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Quite recently, two sets of new experimental data from the LHCb and the CMS Collaborations have 
been published, concerning the production of the Z 0 vector boson in hadron–hadron collisions with the 
center-of-mass energy EC M = √

s = 13 TeV. On the other hand, in our recent work, we have conducted 
a set of semi-NLO calculations for the production of the electro-weak gauge vector bosons, utilizing the 
unintegrated parton distribution functions (UPDF) in the frameworks of Kimber–Martin–Ryskin (KMR) or 
Martin–Ryskin–Watt (MRW) and the kt -factorization formalism, concluding that the results of the KMR
scheme are arguably better in describing the existing experimental data, coming from D0, CDF, CMS
and ATLAS Collaborations. In the present work, we intend to follow the same semi-NLO formalism and 
calculate the rate of the production of the Z 0 vector boson, utilizing the UPDF of KMR within the 
dynamics of the recent data. It will be shown that our results are in good agreement with the new 
measurements of the LHCb and the CMS Collaborations.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Traditionally, the production of the electroweak gauge vector 
bosons is considered as a benchmark for understanding the dy-
namics of the strong and the electroweak interactions in the Stan-
dard Model. It is also an important test to assess the validity of 
collider data. Many collaborations have reported numerous sets 
of measurements, probing different events in variant dynamical 
regions, in direct or indirect relation with such processes, for ex-
ample the references [1–10]. Among the most recent of these 
reports are the measurements of the production of Z 0 bosons 
at the LHCb and CMS Collaborations, for proton–proton collisions 
at the LHC for 

√
s = 13 TeV, with different kinematical regions 

[11,12]. The LHCb data are in the forward pseudorapidity region 
(2 < |η| < 4.5) while the CMS measurements are in the central do-
main (0 < |η| < 2.4).

In our previous work [13], we have successfully utilized the 
transverse momentum dependent (TMD) unintegrated parton dis-
tribution functions (UPDF) of the kt -factorization (the references 
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[14–16]), namely the Kimber–Martin–Ryskin (KMR) and Martin–
Ryskin–Watt (MRW) formalisms in the leading order (LO) and the 
next-to-leading order (NLO) to calculate the inclusive production 
of the W ± and the Z 0 gauge vector bosons, in the proton–proton 
and the proton–antiproton inelastic collisions

P1 + P2 → W ±/Z 0 + X . (1)

In order to have the total production rate of Z 0 boson in the 
calculations, we have used a complete set of 2 → 3 partonic sub-
processes, i.e.

g∗(k1) + g∗(k2) → V (p) + q(p1) + q̄′(p2),

g∗(k1) + q∗(k2) → V (p) + g(p1) + q′(p2),

q∗(k1) + q̄′ ∗(k2) → V (p) + g(p1) + g(p2), (2)

where V represents the produced gauge vector boson. ki and pi , 
i = 1, 2 are the 4-momenta of the incoming and the out-going 
partons. These calculations tend to include some missing contri-
butions from the total production rate of Z 0 boson via extending 
the LO 2 → 1 diagrams to 2 → 3 diagrams by the means of includ-
ing the semi-hard step on the processes into the matrix elements. 
In this way, it has been shown (in Fig. 4 of the manuscript and in 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Figs. 13 and 14 of [13]) that the predictions that are derived from 
this particular framework can (up to a better approximation) de-
scribe the behavior of the related experimental data. Please bear 
in mind that the uncertainty bound are intentionally chosen by 
manipulating the hard scale μ by a factor of 2. We believe that 
this factor can be chosen (somehow, according to the specifications 
of the experimental measurements) to have some smaller value. 
Hence, the width of the uncertainty bounds cannot fully pin point 
an increase or decrease in the precision of the calculations. The 
results underwent comprehensive and rather lengthy comparisons 
and it was concluded that the calculations in the KMR formalism 
are more successful in describing the existing experimental data 
(with the center-of-mass energies of 1.8 and 8 TeV) from the D0, 
CDF , ATLAS and CMS Collaborations [8,10,17–23]. The success of 
the KMR scheme (despite being of the LO and suffering from some 
misalignment with its theory of origin, i.e. the Dokshitzer–Gribov–
Lipatov–Altarelli–Parisi (DGLAP) evolution equations, [24–27]) can 
be traced back to the particular physical constraints that rule its 
kinematics. To find extensive discussions regarding the structure 
and the applications of the UPDF of kt -factorization, the reader 
may refer to the references [28–35].

