
J
H
E
P
0
5
(
2
0
1
9
)
0
0
5

Published for SISSA by Springer

Received: October 31, 2018

Revised: March 6, 2019

Accepted: April 17, 2019

Published: May 2, 2019

Properties of dyons in N = 4 theories at small

charges

Aradhita Chattopadhyaya and Justin R. David

Centre for High Energy Physics, Indian Institute of Science,

C.V. Raman Avenue, Bangalore 560012, India

E-mail: aradhitac@iisc.ac.in, justin@iisc.ac.in

Abstract: We study three properties of 1/4 BPS dyons at small charges in string com-

pactifications which preserve N = 4 supersymmetry. We evaluate the non-trivial constant

present in the one loop statistical entropy for N = 4 compactifications of type IIB theory

on K3 × T 2 orbifolded by an order ZN freely acting orbifold g′ including all CHL com-

pactifications. This constant is trivial for the un-orbifolded model but we show that it

contributes crucially to the entropy of low charge dyons in all the orbifold models. We

then show that the meromorphic Jacobi form which captures the degeneracy of 1/4 BPS

states for the first two non-trivial magnetic charges can be decomposed into an Appell-

Lerch sum and a mock Jacobi form transforming under Γ0(N). This generalizes the earlier

observation of Dabholkar-Murthy-Zagier to the orbifold models. Finally we study the sign

of the Fourier coefficients of the inverse Siegel modular form which counts the index of

1/4 BPS dyons in N = 4 models obtained by freely acting Z2 and Z3 orbifolds of type II

theory compactified on T 6. We show that sign of the index for sufficiently low charges and

ensuring that it counts single centered black holes, violates the positivity conjecture of Sen

which indicates that these states posses non-trivial hair.

Keywords: Black Holes in String Theory, Conformal Field Models in String Theory,

Superstring Vacua

ArXiv ePrint: 1810.12060

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP05(2019)005

mailto:aradhitac@iisc.ac.in
mailto:justin@iisc.ac.in
https://arxiv.org/abs/1810.12060
https://doi.org/10.1007/JHEP05(2019)005


J
H
E
P
0
5
(
2
0
1
9
)
0
0
5

Contents

1 Introduction 1

2 Degeneracy and statistical entropy at small charges 4

2.1 Φ̂k and the constant C1 8

2.2 Comparison with statistical entropy at one loop 11

2.3 Exponentially suppressed corrections: the 2A orbifold 11

2.4 Implications of the constant C1 20

3 Fourier-Jacobi coefficients of 1/Φ̃k 21

3.1 The 2A orbifold 22

3.2 Other orbifolds g′ of K3× T 2 26

4 Toroidal orbifolds 29

4.1 Z2 toroidal orbifold 31

4.2 Z3 toroidal orbifold 37

5 Conclusions 38

A Details on obtaining C1 from the threshold integral 39

B Mock modular forms 41

1 Introduction

One of the successes of string theory as a theory of quantum gravity lies in its microscopic

understanding of the Bekenstein-Hawking entropy. In [1] it was shown that the statistical

entropy of a system of branes carrying the same quantum numbers of the black hole agrees

precisely with that of a class of extremal black holes in 5 dimensions. In 4 dimensions,

starting with the original work of [2], the degeneracies of 1/4 BPS dyons in heterotic string

theory compactified on T 6 and its generalizations to CHL compactifications [3] provide

examples where a precise formula for the microscopic degeneracies of extremal black holes

in known. The degeneracy of dyons or more precisely an index can be obtained from

the Fourier coefficients of the inverse of an appropriate Sp(2,Z) Siegel modular form. On

taking the large charge limit of the index, the logarithm of the index agrees precisely not

only with the Bekenstein-Hawking entropy of the corresponding black hole with the same

charges, but also with the sub-leading correction given by the Wald’s generalization of the

Bekenstein-Hawking formula [4, 5].1

1See [6, 7] for reviews.
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Given the success of the microscopic formula for the degeneracies of dyons in the large

charge limit, it is natural to study its properties for dyons with small charges. This will

hopefully provide more intuition on how a geometric description for the dyons in terms of

metric can arise. In this paper we study three properties 1/4 BPS dyons in a class of N = 4

compactifications of string theory. These compactifications arise from considering type IIB

theory on K3×T 2 orbifolded by g′ which acts as an ZN automorphism on K3 together with

a 1/N shift on one of the circles of T 2. This class includes all the CHL compactifications as

well as more general ones where g′ corresponds to conjugacy classes of the Mathieu group

M23. The orbifolds we study are listed table 1. The partition function of dyons in terms

of inverse of a Siegel modular forms for these compactifications were constructed in [8, 9].

