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1 Introduction

While astronomical observations have strongly indicated dark matter (DM), its identity
remains an open question in physics. We thus need to extend the Standard Model (SM)
by including new particle(s) to account for the observed DM phenomena. However, the
weak-scale DM search related to its interactions with the SM is stringently constrained by
direct detection experiments, especially in the mass range mDM ≳ 5GeV [1–4]. This has led
to some studies on sub-GeV DM or resorted to some workable models in recent years. On
the other hand, one exciting paradigm of models is the hidden sector DM model, for which
the dark matter candidate resides within a hidden sector and communicates with the visible
sector through a metastable mediator weakly coupling DM to the SM [5, 6]. This model can
easily interpret the present experimental null measurements.

One particular class of models that generates the relic density quite differently is called
the forbidden dark matter. For the thermal freeze-out DM of this class, its relic abundance
is determined exclusively by forbidden channels, which are kinetically forbidden at zero
temperature [7–19]. In this paper, we will assume that the hidden sector, as the SM, contains
a Higgs-like scalar S. The hidden sector interacts with the SM by mixing the SM-like Higgs
and hidden Higgs. We study the simplest scenario where the DM (X) is an abelian gauge
vector boson but with mass mX < mS , which resides in the same hidden sector as S. As
characterized by the forbidden channel, the forbidden rate of XX → SS, compared with its
inverse process at their temperature TX , is exponentially suppressed as

⟨σv⟩XX→SS = ⟨σv⟩SS→XX
(neq

S (TX))2
(neq

X (TX))2

≈ ⟨σv⟩SS→XX
g2S
g2X

r3
(
1− 15∆

8rx2
X

)
e−∆ , (1.1)
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where the detailed balance is used, ∆ ≡ 2(r − 1)xX , xX ≡ mX/TX , the mass ratio r ≡
mS/mX > 1, and neq

i and gi are the equilibrium number density and internal degrees of
freedom (DoFs) of i, respectively, with i ≡ X, S.

We aim to find relevant regions of the parameter space in this simple model, where not
only the correct relic density can be obtained but also a proper size of DM self-interactions
can account for the small scale problems [20–24]. We find that, to achieve this purpose, the
coupling (gdm) between X and S needs to be O(1). Meanwhile, a much larger mass ratio
mS/mX ∈ (1.5, 1.65) is required if the hidden sector is maintained in chemical equilibrium
with the SM before freezing out. However, to maintain such an equilibrium, the mixing
angle (α) between the hidden Higgs and SM-like Higgs also needs to be much larger, which
is nevertheless excluded by the fixed target and flavor experiments (see the discussions in
section 2 and appendix A).

Fortunately, the region of the parameter space with a smaller α, resulting in the hidden
sector being thermally decoupled from the SM earlier, can have gdm ∝ O(1) which provides
the correct DM relic density and a proper size of DM self-interactions. We will show that
the relevant parameter region evades the current constraints and can be further probed
in further experiments.

In this relevant scenario, the hidden sector is thermally decoupled from the SM bath
when the temperature drops below ∼ mDM. After that, it enters a cannibal phase (with zero
chemical potential) during which the DM density is heated but depleted with the out-of-
equilibrium decay of the mediator; the former describes the number-changing interactions,
called cannibalization [25, 26], while the latter is referred to as the co-decaying mechanism [27]
resulting in the bath reheated. This scenario naturally leads to large self-interactions in
the “sub-GeV” region, which may help address the ‘core vs. cusp’ and ‘too-big-to-fail’ small
structure problems [20–24]. As DM annihilations are almost forbidden at temperatures of the
recombination epoch, this light DM case evades the constraints from the CMB anisotropies,
which are sensitive to energy injection into the intergalactic medium [28, 29].

In the present work, we focus on the parameter region where the rate of the hidden
sector interacting with the SM drops below the Hubble expansion at T ∼ mX so that the
hidden sector evolves with a different temperature from the SM plasma. The scenario has
the following properties:

• Interactions among the dark sector particles guarantee TX = TS before freeze-out.

• Below T ∼ mX , the 3-to-2 cannibal annihilations are still active. The hidden sector
temperature may be hotter than the SM bath as the number-changing interactions
convert the mass of nonrelativistic hidden sector particles into their kinetic energy.
Meanwhile, the hidden sector may cool down efficiently due to net entropy injection
from the hidden sector to the SM bath, resulting from the S decaying out-of-equilibrium
into the SM bath.

• During the cannibalization epoch, the hidden sector densities, following their tempera-
ture, are Boltzmann depleted and maintain chemical equilibrium (with zero chemical
potential).
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• When cannibalization ends, the forbidden channel described by the DM annihilation
to mediators is still active and guides the evolution of hidden sector densities until
freeze-out; meanwhile, 2-to-2 interactions keep hidden sector particles in temperature
equilibrium but with a nonzero chemical potential.

This paper is organized as follows. In section 2, we introduce the simplest renormalizable
vector dark matter model suitably used in the present study for the forbidden dark matter
under a cannibally co-decaying phase. For the condition that the hidden sector is in chemical
and kinetic equilibrium with the SM bath before freeze-out, we will show that only a much
larger mass ratio mS/mX ∈ (1.5, 1.65) can simultaneously give the correct relic density and
have a proper size of DM self-interactions to explain the small scale problems. However, the
corresponding parameter space, related to the mixing angle between the SM-like Higgs and
hidden scalar, is ruled by fixed target and flavor experiments. In section 3, we study a scenario
in which the hidden sector is thermally (chemically and kinetically) decoupled from the bath
earlier at about T ∼ mX . We develop a formalism relevant to the evolutions of hidden
particles. We revise the evolution scale, the bath temperature, which may be affected by a
non-thermal equilibrium process due to the hidden scalar’s out-of-equilibrium decay, resulting
in an increase in total comoving entropy. We finally obtain the coupled Boltzmann equations
for the number densities and temperatures and show how these quantities evolve when the
hidden sector undergoes a cannibally co-decaying phase. The experimental constraints are
presented in section 4, where we show that this scenario can offer a parameter space not
only having an ample enough coupling strength between X and S to account for the small
scale problems as well as the correct DM relic but also evading the current constraints.
Experiments can further probe this scenario. The conclusions are contained in section 5.

2 Boltzmann equations and thermal freeze-out

To feature the thermal mechanism of the hidden sector, we take the simplest renormalizable
vector dark matter model [30, 31] as an example to illustrate the pictures. Here, the dark
sector contains only a complex scalar ΦS and an abelian U(1)X gauge vector boson Xµ

(denoted as X throughout this paper). The covariant derivative of the dark sector is given
by DµΦS ≡ (∂µ + igdmQXXµ)ΦS , where QX is the UX(1) charge value of ΦS . The scalar
potentials of the Lagrangian are given by

V = µ2
H |ΦH |2 + µ2

S |ΦS |2 +
λH

2 (Φ†
HΦH)2 + λS

2 (Φ†
SΦS)2 + λHS(Φ†

HΦH)(Φ†
SΦS) , (2.1)

where ΦH = (H+, H0)T is the SM Higgs doublet. After spontaneous symmetry breaking
(SSB), the two Higgs fields can be parametrized in terms of their vacuum expectation
values (VEVs), vH = 246GeV and vS , and the real neutral components, ϕh and ϕs, in the
unitary gauge as ΦH = 1√

2(0, vH + ϕh)T and ΦS = 1√
2(vS + ϕs), and the dark matter gets

its mass with mX = gdmQXvS . The two real scalars are related to the mass eigenstates,
h = cosα ϕh + sinα ϕs, S = − sinα ϕh + cosα ϕs. We take h as the SM-like Higgs with mass
mh = 125.18GeV [32] and use the dark charge QX = 1 in the analysis.