Meanwhile, arriving the new data from the LHCb and CMS Col-
laborations, the references [11,12], gives rise to the necessity of 
repeating our calculations at the EC M = 13 TeV. This is in part due 
to the very interesting rapidity domain of the LHCb measurements, 
since in the forward rapidity sector (2 < |η f | < 4.5), one can ef-
fectively probe very small values of the Bjorken variable x (x being 
the fraction of the longitudinal momentum of the parent hadron, 
carried by the parton at the top of the partonic evolution ladder), 
where the gluonic distributions dominate and hence the transverse 
momentum dependency of the particles involving in the partonic 
sub-processes becomes important.

In the present work, we intend to calculate the transverse mo-
mentum and the rapidity distributions of the cross-section of pro-
duction of the Z 0 boson using our NLO level diagrams (from the 
reference [13]) and the UPDF of the KMR formalism. The UPDF will 
be prepared using the PDF of MMHT2014 − LO [37]. In the follow-
ing section, the reader will be presented with a brief introduction 
to the semi-NLO framework (i.e. some NLO QCD matrix elements 
and LO UPDF) that is utilized to perform these computations. Since 
we are using LO kt -factorization plus the terms that contributing 
in the collinear QCD factorization at the NLO and NNLO levels, 
therefore we will call our procedure the semi-NLO approach (see 
Fig. 4 and related discussion in the section 3 in which q̄ + q → Z 0

processes are dominant). The section 2 also includes the main de-
scription of the KMR formalism in the kt -factorization procedure. 
Finally, the section 3 is devoted to results, discussions and a thor-
oughgoing conclusion.

2. Semi-NLO framework, KMR UPDF and numerical analysis

Generally speaking, the total cross-section for an inelastic col-
lision between two hadrons (σHadron−Hadron) can be expressed as a 
sum over all possible partonic cross-sections in every possible mo-
mentum configuration:

σHadron−Hadron =
∑

a1,a2=q,g

1∫

0

dx1

x1

1∫

0

dx2

x2

∞∫

0

dk2
1,t

k2
1,t

∞∫

0

dk2
2,t

k2
2,t

× fa1(x1,k2
1,t,μ

2
1) fa2(x2,k2

2,t,μ
2
2)

× σ̂a1a2(x1,k2
1,t,μ

2
1; x2,k2

2,t,μ
2
2). (3)

In the equation (3), xi and ki,t respectively represent the longitu-
dinal fraction and the transverse momentum of the parton i, while 
fai (xi, k2
i,t, μ

2
i ) are the density functions of the i-th parton. The 

second scale, μi , are the ultra-violet cutoffs related to the virtu-
ality of the exchanged particle (or particles) during the inelastic 
scattering. σ̂a1a2 are the partonic cross-sections of the given parti-
cles. For the production of the Z 0 boson, the equation (3) comes 
down to (for a detailed description see the reference [13])

σ(P + P̄ → Z 0 + X)

=
∑

ai ,bi=q,g

∫
dk2

a1,t

k2
a1,t

dk2
a2,t

k2
a2,t

dp2
b1,t dp2

b2,t dy1 dy2 dy Z

× dϕa1

2π

dϕa2

2π

dϕb1

2π

dϕb2

2π

× |M(a1 + a2 → Z 0 + b1 + b2)|2
256π3(x1x2s)2

× fa1(x1,k2
a1,t,μ

2) fa2(x2,k2
a2,t,μ

2). (4)

yi are the rapidities of the produced particles (since yi � ηi in the 
infinite momentum frame, i.e. p2

i � m2
i ). ϕi are the azimuthal an-

gles of the incoming and the out-going partons at the partonic 
cross-sections. |M|2 represent the matrix elements of the par-
tonic sub-processes in the given configurations. The reader can find 
a number of comprehensive discussions over the means and the 
methods of deriving analytical prescriptions of these quantities in 
the references [13,38–41]. s is the center of mass energy squared. 
Additionally, in the proton–proton center of mass frame, one can 
utilize the following definitions for the kinematic variables:

