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colour flow between jets produced by a colour singlet or an octet decay. This is of particular

importance in order to separate the decay of a Higgs boson to a pair of bottom quarks from

the QCD background. However, the pull angle is not infra-red and collinear (IRC) safe. In

this paper we introduce IRC safe projections of the pull vector that exhibit good sensitivity

to colour flow, while maintaining calculability. We calculate these distributions to next-to-

leading logarithmic accuracy, in the context of the hadronic decay of a Higgs boson, and

compare these results to Monte Carlo simulations. This study allows us to define an IRC

safe version of the pull angle in terms of asymmetry distributions. Furthermore, because

of their sensitivity to wide-angle soft radiation, we anticipate that these asymmetries can

play an important role in assessing subleading colour correlations and their modelling in

general-purpose Monte Carlo parton showers.
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1 Introduction

During this long shutdown phase, the experiments of the CERN Large Hadron Collider

(LHC) are gearing up for the third run of the accelerator. While the increase in centre-

of-mass energy will be modest, the path to discovery of new physics, which thus far has

proven so elusive, will likely involve careful analyses of large dataset, in order to expose

subtle deviations from Standard Model (SM) predictions. Together with the search for

beyond the Standard Model (BSM) particles or interactions, careful studies of the Higgs

sector will continue to constitute the second, but equally important, leg of the LHC physics

program. In particular, pinning down the couplings of the Higgs boson to the fermions may

lead to a deeper understanding of the flavour structure of the SM. In this context, both

the ATLAS and CMS collaborations have reached the sought-for statistical significance for

the decay of the Higgs into bottom quarks [1, 2] in Run II data.

Typical events from proton-proton collisions at the LHC are filled with strongly-

interacting particles, the dynamics of which is described by Quantum Chromo Dynamics

(QCD). It follows that QCD radiation has a profound impact on both BSM and Higgs

physics. The reason is twofold. Firstly, SM processes involving quarks and gluons often

constitute the main background, which often dwarves the signal of interest by orders of

magnitude. Furthermore, QCD radiation often accompanies the production of the particles

of interest, and indeed it offers valuable handles to study them; e.g. Higgs production in

association with jets. In our current study we concentrate on the latter issue, namely we
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discuss observables that by measuring QCD radiation in a signal event, provide us with

information on the properties of the particle we are studying. In particular, we are inter-

ested in assessing the colour quantum numbers of a resonance decaying into quarks. This

is of clear interest for BSM searches but it also provides a useful handle in distinguishing

the decay of a colour singlet (such as the Higgs) into quarks from the decay of a colour

octet (such as the gluon) in the same final state.

A powerful observable that is able to probe colour flow is jet pull, which was first

proposed in ref. [3]. Since then, a number of experimental analyses has been devoted

to this observable: from a pioneering measurement performed by the D∅ collaboration

at the Tevatron [4], to two measurements performed by the ATLAS collaboration at the

LHC, at centre-of-mass energy of 8 TeV [5] and 13 TeV [6]. Most of the measurements

concentrate in a particular projection of the jet pull vector, the so-called pull angle, that

would, in principle offer the best sensitivity. However, as the experimental uncertainties

on the measurement grew smaller, it became apparent that general-purpose Monte Carlo

parton showers struggled in modelling the pull angle distribution. In particular, it has

been pointed out that the datapoints corresponding to the measurement of the pull angle

in W decay are almost equidistant from the result obtained from a standard Monte Carlo

simulation and from a simulation where the W is assumed to be a colour octet [6].

In a previous Letter [7], we embarked in a detailed study of the pull angle distribution,

with the hope that analytic resummation could shed light on those discrepancies. While our

perturbative prediction, supplemented with an estimate of a non-perturbative contribution,

could describe the experimental data, it still suffered from large theoretical uncertainties,

rendering any firm conclusion difficult to draw. The main bottleneck of the theoretical

calculation resides on the fact that the pull angle distribution is not infra-red and collinear

(IRC) safe but only Sudakov safe [8–10]. Because the theoretical understanding of Sudakov

safe observables is still in its infancy, it is not clear how theoretical accuracy can be achieved

(and rigorously assessed) beyond the first order. Furthermore, while IRC safety ensures

the presence of a kinematical region where non-perturbative effects are genuine power

corrections, no such guarantee exists for Sudakov-safe observables and consequently, non-

perturbative physics can contribute to the observable as an order-one effect. In this paper

we overcome these difficulties by defining suitable projections of jet pull that share many of

the desirable features of the pull angle, but at the same time are IRC safe. This enables us to

perform perturbative calculations at a well-defined, and in principle improvable, accuracy.

The paper is organised as follows. In section 2 we recall the definition of jet pull and

we introduce the safe projections we want to study. Section 3 contains the all-order calcula-

tions for the observables of interest, while in section 4 we perform phenomenological studies,

which include a comparison to the results obtained using Monte Carlo event generators. In

section 5 we exploit the theoretical understanding achieved so far to introduce novel asym-

metry observables that aim to better probe colour flow in an infra-red and collinear safe way.

Finally, we draw conclusions in section 6 and outline our plan for future work on this topic.
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Figure 1. A cartoon representation of the rapidity (y) and azimuth (φ) plane with the pull vector

of jet a and its projections, which are defined with respect the jet b.

2 Jet pull

The pull vector is a two-dimensional jet shape defined as [3]

~t =
1

pta

∑
i∈J

pti|~ri|2r̂i , (2.1)

where the sum runs over all particles in a jet and

~ri = (yi − ya, φi − φa), and r̂i =
~ri
|~ri|

. (2.2)

The coordinates of the jet centre in the rapidity-azimuth plane are (ya, φa) and pta is the

jet transverse momentum. We are interested in measuring the pull of jet a in the presence

of a second jet b, that we center at (yb, φb). To this purpose, we find useful to introduce

the two unit vectors

n̂‖ =
1√

∆y2 + ∆φ2
(∆y,∆φ) = (cos β, sinβ),

n̂⊥ =
1√

∆y2 + ∆φ2
(−∆φ,∆y) = (− sinβ, cosβ), (2.3)

where ∆y = yb − ya and ∆φ = φb − φa, as depicted in figure 1. The angle β has been

introduced for future convenience. We now introduce two new observables that are defined

as the projections of the pull vector in the two directions identified by the unit vectors above:

t‖ = |~t · n̂‖| and t⊥ = |~t · n̂⊥|. (2.4)
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We will come back to the role of the absolute value in the expressions above in section 5.