Note that after SSB, the Z2 symmetry, Xµ → −Xµ and ΦS → Φ∗
S , can stabilize the DM

persists in the Lagrangian of this simplified model. We remark here. The present model is

– 3 –
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a low-energy effective theory. The Lagrangian could exist some nonrenormalizable higher
dimensional operators that, resulting from some other UV complete theory1 beyond a much
higher scale Λ ≫ vH , vs, break the Z2 symmetry and are thus suppressed by Λ at the low
energy scale. The existence of the nonrenormalizable higher dimensional operators might
lead to the vector DM decay into the SM particles, which could be observed/constrained
in the indirect searches [33–35].

In this paper, we consider mX < mS . Thus, the two-body annihilation XX → SS,
forbidden at zero temperature, may occur at finite temperatures, and its thermally averaged
rate depends on the mass ratio r = mS/mX (for comparison, we will briefly discuss the case
of DM in the form of a Majorana fermion in appendix B). The coupled Boltzmann equations
describe the evolutions of number densities of X and S,

dnX

dt
+ 3HnX = {2 ↔ 2}SX − {2 ↔ 2}X

SM + {3 ↔ 2}X , (2.2)

dnS

dt
+ 3HnS = − (⟨ΓS⟩TinS − ⟨ΓS⟩T neq

S (T ))− {2 ↔ 2}SX − {2 ↔ 2}S
SM + {3 ↔ 2}S ,

(2.3)

where

{2 ↔ 2}SX ≡ ⟨σv⟩SS→XX(Ti)
(

n2
S − (neq

S (Ti))2
(neq

X (Ti))2
n2

X

)
,

{2 ↔ 2}X
SM ≡ ⟨σv⟩XX→SMSM(Ti)n2

X − ⟨σv⟩XX→SMSM(T ) (neq
X (T ))2 ,

{2 ↔ 2}S
SM is the same as {2 ↔ 2}X

SM but with X replaced by S, neq
X,S(Ti) are the equilibrium

densities at temperature Ti, and ⟨ΓS⟩ is the thermally averaged width of S, {3 ↔ 2}X,S

denote terms involving 3 ↔ 2 number-changing interactions (see eqs. (3.8) and (3.9) and
refs. [16, 30] for a detailed expression).

The decoupling temperature of the SM bath and the hidden sector is related to the
coupling strength, relevant to α, between these two sectors. For a suitably large value of
α, the hidden scalar S can be treated as a part of the effective bath (SM plus S) because
it keeps thermal equilibrium with the SM particles via SM S ↔ SM S,2 and SM SM ↔ S,
together with cannibalization.3 Thus, for this condition, the DM relic density, independent
of α, is set by thermally averaged forbidden XX → SS annihilation cross section,4 which is

1For instance, the Z2 symmetry of the DM can be broken by another U(1)′ symmetry which is spontaneously
broken by a new scalar making the new U(1)′ gauge boson with a mass ∼ Λ [33]. Meanwhile, the hidden
scalar ΦS together with SM particles, which can be fermions or the SM Higgs, is charged under U(1)′.

2We have SS → SM SM ∼ XX → SM SM and SM S → SM S ∼ SM X → SM X. The rate SM SM → SS

is less than SM S → SM S because the former is s-channel dominant and suppressed by initial S number
density, while the latter is t-channel dominant and its initial SM particles could be relativistic for T < mS .

3The cannibalization and inverse S decay can result in the zero chemical potential of S during freeze-out.
4We consider the parameter region, where the XX → SM SM cross section is much less than the typical

cross section with ∼ (3.8–5.0)×10−9 GeV−2 in the WIMP scenario for 7 MeV≲ mX ≲ 100MeV. For comparison,
taking mX = 100MeV, r = 1.25 and gdm = 0.2, we have ⟨σv⟩XX→SM SM = 3.1(gdm/0.2)2 sin2 α× 10−11 GeV−2

at T → 0, which cannot be dominant during DM freeze-out even using sinα = 1. Usually, the s-channel
XX → SM SM is dominant during freeze-out when the resonant region, mS ∼ 2mX , is considered. However,
this is outside the parameter region that we are interested in. See also figure 4 and related discussions for the
present study.
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Figure 1. gdm as a function of mX . (i) The solid lines, corresponding to different r, can produce
the correct relic density for the case with a sufficiently sizable α that can maintain the thermal
equilibrium between the hidden sector and SM during the freeze-out process. (ii) The regions
bounded respectively by two dashed lines with the same color approximate the current self-interactions
σSI/mX ∈ (0.1, 10) cm2/g and are highly insensitive to the value of r. The green, gray, red, blue,
magenta, and brown lines correspond to r(= mS/mX) = 1.01, 1.1, 1.15, 1.25, 1.5, and 1.65, respectively.
The unitarity bound gdm <

√
4π is imposed. Note that only the case with r ∈ (1.5, 1.65) can

simultaneously account for the correct relic density and the requirement of the small-scale problems.

specially controlled by the values of the coupling gdm and the mass ratio r(= mS/mX). In
figure 1, denoted as the solid lines, we show the coupling strength gdm that accounts for the
observed relic density. For a case with a larger r, a more prominent gdm is necessary. For
instance, at mX = 100MeV, gdm is about 0.01 for r = 1.01 but becomes 0.2 for r = 1.25.

On the other hand, the small-scale structures favor the DM self-interactions around
σSI/mX = 0.1–10 cm2/g. The cross-section for the self-interacting DM scattering XX → XX

through the scalar mediator exchange via s-, u-, and t-channels can be obtained in the
zero-velocity limit of the incoming particles in the present model, given by (with cα ≡ cosα)

σSI =
c4α g4dmm2

X(32m4
X − 24m2

Xm2
S + 7m4

S + 2m2
SΓ2

S)
96m4

S

(
(4m2

X − m2
S)2 + m2

SΓ2
S

)
π

. (2.4)

In figure 1, we use several different values of r as inputs and then show allowed regions
σSI/mX ∈ (0.1, 10) cm2/g separately bounded by two dashed lines with the same color. These
results with gdm of order one are highly insensitive to the mass ratio r. Note that for the case
with a sufficiently sizable α maintaining the thermal (chemical) equilibrium between the hidden
sector and SM during the freeze-out process, only a much larger mass ratio r ∈ (1.5, 1.65) can
simultaneously account for the correct relic density and the requirement of the small-scale
problems. Nevertheless, for r ∈ (1.5, 1.65), we need α > 10−3 for mX > 10MeV to keep
thermal equilibrium between the hidden sector and SM during the freeze-out process. The
corresponding parameter region is excluded by E949 [45], PS191 [46–49], and CHARM [50]
measurements. The result is shown in figure 7 and the related discussion is given in appendix A.
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3 Cannibally co-decaying phase

As shown above, if gdm ∝ O(1) can account for the small-scale phenomenon, and if the hidden
sector and SM are in good thermal equilibrium during freeze-out, a much larger splitting ratio
r ∈ (1.5, 1.65) is required to have a good fit to the observed relic abundance. However, under
this condition that the thermal equilibrium is maintained during freeze-out, the corresponding
value of α, which should be larger than 10−3 at least, is excluded by experiments (see figure 7).

