to new vari-
ables

y :tanh(%),
x:cosh<§). (53)

Their range is by definition x > 1 and [y| < 1, and for the
solution y =cx their range with the cutoff § becomes
x> (1-6%)/c,lyl < 1 =62 Our metric ansatz changes to

ds? =dp? + ¥ (dr?
LZ

Ty

—cosh?(r/0)di* + €2 sinh®(r/£)d¢?),

52
dy2 +e* ( 5
X2 —

dx? — x2de? + 2 (x* - 1)dg?
(54)

1

while the area integral takes the following form.

Y eAVx2-1 2(1 —12)2 oA
Area =2n(L f dx \/x \/(y')z ( Lzy ) e N
1 _

= f dxL(y,y"), (55)
d(e)

where (o)’ := — in this section. For the AdS vacuum,

A =(1-y»)V Z.XAS we turn on scalar fields to consider
Janus solutions, the metric function 4 changes, and so
does y(x), because of the change in the Euler-Lagrange
equation. When we write L= L)+ L€ +--- and
y=yo+y2€>+---, using the fact that y, satisfies the min-
imal-area condition, we find

Area= [ ax(Lonp) + Lo0ope)
1

. (5L)
S )2
9" o)

with cutoff xo = (1 —6%)/c. The first term is O(e®), and the
answer is already given in (52), which exhibits linear di-
vergence. In contrast, for y, (n > 2), we impose the bound-
ary condition y,(x=1/c)=0 to fix the boundary en-
tangling region, and as the consequence we find that
O(€?) and subsequent terms are consistently free from di-
vergence, and starts with a finite term as § — 0.

A comment is in order for the SO4)xS0(4) case,
where explicit solutions are available. The metric factor is
here the same apart from a constant multiplication, i.e.,
e = V1-€2L/tcosh(u/L). It might seem innocuous, but
in fact the metric is not AdS any more, and the changed
Euler-Lagrange equation does not admit a simple solu-
tion like y = cx. We will first describe the minimal-area
solutions collectively for all three models up to €’ in our
perturbative scheme below. For the SO(4) xS 0O(4) case,
e3-order correction is obviously absent, so we will dis-
cuss the e*-order calculation briefly after presenting gen-
eral results.

Let us now sketch the computation. We substitute the
following expression into the minimal-area condition.

X=X, 2

e +0(e), (56)

x=1

y(x) = cx[l + Z on(x)e"] : (57)
n=2

We find second order linear differential equations for y,.
They generally assume the following form:

Ly, (x) = ayF(x) + Hy(x). (58)
Namely, the homogeneous part is independent of n, the

inhomogeneous part is written as the sum of n-independ-
ent and universal part F(x), and the remaining part H,,
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which depends on n. The coefficients a, are constant,
@ ==3 and a3 = El}cos3§*, where k=1,3,7and k=0,1,7
for SO4)xS04), SUB)xU(1)xU(1) and G, symmet-
ric models. The differential operator f. and the universal
part are in fact the same for all three models,

i Vi—aR2 d [ 2(1-22) ¢ f]
x2(1 - x2) dx V1= 252 dx

20(6‘ (x + 1)—2)

(=D (c2x2-1)"

The model-dependent parts H, for n = 2,3 are given as

H,(x) =0,

c(8cx* (3x2=5)-24c*x? (x>-3

() :k[ ( ( )3(x2 - I)Eczxz)— 1)

4 (c4x2 <3x2— 1)—302 (xz— 1)—2)
3x(x2=1)(c2x2-1)

4(2c*x2 (325 43¢ (2%+1)-2)

+ Vi-c2x2sin(32.)|.

3x(x2-1) ()

Readers might wonder why the inhomogeneous part, i.e.,
the right-hand-side of (58) takes similar forms for differ-
ent models. This is because the warp factor ¢* takes the
following universal form, at least up to €.

F(x) = (59

2(1722 +33)+18)

X cos(34.)+

sin(3Z,)

L k -

A 2 3 4

e’ = 1 - =€ +kaze +O(e )), (61)
lxll—yz( 2

where k=1,3,7 and k=0,1,7 for SO@)xSO0®4),

SUB)xU)x U(1) and G,, respectively, and

o= % (201 = (1) )sin 3+ (=37 423" cos32.).
(62)

They start to differ at €*, but for simplicity we consider
the minimal surface only up to € here. For
SO@)xS0@4), o5 =0, and 7 is constant, and we dis-
cuss the e*-order solution separately later.