We also study certain Z2,Z3 compactifications of type II theory on T 6.

The degeneracy in the large charge limit is obtained by evaluating the leading saddle

point of an integral and its one loop correction. The integral extracts out the Fourier

coefficient of the inverse Siegel modular form. Let us call the logarithm of this saddle

point approximation for the degeneracy S
(1)
stat(Q,P ) for definiteness where Q and P are

the electric and magnetic charges of the dyon. It is S
(1)
stat that agrees with the Bekenstein-

Hawking formula and its generalization by Wald evaluated on a dyonic extremal black hole

with the same set of charges. In [6] and [10], S
(1)
sat was compared with the exact degeneracy

of dyons at low charges.2 For the N = 4 heterotic string theory on T 6 or equivalently type

IIB theory on K3× T 2 it was seen that S
(1)
sat remarkably agrees with the exact degeneracy

to within 2% even for the lowest admissible charge. We re-evaluate S
(1)
sat in this paper for

all N = 4 compactifications arising as g′ orbifolds of K3 × T 2 with g′ given in table 1

keeping track of a constant C1 in S
(1)
sat . This constant is trivial that is, lnC1 = 0, for the

un-orbifolded compactification on K3×T 2 and was not determined earlier for the orbifolds.

We then compare the statistical entropy at one loop S
(1)
sat to the exact degeneracy and show

that the constant plays a crucial rule. In fact without C1, the agreement with the exact

degeneracy at low charges is off by more that 50% in most cases. The reader can directly go

to tables 5 to 15 to appreciate the presence of C1 in S
(1)
sat . The constant C1 also contributes

to all the subsequent saddle points. To demonstrate this, we evaluate the correction to S
(1)
sat

from the second saddle point for the 2A orbifold. We then briefly discuss the implication

of this constant for the geometric description of the dyons.

The second property we study of low charge dyons is the Fourier-Jacobi coefficients of

the inverse Siegel modular form at fixed magnetic charge of the dyon. The Fourier-Jacobi

coefficients enumerate the degeneracy of dyons for arbitrary electric charge and angular

momentum but at fixed magnetic charge. We study the case of the first two non-trivial

magnetic charges. We show that these Fourier-Jacobi coefficients are meromorphic Jacobi-

forms which can be decomposed into an Appell-Lerch sum, the polar part and a finite

term which is a mock modular form. The finite part captures the degeneracy of single

centered dyons. We perform this decomposition for all the orbifolds listed in table 1. This

decomposition was done in [11] for the un orbifolded theory to reasonably high magnetic

charges. For the CHL orbifolds corresponding to pA with p = 2, 3, 5, 7 at zero magnetic

2These charges were such that the dyons are single centered.
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charge P 2 = 0 was done in the appendix A.5 of [12]. In this paper we have generalized

these observations to all the other CHL orbifolds as well as the others in table 1 to the first

non-trivial order P 2 = 2. We observe that at this order there is a crucial identity among

meromorphic Jacobi forms3 that allows us to use the decompositions found by [11]. In fact

for all the orbifolds we show that the mock modular form that occurs at the level of P 2 = 2

is the generating function of Hurwitz-Kronecker class numbers found by [11] for the un

orbifolded theory. Thus our analysis generalizes these observations to all the orbifolds.

Finally we examine the 1/4 BPS dyons in orbifolds of type II compactifications on T 6

which preserve N = 4 supersymmetry. These theories were originally constructed in [13]

and the partition function of dyons in these theories was obtained in [14]. Our objective to

study these models is to examine the positivity conjecture of [15] on the Fourier coefficients

of the inverse Siegel modular forms which correspond to dyon partition functions. The

crucial assumption that goes in to the positivity conjecture of [15] is that if the charges of

the dyon is such that it is single centered, then the only sign to the index evaluating of

the 1/4 BPS state arises from the fermionic zero modes that arise due to the breaking of

N = 4 supersymmetry by the dyon. This is because the single centered dyon is assumed

to be spherically symmetric and therefore carries zero angular momentum. We study the

signs of the Fourier coefficients that arise in the partition function of dyons of the Z2 and

