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Abstract: This exploratory study computes two-photon decay widths of pseudo-scalar (7.) and scalar (y.o) char-
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than the experimental ones. Possible reasons for these discrepancies are discussed.
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1 Introduction

Charmonium physics plays a key role in the founda-
tion of quantum chromodynamics (QCD), which is be-
lieved to be a fundamental theory for strong interactions.
Owing to its intermediate energy scale and special fea-
tures of QCD, both perturbative and non-perturbative
physics appear within charmonium physics [1]. To date,
the optimal way to study non-perturbative QCD is the lat-
tice QCD, which is a quantum field theory defined on the
discrete Euclidean space-time. Within this formalism,
physical quantities are encoded in various Euclidean cor-
relation functions, which in turn can be measured by per-
forming Monte Carlo simulations [2, 3].

Recently, the two photon decay branching fractions
for charmonium have been attracting considerable atten-
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tion. Theoretically, this quantity is considered to provide
a probe for the strong coupling constant at the charmoni-
um scale. It has also been proposed as a sensitivity test
for making corrections to the non-relativistic approxima-
tion via quark models or effective field theories, such as
the non-relativistic QCD (NRQCD).

Furthermore, considerable progress has been made in
recent years in the field of physics of charmonia via the
investigations from various experimental collaborations,
such as Belle, BaBar, CLEO-c, and BES [4—7]. Generic-
ally, there are two approaches to measure the two-photon
branching fraction for charmonium: one by reconstruct-
ing the charmonium in light hadrons using two-photon
fusion at e*e™ machines, and the other from pp annihila-
tion to charmonium.

In this study, we calculate the two-photon decay
width of the pseudoscalar and scalar charmonium, i.e.,
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I'(n. — yy) and T'(y.0 — yy), in lattice QCD using two en-
sembles of Ny =2 dynamical twisted mass fermion con-
figurations that were generated by the European Twisted
Mass Collaboration (ETMC). This ensures the so-called
automatic O(a) improvement for on-shell observables
when the twisted mass fermions are at the maximal twist
[8]. Lattice computation for the process 1. — yy was per-
fomred using the same set of configurations in Ref. [9].
In this work, we consider 7. and y. simultaneously,
since they mix with each other due to the lattice artifact
of 0(a?).

This paper is organized as follows. In Sec. 2, the cal-
culation strategy for the matrix element for two-photon
decay of charmonium is reviewed, which is then related
to the double-photon decay rates. We also outline the
strategy for the mass spectrum and form factor of char-
monium. To improve the signals of the corresponding
correlation functions, we apply the variation method to
construct the relevant interpolate operators. In Sec. 3, the
simulation details are divided into several parts: In Sec.

V@)@ IMp) = - lim €:(q1.11)€ (g2 147245 f d*xd*yel? X QIT (A (1A (ONM(py)).

92,

Here, |Q) denotes the QCD vacuum state; M represents
either the 7, or y. meson state, depending on which one
is calculated, and [M(ps)) is the corresponding meson
state with four-momentum py, whereas |y(g;,t;))(i=1,2)
is a single photon state that has the polarization vector

3.1, we provide the parameters relevant with the config-
urations used in this study. In Sec. 3.2, the mass spectra
of 5. and y.o are obtained. In Sec. 3.3, we present the res-
ults of the renormalization factor of the electromagnetic
current operators. In Sec. 3.4, numerical results of the
form factors are presented, which are then converted to
the two photon decay width of 5. and y.. Final results
for the decay widths are presented and compared with
previous lattice computations and experiments. The dis-
cussion and conclusion are presented in Sec. 4.

2 Strategies for computation

In this section, we briefly review the methods for the
calculation of the two-photon decay rate of charmonium,
which was presented in Ref. [10]. According to the
Lehmann-Symanzik-Zimmermann (LSZ) reduction for-
mula, we can express the amplitude for the two-photon
decay of charmonium in the following form:

(1

€(gi,t;) with four-momentum ¢; and helicity ¢;. Then,
treating the QED part perturbatively, we can replace the
photon field operators by their corresponding current op-
erators in QCD. We finally arrive at the following equa-
tion at the lowest order of QED,

Y@ )IM(pp) =(=¢*) lim €106 (g2.0)d7 a7 f d*xdtyd*w d*zel I DR (y, 2) DY (x, WK

92,9

XQIT{jo(2) je WM (pp))

with D*"(y,z) being the free photon propagator. Basically,
each initial/final photon state in the problem is replaced
by the corresponding electromagnetic current operator
that couples to the photon. Finally, a three-point function
of the form (QIT{j,(2)j-W)}IM(ps)) needsto be com-

> &(q1,1)6/(q2,t2)

2)

[
puted, which is non-perturbative in nature and can be
found using lattice QCD methods.