It is evident from the form of J, that Eq. (58) can be
treated as a first order differential equation for 1,. Owing to

the linearity, the solutions generally take the following form,

0,0 = 9" 00 + a9 () +0," (), (63)
where y® is the homogeneous solution, and y™,p"™ are
particular solutions for F, H,, respectively. Homogeneous
solutions are easily found,

«/1— 7.2 VeI -1
yP(x)=ci |- o + V1-=c?sinh™ [ x)]+cz.

x2-1

We note that the part with ¢; is divergent at x=1.
Without losing generality, we can choose ™ (x) =0 in
(63), since it can be included in the in-homogeneous solu-
tions. We then need to construct particular solutions
»®,p™ and impose 1(1/c) = 0 and regularity at x = 1.

Now, let us turn to the inhomogeneous part.
d(y™)/dx, the first derivate of an inhomogeneous solu-
tion for F(x), is given as

dy®@ c? (x - 2) +1
dx  cx (x2-1)
V1-c2x2 (c Vi-c2+ (l - 2c2) (sin”! cx—sin”! c))

2x2(x2-1)

(65)
Unfortunately its integration cannot be done analytically,
and we have instead

(u)( ) r)(M)

cx

sSm - ¢—Ssm lCX

logx—

Vi-c2V1-¢2x2 1-¢2 1-2¢2 1-2¢?
¢ oy Clog(\/l—c2x2+\/1—c2x)— ¢ < ('_1 in~ )
c c

2x(x2-1)

1-2 2 1—c2x2 N '2_1
x(\/l—czx2+cxsin‘1cx)—f dx /(1 =2¢)( X+ ex’sin Cx)( cx ) +2x'(sin_1c—sin‘lcx')), (66)

e X717

which is finite at x = 1, and the integration constant p™ is

chosen to guarantee n*(1/c) =0

—c log(l —cz)

ne(1=2c3)(r—2sin"'¢)
+
4(c2-1)

p =clogc—

(67)

The particular solution due to H; can be also obtained in

the same fashion. Let us just present the result here.

\/1 _C2x/2

" = k[3 cos3Z, p™(x)+ S (x)sin34, + C(x)cos 3. |, (68)

S(x) =c(1 —C2)2(Zsin_l(cx) -7)— 34_x (1 _ chz)

2
+ V1 _szz( 3 (62x3 —3czx+x)

6¢* —9¢2 +4)
+— b

P (69)
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Cx) =%C(264x5 ~12(1-)" V=22 + (66 -3)x
+ (62 —6c4)x3)—c(1 —02)2 (210g( V1-c2x
—V1- c2x2)—1og(1 —?)+ 210g(c)).

(70)

One can plot the minimal area surface for pure AdS and
Janus solutions, as shown in Fig. 3. Intuitively, the min-
imal surface must be pushed away from the center of AdS
due to the redshift effect when there is nontrivial excita-
tion.

We now substitute these solutions into (56) and eval-
uate up to € terms,

Area = Area() + Area)e” + Areags) e’ + O(e*). 71)

The leading terms of the integral in the limit of § — 0 can
be evaluated using the differential equation for v,. The
results are

(2cV1 —cz+(ﬂ—2)(c2—2)sin_lc)
3cVl-¢2

Area(y) =7rL2k[

f2m2e 5)+0(52), (72)

C
Areag) = 2nL*k
2(c4+c2—2) Vi-¢2 4(2c4+c2+12) Vi=¢2
+
3¢ 15¢

X

62]sin3§’*

+[% (1-¢?)(2c2-3)+ 3\}_—2_;25— %6462]0053@}

k

- Bz cos 3, Areag) + 0(63).
(73)
Now let us turn to the case of SO(4) xS 0O(4), where
the e*-order correction is absent. Let us stress again that
although the warp factor changes only by a numerical
factor, the minimal area surface and the associated holo-
graphic entanglement entropy is non-trivial. At €2, we
managed to obtain analytic results. One can easily contin-

ue the analysis of the surface-area action in the manner of
(56) and find that

Fig. 3. Minimal area surfaces. Left panel depicts AdS vacu-
um, and right panel depicts nontrivial Janus backgrounds.