Fortunately, the scenario of a smaller α, resulting in the nonrelativistic hidden sector
being thermally decoupled from the SM earlier, not only allows a significant parameter
space (with gdm ∝ O(1)) of explaining the correct DM relic density as well as the small
scale structures but also can evade the current experimental constraints. Dynamically, when
the hidden sector is decoupled from the SM earlier at T ∼ mX , the hidden sector enters
a cannibal phase and evolves with an independent temperature, which is higher than the
bath due to receiving heat through 3 → 2 processes. For this scenario, we have to increase
the coupling strength (gdm) between X and S so that the DM density can be sufficiently
depleted with the out-of-equilibrium decay of S to have a relic abundance consistent with
the observation. We will give a detailed analysis in the following, starting with a study of
the thermal evolution of the hidden sector.

Before freeze-out, we consider the dark sector particles in thermal equilibrium, i.e.,
TX = TS . As for the condition that S decays out of equilibrium, which results in net entropy
injection from the hidden sector to the bath, the SM bath is reheated; as a result, following
the second law of thermodynamics, the total comoving entropy St is also increased. Therefore,
we can give the change of the total comoving entropy in the general form,

dSt = d(sa3) = dQ

T
− dQ

TX
. (3.1)

The net heat transferred from the hidden scalar to the SM bath is described by

dQ = −d(a3ρS)− pS d(a3) = −a3dt

[
ρ̇S + 3 ȧ

a
(ρS + pS)

]
= a3 dtΓSmS (nS − neq

S (T )) , (3.2)

where ρS and pS are the energy density and pressure of S, respectively, neq
S (T ) is the

equilibrium density of S at the bath temperature T , and a is the cosmic scale factor. Here,
the total entropy density of the Universe is

s = 2π2

45 heff(T )T 3 , (3.3)

where the effective number of the total degrees of freedom is given by

heff(T ) = hSM
eff (T ) +

(
hX
eff(TX) + hS

eff(TX)
)(TX

T

)3
(3.4)

with

hi
eff(TX) = 45gi

4π4

(
mi

TX

)4 ∫ ∞

1

y(y2 − 1)1/2

emiy/TX − 1
4y2 − 1

3y
dy , (3.5)
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Figure 2. An additional factor 1 − δt is needed to translate the time scale to the temperature
parameter x. This is due to the increase of the total comoving entropy resulting from the out-of-
equilibrium decay of the scalar S.

and i ≡ X or S for the DM or hidden scalar. Including the effect that the total comoving
entropy could be changed due to the out-of-equilibrium decay of the hidden scalar and
considering that the temperature decoupling of S and X occurs until after freeze-out, we
can then deduce the time derivative in terms of the bath temperature,

d

dt
= ds

dt

dT

ds

d

dT
=
[ 1
3s

ΓS mS (nS − neq
S (T )) (1− y−1)− HT

]
heff(T )
h̃eff(T )

d

dT

= (1− δt)xH
heff(T )
h̃eff(T )

d

dx
, (3.6)

where x = mX/T is the dimensionless temperature variable, H = [(8π/3)GN ρ]1/2 is
the Hubble parameter with ρ the total energy density of the Universe, h̃eff ≡ heff [1 +
(1/3)(d ln heff/d ln T )], and

δt ≡
1
3H

x
mS

mX
ΓS (YS − Y eq

S (TX)) (1− y−1) , (3.7)

with y ≡ TX/T . Here and through this paper, we introduce dimensionless quantities,
YX ≡ nX/s and YS ≡ nS/s for yields, and y = TX/T for the temperature ratio as functions
of the dimensionless variable x. In figure 2, we show the relative factor 1− δt, which results
from the increase of the total comoving entropy.

As for the present case, the hidden sector is decoupled from the SM bath at T ∼ mX

and then evolves with an independent temperature. Thus, to obtain the detailed thermal
evolutions of the hidden particles, we need to solve the coupled equations for YX , YS , and

– 7 –
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their temperature dependence y = TX/T . The Boltzmann equations of yields are given by

dYX

dx
= (1− δt)−1 h̃eff(T )

heff(T )
1

xH

[
3HδtYX + s⟨σv⟩SS→XX(TX)

(
Y 2

S −
(Y eq

S (TX))2

(Y eq
X (TX))2 Y 2

X

)

+ s2

3 ⟨σv2⟩SSS→XX

(
Y 3

S −
(Y eq

S (TX))3

(Y eq
X (TX))2 Y 2

X

)
− s2⟨σv2⟩XXS→SS

(
Y 2

XYS −
(Y eq

X (TX))2

Y eq
S (TX) Y 2

S

)

− s2

3 ⟨σv2⟩XXX→XS

(
Y 3

X −
(Y eq

X (TX))2

Y eq
S (TX) YXYS

)

− s
(
⟨σv⟩XX→

∑
ij

SMiSMj
(TX)Y 2

X −⟨σv⟩XX→
∑

ij
SMiSMj

(T ) (Y eq
X (T ))2

)]
, (3.8)

dYS

dx
= (1− δt)−1 h̃eff(T )

heff(T )
1

xH

×

[
3HδtYS − s⟨σv⟩SS→XX(TX)

(
Y 2

S −
(Y eq

S (TX))2

(Y eq
X (TX))2 Y 2

X

)

−ΓS

(
K1(mS/TX)
K2(mS/TX)YS − K1(mS/T )

K2(mS/T )Y eq
S (T )

)

− s
(
⟨σv⟩SS→

∑
ij

SMiSMj
(TX)Y 2

S −⟨σv⟩SS→
∑

ij
SMiSMj

(T ) (Y eq
S (T ))2

)
+ s2

6 ⟨σv2⟩XXX→XS

(
Y 3

X −YXYS
(Y eq

X (TX))2

Y eq
S (TX)

)
− s2

6 ⟨σv2⟩SSS→SS

(
Y 3

S −Y 2
S Y eq

S (TX)
)

+ s2

2 ⟨σv2⟩XXS→SS

(
Y 2

XYS −
(Y eq

X (TX))2

Y eq
S (TX) Y 2

S

)
− s2

2 ⟨σv2⟩SSS→XX

(
Y 3

S −
(Y eq

S (TX))3

(Y eq
X (TX))2 Y 2

X

)

− s2

2 ⟨σv2⟩XSS→XS

(
YXY 2

S −YXYSY eq
S (TX)

)]
. (3.9)

As for the temperature evolution, considering that the hidden species evolve with the
same temperature, i.e., TX = TS , and adopting the definition

TX = gX

nX

∫
d3pX

(2π)3
p2

X

3EX
fX(TX) , (3.10)

we can then obtain the Boltzmann moment equation for the hidden temperature,

(nX + nS)
dTX

dt
+
(
(2− δX

H )nX + (2− δS
H)nS

)
HTX =

−
(

dnX

dt
+ 3HnX

)
TX + gX

∫
d3pX

(2π)3 C

[
fX · p2

X

3EX

]

−
(

dnS

dt
+ 3HnS

)
TX + gS

∫
d3pS

(2π)3 C

[
fS · p2

S

3ES

]
, (3.11)

– 8 –
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where fi is the distribution of the species “i” in the momentum space, C