Furthermore, we note that the magnitude of the pull vector can be expressed as

t = |~t| =

∣∣∣∣∣ 1

pta

∑
i∈J

pti|~ri|2r̂i

∣∣∣∣∣ =
√
t2‖ + t2⊥, (2.5)

while the pull angle can be written as

θp = cos−1
~t · n̂‖
t

. (2.6)

It is easy to check that the pull magnitude t and the two projections t‖ and t⊥ are IRC

safe observables. However, this property is lost when considering the pull angle, essentially

because θp does not vanish in the presence of a single soft emission because the ratio t‖/t

is undetermined. We also note that the projections of pull introduced here share some

similarities with jet dipolarity [18].

Our first aim in what follows is to obtain all-order predictions for the above safe

observables at next-to-leading logarithmic accuracy. In ref. [7] we have already performed

a resummed calculation for the pull magnitude t, which then played the role of the IRC safe

companion observable in the Sudakov safe calculation for θp. However, in that calculation

we have resorted to the collinear limit. Here, we want to relax this approximation and

also consider contributions from soft emissions at wide angle, expressed as a power series

in the jet radius R. Crucially, soft radiation at wide angle depends on the number of hard

partonic legs present in the processes and on their kinematic configurations. Therefore, in

order to perform our calculation we have to choose a process (or a class of processes) and

fix the number of coloured legs.

In this paper we concentrate on measuring pull on one of the two jets originating from

the hadronic, i.e. bb̄, decay of a Higgs boson, while taking the other jet as reference. More

specifically, we focus on the inclusive production of the Higgs together with a Z boson.

We point out that, as suggested in the original publication, pull can provide a valuable

handle in distinguishing the above production of a Higgs boson from the dominant QCD

background (specifically g → bb̄). Furthermore, this measurement can be also performed in

the boosted regime, where the decay products are reconstructed into a single two-pronged

jet. In this case, jet pull can be measured on one of the subjets.

We also advocate measuring jet pull in other Standard Model contexts. Measurements

of the pull angle have been carried out by the D∅ collaboration at the Tevatron [4] and

by the ATLAS collaboration at the LHC [5, 6] (in their most recent analysis the ATLAS

collaboration also measured the pull magnitude) in events featuring the production of a top

and of an anti-top. The rich phenomenology of top decay allows for measuring jet pull in

a singlet decay by looking, for instance, at the decay of the W boson but also enables one

to study more intricate colour correlations, by measuring the pull between one of the b-jets

and the incoming beam. Another interesting channel to consider is Z+jet production. This

channel offers several interesting possibilities in the context of colour-flow measurements.

For instance, by looking at the substructure of QCD jets, one can explore colour flow in

higher-dimensional colour representation, see e.g. [11]. On the other hand, one can look at
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the hadronic decay of the Z boson and measure colour flow between two jets (or subjets,

if considering the boosted regime) originating from a colour singlet. This situation is very

much analogous to what we discuss in this current work, but it features a higher rate at

the LHC. Studies of colour flow in this context would provide a useful testing ground for

an even more interesting Higgs and new physics programme.

3 Pull distributions at next-to-leading logarithmic accuracy

In this section we provide all-order calculations that resum large logarithms up to next-to-

leading logarithmic accuracy (NLL) for the IRC safe projections of the pull vector consid-

ered in this study, namely t, t⊥ and t‖. These calculations can also be used as input for

the Sudakov-safe determination of θp.

3.1 Collinear emissions

The NLL resummation of the pull vector in the collinear limit, was already performed in

ref. [7]. The all-order expression can be easily arrived at by noting that the pull vector is

additive and recoil-free at leading power, essentially because of the quadratic dependence

on |~ri| of eq. (2.1).1 Furthermore, despite the fact that we have in mind to measure jet pull

on the hadronic decay products of a Higgs boson, we note that in the collinear limit the

resummed cross section is universal and does not depend on the event surrounding the jet we

are measuring. The resummed expression for the pull magnitude can be directly calculated

from an infinite sum of emissions of energy fraction zi and (small) emission angles θi � R

1

σ

dσ

dt
= exp

[
−
∫ R2

0

dθ2

θ2

∫ 1

0
dz

∫ 2π

0

dφ

2π

αs(zθpta)

2π
Pgq(z)

]

×

 ∞∑
n=0

1

n!

n∏
i=1

∫ R2

0

dθ2
i

θ2
i

∫ 1

0
dzi

∫ 2π

0

dφi
2π

αs(ziθipta)

2π
Pgq(zi)

× δ

t−
√√√√( n∑

i=1

ziθ2
i cosφi

)2

+

(
n∑
i=1

ziθ2
i sinφi

)2

 , (3.1)

where R is the radius of the jet we are measuring pull on. For definiteness, we are going

to define jets using the anti-kt algorithm [13]. The function Pgq = CF
1+(1−z)2

z represents

the collinear splitting probability of a quark into a quark and a gluon and appears in the

resummation formula because at NLL the parton originating a jet in H → bb̄ decay is al-

ways a quark. A more refined calculation, namely NLL′, would also account for the relative

O(αs) probability of measuring pull on a gluon-initiated jets and would therefore would

also feature the splitting probabilities Pgg and Pqg. Furthermore, note that the argument

of the running coupling, which must be evaluated at two-loop accuracy, is the transverse

1It would be interesting to study observables with a generalised |~ri|α dependence, perhaps employing

different recombination schemes in the jet algorithm, such as winner-take-all [12], in order to maintain the

recoil-free property. We thank Jesse Thaler for pointing this out.
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momentum of the emission relative to the hard quark. As already noticed in ref. [7],

the structure of the resummed results is akin to the well-known transverse-momentum re-

summation, e.g. [14, 15], and consequently the sum over the emissions can be performed

explicitly in the conjugate space of Fourier-Hankel moments:

1

σ

dσ

dt
=

∫ ∞
0

db (bt)J0(bt)e−2CFRc(b), (3.2)

where J0(x) is the Bessel function and Rc(b) is the collinear radiator, which, at this accu-

racy, depends exclusively on the magnitude of the Fourier conjugate vector b = |~b|:

Rc(b) =

∫ R2

0

dθ2

θ2

∫ 1

0
dz
αs(zθpta)

2π

Pgq(z)

2CF
Θ
(
zθ2 − b̄−1

)
, (3.3)

with b̄ = b e
γE

2 . Explicit expressions for the NLL radiator will be reported in section 3.4.