. 1
Lys(x) = —§F (x) + Ha(x), (74)

Hy(x) =
2cxp)(x) (x (c2x2 - 1) 5 (x) = I)z(x)) c (c2 (5)62 - 3) - 2)
(232 -1) 4(x2-1)(c2x2-1)
(c4 (x4 +)c2)—c2 (x2 +3)+2) 3c2x
- > 02(x) + 55020 |
(2 =1)(2x2-1) I —c*x
(75)
where 1, = y™ in (66). One should then integrate the dif-
ferential equation above, however this unfortunately does

not seem feasible due to the sophisticated inhomogen-
eous part in Hy.

5 Discussions

In this study, we applied a perturbative technique,
where we expand the supergravity equations around a
pure AdS configuration in an expansion parameter, which
is one of the integration constants, and solve the linear-
ized equations order-by-order iteratively. We have inten-
ded to be illustrative, and considered three simple mod-
els that are consistent truncations of D =4, S O(8) gauged
supergravity and have studied Janus solutions. Let us
stress here that our method is different from the conven-
tional series expansion of the field equations near UV
(i.e., near the boundary of AdS), where the IR boundary
condition cannot be incorporated analytically and one
usually has to rely on numerical integration. In our meth-
od, we instead impose the IR boundary condition at every
order in €, and the holographically renormalized quantit-
ies can be obtained exactly as a function of CFT deforma-
tion parameters. Although we have considered only
single-scalar models in this paper, the advantage of our
method stands out more strongly when we consider
multi-scalar models (e.g., Ref- [24]), where thorough nu-
merical analysis is significantly more time-consuming.

There are evidently several avenues to investigate fur-
ther. One is to study other supergravity models. There are
numerous studies on supersymmetric Janus solutions in
various dimensions [6, 8-22], and one can obviously ap-
ply our method and construct the solutions in a semi-ana-
lytic form.

It will be also worthwhile to attempt to extract other
physical quantities from Janus configurations, such that
one can eventually compare with the corresponding field
theory side computations. We note that in Ref. [41],
single-scalar models were studied using a first-order
formalism, inspired by the Hamilton-Jacobi theory, and
then the result was used to calculate holographic entan-
glement entropy and boundary OPE. We also note that
the contribution of the interface to the correlation func-
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tions and sphere partition functions are discussed in Ref.
[42], where the solutions connect two different conform-
al fixed points. Perhaps from a more fundamental per-
spective, one would like to identify the conformal field
theory living on the interface, namely the conformal field
theory dual of the AdSs slice in our setting, from the
holographic results of correlation functions, partition
function, and entanglement entropy. Ref. [43], for ex-
ample, provides a discussion of how marginal deforma-
tion affects the partition function when the spacetime has
a boundary (interface) from the calculations in free field
theory.

Let us also point out an interesting generalization of
Janus configurations in the literature. One can consider
space-modulated deformations, and with an ingenious

choice of the ansatz, one still obtains ordinary differen-
tial equations [44], allowing analytic control, while in the
most general setup one has to solve partial differential
equations. An interesting physical consequence is so-
called boomerang RG [45,46], namely analogues of c-
theorem can be avoided, and the same conformal field
theory can be encountered at both ends of the renormaliz-
ation group. Let us add that for the ABJM model, spa-
tially modulated mass deformations were studied both
holographically and on the field theory side in a number
of papers [47—51]. One can certainly re-visit the holo-
graphy-side analysis employing our method and also
study spatially modulated solutions in other AdS/CFT ex-
amples. We plan to report on these topics in the near future.

Appendix A: BPS equations for G, symmetric truncation

In this appendix, we present the BPS equations and their solutions obtained using our perturbative prescription for the G, symmetric

model. In terms of the superpotential, the BPS equation is given as

oo (AW
To14\we?

=73

w2

More concretely, one obtains

e 1
da 7¢ ) sinhQa) W2 O °
2(A’) 1 ow?

e 1
sinh®2a) 0L +(7)sinh(2a)ﬁ da

1 ow?

(AD

1 ow?