[
fi ·

p2
i

3Ei

]
is the

collision term, and

δi
H ≡ 1− gim

2
i

ni Ti

∫
d3pi

(2π)3
p2

i

3E3
i

fi(Ti) , (3.12)

with i ≡ X, S. By calculating all relevant collision terms, this temperature equation can
be reformulated in the form,

dy

dx
= y

x
− 3 δt

1− δt

h̃eff(T )
heff(T )

y

x
− y

YX + YS

(
dYX

dx
+ dYS

dx

)

+ (1− δt)−1

YX + YS

h̃eff(T )
heff(T )

{
−(2− δX

H )
(

y

x
+ γX

xH
(y − 1)

)
YX

− s

xH

(
y Y 2

X ⟨̃σv⟩XX→
∑

ij
SMiSMj

(TX)− (Y eq
X (T ))2⟨̃σv⟩XX→

∑
ij

SMiSMj
(T )

)

+ s2

mXH

[
(4m2

X − m2
S)(16m2

X − m2
S)

108mX(10m2
X − m2

S)
⟨σv2⟩XXX→XS

(
Y 3

X − YXYS (Y eq
X (TX))2

Y eq
S (TX)

)

+ m2
S(2mX + mS)(2mX + 3mS)

4(mX + 2mS)(2m2
X + 4mXmS + 3m2

S)
⟨σv2⟩XSS→XS

(
YXY 2

S − YXYSY eq
S (TX)

)

+(2mX + 3mS)(3mS − 2mX)
54mS

⟨σv2⟩SSS→XX

(
Y 3

S − Y 2
X (Y eq

S (TX))3

(Y eq
X (TX))2

)]

−(2− δS
H)
(

y

x
+ γS

xH
(y − 1)

)
YS

− s

xH

(
y Y 2

S ⟨̃σv⟩SS→
∑

ij
SMiSMj

(TX)− (Y eq
S (T ))2⟨̃σv⟩SS→

∑
ij

SMiSMj
(T )

)
− ΓS

xH

(
K1(mS/TX)
K2(mS/TX)YSδΓ(TX)y − K1(mS/T )

K2(mS/T )Y eq
S (T )δΓ(T )

)

+ s2

mXH

[
(4m2

X − m2
S)(16m2

X − m2
S)

108mX(8m2
X + m2

S)
⟨σv2⟩XXX→XS

(
Y 3

X − YXYS (Y eq
X (TX))2

Y eq
S (TX)

)

+(2mX + 3mS)(2mX − mS)
6(2mX + mS)

⟨σv2⟩XXS→SS

(
Y 2

XYS − Y 2
S (Y eq

X (TX))2

Y eq
S (TX)

)

+mS(2mX + mS)(2mX + 3mS)
4(mX + 2mS)(4mX + 5mS)

⟨σv2⟩XSS→XS

(
YXY 2

S − YXYSY eq
S (TX)

)
+ 5

54mS⟨σv2⟩SSS→SS

(
Y 3

S − Y 2
S Y eq

S (TX)
)]}

, (3.13)

Here γX,S parametrize the contributions for elastic scatterings, Y eq
k (Tℓ) ≡ neq

k (Tℓ)/s(T ) with
the subscript k ≡ X, S and Tℓ = TX , T , and we have used the notations: ⟨̃σv⟩SS→

∑
ij

SMiSMj
(Tℓ)

≡ ⟨σv · p2
S

3ES
⟩SS→

∑
ij

SMiSMj
(Tℓ)/Tℓ, with the subscript k ≡ X, S and Tℓ = TX , T . The detailed

formulas for the relevant cross sections can be found in refs. [16, 30].
As shown in figure 3, imposing gdm = 1.083, which corresponds to r = 1.25, mX = 20MeV

and α = 2.45 × 10−4, not only leads to the correct relic density but also indeed results in
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Figure 3. Left panel: mXYX (solid purple line) and mXYS (solid brown line) as functions of x. The
magenta and blue dashed lines (or dot-dashed lines) depict the corresponding ones following Boltzmann
suppression with T (or their temperature TX). The value of gdm gives σSI/mX = 0.1 cm2/g. The
horizontal dotted line denotes the correct DM relic abundance, mXY ∞

X = 4.37× 10−10 GeV. Right
panel: y vs. x (blue curve). After decoupling, if the entropy is separately conserved in the hidden
sector and SM, the temperature ratio instead follows the dashed line.

a sizable σSI/mX = 0.1 cm2/g. Here α is less than its minimum value5 of maintaining the
hidden sector and bath in the thermal equilibrium before freeze-out.

In figure 3, we numerically illustrate the typical thermal evolution of the self-interacting
forbidden DM under a cannibally co-decaying phase. After the (elastic) decoupling tempera-
ture, which is Tdec ≃ 8MeV corresponding to xdec ≃ 2.5 (approximately consistent with the
blue dot in figure 4; see also figure 2), the active 3-to-2 annihilations result in the hidden
sector evolving with a different temperature from the SM bath and meanwhile keep the
number densities of the hidden sector particles in chemical equilibrium with zero chemical
potential at their temperatures TX , i.e., nX = neq

X (TX) and nS = neq
S (TX).

If there is no net entropy flow between the hidden sector and SM, their entropy ratio is
fixed so that the temperature ratio, as the dashed line denoted in the right panel of figure 3,
will evolve according to the relation,

TX

T
=
(

sX + sS

sSM

)1/3
(

heff
SM(T )

hX
eff(TX) + hS

eff(TX)

)1/3

, (3.14)

where sX and sS are the entropy densities of X and S, respectively, and their effective
numbers of DoF have been given in the form of eq. (3.5). In reality, because S decays
out-of-equilibrium, resulting in net entropy injection from the hidden sector to the bath, the
hidden sector is cooled down, and the SM bath is reheated. As such, the number densities
neq

X,S(TX) are further reduced since TX becomes relatively smaller. Moreover, during the
cannibalization epoch, because ni = neq

i (TX) > neq
i (T ) with i ≡ X, S, the comoving number

density decreases with the time,

d[(nX + nS)a3]
dt

≈ −⟨ΓS⟩TX
nS , (3.15)

5It is 3.28× 10−4 for r = 1.25, mX = 20MeV. See also figure 7.
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Figure 4. Upper left panel: DM number injection rates via SM SM → XX (purple dash-dotted) and
SS → XX (magenta dashed) vs. the dilute rate (brown solid) due to the cosmic expansion. Upper
right panel: S number injection rates via SM SM → SS (purple dash-dotted), SM SM → S (red
dot) and XX → SS (magenta dashed) vs. the dilute rate (brown solid) due to the cosmic expansion.
Lower panel: Kinetic energy injection rates from the SM bath to hidden sector via annihilations,
SM SM → XX and SM SM → SS (purple dash-dotted), elastic scatterings, SM S → SM S and
SM X → SM X (blue dashed), inverse S decays, SM SM → S (red dotted) vs. the cooling rate due
to the cosmic expansion (brown solid), together with the heating rate among the hidden particles
through 3 → 2 cannibal processes (green solid), where a factor of 1/T has scaled all magnitudes. At
the temperature drops below that denoted by the blue dot, the elastic scattering rate is approximately
less than the cosmic rate. T c

X corresponds to the green dot; after that, the DM number density
then evolves with nonzero chemical potential (µ) instead of following the magenta dotted line with
vanishing µ = 0.