Z3 orbifolds of type II compactifications on T 6. We show that when the charges satisfy

the condition that the dyon is single centered the sign of the index violates the positivity

conjecture of [15]. We also use the criteria of subtracting out the polar part in the Fourier-

Jacobi decomposition to identify the single dyons given a fixed magnetic charge and show

that there are violations of the positivity conjecture. In fact we show that there is an

infinite class of dyons which are single centered as well with magnetic charge P 2 = 2 which

violate the positivity conjecture in the Z2 orbifold. These observations indicate the these

dyons might posses hair modes which contribute to the sign of the 1/4 BPS index. This

was one of the suggested ways, the positivity conjecture of [15] might be violated.

The common thread which runs through these results is that the all these properties

are found at low charges of dyons and in orbifold models of N = 4 compactifications. We

see that there is more to be learned about 1/4 BPS dyons and their geometric description

as black holes.

The organization of the paper is as follows. In section 2, we compare the statistical

entropy of low charge dyons and the exact degeneracies for all orbifolds models given in

table 1 and show that the constant C1 contributes crucially to the entropy to S
(1)
stat. In

section 3 we decompose the Fourier-Jacobi coefficient that occur in the expansion of the

inverse Siegel modular form for the first two non-trivial magnetic charges but arbitrary

electric and magnetic charge in terms of an Appell-Lerch sum and a mock modular form.

This is performed in detail for the 2A orbifold. In section 4 we study the violation of

the positivity conjecture by the Fourier coefficients of the Z2 and Z3 toroidal orbifolds.

Section 5 contains our conclusions. Appendix A contains the details regarding evaluating

the constant C1.

3See equation (3.20) for the identity.
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2 Degeneracy and statistical entropy at small charges

Consider N = 4 string compactifications obtained by considering type II B theories on

K3×T 2/ZN where the ZN acts as a automorphism g′ on K3 together with a 1/N shift on

one of the circles of S1. The action g′ corresponds to the 26 classes of the Mathieu group

M23. For eg. The classes pA with p = 2, 3, 4, 5, 6, 7, 8 are known as Nikulin’s automorphism.

These compactifications are also known as CHL compactifications and they were introduced

first as generalizations of models which dual to heterotic string compactifications with

N = 4 supersymmetry [16, 17]. Essentially these compactifications reduce the rank of the

gauge group but preserve N = 4 supersymmetry.

These CHL compactifications admit quarter BPS dyons. Let the charge vector for

these dyons be ( ~Q, ~P ) in the heterotic frame. Let d( ~Q, ~P ) denote the difference between

the number of bosonic and fermions quarter BPS multiplets. In the region of moduli space

where the type IIB theory is weakly coupled, d( ~Q, ~P ) is given by

d(Q,P ) =
1

N
(−1)Q·P+1

∫
C
dρ̃dσ̃dṽ e−πi(Nρ̃Q

2+σ̃P 2/N+2ṽQ·P ) 1

Φ̃k(ρ̃, σ̃, ṽ)
. (2.1)

The contour C is defined over a 3 dimensional subspace of the 3 complex dimensional space

(ρ̃ = ρ̃1 + iρ̃2, σ̃ = σ̃1 + iσ̃2, ṽ = ṽ1 + iṽ2).

ρ̃2 = M1, σ̃2 = M2, ṽ2 = −M3, (2.2)

0 ≤ ρ̃1 ≤ 1, 0 ≤ σ̃1 ≤ N, 0 ≤ ṽ1 ≤ 1.

Here M1,M2,M3 are positive numbers, which are fixed and large and M3 � M1,M2.

The contour essentially implies that we perform the expansions first in e2πiρ̃, e2πiσ̃ and

then perform the expansion in e−2πiṽ. The function Φ̃, occurring in integrand is a Siegel

modular form transforming under a subgroup of Sp(2,Z) with weight k. Explicitly, it is

given by

Φ̃(ρ, σ, v) = e2πi(ρ̃+σ̃/N+ṽ) (2.3)∏
b=0,1

N−1∏
r=0

∏
k′∈Z+ r

N
,l∈Z,

j∈2Z+b
k′,l≥0, j<0 k′=l=0

(1− e2πi(k′σ+lρ+jv))
∑N−1
s=0 e2πisl/N cr,sb (4k′l−j2).