(A2)

1 (A
a = (—) sinh 2« (sinh 2@ cos { + cosh 2a)2 (—2sinh4a (4sinh4a cos4l

T 64\ w2

+25cos{ —14cos3¢) +sinh8a (10cos3{ —7cos )

+8sinh® 2a (cosh2a cos 57 — 6sinh 2a-cos 2¢) + 8 cosh4er + 14 cosh 8 + 42)

e 1
+— | ———
8¢ | sinh2a W2

1
sinh? 2asin £ (sinh2acos{ + cosh 20)

X (2 sinh? 2acos4{ —4sinhda (4cos +cos3() +coshda (11cos2f +10)+ 13cos2 + 2) s (A3)

1(A 1
== (—2) — sinh3 2esin £ (sinh 2ccos £ + cosh 2)? (2 sinh? 2acos 4 — 4sinh4a (4 cos +cos30)
4\ W2/ sinh* 2«

+cosh4a(11cos2{ +10) + ]3c052§+2)+(

A

32¢

11
— sinh2a(sinh 2@ cos £ + cosh 2a@)?

sinh2a W2

X (—=2sinh4a (4sinh4acos4 +25cosd — 14cos3¢) +sinh8a (10cos 3¢ — 7 cos )

+8sinh® 2a (cosh2a cos 57 — 6sinh 2a cos 2¢) + 8 cosh 4 + 14 cosh 8 + 42) , (A4)

The real superpotential is given as follows.

w? =2cosh14a(]4tanhll acos3{+ 14tanh1°ac0s4§+2tanh7 a(49cos +cosTl) + 14tanh4acos4§

+ 14tanh® @cos 37 + tanh'* @ + 49 tanh® @ + 49 tanh® o + 1). (A5)

The third order solutions are
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@) = —sechz( )[3sech2( )(32s1nh( )sin4§* +9(sinh(ﬁ)—3sinh(3fu))sin6§*

L

+8(cosh(%)—3)cos4§* +9(7cosh(2f#)+3)cos6§*)—58], (A6)

£(w) :9sech(%)(l2tanh(%)sin3§* +(SCosh(%u)—7)sech(%)cos3§*)tan_1 et +3(2sech4(%)—7sech2(%)+S)Sin(*

+ i (sech(ﬁ)(736sech3 (ﬁ)—9(72nsinh(ﬁ)+7l)sech(ﬁ)+224)—321)sin3(* +3(8$BCh6(ﬁ)— l4sech4(ﬁ)
24 L L L L ; L L

2
+sech2( )+5)51n7(* - 2 35(cosh +3)— 116cosh * tanhz( )sech4( )sm%*
L 64 L L L

+( ;ﬂ 6tanh3( )sech( ) 30tan™ le%)cos{*+(7ﬂ

(6sech2(L) 5)+2i4mnh( )sech(%)

X (736sech2 (7) - 397))cos 34:+3 tanh(ﬁ)sech(%)(ﬁsech4 (%) — 10sech? (Z)_ 3)cos e

9
8

+7tanh( )sech( )(325ech4( ) SOSechz( )+63)cos9(*, (A7)

Az(u) = ——tanh(i)(sech%%)—l)sm.’af* (2cosh(21fl)+cosh(4f’u)+9)sech4(%)cos3{*. (A8)

Appendix B: Minimal area surface of AdS inside embedding spacetime

We present here the minimal area surface solutions inside the
AdS spacetime of general dimensionality. In global coordinates,
the metric of round AdS,.; can be written as

ds? =

2 2 2 2
cos2.f(_d’ +dg€? +sin? €407 ), (B1)

where dQ?

This can be derived as induced metric on the surface defined by

_, denotes the (d-1)-dimension sphere with unit radius.

d
Z(Xi)Z_(Xd+l)2_(Xd+2)2 :_LZ’ (BZ)

i=1
inside R%2 with natural flat metric. An explicit parametrization that
leads to (B1) is

X' =LtangY',

X1 =Lsecé&sint,

X2 =Lsecécost, (B3)
where yi defines the spatial part of the boundary S$97!, ie.
(Y2 = 1. The definition (B2) is also useful to derive the relation
dsfms,m :dy2+cosh2ydsidsd: one can attempt X'=sinhy and
X' = coshuX' (i=2,---,d+2) and make X' (i=2,---,d +2) define AdS .
We also note that an alternative representation of AdS in global co-
ordinates,

ds? = dp* —cosh? pdf* +sinh? pdQ3_,, (B4)

is related to (B1) simply through sec&=coshp, or equivalently

tané = sinhp.