The projections of the pull vector we are interested in can be found following the same

steps. We have

1

σ

dσ

dt⊥
= exp

[
−
∫ R2

0

dθ2

θ2

∫ 1

0
dz

∫ 2π

0

dφ

2π

αs(zθpta)

2π
Pgq(z)

]

×

[ ∞∑
n=0

1

n!

n∏
i=1

∫ R2

0

dθ2
i

θ2
i

∫ 1

0
dzi

∫ 2π

0

dφi
2π

αs(ziθipta)

2π
Pgq(zi)

× δ

(
t⊥ −

∣∣∣∣∣
n∑
i=0

(
−ziθ2

i cosφi sinβ + ziθ
2
i sinφi cosβ

)∣∣∣∣∣
)]

, (3.4)

where the δ function comes from the definition of the observable t⊥ in eq. (2.4). Note that

in this case such constraint involves a one-dimensional sum, while the analogous term in

the pull magnitude distribution, eq. (3.1), involved a vector sum. This situation presents

strong similarities with the resummation of equivalent variables in the context of transverse-

momentum resummation, such as aT and φ∗ [16, 17]. Thus, as in that case, the all-order

sum can performed in a conjugate Fourier space. We obtain

1

σ

dσ

dt⊥
=

2

π

∫ ∞
0

db cos(bt⊥)e−2CFRc(b), (3.5)

where the radiator in b space is the same as the one obtained for the pull magnitude,

eq. (3.3). Finally, we find that, at this accuracy, the t‖ and t⊥ distributions share an

identical collinear structure:

1

σ

dσ

dt‖
=

2

π

∫ ∞
0

db cos(bt‖)e
−2CFRc(b). (3.6)

3.2 Soft emissions at wide angle

We now focus our attention on the effect that soft emissions at wide angle have to the

pull distributions. These contributions first appear at NLL and from general consider-

ations we expect them to be suppressed in the small jet radius limit. However, unlike
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collinear radiation discussed above, the explicit form of soft contributions depends on the

underlying hard processes we are considering. Physically, this comes about because soft

gluons can attach to any hard parton, resulting in a potentially complicated pattern of

colour correlations. In our current study, the situation is not too complicated because we

are focusing on measuring pull on jets originating from a colour-singlet, while the colour

structure is much richer when considering jets originating from higher-dimensional colour

representations [11]. In particular, the hard process we are considering at Born level is

qq̄ → H(→ bb̄) Z(→ l+l−). (3.7)

The soft contribution to the NLL radiator can be written as the sum over dipoles

that can emit a soft gluon. In our case we only have two dipoles: the one formed by the

initial-state partons and the one made up by the two bottom quarks, which we consider

massless, therefore we have

Rs = −2T1 ·T2R12 − 2Ta ·TbR̃ab, (3.8)

where 1, 2 refer to the initial state and a, b to the final state. Ti are the colour insertion

operators and the tilde on the second contribution indicates that we have subtracted the

collinear contribution already included in Rc. Because we are considering final-state jets

produced by the decay of a singlet state, the colour algebra is trivial:

T1 + T2 = 0⇒ T1 ·T2 = −1

2

(
T2

1 + T2
2

)
= −CF ,

Ta + Tb = 0⇒ Ta ·Tb = −1

2

(
T2
a + T2

b

)
= −CF , (3.9)

We start by considering the contribution from the initial-state dipole. Indicating with

p1 and p2 the momenta of the incoming quarks and with k the momentum of the soft gluon,

we have

R12 =

∫
dktktdy

dφ

2π

αs(kt)

2π

p1 · p2

p1 · k p2 · k
ΘjetΘpull, (3.10)

where Θjet enforces the gluon to be recombined with one of the final-state partons (say

parton a) to form the jet we are interested in, and Θpull enforces the gluon contribution to

the observable of choice to be above a certain value.

The above integrals can be easily evaluated by introducing polar coordinates in the

rapidity-azimuth plane:

y − ya = r cosα,

φ− φa = r sinα. (3.11)

With this choice of variables, the observables become

t = |~t| = zr2,

t‖ = |~t · n̂‖| = zr2| cos(α− β)|,
t⊥ = |~t · n̂⊥| = zr2| sin(α− β)|, (3.12)
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with z = kt
pta

. The angle β was introduced in eq. (2.3). Note that α − β is just the pull

angle.

Thus, for the pull magnitude, we obtain

R12 =

∫ 1

0

dz

z

αs(zpta)

π

∫ R

0
drr

∫ 2π

0

dα

2π
Θ(zr2 > t) = R2

∫ 1

t

dz

z

αs(zpta)

2π
+ . . . (3.13)

where the dots indicate subleading contributions. To NLL, the same expression also holds

for t‖ and t⊥:

R12 =

∫ 1

0

dz

z

αs(zpta)

π

∫ R

0
drr

∫ 2π

0

dα

2π
Θ(zr2| cos(α− β)| > t‖)

= R2

∫ 1

t‖

dz

z

αs(zpta)

2π
+ . . . (3.14)

R12 =

∫ 1

0

dz

z

αs(zpta)

π

∫ R

0
drr

∫ 2π

0

dα

2π
Θ(zr2| sin(α− β)| > t⊥)

= R2

∫ 1

t⊥

dz

z

αs(zpta)

2π
+ . . . (3.15)

where again the dots indicate subleading contributions.

Thus far we have calculated the soft wide-angle contribution directly in momentum

space. This is in principle sufficient at NLL accuracy we are working at. Nevertheless, in

order to smoothly combine the soft contribution to the collinear one previously computed,

we find convenient to perform the whole resummation in moment (b) space. Therefore to

NLL we can write the soft contribution from the initial-state dipole as

R12 = R2

∫ 1

1/b̄

dz

z

αs(zpta)

2π
. (3.16)

Next we consider soft-wide angle emissions off the final-state ab dipole. As in the

previous case, we find convenient to express the phase-space integrals in polar coordinates.