Under certain conditions, Eq. (2) can be analytically
continued from Minkowski space to Euclidean space,
yielding

dt,-e_‘”‘ U

(y(q1,01)¥(q2,02)IM(py)) =, 1111_1)1 e
f o0

Zy(py) .

—Ey(p)(t;=1)

2Em(py)

@ir| f RNy (%, 1) f &yt (5,0 (0, 1)1,

where ¢y (X,17) is the field operator for the meson M;
Zu(py) is the spectral weight factor of the two-point
function; w,; is the energy for the photon at time-slice #;;

©)

[
and Ey(py) is the energy for the corresponding meson
with momentum p;. Then, the desired amplitude
(y(q1,11)¥(q2.02)IM(py)) is obtained once the energies
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Ey(py) and the corresponding overlap matrix element
Zu(py) are known. These can be obtained from appropri-
ate two-point functions. In this study, we use the vari-
ational method to find the optional interpolation operat-
ors to create/annihilate the 5, and y.o meson states [11].

Generally, an operator O] with definite J"C can gen-
erate all the QCD eigenstates with the right quantum
numbers

o]0 = Z In)niO] |2, @)

To effectively generate the desired hadrons from vacuum,
one could employ a basis of interpolators O; that share
the same quantum numbers and construct a two-point
correlation function matrix as follows

Cij = QOO (0)|Q). (5)

Here, the operators O; are color-singlet constructions
built from the basic quark and gluon fields of QCD.
Then, we can express the correlation functions in the fol-
lowing form:

1 £
Cy= ) 5 (QUOOImriO} O™

and the optimized interpolators are:
Q; = Z V?O: (6)

Therefore, the best estimate for the weights v must be
obtained according to the solution of the following gener-
alized eigenvalue problem

CEWV" = A,()Ct)". (7)

Here, C(¢) is the Nx N matrix whose elements are the
correlation functions C;;(f) constructed from the basis of
N operators, and v" is a generalized eigenvector. The gen-
eralized eigenvalues, or principal correlators, A,(f), be-
have like e £~ at large times and can be used to de-
termine the spectrum of the states. In practice, we solve
Eq. (7) independently on each time-slice ¢, such that for
each state n, we obtain a time series of generalized eigen-
vectors v'(f). We use V! chosen on a single time-slice to
construct the optimized operators in Eq. (6).

Apart from the two-point functions of r. and y.o, we
also need the three-point functions G, (#;,7) given by:

Guntt) =OT{ [ e (1)

X f EFSET G0 G0l (@)

We simulate G, (t;,1) on lattices across the temporal dir-
ection, while the sink of the meson is fixed. Then, we re-
peat this with a varying #; to integrate across the three
point function using an exponential weight e %  and
then to extract the matrix element in Eq. (3). In particular,

we use the optimized interpolators Q, in Eq. (6) to gener-
ate the n.,(n = 1) or y.o,(n = 2) state for the field interpol-
ating operator ¢, in previous formulas.

For the two photon decay of the . meson, the matrix
element (y(qi,11)y(q2,12)IM(ps)) in Eq. (3) can be para-
meterized using form factor F(Q?,03) as follows,

(y(q1,1)¥(q2,02)IM(py))

2
2 _
=2(§e) my, F(Q7,03)€upor€" (q1.11)

X €(q2,12)4)45 » 9)

where €,& are the polarization vectors, Q2,03 are teh
virtualities, and ¢q;,g, are the four-momenta for the two
photons. The corresponding decay width can be ex-
pressed in terms of F(0,0) as follows,

16
T - yy) = mimamm(o, 0)1? (10)

with a,,, =~ 1/137 being the fine structure constant. Simil-
arly, for y.o, we have another form factor G(Q?, 03),

(y(g1,1)y(q2,0)IM(py))

2 2
=2(§e) m,'G(07,03)