Now let us consider the holographic entanglement entropy as
the minimal surface area inside bulk AdS [32]. We can write
dQ?_| = d¢? +sin? 6dQ,_», and for simplicity, we choose to divide the
boundary into two parts, separated by a constant latitude curve
6 = 6p. In terms of £(6), which describes the shape of the surface in
the bulk, the area is

o . . -2 2
Area = L vol(5972) fog de% (jz) +sin?¢. (BS)

One can check that the following relation satisfies the Euler-
Lagrangian equation derived from Eq. (BS), for constant c.
cos@siné = c. (B6)
Evidently, this equation is equivalent to (51), when we identify
sec& = cosh(u/L)cosh(r/€), tan&cosf = sinh(u/L).
From the above parametrization, it is easy to see that this curve is
equivalent to the following quadratic equation
C2X1)E = (X2 — (x2)2 = ), (B7)
Or, as we consider spatial surfaces at a given time defined by
X1 —tansx9*2 =0, (B6) is an
X'sinz = cx9+1.
It is now straightforward to substitute the solution (B6) into the
integral (BS), and calculate the area. The result for general dimen-
sions is provided, e.g., in Ref. [40].

intersection with a plane

References

1 J. M. Maldacena, Int. J. Theor. Phys., 38: 1113-1133 (1999),
[hep-th/9711200]. [Adv. Theor. Math. Phys., 2: 231 (1998)]

2 1. Heemskerk, J. Penedones, J. Polchinski et al., JHEP, 10: 079
(2009), arXiv:0907.0151

3 S. El-Showk and K. Papadodimas, JHEP, 10:
arXiv:1101.4163

4 O. Aharony, S. S. Gubser, J. M. Maldacena ef al., Phys. Rept.,
323: 183-386 (2000), arXiv:hep-th/9905111

5 D. Bak, M. Gutperle, and S. Hirano, JHEP, 05: 072 (2003),
arXiv:hep-th/0304129

106 (2012),

073104-11


https://arxiv.org/abs/0907.0151
https://arxiv.org/abs/1101.4163
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
https://arxiv.org/abs/9905111
https://arxiv.org/abs/0304129
https://arxiv.org/abs/0907.0151
https://arxiv.org/abs/1101.4163
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
https://arxiv.org/abs/9905111
https://arxiv.org/abs/0304129

Chinese Physics C Vol. 44, No. 7 (2020) 073104

10

11

12
13

14

26

27

28

29

A. B. Clark, D. Z. Freedman, A. Karch et al., Phys. Rev. D, 71:
066003 (2005), arXiv:hep-th/0407073

N. Bobev, K. Pilch, and N. P. Warner, JHEP, 06: 058 (2014),
arXiv:1311.4883

0. DeWolfe, D. Z. Freedman, and H. Ooguri, Phys. Rev. D, 66:
025009 (2002), arXiv:hep-th/0111135

A. Clark and A. Karch, JHEP, 10: 094 (2005), arXiv:hep-
th/0506265

E. D’Hoker, J. Estes, and M. Gutperle, Nucl. Phys. B, 757: 79-
116 (2006), arXiv:hep-th/0603012

E. D’Hoker, J. Estes, and M. Gutperle, JHEP, 06: 021 (2007),
arXiv:0705.0022

M. Suh, JHEP, 09: 064 (2011), arXiv:1107.2796

C. Bachas, E. D Hoker, J. Estes et al., Fortsch. Phys., 62: 207-
254 (2014), arXiv:1312.5477

R. A. Janik, J. Jankowski, and P. Witkowski, JHEP, 07: 050
(2015), arXiv:1503.08459

K. Pilch, A. Tyukov, and N. P. Warner, JHEP, 05: 005 (2016),
arXiv:1510.08090

D. Bak, A. Gustavsson, and S.-J. Rey, JHEP, 12: 025 (2016),
arXiv:1605.00857
P. Karndumri,
arXiv:1604.06007
P. Karndumri and K. Upathambhakul, Eur. Phys. J. C, 77(7): 455
(2017), arXiv:1704.00538