We have

Rab =

∫
dktktdy

dφ

2π

αs(κab)

2π

pa · pb
pa · k pb · k

ΘjetΘpull

=

∫ 1

0

dz

z

∫ R

0
dr

∫ 2π

0

dα

2π

αs(κab)

2π

[
2

r
+A(α, β) + B(α, β)r + . . .

]
Θpull (3.17)

where the argument of the running coupling κ2
ab = 2 pa·k pb·k

pa·pb is the transverse momentum of

the gluon with respect to the dipole, in the dipole rest frame. We calculate this contribution

as a power expansion in the jet radius R, which corresponds to expanding the integrand

in powers of r. The first contribution within the square brackets is the soft and collinear

piece, which we have already accounted for in Rc. Therefore, we consider

R̃ab =

∫ 1

0

dz

z

∫ R

0
dr

∫ 2π

0

dα

2π

αs(κab)

2π
[A(α, β) + B(α, β)r + . . . ] Θpull (3.18)
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The first term above, namely A gives no contribution when we integrate over all possible

angles. It would give rise to an O(R) correction if we impose further angular restrictions.

We will come back to this observation in section 5. The B term gives rise to a contribution

which is identical in all cases. Therefore, at NLL we have

R̃ab =
R2

4

cosh ∆y + cos ∆φ

cosh ∆y − cos ∆φ

∫ 1

1/b̄

dz

z

αs(zpta)

2π
+O(R4). (3.19)

We remind the reader that explicit expressions for the NLL radiator will be reported in

section 3.4.

3.3 Non-global logarithms

Jet pull is measured on an isolated jet and it is therefore a text-book example of a non-

global observable [19]. In this section we investigate the structure of non-global logarithms

(NGLs) that affect the different projections of the pull vector.

We focus on the final-state dipole ab and we consider the double differential distribu-

tion in the pull magnitude and pull angle at O(α2
s). To calculate the leading non-global

logarithmic contribution to the pull vector, it suffices to consider correlated soft gluon emis-

sion from the dipole in which the two soft gluons have parametrically separated energies

kh � ks, in the phase-space region where the harder gluon lies outside the measured jet,

while the second one is inside. The matrix element for this non-global contribution can

then be expressed as

d2σNG

dt dθp
=
α2
sCFCA
16π4

∫ 1

0

dk⊥h
k⊥h

∫ ∞
−∞

dyh

∫ π

−π
dφh

∫ 1

0

dk⊥s
k⊥s

∫ ∞
−∞

dys

∫ π

−π
dφs

2pa · pb
(pa · kh)(pb · kh)

× (pa · kh)(pb · ks) + (pa · ks)(pb · kh)− (pa · pb)(kh · ks)
(pa · ks)(pb · ks)(kh · ks)

(3.20)

×Θ
(
R2 − (ys − ya)2 − (φs − φa)2

)
Θ
(
(yh − ya)2 + (φh − φa)2 −R2

)
× Θ(k⊥h cosh yh − k⊥s cosh ys) δ

(
t− k⊥s

(
(ys − ya)2 + (φs − φa)2

))
× δ

(
θp − cos−1 (ys − ya) cosβ + (φs − φa) sinβ√

(ys − ya)2 + (φs − φa)2

)
.

Note that in the expression, the dependence on the perp magnitudes has been pulled out

of all of the matrix elements and made explicit. The integral over k⊥s and k⊥h can easily

performed. Furthermore, for compactness, we can shift the y and φ coordinates to be

measured with respect to the location of jet a, i.e. without loss of generality we can set

ya = φa = 0 in eq. (3.20).

From this point, we will start approximating the integrals that remain. First, we only

work to find the leading NGLs for t � 1. Then, we consider the phase-space constraints

that remain and we notice that, in the small jet radius limit, we have the following scaling

yh ∼ ys ∼ R � 1. Therefore, in the explicit logarithm in the integrals we can simply

remove the hyperbolic cosine factors, as their contribution will be purely beyond leading

NGL. Correspondingly, because R � 1, we can push the bounds of integration on φs, φh
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safely to infinity. The integrals then become

d2σNG

dt dθp
=
α2
sCFCA
16π4

1

t

∫ ∞
−∞

dyh

∫ ∞
−∞

dφh

∫ ∞
−∞

dys

∫ ∞
−∞

dφs
2pa · pb

(pa · kh)(pb · kh)
(3.21)

× (pa · kh)(pb · ks) + (pa · ks)(pb · kh)− (pa · pb)(kh · ks)
(pa · ks)(pb · ks)(kh · ks)

log
y2
s + φ2

s

t

× Θ
(
y2
s + φ2

s − t
)

Θ
(
R2 − y2

s − φ2
s

)
Θ
(
y2
h + φ2

h −R2
)

× δ

(
θp − cos−1 ys cosβ + φs sinβ√

y2
s + φ2

s

)
.

Similarly to the one-gluon dipoles previously discussed, the integrals are more easily per-

formed in polar coordinates, see eq. (3.11):

yi = ri cos γi ,

φi = ri sin γi . (3.22)

Then, the integrals become

d2σNG

dt dθp
=
α2
sCFCA
16π4

1

t

∫ ∞
0

drh rh

∫ 2π

0
dγh

∫ ∞
0

drs rs

∫ 2π

0
dγs

2pa · pb
(pa · kh)(pb · kh)

(3.23)

× (pa · kh)(pb · ks) + (pa · ks)(pb · kh)− (pa · pb)(kh · ks)
(pa · ks)(pb · ks)(kh · ks)

× log
r2
s

t
Θ
(
r2
s − t

)
Θ (R− rs) Θ (rh −R) δ (θp − γs + β) .

Now, we need to express the soft matrix element in these coordinates. Additionally, we

work in the small jet radius limit, R� 1, and note that the dominant contribution to the

NGLs comes from the region of phase space in which rs . rh ∼ R. We will thus expand

the matrix element to first order in the R� 1 limit with this identified scaling. We find

d2σNG

dt dθp
=
(αs

2π

)2
CFCA

π

3

logR
2

t

t

(
1 +

24(1− log 2)

π2
R (3.24)

×sin ∆φ sin(θp + β) + sinh ∆y cos(θp + β)

cosh ∆y − cos ∆φ
+O(R2)

)
.