P1 =
√

s

2
(1,0,0,1), P2 =

√
s

2
(1,0,0,−1),

ki = xiPi + ki,⊥, k2
i,⊥ = −k2

i,t, i = 1,2 . (5)

Defining the transverse mass of the produced particles, mi,t =√
m2

i + p2
i , we can write

x1 = 1√
s

(
m1,te+y1 + m2,te+y2 + mZ ,te+y Z

)
,

x2 = 1√
s

(
m1,te−y1 + m2,te−y2 + mZ ,te−y Z

)
. (6)

Furthermore, the density functions of the incoming partons, 
fa(x, k2

t , μ2) (which represent the probability of finding a parton 
at the semi-hard process of the partonic scattering, with the lon-
gitudinal fraction x of the parent hadron, the transverse momen-
tum kt and the hard-scale μ) can be defined in the framework of 
kt -factorization, through the KMR formalism:

fa(x,k2
t ,μ2)

= Ta(k
2
t ,μ2)

∑
b=q,g

⎡
⎣αS(k2

t )

2π

1−�∫
x

dzP (L O )

ab (z)
x

z
b
( x

z
,k2

t

)⎤
⎦ . (7)

The Sudakov form factor, Ta(k2
t , μ2), factors over the virtual contri-

butions from the LO DGLAP equations, by defining a virtual (loop) 
contributions as:

Ta(k
2
t ,μ2) = exp

⎛
⎜⎝−

μ2∫

k2
t

αS(k2)

2π

dk2

k2

∑
b=q,g

1−�∫

0

dz′ P (L O )

ab (z′)

⎞
⎟⎠ , (8)

with Ta(μ
2, μ2) = 1. αS is the LO QCD running coupling constant, 

P (L O )

ab (z) are the so-called splitting functions in the LO, parame-
terizing the probability of finding a parton with the longitudinal 
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momentum fraction x to be emitted form a parent parton with the 
fraction x′ , while z = x/x′ , see the references [16,43]. The infrared 
cutoff parameter, �, is a visualization of the angular ordering con-
straint (AOC), as a consequence of the color coherence effect of 
successive gluonic emissions [36], defined as � = kt/(μ + kt). Lim-
iting the upper boundary on z integration by �, excludes z = 1
form the integral equation and automatically prevents facing the 
soft gluon singularities, [13]. Additionally, the b(x, k2

t ) are the 
single-scaled parton distribution functions (PDF), i.e. the solutions 
of the LO DGLAP evolution equation. The required PDF for solving 
the equation (7) are provided in the form of phenomenological li-
braries, e.g. the MMHT2014 libraries, the reference [37], where the 
calculation of the single-scaled functions have been carried out us-
ing the deep inelastic scattering data on the F2 structure function 
of the proton as well as the experimental data from hadronic col-
liders.

Now, one can carry out the numerical calculation of the equa-
tion (4) using the VEGAS algorithm in the Monte-Carlo integration, 
[44]. To do this, we have chosen the hard-scale of the UPDF as:

μ = (m2
Z + p2

Z ,t)
1
2 ,

and set the upper bound on the transverse momentum integra-
tions of the equation (4) to be ki,max = pi,max = 4μmax , with

μmax = (m2
Z + p2

t,max)
1
2 .

One can easily confirm that since the UPDF of KMR quickly vanish 
in the kt � μ domain, further domain have no contribution into 
our results. Also we limit the rapidity integrations to [−8, 8], since 
0 ≤ x ≤ 1 and according to the equation (6), further domain has no 
contribution into our results. The choice of above hard scale is rea-
sonable for the production of the Z bosons, as has been discussed 
in the reference [41].

Finally, we choose

fai (xi,k2
ai ,t < μ2

0,μ
2) = k2

ai ,t

μ2
0

ai(xi,μ
2
0)Tai (μ

2
0,μ

2), (9)

to define the density of the incoming partons in the non-
perturbative region, i.e. kt < μ0 with μ0 = 1 GeV. This appears 
to be a natural choice, since (see the references [13,45])

lim
k2

ai ,t
→0

fai (xi,k2
ai ,t,μ

2) ∼ k2
ai ,t .