Here N is the order of the orbifold g′. The coefficients c
(r,s)
b are read out from the expansion

of the elliptic genus of K3 twisted by the action of g′. The twisted elliptic genus of K3

and its expansion is defined by

F (r,s)(τ, z) =
1

N
TrRR g′r

[
(−1)FK3+F̄K3g′se2πizFK3qL0− c

24 q̄L̄0− c̄
24

]
, (2.4)

=

1∑
b=0

∑
j∈2Z+b, n∈Z/N

c
(r,s)
b (4n− j2)e2πinτ+2πijz.

0 ≤ r, s ≤ N − 1.
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The trace in the above equation is taken over the Ramond-Ramond sector of the N = (4, 4)

super conformal field theory of K3 with central charge (6, 6) and F refers to the Fermion

number. The twisted elliptic genera for the g′ belonging to all the conjugacy classes of

M23 ⊂M24 has been evaluated in [9, 18]. They take the form

F (0,0)(τ, z) = α
(0,0)
g′ A(τ, z), (2.5)

F (r,s)(τ, z) = α
(r,s)
g′ A(τ, z) + β

(r,s)
g′ (τ)B(τ, z),

r, s ∈ {0, 1, · · ·N − 1} with(r, s) 6= (0, 0),

with

A(τ, z) =
θ2

2(τ, z)

θ2
2(τ, 0)

+
θ2

3(τ, z)

θ2
3(τ, 0)

+
θ2

4(τ, z)

θ2
4(τ, 0)

, (2.6)

B(τ, z) =
θ2

1(τ, z)

η6(τ)
. (2.7)

A(τ, z) and B(τ, z) are Jacobi forms that transform under SL(2,Z) with index 1 and weight

0 and −2 respectively. The α
(r,s)
g′ in (2.5) are numerical constants and β

(r,s)
g′ are weight 2

modular forms which transform under Γ0(N). For all g′ corresponding to the conjugacy

classes listed in table 1, the list of the twisted elliptic genera can be found in appendix E

of [9]. The weight k, of the Siegel modular form is given by

k =
1

2

N−1∑
0

c
(0,s)
0 (0). (2.8)

The weights of the Siegel modular forms corresponding to the twisted elliptic genera con-

structed in this paper is listed in table 2.

Now using the twisted elliptic genera and product form for the Siegel modular form

in (2.3) we can obtain d( ~Q, ~P ) as defined by its Fourier expansion in (2.1) for low values of

the charges. For sufficiently large values of charges, the integral in (2.1) can be performed

by evaluating the leading saddle point. The behaviour of the Siegel modular form Φ̃ at the

saddle point is determined by another modular form Φ̂ which is related to by a Sp(2,Z)

transformation. Consider the transformation

ρ̃ =
1

N

1

2v − ρ− σ
, σ̃ = N

v2 − ρσ
2v − ρ− σ

, ṽ =
v − ρ

2v − ρ− σ
, (2.9)

with inverse

ρ =
ρ̃σ̃ − ṽ2

Nρ̃
, σ =

ρ̃σ̃ − (ṽ − 1)2

Nρ̃
, v =

ρ̃σ̃ − ṽ2 + ṽ

Nρ̃
. (2.10)

The saddle point is located at v = 0. This transformation results in the change of measure

which is given by

dρ̃dσ̃dṽ = −(2v − ρ− σ)−3dρdσdv . (2.11)

– 5 –
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Conjugacy Class Order

1A 1

2A 2

3A 3

5A 5

7A 7

11A 11

23A/B 23

4B 4

6A 6

8A 8

14A/B 14

15A/B 15

Table 1. Conjugacy classes of M24 studied in the paper. We refer to the classes 2A, 3A, 5A, 7A,

4B, 6A, 8A as the CHL orbifolds.

Type 1 pA 4B 6A 8A 14A 15A

Weight 24
p+1 − 2 3 2 1 0 0

Table 2. Weight of Siegel modular forms corresponding to classes in M23.

Substituting this transformation we obtain

d( ~Q, ~P ) = − 1

N
(−1)Q·P+1

∫
Ĉ
dρdσdv(2v − ρ− σ)−3 (2.12)

× exp

[
−iπ

{
v2 − ρσ

2v − ρ− σ
P 2 +

1

2v − ρ− σ
Q2 + 2

v − ρ
2v − ρ− σ

Q · P
}]

× 1

Φ̃k(ρ̃, σ̃, ṽ)
.