The first term in this expansion is the familiar expression for the narrow jet mass NGL ma-

trix element. Note that this differs by a factor of 2π from the familiar expression for the jet

mass NGLs; this factor is recovered when θp is integrated over. Furthermore, if we integrate

over the full range for θp, then the contribution which is linear in R vanishes, leading to

dσNG

dt
=
(αs

2π

)2
CFCA

2π2

3

logR
2

t

t
+O(R2) . (3.25)

It is easy to verify that at NLL accuracy the same expression as eq. (3.25) holds for the

projections t‖ and t⊥.

If we only to retain the leading R term, then resummation of NGLs is analogous as the

hemisphere mass originally studied in [19]. We could, in principle, also include the O(R2)
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corrections, as done in the global part. This would require evaluating the subsequent term

in the small-R expansion of eq. (3.25). Furthermore, we would also have to include the

NGL contribution from initial-state radiation, as discussed, for instance in ref. [20], in the

context of jet mass distributions. We leave this study for future work and, in this current

study, we limit ourselves to a numerical estimate of this effect, as detailed in section 4.2.

3.4 Resummed results

We are now in a position to collect all the results derived so far and obtain a NLL resummed

prediction for the safe projections of the pull vector we are considering. The all-order

differential distribution can be written as:

1

σ

dσ

dv
=

∫ ∞
0

dbFv(bv)e−CFR(b)SNG(b), (3.26)

with

Fv(x) =

{
xJ0(x), if v = t,
2
π cos(x), if v = t‖, t⊥.

(3.27)

The resummed exponent R can be written in terms of leading (second line) and next-to-

leading (third to fifth lines) contributions:

R= 2Rc+2R̃ab+2R12

=
(1−2λ) log(1−2λ)−2(1−λ) log(1−λ)

2παsβ2
0

+
Bq
πβ0

log(1−λ)+
K

4π2β2
0

[2log(1−λ)− log(1−2λ)]

+
β1

2πβ3
0

[
log(1−2λ)−2log(1−λ)+

1

2
log2 (1−2λ)− log2 (1−λ)

]
+

1

πβ0
log

ptaR

µR
[log(1−2λ)−2log(1−λ)]− R2

8πβ0

[
4+

cosh∆y+cos∆φ

cosh∆y−cos∆φ

]
log(1−2λ)

+O(R4), (3.28)

with λ = αsβ0log(b̄R2)2 and αs = αs(µR), where µR is the renormalisation scale, which we

can vary around the hard scale pta in order to assess missing higher-order corrections. In

the above results the β function coefficients β0 and β1 are defined as

β0 =
11CA − 2nf

12π
, β1 =

17C2
A − 5CAnf − 3CFnf

24π2
, (3.29)

and

Bq =
3

4
, K = CA

(
67

18
− π2

6

)
− 5

9
nf . (3.30)

Finally, as already mentioned, in the small-R limit, the non-global contribution can

be taken equal to the hemisphere case. The resummation of NGLs can be performed

2Strictly speaking the jet radius dependence in argument of the logarithms only appears at this order

in the soft-collinear contributions. However, we find that including it in the whole radiator, leads to better

numerical stability. The difference between these choices is beyond NLL accuracy.
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in the large-Nc limit exploiting a dipole cascade picture. We make use of the following

parametrisation [19]:

SNG = exp

[
−CFCA

π2

3

1 + (aτ)2

1 + (bτ)c
τ2

]
, (3.31)

with τ = − 1
4πβ0

log(1− 2λ), with a = 0.85CA, b = 0.86CA, and c = 1.33.

Finally, we note that the above results are valid for jets defined with the anti-kt algo-

rithm, which acts as a perfect cone in the soft limit [13]. Had we use a different clustering

measure, such as Cambridge/Aachen [21, 22] or the kt-algorithm [23, 24], nontrivial clus-

tering logarithms would have modified both the global and non-global contributions to the

resummed exponent [25–27].

4 Towards phenomenology

In the previous section, we have discussed all the theoretical ingredients that go into a NLL

calculation for the jet pull projections considered in this paper. We now turn our attention

towards some preliminary phenomenological studies. After discussing a simple model of

non-perturbative corrections due to the hadronisation process, we move to compare our

resummed results to the one obtained by a general purpose Monte Carlo event generator.

While doing so, we also discuss the numerical impact of the various contributions that

we have computed thus far. We postpone a more detailed phenomenological study, which

would also include matching to fixed-order calculations, to future work and we look forward

to comparison of our predictions to future experimental measurements.

4.1 Non-perturbative corrections

Because the pull vector is both an additive observable and recoil-free, corrections due

to non-perturbative physics and hadronisation can be modelled by a shape function [28–

32]. This shape function is then convolved with the perturbative distribution to produce

a non-perturbative distribution. The shape function depends on a dimensionful relative

transverse-momentum scale ε, and it has most of its support around ε = ΛQCD, the QCD

scale. The shape function for the pull vector also has non-trivial azimuthal angle de-

pendence, because non-perturbative emissions will be emitted in a preferential direction

according to the dipole configuration.

In this section, we will construct a shape function for the pull vector, assuming that

it exclusively has support at ε = ΛQCD. Further, we will assume that the dominant non-

perturbative emission lies exactly at the boundary of the jet on which we measure the

pull vector, and its azimuthal distribution about the jet axis is uniform. We will see that

a non-uniform distribution of the pull vector is generated by a preferential emission of

higher-energy non-perturbative emissions at small values of the pull angle.

To construct the shape function with these restrictions, we first note that the scale ε

for an emission from a dipole with ends defined by the light-like directions pa and pb is

ε = ΛQCD =
√

(k · pa)(k · pb) , (4.1)
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where k is the four-momentum of the non-perturbative emission. The pull vector depends

on the momentum transverse to the beam axis, kt, and its value is constrained by the

non-perturbative scale. Expressing the momentum k as

k = kt(cosh y, cosφ, sinφ, sinh y) , (4.2)

we can express kt as

kt =
ΛQCD

(cosh(y − ya)− cos(φ− φa))1/2 (cosh(y − yb)− cos(φ− φb))1/2
. (4.3)

Now, we expand this expression to second order in the jet radius R, fixing the angle between

the non-perturbative emission and the jet axis na to be R:

R2 = (y − ya)2 + (φ− φa)2 . (4.4)

We find

kt =
2ΛQCD

R

√
ptaptb
mH

+ 2ΛQCD
(ptaptb)

3/2

m3
H

[cos(ϕ+ β) sinh ∆y + sin(ϕ+ β) sin ∆φ] +O(R) .