X (€1-€q1-q2—€-qi€ - q2) (1n
with the decay width given by

16
T(xco = vy) = mgmﬁm)(‘{,IG(O,O)I2 : (12)

3 Simulation results
3.1 Simulation setup

In this study, we utilize two ensembles with N =2
(degenerate u and d quarks) twisted mass configurations.
These configurations are generated by the ETMC at the
maximal twist to implement the so-called automatic O(a)
improvement [8]. The explicit parameters for these en-
sembles are presented in Ref. [12], and the two en-
sembles that we utilized are presented in Table 1. For the
valence sector, we adopt the Osterwalder-Seiler setup,
which introduces two extra twisted doublets for each non-
degenerate quark flavor, namely, (u,d) and (c,c¢’) with
twisted masses ay; and ay,, respectively [13—17]. The ex-
plicit value of ay; on Ens. By is 0.004, whereas it is 0.003
for Ens. C;. In this simulation, we use the physical mass
of 5. to set the value of ay,, yielding explicit values of
0.2542 and 0.2018 for Ens. B; and Ens. Cy, respectively.
In each doublet, the Wilson parameters have opposite
signs (r = —r’ = 1). Performing an axial (or chiral) trans-
formation, quark fields in the physical basis transform in-
to the twisted basis [13]; i.e.,
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Table 1. Configuration parameters.

B a/fm V/a4 Al seq My /MeV myL N[,‘fg
Ens. B, 3.9 0.085 243 % 48 0.004 315 33 200
Ens. C, 405 0.067 303 w64 0.003 300 33 199

|

( , ):exp(iwy5r3/2)( i

)Zexp(iw751'3/2)( ﬁ; )
) (13)

ARSI

(9}

where w is the twist angle, and w = /2 represents the
maximal twist. Then, the left-side of the abovementioned
equations correspond to quark fields in the physical basis,
and the right-side correspond to quark fields in the twis-
ted basis.

Before writing the explicit form of the meson operat-
ors, one should exploit the symmetry properties of the
twisted mass LQCD. We follow the discussion in refer-
ence [18] below. Isospin / and parity £ are broken by
O(a*) effects in the twisted mass LQCD. Meanwhile, a
specific combination (i.e., light flavor exchange com-
bined with parity) remains a symmetry of the twisted
mass LQCD. We first write down the interpolating-field
operators in the twisted basis and build the interpolating
operators with the same Wilson parameters [16]. For the
purpose of 7. and x., we use two basis operators
01(x) = c(x)ysc(x), Oz = c(x)c(x). According to Eq. (13),
the two basic operators in the twisted basis are given by
01 =icxe and O, = y.ysxy., which appear to have oppos-
ite parity. However, because twisted mass lattice QCD
breaks parity, they in fact mix with each other. Taking in-
to account this mixing is crucial. The solution of the gen-
eralized eigenvalue problem in Eq. (7) must be found to
obtain the optimized operator that will create the n, and
Xco meson from the vacuum. Without performing this
generalized eigenvalue separation, the correct signal of
Xco cannot be observed in the two-point functions. The
signal of 5. can naturally be observed even without con-
sidering this mixing effect, as it is the lightest state under
consideration.

3.2 Mass spectra for 7. and y o

The eigenvalue A, in Eq. (7) corresponding with the
corresponding meson state, i.e., n=1 represents 7,
meson, and n = 2 represents the y.o meson. Therefore, we
use the anti-periodic boundary condition,

1 |Zyl?

At pr) — e Enp)3
R T Enpy)

T
x cosh [EM(pf).(E —t)] 4
In practice, we use eigenvalue A; with pr =(0,0,0) to fit

the spectral weight Z, , and the explicit value of this
factor is 0.4416(8) and 0.2675(3) on Ens. B; and Ens. Cy,

respectively. Meanwhile, we use eigenvalue A, with
pr=(0,0,0) to fit the spectral weight Z, , and the expli-
cit value of this factor is 0.6699(71) and 0.2983(33) on
Ens. By and Ens. Cy, respectively. Thus, the mass can
also be extracted from
(=D +A4,(t+1)

cosh(m,) = 20 , (15)
with m; denoting the mass of n. meson and m, that of
xc0- The effective mass plateaus of these mesons for Ens.
B; and Ens. C; are illustrated in Fig. 1. From these mass
plateaus, the masses of the mesons are determined, and
the statistical errors are obtained using the jackknife
method. The numerical results for the masses are sum-
marized in Table 2. Notably, the mass values for 7. are
utilized to fix the valence charm quark mass parameter
au,. Therefore, only the masses of y.o are predicted from
this lattice computation.