We should clarify the reader as following that in [13] we have 
presented the case, that the LO qq̄ → Z sub-process becomes sim-
plistic and to account for all of the contributions involving the 
Z 0 production, specially at higher energies, where gluonic contri-
butions from the gluon fusion sub-processes g + g → Z + q + q̄
becomes important. In [38], the calculation of the transverse mo-
mentum distribution for the production of the Z boson has been 
carried out, using the aggregated contributions of the g + g →
Z + q + q̄, q + g → Z + q and q + q̄ → Z sub-processes. The 
q + q̄ → Z sub-process was calculated in the collinear factoriza-
tion for the valence quarks (or valence anti-quarks). Such frame-
work obviously neglects some of the NLO contributions. Therefore, 
in [13], we have upgraded the above partonic processes to their 
2 → 3 counterparts, i.e. g + g → Z + q + q̄, q∗ + g∗ → Z + q + g
and q∗ + q̄∗ → Z + g + g sub-processes. So, we are able to use the 
UPDF of the kt -factorization for the incoming quarks and gluons 
to insert the transverse momentum dependency of the produced 
bosons, and at the same time avoid over-counting.

One should note that the KMR parton densities in these cal-
culations correspond to non-normalized probability functions that 
are used as weight of the given transition amplitudes (the ma-
trix elements in these cases). The kt dependence of the KMR UPDF
comes from considering all possible splittings up to and includ-
ing the last splitting [14,15], while the evolution up to the hard 
scale without change in the kt , due to virtual contributions, is 
encapsulated in the Sudakov-like survival form factor. Therefore, 
all splittings and real emissions of the partons, including the last 
emission, are factorized in the function f g(x, k2

t , μ2) as its defini-
tion. We cannot disassociate the last emission from the definition 
of the produced KMR UPDF and count it as part of the 2 → 3 dia-
grams. Double counting would have occurred if we used a mixture 
of 1 → 2, 2 → 2 and 2 → 3 matrix elements (like the case in 
[38]) and constructed the production rates with the KMR UPDF. 
Then, for example, the aggregation of g∗ + g∗ → Z 0 + q + q̄ and 
g∗ + q → Z 0 + q̄ would have caused double counting, particularly 
in the sea quark sector. This is why, in [38], the g∗ + q → Z 0 + q̄
contributions are evaluated only with the use of valence quarks 
and not the sea quarks. In our calculations, a quark that is entering 
the final sector (q∗ + q̄∗ in e.g. g∗ + g∗ → Z 0 + q + q̄) is a prod-
uct of the incoming quarks and gluons and the summation is on 
the multiplication of the corresponding incoming probabilities. An 
additional possibility for double counting would be the existence 
of a reverse symmetry between s and t channels while adding the 
2 → 3 matrix elements. Nevertheless, since we are introducing the 
Eikonal approximation to describe the incoming partons while us-
ing on-shell dynamics for the out-coming particles, this cannot be 
the case in the present calculations.

The kinematics and calculations of the corresponding invari-
ant amplitudes have been discussed extensively in the references 
[13]. This work follows the same approach, obtaining the dk2

i,t/k2
i,t

terms only from the ladder-type diagrams, and not from interfer-
ence (non-ladder) diagrams, using a physical gauge for the gluons, 
where only the two transverse polarizations propagate,

dμν(k) = −gμν + kμnν + nμkν

k.n
.

n = x1 P1 + x2 P2 is the gauge-fixing vector. Choosing such a gauge 
condition ensures that the dk2

i,t/k2
i,t terms are being obtained from 

ladder-type diagrams on both sides of the sub-processes.
We must point out here that the particular form of the non-

sense polarization condition for the gluons in the present calcula-
tions, see reference [13], is a direct consequence of the choice of 
axial gauge, see the chapter 6 of the reference [41]. Using above 
prescription to describe the matrix element of the partonic scat-
tering, we must also check the Lorentz and the gauge invariance 
conditions for each amplitude through the conservation laws of 
the momenta and the gauge currents. We have used the off-shell 
spin density matrix approximations which is gauge invariant in 
the small x limit, but it is not exactly correct in a large x frac-
tion. So the implementation of this off-shell partonic amplitude in 
our present calculation should be investigated in our future works. 
However the Lorentz and gauge invariant conditions have been 
checked numerically by Lipatov [38], Deak and Schwennsen [42]
as well as us in present and our previous works [13], in which the 
results (see the section III) show a good agreement with data.