which can be obtained from eqs. (2.2) and (2.3). Therefore, in this scenario, we can expect
that a much larger gdm shall be necessary for maintaining a longer period of cannibalization
so that the DM can be sufficiently Boltzmann depleted with out-of-equilibrium decay of S to
be consistent with the correct relic abundance. For instance, we have gdm = 1.083 for the case
in figure 3, compared to gdm = 0.07 with the same mX = 20MeV, r = 1.25 but under the
condition of keeping the hidden sector and the bath in chemical equilibrium before freeze-out
(requiring that α > 3.28× 10−4), as shown in figure 1. In figure 4, we sketch the evolutions
of the underlying injection rates of number densities and kinetic energy for various reactions
compared with the dilute or cooling rate due to the cosmic expansion. The relevant formulas
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are referred to eqs. (2.2), (2.3) and (3.11). Some related results can be found in eqs. (C5)
and (C6) of ref. [16]. Here, the kinetic energy dilute rate, [(5− δS

H)nS +(5− δX
H )nX ]HTX , has

included the effect due to the change of comoving number densities. The annihilation rates,
SM SM → XX and SM SM → SS, fall below the cosmic expansion rate at x ∼ 1–2. We
have ⟨σv⟩XX→SMSM = 1.35(gdm/1.803)2(sinα/0.000245)2 × 10−17 GeV−2 at T → 0, which is
much less than the case that the relic abundance is accounted for by ⟨σv⟩XX→SMSM with the
value of ∼ 4.4× 10−9 GeV−2. XX → SMSM is dominated by the s-channel via a virtual S

or h; the relevant formulas can be found in appendix A2 of ref. [16]. For 4MeV ≤ mX ≤ mµ,
the main annihilation mode of DM is e+e−.6 In figure 6, we show the branching ratios and
lifetime of S in the sub-GeV range.

At the end of this section, we offer a different way to understand the DM evolution
under the cannibally co-decaying phase. For this scenario, the nonrelativistic hidden sector
particles’ temperatures are heated by cannibalization, resulting in larger thermal equilibrium
densities which evolve with a higher TX instead of T (see the left panel of figure 3). From
eq. (3.8), and using the new variable xX ≡ mX/TX , and

dx = dxX y

(
1− d log y

d log x

)−1
, (3.16)

the evolution of DM after the cannibal decoupling (for which the 3 → 2 rate falls below the
Hubble expansion rate), following its temperature, can be approximated by

dYX

dxX
≈− s

xXH(1− δt)

(
1− d log y

d log x

)−1
⟨σv⟩SS→XX

(Y eq
S (TX))2

(Y eq
X (TX))2

(
Y 2

X − (Y eq
X (TX))2

(Y eq
S (TX))2Y 2

S

)
,

(3.17)

where before freeze-out, due to the sizable effect of ⟨σv⟩SS→XX , the following chemical
equilibrium is still maintained,

n2
X

n2
S

= (neq
X (TX))2

(neq
S (TX))2 , (3.18)

with the hidden species companying with the same but nonzero chemical potential. Here, we
will use the notations T f

X and T c
X for the freeze-out and cannibal decoupling temperatures

of the hidden sector particles at their temperatures, respectively, and the corresponding
temperatures of the bath are T f and T c. In figure 4, the green dots approximately denote
mX/T c. For T < T c, assuming that T c

X ≪ mS − mX , the total comoving number density
of the hidden sector is approximately conserved, implying,

(nS + nX)a3 ≈ nXa3 ≈ neq
X a3

∣∣∣
T=T c

, (3.19)

due to nX ≫ nS ; the result given in figure 3 is a suitable example. Using this above result,
at freeze-out temperature, we have

nX(T f
X) ≈ neq

X (T c
X) a3(T c)

a3(T f ) ≈ gX

(mXT f
X

2π

)3/2
e−mX/T c

X , (3.20)

6σvXX→ff ∝ [ΓS ]S→ff

mS→
√

s
, where the invariant mass replaces mS in the S → ff partial width.
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where we have used that after T < Tc, TXa2 = constant, so that a(T c)/a(T f ) = (T f
X/T c

X)1/2.
The corresponding yield7 of the DM is given by

YX(T f
X) = nX(T f

X)
s(T f ) ≈ gX

45
25/2π7/2heff

y
3/2
f x

3/2
f e−xc

X ,


∝ e−xc

X

∝ y
3/2
f

∝ x
3/2
f

, (3.21)

where y
3/2
f = (T f

X/T f )3/2, xf = mX/T f , and xf
X = mX/T f

X . The values of xc
X and yf (and

also for xf
X), relevant to the strength of 3 → 2 interactions and the number densities of

X and S, can be enlarged by a larger gdm and diminished by the out-of-equilibrium decay
of S. As a result, the much larger the coupling strength gdm, the much longer it takes for
DM to co-decay with the out-of-equilibrium decay of the mediator, and the lower the DM
density to account for the observed relic abundance.

Thus, we could expect a sizable DM self-interaction cross-section σSI due to having a
much larger gdm. Although the N-body simulation using the collisionless cold DM scenario
can successfully describe the Universe’s large-scale structure, its predictions are inconsistent
with small-scale observations of galaxy formations. Sizable DM self-interactions, which the
forbidden dark matter can account for under a cannibally co-decaying phase, alleviate such
tensions at a small scale, for instance, core-cusp and too-big-to-fail problems.

4 Experimental constraints

The small-scale structure issues that arise from inconsistencies of cold DM N -body sim-
ulations and observations can be alleviated if sizable self-interactions exist among DM
particles [36, 37]. The structure formation related to the too-big-to-fail problem may be
resolved by self-interacting DM, resulting in cored halos, with cross sections σSI/mX ∼
1 cm2/g [23, 24, 38]. The halo shapes constrain the self-interacting cross section with a strength
σSI/mX ≲ 1 cm2/g [21, 23, 24, 38]. The halo mergers favor σSI/mX ∼ (0.1–few) cm2/g [36, 39–
41]. Self-interacting DM accommodates the diversity of DM halos with core sizes at the
scales of dwarfs and low-surface-brightness galaxies, preferring σSI/mX ∼ (1–10) cm2/g [20,
38, 42, 43], and at galaxy-cluster scales, favoring σSI/mX ∼ (0.1–1) cm2/g [41, 43, 44]. For
the small-scale problems, a constant self-interacting cross section with σSI/mX ∼ 1 cm2/g

may resolve the core-cusp and too-big-to-fail issues [36]. However, to consistently account for
different halo masses from dwarf to cluster scales, the self-interacting cross section with a
velocity dependence may be preferred [36, 43] for at least one of the dark matter components.

7After the cannibal decoupling, the DM evolves with a nonzero chemical potential,

µ = mX

(
1− TX

T c
X

)
,

which can be obtained using eq. (3.19) and the approximate comoving entropy conservation,

mX − µ

TX
nXa3 ≈ mX

T c
X

neq
X a3

∣∣∣
T =T c

.