Here the variables (ρ̃, σ̃, ṽ) are now thought of functions of the variables (ρ, σ, v). The

contour is also correspondingly mapped. Now the Siegel modular forms constructed from

the twisted elliptic genus of K3 corresponding satisfy the relation

Φ̃k(ρ̃, σ̃, ṽ) = Φ̃k(σ̃/N, ρ̃N, ṽ). (2.13)

As shown in [5], this property results from the following equation satisfied by the twisted

elliptic genera
N−1∑
s=0

e−2πils/NF (r,s)(τ, z) =
N−1∑
s=0

e−2πirs/NF (l,s)(τ, z). (2.14)

In [5] it was verified that this property holds for all the orbifolds belonging to the class

pA with p = 1, 2, 3, 5, 7. We have verified that this property remains to be true for all

the orbifolds g′ listed in table 1. This includes all the CHL orbifolds in addition to the

– 6 –
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Conjugacy Class g(k+2)(ρ)

pA ηk+2(ρ)ηk+2(pρ)

4B η4(4ρ)η2(2ρ)η4(ρ)

6A η2(ρ)η2(2ρ)η2(3ρ)η2(6ρ)

8A η2(ρ)η(2ρ)η(4ρ)η2(8ρ)

14A η(ρ)η(2ρ)η(7ρ)η(14ρ)

15A η(ρ)η(3ρ)η(5ρ)η(15ρ)

Table 3. Factorization of Φ̂k(ρ, σ, v) as lim v → 0, p ∈ {1, 2, 3, 5, 7, 11}.

new ones in the conjugacy class of M23. Now using (2.13) with the transformation (2.9)

we obtain

Φ̃k

(
v2 − ρσ

2v − ρ− σ
,

1

2v − ρ− σ
,

v − ρ
2v − ρ− σ

)
, (2.15)

= −(i)kC1(2v − ρ− σ)kΦ̂(ρ, σ, v).

The last line defines the modular function Φ̂k related to Φ̃k by the Sp(2,Z) transformation.

For the case of the unorbifolded K3, k = 10 and since the Igusa cusp form is unique Φ̂10

coincides with Φ̃10 and the constant C1 = 1. Thus the leading saddle point is determined

by the behaviour of the new modular form Φ̂k at v → 0. Here C1 is constant which is

non-trivial for all the orbifolds in table 1 and we will show it plays an important role.4 It

can be shown using the product representation of Φ̂k that at v → 0

Φ̂k(ρ, σ, v)|v→0 = −4π2v2g(ρ)g(σ) (2.16)

where g(τ) is a specific Γ0(N) form for each of the orbifold g′ of weight k+ 2 For example

for the 2A orbifold

g(τ) = η8(τ)η8(2τ) (2.17)

The list of the function g(τ) for each of the orbifolds is given in table 3. This was obtained

for pA, p = 2, 3, 5, 7 orbifolds in [19] and for the remaining orbifolds of table 3 in [9]

The end result of evaluating the saddle at v = 0 and the one loop determinant is the

following. Let us define the statistical entropy by

Sstat ≡ ln d( ~Q, ~P ) (2.18)

To obtain the result of Sstat we need to consider the statistical entropy function

S(τ) =
π

2τ2
|Q−τP |2− ln g(τ)− ln g(−τ̄)−(k+2) ln(2τ2)− ln(NC1)+O(Q−2, P−2) (2.19)

where τ = τ1 + iτ2. Then the statistical entropy is obtained by evaluating S(τ) at its

extremum τextremum

S
(1)
stat = S(τ)|τextremum . (2.20)

4As we will subsequently demonstrate, we have chosen the phases so that C1 is real.

– 7 –
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The superscript (1) refers to the fact that the statistical entropy is obtained at one loop

from the leading saddle. Note the presence of the constant C1 in the statistical entropy

function (2.19), this is the constant that relates the generating function for the degeneracies

Φ̃k and its Sp(2,Z) transform Φ̂k as given in (2.15). As mentioned earlier, C1 = 1 for the

unorbifolded K3 × T 2 compactification, and therefore there is no contribution from this

term to the statistical entropy function.