In the case of hadron–hadron collisions, one might expect that 
neglecting the contributions coming from the non-ladder diagrams, 
i.e. the diagrams where the production of the electro-weak bosons 
is a by-product of the hadronic collision, would have a numerical 
effect on the results. Nevertheless, employing above gauge choice, 
one finds out that the contribution from the “unfactorizable” non-
ladder diagrams vanishes. Furthermore, the problem of separating 
the Z + single-jet and the Z + double-jet cross-sections will re-
duce to inserting the correct physical constraints on the dynamics 
of these processes, e.g. via inserting some transverse momentum 
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cuts for the produced jets, using the anti-kt algorithm, see the ref-
erence [46]. Nevertheless, since we are interested to calculate the 
inclusive cross-section for the production of the Z bosons (in the 
given dynamic boundaries), inserting such constraints is unneces-
sary. Based on the above discussions, we have labeled our frame-
work as semi-NLO, in contrast to the LO qq̄ → Z and the semi-NLO
framework from the reference [38]. So one should note that the 
calculation presented here may not be the “full” NLO framework 
and the above discussions is a part of a comprehensive description 
of our framework that is presented in the reference [13].

Finally we should once more emphasize that, to avoid double-
counting we have taken several steps: (1) We are using 2 → 3
diagrams instead of 2 → 1, therefore, we have not aggregated ma-
trix elements with identical initial configurations. This in particu-
lar was a drawback of the framework used in the reference [38], 
where in order to avoid double-counting, some contributions (e.g. 
q + q̄ → Z 0 + g) had to be neglected. Additionally, due to our choice 
of axial gauge for the gluons, we have only kept the ladder-type di-
agrams and hence, subtracted the contributions coming from the 
non-ladder-type diagrams, where the production of the electro-
weak bosons is a by-product of the hadronic collision, [13]. (2) At 
the leading order, everything below μ0 = 1 GeV is included in the 
input PDF at μ0. However, the contributions to the NLO matrix el-
ements from the region kt < μ0 would result in double-counting. 
Nevertheless, one cannot drop the kt < μ0 region from the calcu-
lations without loosing precision. Therefore, choosing to fulfill the 
requirement that,

lim
k2

ai ,t
→0

fai (xi,k2
ai ,t,μ

2) ∼ k2
ai ,t,

for the non-perturbative region, we have taken the following ap-
proximation for the UPDF:

fai (xi,k2
ai ,t < μ2

0,μ
2) = k2

ai ,t

μ2
0

ai(xi,μ
2
0)Tai (μ

2
0,μ

2).

Since we are introducing the solutions of the DGLAP evolution 
to play the role of the UPDF in the non-perturbative region, the 
double-counting is automatically avoided here. (3) We have cho-
sen the re-normalization scale (μR , in the |M|2) equal to the 
factorization scale (μF hard scale of the partonic evolution), that is 
μ = μR = μF . The part with scales μ < μF is generated by the vir-
tual component (∝ δ(1 − z)) of the LO splitting during DGLAP evo-
lution, while the part with scales μ > μR accounts for the running 
αS behavior, [47]. In order not to miss some contributions and/or 
to avoid double-counting we take the re-normalization scale equal 
to the factorization scale, μR = μF . (4) Accordingly, bounding our 
UPDF-dependent computations to the region 1 GeV < kt < μmax

will prevent us to double-count the contributions from the low-kt

and high-kt calculations from the intermediate region [48].
Given the above discussions, we do not expect to face double-

counting in our calculations regarding the production of the Z 0

gauge boson.