In principle, glueball states with the same quantum
numbers are also present in a similar energy range [20].
However, in this lattice calculation, we have only util-
ized the quark bilinear operators for charmonium states
and did not observed the sign of the glueballs.

3.3 Renormalization factor Zy of electromagnetic cur-

rent operators

The current operators in Eq. (8) are electromagnetic
current operators. In principle, they contain all the fla-
vors of quarks weighted by the corresponding charges.
Light quark flavors will only enter the question via dis-
connected diagrams, which are neglected in this study.
When considering the charm quark, we only need to con-
sider the current ¢y,c(x). A subtlety in the lattice compu-
tation is that, with c(x)/¢(x) being the bare charm/anti-
charm quark field on the lattice, composite operators such
as the current j,(x) = Zy¢(x)y,c(x) need an extra multi-
plicative renormalization factor Zy, which can be extrac-
ted by the ratio of two-point function with respect to the
three-point function for n, [21]:

(2)
7 pt (/D0
V' E(p) I“Ef)
where y is the Dirac index, which we assume to be zero.
r 5,2) and Fﬁ,?) are the two point correlation function and

three point correlation function relevant to 7., respect-
ively. The explicit forms are:

Iy = e %0, (x,n0} (0,0)), (17

X

, (16)
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L =24 L =32
2 T T T T T T T T T T 1.9 T T T T T T
@ Ey(x 9)=3454(6)Mev @ Ey(x )=3416(13)Mev|
1o &  Eylr)=2978(1)Mev 18F &  Eylr,)=2970(1)Mev |
17F B
1.8 1
e 16 e 4
17+ ° e
° 15F g © |
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) ® e 13F e e g
15F (] 4
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131 © e e 0606606666060 .0 1 s ©Seeceo0ep0e00000006000606 64
N . . . . . . . . . 09 L . . . . .
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t/a t/a
(a) Ens. By (b) Ens. C4
Fig. 1. (color online) Mass plateaus of 5. (blue point) and y.o (red point) for Ens. B; and Ens. C;. The horizontal line segments de-

note the corresponding mass plateaus.

Table 2.
spectively. The last line cites the corresponding result from PDG
[19].

Mass values for 7. and y. on Ens. By and Ens. Cy re-

Ne Xc0
Ens. By : Mass/MeV 2978(1) 3454(6)
Ens. C;: Mass/MeV 2970(1) 3416(13)
PDG: Mass/MeV 2983.9(5) 3414.71(30)

Iy = >\ e P30, (x,11)ey0c(y, DO} (0,0)),
xX.y

(18)

with O,T,L and O, creating and annihilating a state with the
quantum number of 7. meson, respectively. Indeed, we
use the simple local operator, i.e., ¢ysc. According to Eq.

(16), we can obtain the multiplicative renormalization
factor Zy, which we have shown in Fig. 2. The values of
the renormalization factor Zy are 0.6296(18) and
0.6476(61) for Ens. B; and Ens. Cy, respectively.

3.4 Form factors for two photon decay of 7. and y .o

To compute the relevant matrix element in Eq. (3), we
place the meson at a fixed sink position 7, which is
chosen to be 24 for Ens. B; and 32 for Ens. C;. These
sinks are then used as a sequential source for a backward
propagator inversion. This allows us to investigate all the
possible source positions #;. We can then freely vary the
values of wiand Q7 , and inspect the integrand as a func-
tion of #; in Eq. (3) for a given insertion position ¢. As an
example, in Fig. 3 and Fig. 4, we show the integrand for

L=24 L=32
0.9 . 09 1
08T 1 0.8 g
07} . 07F 1
e ecccscccnoococccocsascececd®®f 0000000 TTTTOCEEEICOTTITTTOTTEY
06 . 06 .
Tost 1 Tost .
N N
04F 1 04 1
03 1 03r 1
02p 1 0.2 1
0.1 1 01F .
o P o . . . . . .
2 4 6 8 10 12 14 16 18 20 22 24 5 10 15 20 25 30
t/a t/a
(a) Ens. By (b) Ens. Cy
Fig. 2. (color online) Renormalization factors Zy for Ens. B; and Ens. C;. The horizontal line segments denote the corresponding val-

ues for Zy.
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the insertion positions ¢ =4,8,12,16,20 for Ens. B; and
t=4,8,12,16,20,24,28 for Ens. C; with a particular value
P =(000) for n. and x.o.