(4.5)

The relative rapidity ∆y, azimuth ∆φ, and angle β were defined in section 2. The az-

imuthal angle ϕ defines the angle about the jet axis pa with respect to pb. Finally, we have

introduced the transverse momentum of the ends of the dipole pta and ptb and note that

they are constrained by the Higgs mass:

m2
H = 2ptaptb(cosh ∆y − cos ∆φ) . (4.6)

With this construction, the shape function for the non-perturbative kt and azimuthal

angle ϕ is

F (kt,ϕ) (4.7)

=
1

2π
δ

(
kt−

2ΛQCD

R

√
ptaptb
mH

−2ΛQCD
(ptaptb)

3/2

m3
H

[cos(ϕ+β)sinh∆y+sin(ϕ+β)sin∆φ]

)
.

Given the perturbative pull vector distribution 1
σ
d2σpert

d~t2
, we now want to find the non-

perturbative pull vector distribution 1
σ
d2σnp

d~t2
through convolution with the shape function.

The contribution to pull from the non-perturbative emission that we identified in the rest

frame of the Higgs boson will be

~tnp(kt, ϕ) =
ktR

2

pta
(cosϕ, sinϕ) . (4.8)

It then follows that the non-perturbative distribution of the pull vector is

d2σnp

d~t 2
=

∫ ∞
0

dkt

∫ 2π

0
dϕF (kt, ϕ)

d2σpert

d~t 2

(
~t− ~tnp(kt, ϕ)

)
=

∫ 2π

0

dϕ

2π

d2σpert

d~t 2

(
~t− ~tnp(kt, ϕ)

)
, (4.9)

where we leave the dependence on the non-perturbative transverse momentum kt implicit.
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In order to understand the behaviour of the leading non-perturbative corrections, we

expand the above expression in powers of ΛQCD. Furthermore, we note that because of the

particular choice of the reference frame we have used in this section, ϕ = 0 corresponds to

the line joining the two jet centres. Thus, we obtain

d2σnp

dt‖dt⊥
=
d2σpert

dt‖dt⊥
−
∫ 2π

0

dϕ

2π
~tnp(kt, ϕ) · ∇

(
d2σpert

dt‖dt⊥

)
+O

(
Λ2

QCD

m2
H

)
(4.10)

=

[
1−

ΛQCDR
2
√
ptap3

tb

m3
H

√
∆y2 + ∆φ2

(
(∆y sinh ∆y + ∆φ sin ∆φ)

∂

∂t‖

+ (∆y sin ∆φ−∆φ sinh ∆y)
∂

∂t⊥

)]
d2σpert

dt‖dt⊥
.

Because of the derivative dependence in this non-perturbative correction, its effect can be

included to lowest order in both ΛQCD and αs with a shift of the appropriate argument of

the perturbative cross section. For the cross sections of t‖ and t⊥ individually, we have

dσnp

dt‖
=
dσpert

dt‖

t‖ − ΛQCDR
2
√
ptap3

tb

m3
H

√
∆y2 + ∆φ2

(∆y sinh ∆y + ∆φ sin ∆φ)


+O(Λ2

QCD, αs) , (4.11)

dσnp

dt⊥
=
dσpert

dt⊥

t⊥ − ΛQCDR
2
√
ptap3

tb

m3
H

√
∆y2 + ∆φ2

(∆y sin ∆φ−∆φ sinh ∆y)


+O(Λ2

QCD, αs) . (4.12)

The leading non-perturbative correction to the magnitude of the pull vector t can be found

by exploiting its relationship to t‖ and t⊥:

t =
√
t2‖ + t2⊥ . (4.13)

Then, we have that the pull magnitude distribution becomes

dσnp

dt
=
dσpert

dt

t− ΛQCDR
2
√
ptap3

tb

m3
H

√
sinh2 ∆y + sin2 ∆φ

+O(Λ2
QCD, αs) . (4.14)

4.2 Numerical studies

We are now ready to perform some phenomenological studies of our results. From a tech-

nical point of view, we note that the integral over the Fourier variable b which appears

in the resummation formula, e.g. eq. (3.26), is ill-defined both at small and large b. The

bad behaviour at small b, which corresponds to large values of the observables, is beyond

the jurisdiction of the all-order calculations and it contributes to a region that would be

dominated by fixed-order matrix elements. In order to address this issue, we adopt the

standard procedure of QT resummation [33] and we shift the argument of the logarithm
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Figure 2. Impact of the different contributions to all-order next-to-leading logarithmic resumma-

tion of the pull magnitude (left) and the safe projection t‖ (right). Soft gluon contributions at wide

angle are included as an expansion in the jet radius R through O(R2), while the non-global loga-

rithmic contribution is accounted for at O(R0). At this accuracy the distribution of the orthogonal

projection t⊥ is identical to t‖.

in b-space by unity, i.e. logb̄R2 → log(1 + b̄R2). The resummed exponent is also ill-defined

at large b because of the presence of the QCD Landau pole which appears at λ = 1
2 .

We circumvent this issue by further substituting the dependence on the variable b in the

resummed exponent with the so-called b∗ variable [15]

b∗ =
b√

1 + b2

b2max

, (4.15)

where bmax is chosen in the vicinity of the Landau pole. Because b∗ ' b when b� bmax, the

perturbative behaviour is unchanged, while the b dependence of the resummed exponent

is frozen as b approaches the non-perturbative region, providing us with a prescription to

deal with the Landau singularity.