3. Results, discussions and conclusions

Before presenting our results, one should note that in the LHCb 
experimental data, the parameter φ∗

η which depends on the exact 
dynamics (the rapidity and the angle of emission) of the individual 
leptons that are being produced in the Z 0 → ��̄ decay channels. 
But, we have not introduced these details to our framework to 
avoid unnecessary complexity. Then using the theory and the no-
tations of the previous sections, one can calculate the production 
rate of the Z 0 gauge vector boson for the center-of-mass energy of 
13 TeV. The PDF of Martin et al. [37], MMHT2014 − LO, are used as 
the input functions to feed the equations (7). The results are the 
double-scale UPDF of the KMR schemes. These UPDF are in turn 
substituted into the equation (4) to construct the Z cross-sections 
in the framework of kt -factorization. One must note that the exper-
imental data of the LHCb Collaboration, [11], and the preliminary 
data of the CMS Collaboration, [12], are produced in different dy-
namical setups; the LHCb data are in the forward rapidity region, 
2 < |y Z | < 4.5, while CMS data are in a central rapidity sector, i.e. 
0 < |y Z | < 2.4. We have imposed the same restrictions in our cal-
culations.

Thus, in Fig. 1 we present the reader with a comparison 
between the different contributions into the differential cross-
sections of the production of Z 0, (dσZ /dpt ), as a function of 
the transverse momentum (pt ) of the produced particles, in the 
KMR scheme. One readily notes that the contributions from the 
g∗ + g∗ → Z 0 + q + q̄ (the so-called gluon–gluon fusion process) 
dominate the production. The share of other production vertices is 
small (but not entirely negligible) compared to these main contri-
butions. This is to extent different from our observations in the 
smaller center-of-mass energies (see the section V of the refer-
ence [13]). Also, differential cross-sections are considerably larger 
at the central rapidity region compared to the results in the for-
ward sector.

The total differential cross-section of the production of Z 0 vec-
tor boson is calculated within Fig. 2, as the sum of the constituting 
partonic sub-processes (see the relation (2)). The calculations are 
carried out for the center-of-mass energy EC M = 13 TeV and plot-
ted as a function of the transverse momentum of the produced 
particle. In the panels (a) and (c), the contributions from the in-
dividual sub-processes have been compared to each other. The 
results in these panels respectively correspond to the forward ra-
pidity region, 2 < |y Z | < 4.5 (with the addition of pt > 20 GeV
and 60 < mμμ̄ < 120 GeV constraints, corresponding for the ex-
perimental measurements of the LHCb Collaboration, the reference 
[11]) and to the central rapidity region, 0 < |y Z | < 2.4 (with the 
addition of pt > 25 GeV and 60 < mμμ̄ < 120 GeV constraints, cor-
responding for the preliminary measurements of the CMS Collab-
oration, the reference [12]). However, we should emphasize that 
in these calculations, following our previous work, [13], we have 
computed the inclusive cross-section of the production of the Z 0

boson and multiplied the results by the proper Z 0 → �− + �+
branching function, i.e. f (Z 0 → �− + �+) = 0.0336, [49,50]. Hence, 
we have used a simple approach in which, leptonic final states, ris-
ing from the decay of the produced Z 0 boson are replaced with a 
simple branching ratio. Therefore, our results are comparable with 
the experimental measurements of the LHCb and the CMS groups. 
However, we should also mention that the kinematic cuts on the 
pt and the mμμ̄ of the produced leptons (in the LHCb and CMS
experiments) are applied to ensure that these particles are pro-
duced as the result of the decay of the Z 0 boson (and are not 
originated from the background processes) as have been clearly 
quoted in the LHCb and CMS reports [11,12]. To apply these cuts 
directly into the calculations, one has to calculate the overall cross-
section for the P1 + P2 → � + �′ + X . In practice, this would mean 
to use 2 → 4 partonic diagrams in these calculations, which will 
dramatically increase the computation time while causing a neg-
ligible difference in the results, and therefore it is customary to 
neglect the kinematics of these leptonic final states to reduce the 
complexity of the calculations, see for example the section 8.1 of 
the reference [12], in which the pQCD-FEWZ theoretical calcula-
tions have been performed with different PDF , to confirm their 
predicted data. However, in order to get a rough estimate of above 
cuts, we have numerically analyzed the effects of inserting the p�,t
and m��̄ cuts on the Z 0 → ��̄ decay, using an unpolarized incoming 
Z 0 boson with mZ < EC M < 13 TeV. The analysis has been carried 
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Fig. 1. Contributions of the individual quark flavors into the differential cross-section of the productions of Z 0 boson in an inelastic collision at EC M = 13 TeV, plotted as a 
function of the transverse momentum of the produced particle. The panels (a), (b) and (c) illustrate our calculations for the forward rapidity region, 2 < |y Z | < 4.5 (with the 
addition of pμμ̄