The computation must cover the physical kinematic
regions of interest. For this purpose, we must scan the
corresponding parameter space of the two virtualities Q?
and Q3. Basically, we follow the following strategy: we
first fix the four-momentum of 7. and x.0, ps = (E,py)
and place it on a given time-slice ¢y = 7/2. In this simula-
tion, we only compute the case of py=(0,0,0), and E is

0.08

Ne,pf = (0,0,0), L =24

3 vaa
G ta=8
007} E va=12 |
A ta=16
B ta=20
0.06 | g
005} g
— 4 e
S 0.0
5 . .
& 0.03f 4
e
002} o - N A g
e
A
ootp e ° e © . *oa ° E
e * A C e
s 0 ® * “ A * e 4 A
ho s dansfasdbeed eoesooeed
001 L . . . . . . . . . .
2 4 6 8 10 12 14 16 18 20 22
ti/a
2 2
Ql =0GeV
(a) Ens. By
Fig. 3.

24

simply the mass of the 5. or y., meson. Then, we judi-
ciously choose several values of virtuality Q% around the
physical point Q% =0. To be specific, we pick the range
0? €[-0.5,+0.1] GeV? on Ens. B; and Q3 € [-0.5,+0.1]
GeV? on Ens. Cy, which satisfies the constraint Q7 > —m?
[9]. For a given py, a choice of ¢; completely specifies
g> due to pr = g1 + q>. Therefore, we take several choices
of g =n(2n/L) by changing three-dimensional integer
n;. Then the energy of the first photon is also obtained

2)

2
1

F(Q2,

Ne, g = (0,0,0), L =32

0.08

0.07

0.06

0.05

0.04

0.03

t/a=4
ta=8
ta=12 |
t/a=16
t/a=20
ta=24 |
t/a=28

Bl HEH O el 11101

002 N ® s *

0.01 |-

C] 8 e * 8 A % e A & e

-] - A e a8 * 8
hsBiesslBe0iesssesstesotasaiasa

-0.01 ! ! ! ! ! !

5 10 15 20 25 30
ti/a
2 = 0GeV?
(b) Ens. Cy

(color online) Integrand for insertion positions obtained from simulations on Ens. B; (left figure), and Ens. C; (right figure).

We take ny =(-1-1-2); ny=(000) as an example. The insertion positions for lattice size: 243 x 48 and lattice size: 323 x64 are

t=4,8,12, 16,20 and r =4, 8, 12, 16, 20, 24, 28, respectively.

Xey, Pf = (0,0,0), L =24

0.08 T T T T T
ta=4
ta=8
ta=12
ta=16
t/a=20

0.07 |

0.05 -

a5 0.04 F B
= ! : A
& 0.03 4
0.02 | g
% § § = . A N © e
0.01 % % i * A 3 R
) m O » O A * o A ©
o A
01&1!5.&!25965388ggecaéébn
0,01 Lt . . . . . . . . . .
2 4 6 8 10 12 14 16 18 20 22
ti/a
Q? = 0GeV?
(a) Ens. Bl
Fig. 4.

24

Xeo» Py = (0,0,0), L =32

0.08 T T T
t/a=4
t/a=8

0.07 | va=12 |
t/a=16
t/a=20

0.06 - t/a=24 |
t/a=28

0.05 | ]
L]

~’Q§ 0.04 | E

& 0.03fF ; s o g

* *
0.02 | g
g R °
L
0.0 . g 5 i £ . " o 2 R e .®
A e L
dissiessBeeiBondlesidosiisaaiaad
0.01 . . . . . .
5 10 15 20 25 30
ti/a
Q? = 0GeV?
(b) Ens. Cy

(color online) Integrand for insertion positions obtained from simulations on Ens. B; (left figure), and Ens. C; (right figure)

respectively. We take n, = (00-3); ns = (00 0) as an example. The insertion positions for lattice size: 24> x48 and lattice size: 32° x 64
are r=4, 8, 12, 16, 20 and r =4, 8, 12, 16, 20, 24, 28 respectively.
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using either the continuum or the lattice dispersion rela-
tions as follows:

W =gi-0%, (19)
4sinh’(w1/2) =4 ) sin’(@u/D-01, (2

where QA% = 4sinh?(Q, /2) is the lattice version for the vir-
tuality. Apparently, we can also compute the virtuality of
the second photon, since both w, and ¢, are constrained
by the energy-momentum conservation. One has to make
sure that the values of Q3 thus computed do satisfy the
constraint Q3 > —my, otherwise it is omitted. This proced-
ure is summarized as follows:

1. Judiciously choose several values of Q7 ina suit-
able range. We picked seven values of Q?;

2. Pick different values of n;, such that ¢; = ny(27/L).
As described above, this fixes both w; and Q% using the
energy-momentum conservation. This is done using
either the continuum or the lattice dispersion relations. To
be specific, for each Qf, we picked four different ¢ ;

3. Make sure all the values of Q%,Q3%>-m2, other-
wise the choice is simply ignored;

4. For each validated choice above, compute the
three-point functions (8) and obtain the hadronic matrix
element using Eq. (3).

In this approach, we have obtained a total of 28 points
on the (Qz,Qg) plane around the origin. As an example,
the distribution of these virtualities for the two mesons
are shown in Fig. 5 for the case of lattice dispersion rela-
tions. One could also peform the same procedure using
the conventional continuum dispersion relations. The dif-
ference of these two approaches will ultimately provide
us with an estimate of the finite lattice spacing error of
the calculation.

In our real lattice QCD computation, the integration

e, lattice, L =32

0.25
* * .
*
02 * *
*
*
*
0.15 F * «
®
*
* *
o1} * N
*
*
oo *
5" 005 *
ok
*
*
0.05 "
*
*
®
-0.1 *
015 . . . . . . . ,
-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02
2
Q‘
Ens. C4

Fig. 5.

of ¢; in Eq. (3) is replaced by discrete summation over ¢
using the trapezoid rule. The resulting values exhibit a
plateau behavior with respect to # which is then utilized
to extract the corresponding form factor. In this approach,
we have obtained numerical results for F(Q?,03) and
G(03,03) at 28 different points in the plane of the two
virtualities. As an example, the form factor plateaus for
ne are illustrated in Fig. 6 for the case of 02 =0 GeV?.
The corresponding case for y.o is shown in Fig. 7.

3.5 Fitting of the form factor and physical decay widths

To obtain the physical decay width, we only need the
values of the form factors at the physical photon point,
namely QF = Q3 =0. Fig. 5 shows the distribution of the
28 data points in the (Q?,03) plane, and we could imple-
ment cuts in the plane. For a given value of Q2 >0, we

select the points that satisfy the following inequality:

VOD2+ (0D < 02y - ey

Evidently, taking a large enough Q2 will allow all of the

points be considered, while selecting a smaller value for
Q?,, will account for only those points, whose distances
are closer than Q2. In contrast, for a given value of Q2,,,
we could utilize a different fitting formula to obtain the
corresponding values of the form factor. Because it is the
value at the origin that is directly related to the decay
width, it is natural to use a polynomial type of fit in both
0?7 and Q3. Furthermore, due to boson symmetry, this
function must be symmetric with respect to Q% and Q3.
Therefore, by varying the cut value Q2 and various or-
ders of polynomials in the virtualities, we could investig-
ate the values of the form factors at the physical point.

To be specific, we adopt a polynomial ansatz up to
Q% and Q% to the third power to fit the data of the form
factor. For the i, meson, we use:

Xeos lattice, L =32
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(color online) Distribution of virtualities (Q3,03) (lattice units) for Ens.C; computed for 7. (left panel) and x.o (right panel).

083108-7



Chinese Physics C Vol

. 44, No. 8 (2020) 083108

Ne,pf = (0,0,0), L =24

0.3 — T T T T
& n,=(00-3)
§ n,=(0-1-3)
L Fon(22-2)f
025 K nz(1-1-2)
0.2t ]
= A
<
Y A
w015 A g R
= N *
- AAAAAAAA—A—A—AAAAA ”*‘ég
* e
01} » ® % [ * 2 8 4
SRR === AR AN
« 8
8
0.05 g
ry
ol . . . . . . . . . .

8 10 12

t/a

14 16 20 22

Ens. By
Fig. 6.

ated using the conventional jack-knife method.

ety = 0,002

0.25 -

02

g
N§0.15- R
N}
® e © 8
01} % 3 2o 2 e © = i
N i ﬁgrEﬁmm(:; @555 *
E%%i R g g = 8 . *
% FEE R o5 owm . oaou o ¥
0.05 | % a A
§§§§A431§A A s s b AAAA
ol . . . . . . . . . .
2 4 6 8 10 12 14 16 18 20 22 24
t/a
Ens. By

Fig. 7.
figure) and Ens.C, (right figure). We take Q3 =0 GeV?
the conventional jack-knife method.