M. Gutperle, J. Kaidi, and H. Raj, JHEP, 12: 018 (2017),
arXiv:1709.09204

M. Suh, JHEP, 04: 109 (2018), arXiv:1803.00041

M. Gutperle and M. Vicino, Nucl. Phys. B, 942: 149-163 (2019),
arXiv:1811.04166

N. Bobev, F. F. Gautason, K. Pilch ef al., Phys. Rev. D, 100(8):
081901 (2019), arXiv:1907.11132

N. Kim, JHEP, 04: 053 (2019), arXiv:1902.00418

N. Kim and S.-J. Kim, JHEP, 07: 169 (2019), arXiv:1904.02038
N. Kim and S.-J. Kim, Phys. Lett. B, 797: 134837 (2019),
arXiv:1904.09465

D. Z. Freedman and S. S. Pufu, JHEP, 03:
arXiv:1302.7310

N. Bobev, H. Elvang, D. Z. Freedman et al., JHEP, 07: 001
(2014), arXiv:1311.1508

N. Bobev, H. Elvang, U. Kol et al., JHEP, 10: 095 (2016),
arXiv:1605.00656

M. Gutperle, J. Kaidi, and H. Raj, JHEP, 02: 165 (2018),

Phys. Rev. D, 93(12): 125012 (2016),

135 (2014),

30

31

32

33

34
35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

073104-12

arXiv:1801.00730

N. Bobev, V. S. Min, K. Pilch et al., JHEP, 03: 130 (2019),
arXiv:1812.01026

A. Brandhuber and Y. Oz, Phys. Lett. B, 460: 307-312 (1999),
arXiv:hep-th/9905148

S. Ryu and T. Takayanagi, Phys. Rev. Lett., 96: 181602 (20006),
arXiv:hep-th/0603001

S. Ryu and T. Takayanagi, JHEP, 08: 045 (2006), arXiv:hep-
th/0605073

B. de Wit and H. Nicolai, Nucl. Phys. B, 208: 323 (1982)

O. Aharony, O. Bergman, D. L. Jafferis et al., JHEP, 10: 091
(2008), arXiv:0806.1218
V. Pestun et al, J.
arXiv:1608.02952