t > 20 GeV and 60 < mμμ̄ < 120 GeV constraints, corresponding to the experimental measurements of the LHCb Collaboration, the reference [11]). The panels 
(d), (e) and (f) are our results in the central rapidity region, 0 < |y Z | < 2.4 (with the addition of pμμ̄

t > 25 GeV and 60 < mμμ̄ < 120 GeV constraints, corresponding to the 
preliminary measurements of the CMS Collaboration, the reference [12]). The calculations are performed, using the KMR UPDF and the PDF of MMHT2014.
out separately for |y Z | < 2.4 and 2 < |y Z | < 4.5 rapidity regions 
with the experimental constraint cuts. For this analysis we have 
used the LO matrix element of Z(k) → �(p1) + �̄(p2) [51,52] that 
is:

M = ūr(p1)
gωγ μ

2cosθW
((2sin2θW − 1

2
) + 1

2
γ 5)νr′

(p2)ε(k), (10)

where gW is the weak interaction coupling constant, θW is the 
Weinberg angle and pi are the 4-momenta of the produced lep-
tons. We have used above matrix element to calculate the rate of 
the Z 0 → ��̄ decay, as:

σZ 0→��̄ =
∫

dp1,tdy1
dφ1

2π

1

(4π EC M)2
|MZ 0→��̄|2. (11)

Comparing the results from above analysis with those without any 
constraint, one can conclude that, the insertion of the kinemati-
cal cuts on p�,t and m��̄ would cause a negligible decrease in the 
results. The decrease, at the largest estimation, would be smaller 
than 4% of the total production rate. Given the rather large un-
certainty bounds of our results, this difference is potentially neg-
ligible. On the other hand, one should note that the main goal 
of calculating the kt -factorization production of the Z 0 boson in 
the present work, is to illustrate the capability of the KMR UPDF
to correctly describe the behavior of the experimental measure-
ments in a simplistic framework [45]. It is not our aim to produce 
a better description of the experimental data [45], compared to 
the existing calculations in the collinear framework, e.g. perturba-
tive QCD.

Finally we hope in our future works we could perform such a 
complicated analysis.

The calculations have been performed, using the KMR UPDF and 
the PDF of MMHT2014. The panels (b) and (d) illustrate our results 
in their corresponding uncertainty bounds, compared to the data 
of the LHCb and the CMS Collaborations. The uncertainty bounds 
have been calculated, by means of manipulating the hard-scale, μ, 
of the UPDF as well as in the σ̂a1a2 , by a factor of 2, since this is 
the only free parameter in our framework. Also, as expected for 
the both regions, the contributions from the g∗ + g∗ → Z 0 + q + q̄
sub-process dominate,

σ̂ (g∗ + g∗ → Z 0 + q + q̄) � σ̂ (q∗ + q̄∗ → Z 0 + g + g)

> σ̂ (g∗ + q∗ → Z 0 + g + q). (12)
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Fig. 2. Differential cross-section of the productions of Z 0 boson as a function of the transverse momentum of the produced boson at EC M = 13 TeV. Panels (a) and (c) 
illustrate the contributions from the individual sub-processes and have been compared to each other in the respective rapidity regions. The panels (b) and (d) illustrate our 
results in their corresponding uncertainty bounds, compared to the data of the LHCb and the CMS Collaborations, the references [11,12]. The uncertainty bounds have been 
calculated, by manipulating the hard-scale of the UPDF by a factor of 2.
Fig. 3 presents the differential cross-section of the production of 
Z 0 vector boson, dσZ /dy Z , as a function of the rapidity of the pro-
duced boson (y Z ) at the center-of-mass energy of EC M = 13 TeV
in the KMR formalism. The notation of the figure is similar to that 
of Fig. 2: The panels (a) and (c) illustrate the contributions of each 
of the sub-processes into the total production rate, while the total 
results have been subjected to comparison with the experimen-
tal data of the LHCb and the CMS Collaborations (the references 
[11,12]), within their corresponding uncertainty bounds, in the 
panels (b) and (d). One finds that our calculations are in general 
agreement with the experimental measurements.