Therefore, µf = mX(1− T f
X/T c

X) at freeze-out; before that, X and S evolve with the same chemical potential.
Actually, the relic abundance is related to mXY ∞

X ≃ 4.36× 10−10 GeV, corresponding to µ|TX→0 = mX .
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Figure 5. Constraints on the (mS , α) parameter space in the sub-GeV region. For freeze-out forbidden
DM with r = 1.25 (1.15) under a cannibally co-decaying phase, using a value of gdm that leads to
observations bounded by σSI/mX ∈ (0.1, 10) cm2/g, the blue (red) hatched area produces the correct
relic density, where the shaded region in the same color is excluded by the Planck constraint on Neff
at 2σ. Moreover, the upper (lower) gray region is for r = 1.3 (1.1) for comparison. Colored regions
with solid boundaries are experimentally excluded [45–52], while that with dashed boundaries indicate
sensitivity projections [53–56]. For reference, the solid line (blue for r = 1.25 or red for r = 1.15) is for
the minimum α of maintaining the hidden sector and bath in thermal equilibrium before freeze-out.

The present framework gives velocity-independent self-interaction cross-sections in the
zero temperature limit. Using the value of gdm constrained by observations with the strength
σSI/mX ∈ (0.1, 10) cm2/g [20–24], we show the regions (hatched) in figure 5 for the cases
of r = 1.1, 1.15, 1.25, and 1.3, that can account for the correct relic density. The relevant
masses for X and S are ∼ 10–100MeV. In the following, we further consider the constraints
from particle physics experiments and astrophysical and cosmological observations.

4.1 The flavor and fixed target experiments

By mixing with the SM Higgs, the unstable light scalar, which resides within a hidden
sector and is the partner of the forbidden DM, can couple with the SM particles. Therefore,
this sub-GeV hidden scalar could be produced in rare decays performed at colliders and
fixed target experiments. The branching ratios (Brs) and lifetime (τS) of the hidden scalar
S as functions of mS are shown in figure 6, where τS ∝ 1/ sin2 α. As for the monojet +
MET (missing transverse energy) search at the LHC colliders, the direct production rate
pp(→ j + S∗) → j + XX, involving the DM particles in the final state, is highly suppressed
owing to the slight mixing angle α and mS > mX in this case. Instead, the events containing
the on-shell S in the final states are conceivably measurable, for which searches for missing
energy signals, resulting from the long-lived scalar S decays outside the detectors, or displaced
decays from beam dump experiments become relevant [45–56].

Because its couplings to matter are relatively suppressed by the smallness of sinα,
searches for missing energy signals, for which the long-lived scalar S decays outside the
detectors, or displaced decays from beam dump experiments become relevant [45–56].
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Figure 6. Left panel: branching ratios of the hidden scalar decays as functions of mS in the range of
7 MeV–1000 MeV. Right panel: hidden scalar lifetime (τS) vs. mS , where τS is shown by multiplying a
factor of sin2 α.

Figure 5 shows the experimental constraints on the parameter space of the (mS , α) plane,
where the relevant mS is in the sub-GeV region. As shown in figure 5, finding the long-lived
scalar particle at beam dump experiments with detectors far from the event generation is
promising. The PS191 measurement [46–48], operated in the ’80s, was recently re-analyzed
to search for the light scalar decaying into charged particles by taking into account the
process K → πS [49]. The data of searching for K+ → π+ν̄ν by E949 [45] can be used to
set bounds on the branching ratio of K+ → π+ together with a long-lived scalar S, which
escapes detection. Currently, the PS191 and E949 experiments put the upper limit on α

in between 2 × 10−4–6 × 10−4 in the relevant mS region.
The upcoming run of NA62 [55] is at the CERN SPS. One of the measurements in NA62

is the rare decay K+ → π+νν̄, which displays as π++ missing energy in the final state. If
the scalar S is long-lived enough to decay outside the detector, searching for K+ → π++
missing energy can set constraints on the (mS , α) parameter plane. In figure 5, we depict
the region where the future sensitivity of NA62 can reach after LHC Run 3 [56]. NA62 is
expected to improve the constraint on α by a factor of 7–10 compared with E949. It is
likely to discover the signal hint for the self-interacting forbidden DM through the future
NA62 beam dump experiment.

4.2 Number of relativistic degrees of freedom, Neff

In the mass range of interest (e.g., the hatched regions in figure 5), the DM freeze-out
occurs after the neutrinos have decoupled with temperature Tdec ∼ 1MeV (see also figure 3).
Meanwhile, after neutrino decoupling, the produced particles, which are majorly electron
and positron for 8 MeV< mS < 2mµ, in the out-of-equilibrium decay of S can be rapidly
thermalized with the background photons. See figure 6 for reference. As such, considering
the mass range 8 MeV< mS < 2mµ, that we are interested in, the produced electrons and
positrons are finally Boltzmann suppressed, and the most energy injected from the hidden
sector via S out-of-equilibrium decay contributes to the background photons.
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Thus, after neutrino decoupling, the background photon energy density is approximately
changed as ργ → ργ + δργ with δργ ≈ (ρS + ρX)T=Tdec and ρS + ρX ≃ mSnS + nXnX . Here,
ργ = (π2/15)T̃ 4 with T̃ = Tν(11/4)1/3 and Tν being the neutrino temperature. In other
words, the photon bath is further heated relative to neutrinos, thereby reducing the effective
extra number of relativistic species,

Neff = 8
7

(11
4

)4/3 3ρν

ργ + δργ

∣∣∣∣∣
T=Tdec

, (4.1)

where ρν = (7/8)(π2/15)T 4
ν is the energy density of a species of neutrino. Combining with

baryon acoustic oscillation (BAO), Planck 2018 constrains Neff = 2.99± 0.17 [57]. Using the
SM value NSM

eff = 3.046 [58], we limit ∆Neff = Neff − NSM
eff ≳ −0.396 at 2σ, resulting in the

requirement of mSYS + mXYX ≲ 1.9× 10−5 GeV at Tdec = 1MeV. This constraint, shown
in figure 5, can rule out some parameter regions with mS ≲ 9MeV.

∆Neff and E949 can further constrain the mass ratio to lie in the range 1.1 ≲ r(=
mS/mX) ≲ 1.33 and the scalar mass to be 9MeV ≲ mS ≲ 114MeV. Moreover, the nearly
favored parameter space is projected to be testable with the NA62 experiment.

4.3 Big Bang Nucleosynthesis (BBN)

Ref. [59] has recently updated the BBN constraints on a MeV Higgs-like scalar8 ϕ, which is
chemically decoupled from its hidden sector partners at its temperature T cd

ϕ , corresponding
to photon temperature T cd. Taking the condition T cd

ϕ = T cd ≫ mϕ as a benchmark choice,
they obtained the upper bound on the lifetime τϕ ≈ 0.3 s for mϕ = 100MeV, but becomes 10 s
for a smaller mϕ = 10MeV for Br(S → e+e−) = 1 (see the left panel of figure 5 in ref. [59]).
For our case, the scalar S is chemically decoupled from the DM until freeze-out, which may
occur at temperatures less than 1 MeV (the neutrino decoupling temperature).