Our goal in the rest of this section is to evaluate this constant and compare its contri-

bution in S
(1)
stat to the exact entropy Sstat = ln d( ~Q, ~P ). We will perform this comparison for

low values of charges as it is clear that for very large values of charges this constant will not

play a relevant role. Such a comparison for low values of charges of the one loop statistical

entropy function with the exact entropy was made for the un-orbifolded K3×T 2 compact-

ification in [6] and later in [10]. It was seen that the statistical entropy function at one loop

agrees with the exact entropy to 2% even for the lowest admissible charge. We will extend

this comparison for all the orbifolds g′ listed in table 1. We will see that the constant C1

is non-trivial and depends on the orbifold and contributes crucially towards S
(1)
stat

2.1 Φ̂k and the constant C1

In this section we determine the constant C1 which occurs in the modular transformation

relating Φ̃k and Φ̂k (2.15). We will first follow the first principle method which defines Φ̂k

in terms of the a ‘threshold integral’ relating it to the form Φ̃k and obtain C1. We then

perform a simple cross check, by using the factorization property of Φ̂k given in (2.16).

Before we proceed we simplify the modular transform relating these Siegel modular forms.

We can also write (2.15) as

Φ̃k(ρ̃
′, σ̃′, ṽ′) = −(i)kC1(σ̃′)−kΦ̂k

(
ρ̃′ − (ṽ′)2

σ̃′
, ρ̃′ − (ṽ′ − 1)2

σ̃′
, ρ̃′ − ṽ′2

σ̃′
+
ṽ′

σ̃′

)
(2.21)

Here we have defined

ρ̃′ =
v2 − ρσ

2v − ρ− σ
, σ̃′ =

1

2v − ρ− σ
, ṽ′ =

v − ρ
2v − ρ− σ

(2.22)

and its inverse

ρ =
ρ̃′σ̃′ − ṽ′2

σ̃′
, σ =

ρ̃′σ̃′ − (ṽ′ − 1)2

σ̃′
, ṽ =

ρ′σ̃′ − ṽ′2 + ṽ

σ̃′
. (2.23)

Φ̂k is invariant under the transformation [3].5

Φ̂k(ρ, σ, v) = Φ̂k(ρ, σ + ρ− 2v, v − ρ). (2.24)

Using this invariance we can re write the modular transformation (2.21) as

Φ̃k(ρ̃
′, σ̃′, ṽ′) = −(i)kC1(σ̃′)−kΦ̂k

(
ρ̃′ − ṽ′2

σ̃′
,− 1

σ̃′
,
ṽ′

σ̃

)
. (2.25)

5This fact will also subsequently be evident from the final result of Φ̂k in terms of a ‘threshold integral’.

– 8 –
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To avoid cluttering, we will now refer to (ρ̃′, σ̃′, ṽ′) as (ρ̃, σ̃, ṽ). The constant C1 can be

found by examining the construction of Siegel modular forms Φ̃k and Φ̂k using ‘threshold

integrals’. For Φ̃k we consider the integral

Ĩ(ρ̃, σ̃, ṽ) =

N−1∑
r,s=0

1∑
b=0

Ĩr,s,b (2.26)

Ĩr,s,b(ρ̃, σ̃, ṽ) =

∫
F

d2τ

τ2

∑
m1,m2,n2∈Z,n1∈Z+ r

N
,j∈2Z+b

exp

[
2πiτ

(
m1n1 +m2n2 +

j2

4

)]

× exp

(
−πτ2

Ỹ
|n2(ρ̃σ̃ − ṽ2) + jṽ + n1σ̃ −m1ρ̃+m2|2

)
e2πim1s/Nh

(r,s)
b (τ)

0 ≤ r, s ≤ (N − 1) (2.27)

where

Ỹ = det Im(Ω̃), Ω̃ =

(
ρ̃ ṽ

ṽ σ̃

)
(2.28)

and h
(r,s)
b are found by expanding the twisted elliptic genus as

F (r,s)(τ, z) = hr,s1 (τ)θ2(2τ, 2z) + hr,s0 θ3(τ)(2τ, 2z). (2.29)

We can use the method of orbits to evaluate this integral as done in [19] and we obtain

Ĩ(ρ̃, σ̃, ṽ) = −2 ln[detImΩ̃)k]− 2 ln Φ̃k(ρ̃, σ̃, ṽ)− 2 ln ¯̃Φk(ρ̃, σ̃, ṽ)− 2k lnκ,

κ =
8π

3
√

3
e1−γE , (2.30)

where γE is the Euler-Mascheroni constant.