We start by assessing the numerical impact of the different contributions that are in-

cluded in our resummed results, namely collinear emissions, final-stare radiation (FSR),

i.e. the O(R2) contribution arising from the final-state dipole, initial-state radiation (ISR),

and non-global logarithms. The results are show in figure 2, on the left for the pull

magnitude distribution and on the left for the t‖ distribution (at NLL this is the same

as t⊥). The plots are for a representative phase-space point: ∆y = 1, ∆φ = π
6 and

pta = ptb = mH√
2(cosh ∆y−cos ∆φ)

' 110 GeV, which corresponds to a symmetric decay of the

Higgs boson. We note that the collinear approximation describes the two distributions

well, down to values of the observables ∼ 10−3. Below that, in the Sudakov region, the

impact of soft-emissions at large angle becomes sizeable. However, we note that finite R

corrections, which characterise FSR and ISR are not very large, due to the smallness of the

jet radius parameter R = 0.4, employed in this study. Perhaps surprising is the relatively

large contribution due to non-global logarithms. This last contribution is shown with an

uncertainty band which aims to probe the impact of O(R2) corrections to the non-global
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Figure 3. Plots of the NLL predictions for t (left) and t‖ (right), together with an estimate of the

theoretical uncertainties, obtained by varying the renormalisation scale. The plots also show how

the curve is modify once the shift due to non-perturbative corrections is applied.

contribution, which is not included here. The band is constructed by rescaling the O(R0)

coefficient by the factor (1+aR2) and by varying −1 ≤ a ≤ 1. We note that this uncertainty

is not large, due to the relatively small value of the jet radius employed here.

By comparing the two distributions, t and t‖, we note that the former exhibits a Su-

dakov peak, while the latter appears to develop a plateau for t‖ < 10−4. This behaviour is

completely analogous to what is found when looking at QT and aT /φ∗ distributions [17].

Small values of t or t‖ can be obtained by soft/collinear emissions or by kinematical cancel-

lations and the behaviour of t‖ signals the fact that kinematical cancellation is the dominant

mechanism and prevents the formation of the Sudakov peak, as opposed to what happens

with t.

Next, in figure 3 we show our final NLL predictions for t (left) and t‖ (right), with an

estimate of the perturbative uncertainty, which we obtain by varying the renormalisation

scale in the range pt
2 ≤ µR ≤ 2pt. Furthermore, we also show the NLL calculation supple-

mented by our estimate of non-perturbative contributions due to the hadronisation process,

i.e. eqs. (4.11) and (4.14), using ΛQCD = 1 GeV. We note that because of the R2 coefficient,

the size of non-perturbative corrections is rather small. We expect that our simple imple-

mentation of non-perturbative corrections to fail in the peak (plateau) region, where one

should retain more information about the shape function. Therefore, we only plot our NLL

curves with non-perturbative corrections down to t ∼ 2 · 10−3 and t‖ ∼ 10−3, respectively.

In figure 4, we compare our results to those obtained with a general-purpose Monte

Carlo event generator. We generate a single event pp → HZ at
√
s = 13 TeV, with the

Higgs decaying in bb̄ and Z leptonically, using MadGraph v2.6.6 [34] and we then shower

this event many times in Pythia v8.240 [35]. FastJet v3.3.2 [36] is used to find jets and

calculate the pull variables. The Monte Carlo results for t and t‖ are then compared to

our NLL predictions, supplemented by the non-perturbative corrections. We find decent

agreement between the Monte Carlo and our NLL prediction for t and t‖, supplemented by

non-perturbative corrections. We note that the NLL and Monte Carlo predictions depart
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Figure 4. Comparison of the distributions computed at NLL and supplemented with non-

perturbative corrections, to a numerical simulation obtain with the event generator Pythia v8.240.

at the tail of the distributions. This effect is more noticeable for the pull magnitude and it

signals the fact that the resummation alone is not enough to describe the distribution at

large t and matching to fixed-order is needed.

Finally, we expect additional non-perturbative contributions from the Underlying

Event, due to multiple parton-parton interactions and pileup, due to multiple proton-

proton interactions per bunch crossing. We have not included these effects in our studies,

but we anticipate that their scaling with the jet radius will be the same as FSR, that we

did calculate in this paper, albeit with a different, non-perturbative, coefficient.

5 Asymmetries

The projections of the pull vector we have discussed thus far exhibit nice theoretical prop-

erties. In particular, as discussed at length, IRC safety ensures perturbative calculability,

while non-perturbative contributions can be treated as (power) corrections. Furthermore,

the particular definitions of the projections, see eq. (2.4) resulted in observables that share

many similarities in their all-order behaviour with variables that are among the most-

studied in particle physics, such as the transverse momentum of a vector boson and its

projections. However, we cannot fail to notice that presence of the absolute value in

eq. (2.4) leads to a loss of information. For instance, an emission in rapidity-azimuth re-

gion between the two jets and an emission outside, could potentially contribute to the same

value of t⊥ or t‖. Therefore, in order to fully exploit the radiation pattern, we can con-

struct asymmetric distributions by directly considering the projections of the pull vector

along the two directions of interest, i.e. ~t · n̂‖ and ~t · n̂⊥. We note that the dot products, as

opposed to t‖ and t⊥, are not positive-definite.

In figure 5 we perform a Monte-Carlo study of these distributions for the colour singlet

decay H → bb̄, using again the event generator Pythia v8.240, with the same kinematical

settings of the previous section. For each distribution we show both parton-level and

hadron-level results. We would expect the ~t · n̂⊥ to be roughly symmetric about zero, while

– 17 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
4

-����� -����� ����� ����� �����
�

���

���

���

���

�

·�

∥

� σ

�
σ

�
�
·��

∥

Safe Projection of Pull

�

·�

∥� ������ �����

�

·�

∥� ������ �����

-����� -����� ����� ����� �����
�

���

���

���

���

�

·�

⟂

� σ

�
σ

�
�
·��

⟂

Safe Projection of Pull

�

·�

⟂� ������ �����

�

·�

⟂� ������ �����

Figure 5. Monte-Carlo simulations of the ~t · n̂‖ and ~t · n̂⊥ distributions, left and right respectively,

measured on H → bb̄ events generated with Pythia v8.240. The plots show results at both parton

and hadron level.

the distribution of ~t · n̂‖ should be skewed in the direction of the colour-connected leg of the

dipole, here the positive direction. The plots show that this is indeed the case. In order to

emphasise these features even more, we can build the following asymmetry distributions

A‖ =
t‖

σ

dσ

dt‖

∣∣∣
~t·n̂‖>0

−
t‖

σ

dσ

dt‖

∣∣∣
~t·n̂‖<0

, (5.1)

A⊥ =
t⊥
σ

dσ

dt⊥

∣∣∣
~t·n̂⊥>0

− t⊥
σ

dσ

dt⊥

∣∣∣
~t·n̂⊥<0

(5.2)

We expect A‖ to be more marked than A⊥ and this is indeed what is found in the simula-

tions, as shown in figure 6.