P. Calabrese and J. L. Cardy, J. Stat. Mech., 0406: P06002
(2004), arXiv:hep-th/0405152

J. Estes, K. Jensen, A. O’Bannon et al., JHEP, 05: 084 (2014),
arXiv:1403.6475

M. Gutperle and J. D. Miller, Phys. Rev. D, 93(2): 026006
(2016), arXiv:1511.08955

N. Kim and J. H. Lee, J. Korean Phys. Soc, 69(4): 623-631
(2016), arXiv:1512.02816

Y. Korovin, JHEP, 04: 152 (2014), arXiv:1312.0089

C. Melby-Thompson and C. Schmidt-Colinet, JHEP, 11: 110
(2017), arXiv:1707.03418
C. P. Herzog and I
arXiv:1906.11281

A. Donos and J. P. Gauntlett,
arXiv:1311.3292

A. Donos, J. P. Gauntlett, C. Rosen et al., JHEP, 07: 128 (2017),
arXiv:1705.03000

A. Donos, J. P. Gauntlett, C. Rosen et al., JHEP, 04: 017 (2018),
arXiv:1712.08017

K. K. Kim and O.-K. Kwon,
arXiv:1806.06963

J. P. Gauntlett and C. Rosen, JHEP,
arXiv:1808.02488

1. Arav, J. P. Gauntlett, M. Roberts et al., JHEP, 04: 099 (2019),
arXiv:1812.11159

K. K. Kim, Y. Kim, O.-K. Kwon et al., JHEP, 12: 153 (2019),
arXiv:1910.05044

B. Ahn, S. Hyun, K. K. Kim et al., JHEP, 02: 132 (2020),
arXiv:1911.05783

Phys. A, 50(44): 440301 (2017),

Shamir, JHEP, 10: 088 (2019),

JHEP, 04: 040 (2014),

JHEP, 08: 082 (2018),
10: 066 (2018),


https://arxiv.org/abs/0407073
https://arxiv.org/abs/1311.4883
https://arxiv.org/abs/0111135
https://arxiv.org/abs/0506265
https://arxiv.org/abs/0506265
https://arxiv.org/abs/0603012
https://arxiv.org/abs/0705.0022
https://arxiv.org/abs/1107.2796
http://dx.doi.org/10.1002/prop.201300039
https://arxiv.org/abs/1312.5477
https://arxiv.org/abs/1503.08459
https://arxiv.org/abs/1510.08090
https://arxiv.org/abs/1605.00857
https://arxiv.org/abs/1604.06007
https://arxiv.org/abs/1704.00538
https://arxiv.org/abs/1709.09204
https://arxiv.org/abs/1803.00041
https://arxiv.org/abs/1811.04166
https://arxiv.org/abs/1907.11132
https://arxiv.org/abs/1902.00418
https://arxiv.org/abs/1904.02038
https://arxiv.org/abs/1904.09465
https://arxiv.org/abs/1302.7310
https://arxiv.org/abs/1311.1508
https://arxiv.org/abs/1605.00656
https://arxiv.org/abs/1801.00730
https://arxiv.org/abs/1812.01026
https://arxiv.org/abs/9905148
http://dx.doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/0603001
https://arxiv.org/abs/0605073
https://arxiv.org/abs/0605073
https://arxiv.org/abs/0806.1218
https://arxiv.org/abs/1608.02952
https://arxiv.org/abs/0405152
https://arxiv.org/abs/1403.6475
https://arxiv.org/abs/1511.08955
http://dx.doi.org/10.3938/jkps.69.623
https://arxiv.org/abs/1512.02816
https://arxiv.org/abs/1312.0089
https://arxiv.org/abs/1707.03418
https://arxiv.org/abs/1906.11281
https://arxiv.org/abs/1311.3292
https://arxiv.org/abs/1705.03000
https://arxiv.org/abs/1712.08017
https://arxiv.org/abs/1806.06963
https://arxiv.org/abs/1808.02488
https://arxiv.org/abs/1812.11159
https://arxiv.org/abs/1910.05044
https://arxiv.org/abs/1911.05783
https://arxiv.org/abs/0407073
https://arxiv.org/abs/1311.4883
https://arxiv.org/abs/0111135
https://arxiv.org/abs/0506265
https://arxiv.org/abs/0506265
https://arxiv.org/abs/0603012
https://arxiv.org/abs/0705.0022
https://arxiv.org/abs/1107.2796
http://dx.doi.org/10.1002/prop.201300039
https://arxiv.org/abs/1312.5477
https://arxiv.org/abs/1503.08459
https://arxiv.org/abs/1510.08090
https://arxiv.org/abs/1605.00857
https://arxiv.org/abs/1604.06007
https://arxiv.org/abs/1704.00538
https://arxiv.org/abs/1709.09204
https://arxiv.org/abs/1803.00041
https://arxiv.org/abs/1811.04166
https://arxiv.org/abs/1907.11132
https://arxiv.org/abs/1902.00418
https://arxiv.org/abs/1904.02038
https://arxiv.org/abs/1904.09465
https://arxiv.org/abs/1302.7310
https://arxiv.org/abs/1311.1508
https://arxiv.org/abs/1605.00656
https://arxiv.org/abs/1801.00730
https://arxiv.org/abs/1812.01026
https://arxiv.org/abs/9905148
http://dx.doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/0603001
https://arxiv.org/abs/0605073
https://arxiv.org/abs/0605073