’

F(Q7,03) =ao+a1(Q7 + 03)
+ax(Q +0y) +a3 07 0;
+as(Q) +09) +as(Q105 + 0301)
and we apply a similar form for the y. form factor
G(Q2,03). Notably, ag = F(0,0) is the form factor at the
physical photon point, which is directly related to the de-

cay width of the meson. Polynomial forms with less
terms, i.e., with only up to first or second powers in Q?

(22)

and Q2, have also been attempted. This implies that we
are fitting the data points with 2, 4, and 6 parameters, re-
spectively, as terms at the same orders of Q2 and Q3 must
be included or excluded on the same footing. Correlated
fits are performed in all the cases. Depending on the num-
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Ens.B; (left figure) and Ens.C; (right figure). We take Q3 =0 GeV?
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(color online) Plateaus of scalar form factor obtained from integration of #; for three point function G, (s;,r) with Ens.B; (left
ns=(000) as an example. The errors in these figures were estimated using

ber of points considered, which is controlled by Q2 , and
the number of terms kept in the fitting polynomial, we fi-
nally arrive at the values for the form factors at the origin,
namely F(0,0) = qy for both the ensembles. Similar pro-
cedures have been implemented as well for y.g, resulting
in the values for G(0,0).

The fitting procedures described above can be imple-
mented using either the continuum or lattice version of
the dispersion relations, as indicated in Eq. (19) or Eq.
(20). The procedure can be performed for either the
pseudo-scalar or scalar meson on either of the two en-
sembles utilized in this calculation. Therefore, we per-
form the fitting procedure in eight different cases. The
difference between the corresponding results obtained
from different dispersion relations will then inform us
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about the lattice artifacts of the calculation.

As an illustration, in Fig. 8, the fitting results for n,
and y.o on Ens. C1 using lattice dispersion relations are
shown. Here the horizontal axis denotes the cut values
Q?,, while the vertical axis represents the values for
F(0,0) or G(0,0) together with the errors (data points
with error-bars). For each fixed value of Q2,, we have
performed three fits with 2, 4, and 6 parameters. These
three points are shifted horizontally by a small amount to
make them recognizable. The corresponding values of
x?/dof for each fit are also shown as points without error-
bars. By inspecting the plot, we obtain an estimate re-
garding the consistency and quality of these different fits,
and the differences among the values of F(0,0) can also
offer us an estimate of the systematics for the fitting pro-
cedure.

Having obtained these eight plots, we proceed as fol-
lows:

e For each of these plots, taking the example above,
we pick the case with lowest value of y?/dof as the final
result for F(0,0) together its statistical error in this partic-
ular case.

e We further attribute a systematic error arising from
the fitting procedure by taking the largest difference in
the central values of F(0,0) with comparable x?/dof. This
then yields the result for F(0,0) with a certain type of dis-
persion relations on a particular ensemble.

e By comparing the difference in F(0,0) between the
two different dispersion relations, we further assign a sys-
tematic error, which is taken to be the difference between
the two values, arising from the lattice spacing.

e A similar procedure can be applied to y.o as well.

In this way, we obtain the results of F(0,0) and
G(0,0) on two ensembles, as explicitly listed below:

1e, lattice — dispersion, L =32

0.3 20
$ parameters:6
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16
14
02t
12
= » =
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0.1f le
14
0.05r
* » 12
*?* *f* o > 1o
0.05(11)  0.1(18)  0.15(24)  0.2(28)
Q. (points)

(a) Ens. C1 nc

Fig. 8.

values Q2

cut?

integers in brackets along the horizontal axis indicate the number of data points below Q2

F(0,0)5 = 0.1283(1)(3)(77) , (23)
F(0,0)c; = 0.1240(4)(13)(68) , (24)
G(0,0)5 = 0.1017(7)(102)(126) , (25)
G(0,0)¢1 = 0.0907(8)(19)(90) , (26)

In these expressions, the first error is statistical, the
second is the error from the fitting procedure described
above, and the third is the finite lattice error estimated us-
ing the two different dispersion relations. Evidently, in all
the cases, the results are dominated by systematic errors,
especially the finite lattice spacing errors. In fact, the res-
ults on the two different ensembles are consistent within
this estimate of finite lattice spacing errors. We therefore
decide not to make any continuum extrapolations. The
computations with more values of lattice spacings will
clearly be crucial to determine these large lattice spacing
errors.