Therefore we estimate the BBN constraints by comparing the residue percentage of the
comoving energy density, that may then inject into the bath for T < 1MeV, a = [(mXYX +
mSYS)heff ]|T=1MeV/(mSYSheff)|T=10GeV,9 in our case to b=(nϕ/nγ)|T =(1 MeV)/(nϕ/nγ)|T =10 GeV

with (nϕ/nγ)|T=10GeV = 1/2 and nγ being the photon number density, where the upper
bound of b can be obtained since τϕ is constrained by BBN given in ref. [59]. If a > b,
the result is excluded by BBN; otherwise, it is allowed. For our case, the exclusion also
depends on r and gdm. Below are some examples that provide the correct relic density and
account for small-scale problems. For instance, for mS = 25MeV, b ≲ 0.65 is constrained
by the BBN bound, compared with a ≃ 4× 10−4 (allowed) corresponding to the case with
r = 1.25, gdm = 1.083, and α = 2.45×10−4 (the case shown in figure 3), or a ≈ 1.4 (excluded)
corresponding to the case with r = 1.1, gdm = 1.09, and α = 1.95× 10−5; for mS = 70MeV,
the BBN constraint gives b ≲ 0.21, compared with a ≈ 10−6 (allowed) corresponding to the

8Both ϕ and the hidden S are Higgs-like scalars. In ref. [59], the authors discussed T cd
ϕ /T cd > 1 in the

relativistic region. Nevertheless, for our case, although T cd
ϕ /T cd > 1, the relevant processes occur in the

nonrelativistic region.
9We have used nγ ∝ s/heff . For S being relativistic, its moving number density keeps constant. For nonrel-

ativistic S that could decay during temperatures Tdec > T > Tf , unlike ref. [59], we need to take into account
the extra comoving energy density generated from XX → SS, which is proportional to mXYXheff |T =1 MeV.
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case with r = 1.25, gdm = 2.77, and α = 3.84× 10−4, or a ≈ 0.18 (allowed) corresponding
to the case with r = 1.1, gdm = 2.36, and α = 2.84 × 10−5.

We do not further show the BBN constraint in the plot because we find that it is generally
comparable but weaker than that from Neff ; this is consistent with the result for mϕ ≳ 2MeV
shown in the left panel of figure 5 in ref. [59].

5 Conclusions

In the present scenario, we have considered that a Higgs-like scalar S is contained in the
hidden sector. Thus, the hidden sector particles interact with the SM through the mixture of
the SM-like Higgs and hidden Higgs. In the study, we adopt the simplest vector DM model,
where the hidden sector’s DM (X) is an abelian gauge vector boson but with mX < mS .
The thermally averaged forbidden rate of the two-body DM annihilation, XX → SS, is
exponentially suppressed compared with its inverse process.

If the hidden sector is in chemical and kinetic equilibrium with the bath before freeze-out,
a much larger mass ratio mS/mX ∈ (1.5, 1.65) will be required to simultaneously provide
the correct relic density and proper size of DM self-interactions for accounting for the small
scale problems. However, for this condition, the mixing angle between the SM-like Higgs
and hidden scalar, corresponding to the viable parameter region, is ruled by E949, PS191,
and CHARM experiments.

We have found that the region of the parameter space with a smaller α, where the
hidden sector is thermally decoupled from the SM at T ∼ mX , can result in gdm ∝ O(1),
from which the correct DM relic density and proper size of DM self-interactions can thus
be obtained. For the underlying mechanism of this scenario, when the hidden sector is
decoupled from the SM at T ∼ mX , it enters a cannibally co-decaying phase and evolves
with an independent temperature. As such, a much larger coupling strength (gdm) between
X and S is needed to have a significantly longer interacting time for them to deplete the
DM density with the out-of-equilibrium decay of S so that the value of relic abundance can
be reduced to be consistent with observation.

We have shown that a sizable parameter space still survives the most current constraints.
The favored region, constrained mainly by Planck Neff and E949, has the mass ratio 1.1 ≲ r(=
mS/mX) ≲ 1.33 and the scalar mass 9MeV ≲ mS ≲ 114MeV. The projected sensitivity of
the NA62 beam dump experiment can further probe the parameter space of the hidden scalar.
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A The thermal freeze-out

Here, we consider the condition that the hidden sector particles are in thermal equilibrium
among themselves and with the SM bath during the freeze-out process, which also infers
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Ti ≡ TX = T . Thus, from eq. (2.2), the evolution of the DM number density can be
approximately described by

dYX

dx
≈− s⟨σv⟩SS→XX

xH

(Y eq
S (T ))2

(Y eq
X (T ))2

[
Y 2

X −
(
Y eq

X (T )
)2]

. (A.1)

Analogous to calculating the WIMP (weak interacting massive particle) DM, one can obtain
the following results for the s-wave SS ↔ XX annihilation,

x
1
2
f e(2r−1)xf

⟨σv⟩SS→XX
≈ δ(δ + 2)

√
45
4π5

MplmXr3

g
1/2
eff (Tf )

g2S
gX

, (A.2)

1
mXY ∞

X

≈ 4π√
90

Mplg
1/2
∗ (Tf )⟨σv⟩SS→XX

g2S
g2X

r3

×
{

e−∆f

xf
+ ∆f

xf
Ei(−∆f )−

15
8

(
1− 1

r

)[1−∆f

x2
f

e−∆f −
∆2

f

x2
f

Ei(−∆f )
]}

,

(A.3)

where geff is the effective DoFs of the Universe’s total energy density, g
1/2
∗ ≡ h̃eff/g

1/2
eff ,

Mpl ≡ (8πG)−1/2 is the reduced Planck mass, we use δ = 1 defined by YX − Y eq
X = δY eq

X

with dδ/dx ≪ 1, ∆f ≡ 2(r − 1)xf , Ei(z) = −
∫∞
−z(e−t/t)dt, and Y ∞

X is the post-freeze-out
value of the yield, related to the DM relic abundance [32] ΩX = mXY ∞

X s0/ρc ≃ 0.1198/h2

with the present critical density ρc = 1.0537 × 10−5h2(GeV/c2)cm−3, h ≃ 0.674, and the
present entropy s0 = 2891 cm−3.

Using the model result for SS → XX annihilation cross section as a function of the
coupling strength gdm and determining the value of mXY ∞

X from fitting to the observed relic
density, eqs. (A.2) and (A.3) numerically give gdm and xf are functions of mX , with respect
to a different value of r. The result for gdm has been shown in figure 1.

In figure 7, we further display the minimum value of α that is required to keep the hidden
sector and the bath in the thermal equilibrium before freeze-out,10 where the reactions are via
elastic (X SM ↔ X SM and S SM ↔ S SM) and number-changing (S ↔ SMSM) interactions.
Numerically, we have checked that if α is more prominent than its minimum, then the correct
relic abundance is highly insensitive to it, as expected. As shown in figure 1, only a much
larger mass ratio r ∈ (1.5, 1.65) can simultaneously account for the correct relic density and
the requirement of the small-scale problems. Nevertheless, the corresponding parameter
space,11 required by α > 10−3 for mX > 10MeV, is excluded by E949 [45], PS191 [46–49],
and CHARM [50] measurements.

For references, the experimental bounds are summarized in figure 7. We also show the
minimum α (dot-dashed lines),12 assuming S is generated through a freeze-in process so

10Compared with that shown in ref. [16], in addition to a curve with r = 1.65 added, numerical errors
relevant to the MeV region are corrected in the present work.

11For r = 1.5 (1.65), the parameter space is restricted in the region mX ≲ 114 (15)MeV, owing to the
unitarity bound is imposed to gdm (see figure 1).