https://arxiv.org/abs/0806.1218
https://arxiv.org/abs/1608.02952
https://arxiv.org/abs/0405152
https://arxiv.org/abs/1403.6475
https://arxiv.org/abs/1511.08955
http://dx.doi.org/10.3938/jkps.69.623
https://arxiv.org/abs/1512.02816
https://arxiv.org/abs/1312.0089
https://arxiv.org/abs/1707.03418
https://arxiv.org/abs/1906.11281
https://arxiv.org/abs/1311.3292
https://arxiv.org/abs/1705.03000
https://arxiv.org/abs/1712.08017
https://arxiv.org/abs/1806.06963
https://arxiv.org/abs/1808.02488
https://arxiv.org/abs/1812.11159
https://arxiv.org/abs/1910.05044
https://arxiv.org/abs/1911.05783
https://arxiv.org/abs/0407073
https://arxiv.org/abs/1311.4883
https://arxiv.org/abs/0111135
https://arxiv.org/abs/0506265
https://arxiv.org/abs/0506265
https://arxiv.org/abs/0603012
https://arxiv.org/abs/0705.0022
https://arxiv.org/abs/1107.2796
http://dx.doi.org/10.1002/prop.201300039
https://arxiv.org/abs/1312.5477
https://arxiv.org/abs/1503.08459
https://arxiv.org/abs/1510.08090
https://arxiv.org/abs/1605.00857
https://arxiv.org/abs/1604.06007
https://arxiv.org/abs/1704.00538
https://arxiv.org/abs/1709.09204
https://arxiv.org/abs/1803.00041
https://arxiv.org/abs/1811.04166
https://arxiv.org/abs/1907.11132
https://arxiv.org/abs/1902.00418
https://arxiv.org/abs/1904.02038
https://arxiv.org/abs/1904.09465
https://arxiv.org/abs/1302.7310
https://arxiv.org/abs/1311.1508
https://arxiv.org/abs/1605.00656
https://arxiv.org/abs/1801.00730
https://arxiv.org/abs/1812.01026
https://arxiv.org/abs/9905148
http://dx.doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/0603001
https://arxiv.org/abs/0605073
https://arxiv.org/abs/0605073
https://arxiv.org/abs/0806.1218
https://arxiv.org/abs/1608.02952
https://arxiv.org/abs/0405152
https://arxiv.org/abs/1403.6475
https://arxiv.org/abs/1511.08955
http://dx.doi.org/10.3938/jkps.69.623
https://arxiv.org/abs/1512.02816
https://arxiv.org/abs/1312.0089
https://arxiv.org/abs/1707.03418
https://arxiv.org/abs/1906.11281
https://arxiv.org/abs/1311.3292
https://arxiv.org/abs/1705.03000
https://arxiv.org/abs/1712.08017
https://arxiv.org/abs/1806.06963
https://arxiv.org/abs/1808.02488
https://arxiv.org/abs/1812.11159
https://arxiv.org/abs/1910.05044
https://arxiv.org/abs/1911.05783
https://arxiv.org/abs/0407073
https://arxiv.org/abs/1311.4883
https://arxiv.org/abs/0111135
https://arxiv.org/abs/0506265
https://arxiv.org/abs/0506265
https://arxiv.org/abs/0603012
https://arxiv.org/abs/0705.0022
https://arxiv.org/abs/1107.2796
http://dx.doi.org/10.1002/prop.201300039
https://arxiv.org/abs/1312.5477
https://arxiv.org/abs/1503.08459
https://arxiv.org/abs/1510.08090
https://arxiv.org/abs/1605.00857
https://arxiv.org/abs/1604.06007
https://arxiv.org/abs/1704.00538
https://arxiv.org/abs/1709.09204
https://arxiv.org/abs/1803.00041
https://arxiv.org/abs/1811.04166
https://arxiv.org/abs/1907.11132
https://arxiv.org/abs/1902.00418
https://arxiv.org/abs/1904.02038
https://arxiv.org/abs/1904.09465
https://arxiv.org/abs/1302.7310
https://arxiv.org/abs/1311.1508
https://arxiv.org/abs/1605.00656
https://arxiv.org/abs/1801.00730
https://arxiv.org/abs/1812.01026
https://arxiv.org/abs/9905148
http://dx.doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/0603001
https://arxiv.org/abs/0605073
https://arxiv.org/abs/0605073
https://arxiv.org/abs/0806.1218
https://arxiv.org/abs/1608.02952
https://arxiv.org/abs/0405152
https://arxiv.org/abs/1403.6475
https://arxiv.org/abs/1511.08955
http://dx.doi.org/10.3938/jkps.69.623
https://arxiv.org/abs/1512.02816
https://arxiv.org/abs/1312.0089
https://arxiv.org/abs/1707.03418
https://arxiv.org/abs/1906.11281
https://arxiv.org/abs/1311.3292
https://arxiv.org/abs/1705.03000
https://arxiv.org/abs/1712.08017
https://arxiv.org/abs/1806.06963
https://arxiv.org/abs/1808.02488
https://arxiv.org/abs/1812.11159
https://arxiv.org/abs/1910.05044
https://arxiv.org/abs/1911.05783