To compare with the previous lattice computations,
we note that the result for I'(. — yy) is slightly larger
than the previous result presented in Ref. [9] when the
same set of configurations were used. This difference is
attributed to the fact that the mixing of 5. and y. in the
twisted mass setup was not fully disentangled in the pre-
vious calculation in Ref. [9]. In the case where a properly
chosen operator that mixes with both the 7.-like and yo-
like interpolating operators is not used, it would not be
possible to observe the correct y.o signal as discussed at
the end of subsection 3.1.

Finally, we convert the results in the form factors in-
to their corresponding ones in the decay widths. We
simply add all the errors in the form factors in the quad-
rature and neglect the ones in the mass of the mesons.
This then leads to the following results for the decay

Xeo» lattice — dispersion, L =32
T T T

T 30
|| ¢ parameters:6
014 $ parameters:4
¢ parameters:2 » * 425
012
120
0.1
= 157
5 0.08 o2 & o® o Y
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0.06
0.04 1°
* *
* »
0.02 - = ™ » K3 0
0 0.05(6) 0.1(17) 0.15(21) 0.2(26) 0.25(28)
Q2 (points)

(b) Ens. C1 Xco

(color online) Fiting results for 7. and y, on Ens. C1 using lattice dispersion relations. The horizontal axis denotes the cut
while the vertical axis denotes the values for F(0,0) or G(0,0) together with the errors (data points with error-bars). The

2. Points without errors show the corres-

ponding values of y?/dof, the values that are obtained to the right edge of each box.

083108-9



Chinese Physics C Vol. 44, No. 8 (2020) 083108

widths:

L(ne — yy)p =1.62(19) KeV,
(. — yy)c1 =1.51(17) KeV,
I'(xco = yy)p1 =1.18(38) KeV,
I'xco = yy)e1 =0.93(19) KeV. 27)

These are to be compared with the following values giv-
en by PDG:

I'(n: — vy)ppg =5.02(51)KeV,
T(xc0 = ¥Y)ppG =2.20(22)KeV. (28)

These numbers are all in the same ballpark as the ex-
perimental ones, although they remain somewhat smaller.
However, because no controlled continuum extrapola-
tions have been performed yet, it is still premature to
draw any conclusions for the discrepancy. Our large es-
timated finite lattice errors offer some hint that this might
be the major source of errors. In the future, more studies
should be conducted at different lattice spacings to con-
trol the lattice artifacts in a systematic manner. Another
source of systematic errors could come from the mixing
with the nearby glueball states. Thus far, no lattice calcu-
lations have considered such an effect. Considerable ef-
forts are needed in the future to take the aforementioned
factors into account.

4 Conclusions

In this exploratory study, we calculate the two-photon

decay width for 7. and y. using unquenched N;=2
twisted mass fermions. The computation is performed
with two lattice ensembles (coarser and finer) at two dif-
ferent lattice spacings. The mass spectra for the r. and
Xc0 meson state are obtained by solving a generalized ei-
genvalue problem, which disentangles parity mixing
between the two mesons.

Our results for the decay width T'(p. — yy) and
I'(x.0 — yy) are summarized in Eq. (27) for the two en-
sembles utilized in this computation. With these two en-
sembles, we only estimate the finite lattice spacing errors
for each ensemble, and no continuum extrapolations are
performed. Albeit without the continuum extrapolations,
our results are in the right ballpark as the PDG values
shown in Eq. (28).

In the future, lattice calculations with more values of
lattice spacings are certainly required to control the finite
lattice spacing errors, which appear to be a dominant
source. Meanwhile, the disconnected contributions will
be a good supplement to this study. Possible mixing with
the gluonic excitations must also be addressed. It will
also be helpful to research unquenched configurations
with other ensembles or other methods. We also expect to
obtain more precise experiments to be performed on
double-photon decays of charmonium.

The authors thank the European Twisted Mass Col-
laboration (ETMC) for allowing us to use their gauge
field configurations. Our thanks also go to the National
Supercomputing Center in Tianjin (NSCC).
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