We have also performed an interesting comparison between our 
results from 2 → 3 matrix elements with similar calculations us-
ing LO q + q̄ → Z 0 partonic sub-processes (see the equation (A4) 
of the reference [38]). Fig. 4 presents this comparison. In both 
calculations, we have used the KMR UPDF , however, since the LO
2 → 1 matrix element is not kt -dependent, i.e. |M|, this prescrip-
tion for matrix element will reduce to a LO collinear calculation, 
but by replacing the PDF (ai(xi, μ2)) with the UPDF equivalent 

(
∫ μ2 dk2

ai ,t

k2
ai ,t

fai (xi, k2
ai ,t, μ

2)), as explained in the reference [13]. The 

reader should notice that the higher-order corrections that are be-
ing introduced in such calculations via using 2 → 3 matrix ele-
ments, dramatically improve the precision of the results (for more 
explanations, see the caption of Fig. 4).

Overall, it appears that our semi-NLO framework is generally 
successful in describing the corresponding experimental measure-
ments in the explored energy range. This success if by part owed 
to the UPDF of KMR, which as an effective model, has been very 
successful in producing a realistic theory in order to describe the 
experiment, see the references [13,28–35]. One however should 
note that having a semi-successful prediction from the framework 
of kt -factorization by itself is a success, since our calculations 
utilizing these UPDF have inherently a considerably larger error 
compared to those from the NNLO QCD or even the NLO QCD, 
presented here by the relatively large uncertainty region. This is 
because we are incorporating the single-scaled PDF (with their 
already included uncertainties) to form double-scaled UPDF with 
additional approximations and further uncertainties. Being able to 
provide predictions with a desirable accuracy would require a thor-
ough universal fit for these frameworks, see the reference [45]. 
Nevertheless, the kt -factorization framework, despite its simplic-
ity and its computational advantages, see the reference [35,45], 
can provide us with a valuable insight regarding the transverse 
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Fig. 3. Differential cross-section of the productions of Z 0 boson as a function of the rapidity of the produced boson at EC M = 13 TeV. The notations of the diagrams are the 
same as in Fig. 2.

Fig. 4. The differential cross-section of the production of the Z 0 as a function of the transverse momentum of the produced boson at EC M = 13 TeV. The continuous black 
curves are the (2 → 3) × KMR results from our present framework, while the blue-dashed curves are calculated using the q + q̄ → Z 0 matrix elements and replacing the PDF
in the equation (28) (the collinear cross section) of reference [13] by the PDF identity of equation (4) of the same reference in terms of the KMR UPDF ((2 → 1) × KMR). 
Note that in this case the |M| is independent of the transverse momentum. The experimental data are from the LHCb and the CMS Collaborations, the references [11,12]. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



M. Modarres et al. / Physics Letters B 772 (2017) 534–541 541
momentum dependency of various high-energy QCD events. Here, 
we should make this comment that the simple calculations i.e. 
the KMR approach in collinear factorization framework have been 
given in the references [13,38], using the LO qq̄ annihilation matrix 
elements and the UPDF of KMR. It has been shown that employing 
our 2 → 3 prescription will dramatically increase the precision of 
the calculations. So in this work we did not present such calcula-
tion again.

In summary, throughout the present work, we have calculated 
the production rate of the Z 0 gauge vector boson in the framework 
of kt -factorization, using a semi-NLO framework and the UPDF of 
the KMR formalism. The calculations have been compared with the 
experimental data of the LHCb and the CMS Collaborations. Our 
calculation, within its uncertainty bounds, is in good agreement 
with the experimental measurements. We also reconfirm that the 
KMR prescription, despite its theoretical disadvantages and its sim-
plistic computational approach, has a remarkable behavior toward 
describing the experiment.
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