12Compared with ref. [16], numerical errors especially relevant to the MeV region are corrected, too.
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Figure 7. (a) The solid lines show the minimum value of α about keeping the hidden sector in
thermal equilibrium with the bath before freeze-out. (b) Dotdashed lines show the minimum α above
that YX,S grow by up to Y eq

X,S(T ) at T ≳ mX by a freeze-in process. (c) Colored regions with solid
boundaries are excluded by experiments denoted [45, 49–52], while that with dashed boundaries
indicate sensitivity projections [53–56], where for simplicity r = 1.01 is used. The green, gray, red,
blue, magenta, and brown lines correspond to r(= mS/mX) = 1.01, 1.1, 1.15, 1.25, 1.5, and 1.65,
respectively.

that YS can reach the value of Y eq
S at T = mX , and, meanwhile, X is quickly thermalized

via XX ↔ SS, XS ↔ XS. This is estimated by

∫ Y eq
S (mX)

0
dYS ≃

∫ 1

0

h̃eff
heff

s⟨σv⟩SS→SMSMY eq
S

2 + ⟨ΓS⟩Y eq
S

xH
dx , (A.4)

where the value shown in figure 1 for gdm, relevant to the coupling gSSS ∼ −3 cos3 α m2
Sgdm/

mX [16] for calculating the SS → SMSM cross section, has been used. As shown in figure 4
that ⟨σv⟩XX→SMSMY eq

X
2 ∼ ⟨σv⟩SS→SMSMY eq

S
2, the estimate result for the freeze-in of DM

will be similar to S. Because the allowed α relevant to the present study (see figure 5)
is above the dot-dashed line of figure 7, here we thus do not further include contribution
arising from DM freeze-in.

B The case of Majorana dark matter

In the main body of this paper, we study that the hidden sector is composed of a vector
DM boson and a scalar. Similarly, our present scenario also works if a DM candidate is a
Majorana fermion χ. As an example, we consider that the relevant Lagrangian, where the
hidden sector involves χ and a scalar S, can be described by [26]

L ⊃ i

2 χ̄γµ∂µχ − 1
2mχχ̄χ − fdm

2 Sχ̄χ + 1
2∂µS∂µS − V (S, h) . (B.1)
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We assume that fdm is real and the scalar S results from another scalar that weakly mixes
with the SM-like Higgs h due to spontaneous symmetry breaking so that

V (S, h) = m2
S

2 S2 + λ3
3! S3 + λ4

4! S4 + · · · . (B.2)

This simple model characterizes the main feature of Weinberg’s Higgs portal model with
a slight mixing angle for the Higgs sectors [60]. The Weinberg model further contains a
Goldstone boson which can be constrained by Neff .

For the forbidden Majorana model, the process is mainly related to the s-wave SS → χχ

annihilation with the cross-section (with cαfdm replacing fdm in eq. (B.1)),

(σvlab)SS→χχ = c2αf2
dm

2
(
m4

S +m2
f (s− 4m2

S)
) [

c2αf2
dm

(
Γ2

Sm2
S +(s−m2

S)2
)

×
(
2m4

S − 4sm2
S + s2+m2

f (4s− 8m2
S)
)
− 2cαfdmλ3mf (s− 4m2

f )

×
(
2m4

S − 3sm2
S + s2

)]
log

s− 2m2
S +

√
s− 4m2

f

√
s− 4m2

S

s− 2m2
S −

√
s− 4m2

f

√
s− 4m2

S


−
√

s− 4m2
f

√
s− 4m2

S(s− 2m2
S)

×
[
2c2αf2

dm(8m4
f − 4m2

Sm2
f +m4

S)
(
Γ2

Sm2
S +(s−m2

S)2
)

−λ2
3(s− 4m2

f )
(
m4

S +m2
f (s− 4m2

S)
)]

× 1
16π

(
Γ2

Sm2
S +

(
m2

S − s
)2)√

s
√

s− 4m2
S

(
s− 2m2

S

)2 (
m4

S +m2
f (s− 4m2

S)
)

(B.3)

→
c2α f2

dm(m2
S −m2

χ)3/2
(
4c2α f2

dm
(
9m2

S +Γ2
S

)
m2

χ − 12cα fdmλ3mχm2
S +λ2

3m
2
S

)
8πm7

S

(
9m2

S +Γ2
S

)
+O(v2lab) , (B.4)

where cα ≡ cosα, mS > mχ, and vlab is the relative velocity in the rest frame of one of the
collision particles. In the Higgs portal model, the coupling λ3 ∼ −3 cos3 α m2

S/vS . Under
the condition that the hidden sector particles are not only in thermal equilibrium among
themselves but also with the SM bath during freeze-out, and the correct relic density can be
well produced, we can evaluate, using the formulas given in appendix A, the value of f as a
function of mχ. The result is shown in figure 8, where we have taken λ3 = 0 and cosα = 1.

For the self-interacting DM scattering χχ → χχ through the scalar mediator exchange
via u- and t-channels can be obtained in the zero-velocity limit, given by (again with cαfdm
replacing fdm in eq. (B.1))

σSI =
c4α f4

dmm2
χ

32πm4
S

. (B.5)
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Figure 8. fdm as a function of mχ, where λ3 is taken to be zero. The rest are the same as figure 1.

Constraining gdm to account for the strength σSI/mX ∈ (0.1, 10) cm2/g, we also show the
allowed value in figure 8. The resultant fdm is order of one but becomes slightly r-dependent.
The Majorana case’s corresponding properties are consistent with the vector DM one (see
figure 1).

Moreover, if the forbidden Majorana DM (together with the hidden scalar) is decoupled
from the SM bath at T ∼ TX and then undergoes a cannibally co-decaying phase, the 3 → 2
rates should be larger than the cosmic expansion rate almost until when the temperature
drops close to Tf . The relevant 3 → 2 cannibalizations include SSS → χχ, χχχ → χS,
χχS → SS, χSS → χS and SSS → SS. Except for the last one, the others involve the term
proportional to f6

dm, while all of the corresponding ones in the vector DM case are in the
same order of magnitudes. Here, we thus give SSS → χχ,

⟨σv2⟩SSS→χχ ≃
(9m2

S − 4m2
χ)3/2

12288πm12
S

f2
dm

[
m2

S(λ4 − 12f2
dm) + (λ3 − 12fdmmχ)(λ3 − 4fdmmχ)

]2
,

(B.6)
which appears in the DM number density evolution as t
dnχ

dt
+3Hnχ = · · ·+ 1

3⟨σv2⟩SSS→χχ

(
n3

S − (neq
S )3

n2
χ

(neq
χ )2

)

−⟨σv2⟩χχS→SS

(
n2

χnS − (neq
χ )2 n2

S

(neq
S )

)
− 1

3⟨σv2⟩χχχ→χS

(
n3

χ −nχnS

(neq
χ )2

neq
S

)
,

(B.7)
to compared with SSS → XX in the vector DM case,

⟨σv2⟩SSS→XX ≃

√
9− 4m2

X/m2
S

384πm3
Sm2

X

g6dmm2
X

×
(
432m6

X

m8
S

− 2160m4
X

m6
S

+ 729m4
S

16m6
X

+ 3672m2
X

m4
S

+ 891m2
S

4m4
X

− 1944
m2

S

− 729
4m2

X

)
.

(B.8)
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By simply taking mχ = mS = mX and using λ3 = λ4 = 0, we find that the ratio is about

⟨σv2⟩SSS→χχ

⟨σv2⟩SSS→XX
≈
(
1.15 fdm

gdm

)6
. (B.9)

That means the 3 → 2 rate in the Majorana DM case should be sizable as the vector DM one if
fdm ∼ gdm. We thus conclude that the present study for self-interacting forbidden DM under
a cannibally co-decaying phase is also suitable for the Majorana DM Higgs portal model.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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