We note that the above asymmetries are still IRC safe and therefore can be calculated

in perturbation theory. Indeed, we could argue that A‖ is essentially the IRC safe version

of the pull angle distribution. The definitions of the asymmetries in eq. (5.1) make explicit

references to the sign of the scalar product which is used to project the pull vector. This

constraint essentially introduces a new boundary in phase-space which renders the all-order

structure of these observables richer. While we expect that this resummation can still be

achieved, in this work we limit ourselves to analytically evaluate the asymmetries at fixed-

order. The lowest-order contribution to the asymmetries originates from wide-angle soft

emissions. In particular, we find that the contribution denoted by A in eq. (3.18) does not

vanish when we integrated separately over the ~t · n̂i > 0 and ~t · n̂i < 0 regions. We find

A‖ =
αsCF
π

[
4R

π

cosβ sinh ∆y + sin β sin ∆φ

cos ∆φ− cosh ∆y
+O

(
R3
)]

+O
(
α2
s

)
, (5.3)

A⊥ =
αsCF
π

[
4R

π

cosβ sin ∆φ− sinβ sinh ∆y

cos ∆φ− cosh ∆y
+O

(
R3
)]

+O
(
α2
s

)
. (5.4)

Interestingly, the asymmetries are sensitive to odd powers of the jet radius, in the small-R

expansion. This comes about because of the restrictions on the angular integrations im-

posed by the ~t · n̂i > 0 and ~t · n̂i < 0 constraints. We also point out that these asymmetries

– 18 –



J
H
E
P
0
1
(
2
0
2
0
)
1
0
4

●

●

●

●

●●
●
●
●
●●

●●
●●

●●●●
●●●

●
●●●

●●●●●●
●

����� ����� ����� ����� ����� ����� ����� �����
����

����

����

����

����

����

�∥


∥

Asymmetry Distribution
● �∥� ������ �����
�∥� ������ �����

●●
●

●●
●
●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●
●●●

●

●●●●

����� ����� ����� ����� ����� ����� ����� �����
-����

-����

����

����

����

����

����

�⟂


⟂

Asymmetry Distribution
● �⟂� ������ �����
�⟂� ������ �����

Figure 6. Monte-Carlo simulations of the A‖ and A⊥ distributions, left and right respectively,

measured on H → bb̄ events generated with Pythia v8.240. The plots show results at both parton

and hadron level.

essentially depend on soft radiation, while collinear contributions cancel out. Soft radiation

exhibit strong sensitivity to the pattern of colour correlations and therefore these observ-

ables can provide a valuable testing ground for Monte Carlo parton showers that attempt

to go beyond the large-Nc limit, e.g. [37, 38].

6 Conclusions and outlook

A detailed understanding of colour flow in hard scattering processes is of primary interest

for LHC phenomenology for numerous reasons. First of all, it provides a valuable way

of separating hadronic decay products of colour singlets, such as the Higgs or any other

electroweak bosons, from the QCD background, often originating from gluon splittings.

Furthermore, should new strongly-interacting states be discovered at the LHC, colour cor-

relations can be used to characterise the colour representation these particles live in. How-

ever, precision studies of colour flow in hadron-hadron collisions are challenging because

of the sensitivity to the soft and non-perturbative regimes of QCD. Therefore, it is impor-

tant to devise observables that, while maintaining the desired sensitivity, offer theoretical

robustness. In this context, infra-red and collinear safety is an important requirement

because it ensures perturbative calculability, with dependence on non-perturbative correc-

tions that is, at least parametrically, under control. Perturbative calculations for IRC safe

observables can be used, in turn, to test the ability of general-purpose Monte Carlo event

generators to correctly simulate colour flow in proton-proton collisions at hight energy.

In this study we have considered the observable jet pull, which has been introduced

in order to probe colour flow between hard jets. Measurements of the pull angle have

been advocated as sensitive probe of inter-jet radiation and have been performed at the

Tevatron and the LHC. In particular, precision measurements by the ATLAS collaboration

challenges the ability of general-purpose Monte Carlo event generators to correctly describe

these distributions. In a previous Letter, we addressed the theoretical calculation of the
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pull angle distribution but we found difficult to draw firm theoretical conclusions due fact

that the pull angle is not an IRC safe observable.

In this current paper, we have put forward novel observables that aim to probe colour

flow in an efficient way, while featuring IRC safety. In particular, we have noticed that

while the pull angle, i.e. the angle between the pull vector and the line joining the centres

of the jets of interest, in the azimuth-rapidity plane, is not IRC safe, the projections of the

pull vector along (t‖) and orthogonal to (t⊥) such an axis are. Therefore, these observables

can be computed in perturbation theory. We have performed all-order calculations for these

two projections and, for comparison, for the magnitude of the pull vector, considering the

interesting case of a Higgs boson decaying into a pair of bottom quarks. Our results are

valid to next-to-leading logarithmic accuracy, in the limit where the considered observable

is small. In this context, besides collinear radiation, we have also investigated the structure

of soft-emissions at wide angle and of non-global logarithms, expressing our results as a

power series in the jet radius. Matching to fixed-order perturbation theory is possible

but we have left it for future work. Furthermore, we have supplemented our results with

an estimate of non-perturbative corrections arising from the hadronisation process and

compared our results to simulations obtained with a Monte Carlo parton shower.

The theoretical understanding reached in this study has led us to the introduction

of novel asymmetry distributions that measure the radiation pattern by looking at the

difference between the jet pull vector pointing towards and away from the other jet of

interest. In particular, the asymmetry distribution A‖ can be considered the IRC version of

the pull angle distribution. We have pointed out that such asymmetries can have interesting

applications both in the context of tagging colour singlets, such as H → bb̄ versus g → bb̄,

and as a means to test how general-purpose Monte Carlo event generators probe soft

emissions beyond the leading colour approximation. Therefore, we look forward to study

these asymmetries in more detail in order to arrive to their all-order resummation.

Finally, we note that it would be interesting to study observables sensitive to colour

flow in the rest frame of the decaying particle, in order to minimise kinematical effects

originating from asymmetric decays. The standard definition of jet pull does not seem ap-

propriate for this kind of studies, however the modification we put forward in ref. [7] appears

to be better suited. We look forward to continue our investigation in this direction too.
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