Now lets go over to the modular form Φ̂k. From the Sp(2,Z) transformation given

in (2.25) we see that this is equivalent to

Φ̃

(
ρ− v2

σ
,− 1

σ
,− v

σ

)
= −(−i)kC1(−σ)kΦ̂k(ρ, σ, v). (2.31)

From this transformation and from the threshold integral in (2.26) we see that we can

obtain Φ̂k by the following replacements

m2 → n1, , n1 → −m2, m1 → −n2, n2 → m1. (2.32)

Therefore to construct Φ̂ we can consider the integral

Î(ρ, σ, v) =
N−1∑
r,s=0

Î(ρ, σ, v), (2.33)

Î(ρ, σ, v) =

∫
F

d2τ

τ2

∑
m1,n1,n2∈Z,m1∈Z− r

N
,j∈2Z+b

exp

[
2πiτ

(
m1n1 +m2n2 +

j2

4

)]
× exp

(
−πτ2

Y
|n2(ρσ − v2) + j v + n1σ −m1ρ+m2|2

)
e−2πin2s/Nh

(r,s)
b (τ)

0 ≤ r, s ≤ (N − 1).
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Examining the integrals and using the relation between the coordinates we can see that

Î(ρ, σ, v) = Ĩ(ρ̃, σ̃, ṽ). (2.34)

In fact using a similar analysis one can also verify the invariance of Φ̂ under the transfor-

mation given in (2.24).

Evaluating the integral through the method of orbits we obtain

Î(ρ, σ, v) = −2 ln[detImΩ)k]− 2 ln Φ̂k(ρ, σ, ṽ)− 2 ln
¯̂
Φk(ρ, σ, v)− 2k lnκ (2.35)

−2(k + 2) ln(N),

where

Φ̂(ρ, σ, v) = −e2πi(ρ+σ+v)
N−1∏
r,s=0

∏
k′,l,b∈Z
k′,l,j>0

(
1− e2πir/N exp(2πi(k′σ + lρ+ jv))

) 1
2
cr,s(4k′l−j2)

N−1∏
r,s=0

∏
k′,l,b∈Z
k′,l,j>0

(
1− e−2πir/N exp(2πi(k′σ + lρ+ jv))

) 1
2
cr,s(4k′l−j2)

.

(2.36)

The details of the evaluation of the threshold integral again follow the methods of [19].

However since we are interested in keeping track of the constant in the last line of (2.35)

we give some of the details of this in the appendix A.

Using the equality (2.34) and substituting the modular transformation (2.31) in equa-

tions (2.30) and (2.35) we find that

C1 = N
k+2

2 (2.37)

It is clear that this approach does not fix the phase we have chosen in the modular trans-

formation (2.15). To fix this phase and also perform a cross check on C1, let us examine

the relation given (2.15) in the ṽ → 0 limit. From the product representation of Φ̃k given

in (2.3) we can show that Φ̃k factorizes as

lim
ṽ→0

Φ̃k(ρ̃, σ̃, ṽ) = −4π2g(ρ̃)h(σ̃) (2.38)

where g(ρ̃) and h(σ̃) are modular forms of weight k + 2 transforming under subgroups of

Γ0(N). The list of these forms for each the Φ̃k corresponding to the orbifolds considered

in this paper is given in table 4.

Taking the limit ṽ → 0 in (2.15), we obtain

4π2g (ρ̃)h (σ̃) = − (i)k C1σ̃
−k
(
ṽ

σ̃

)2

g (ρ̃) g

(
− 1

σ̃

)
(2.39)

From the list of the weight k+2 forms g given in table 3 we see that all g obey the property

g

(
− 1

σ̃

)
= − (−i)kN−( k+2

2 )h (σ̃) (2.40)

Now from substituting (2.40) into (2.39) we confirm that C1 is given by (2.37).
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Conjugacy Class k g(ρ) h(σ)

pA 24
p+1 − 2 ηk+2(ρ)ηk+2(pρ) ηk+2(σ)ηk+2(σ/p)

4B 3 η4(4ρ)η2(2ρ)η4(ρ) η4(σ4 )η2(σ2 )η4(σ)

6A 2 η2(ρ)η2(2ρ)η2(3ρ)η2(6ρ) η2(σ)η2(σ2 )η2(σ3 )η2(σ6 )

8A 1 η2(ρ)η(2ρ)η(4ρ)η2(8ρ) η2(σ)η(σ2 )η(σ4 )η2(σ8 )

14A 0 η(ρ)η(2ρ)η(7ρ)η(14ρ) η(σ)η(σ2 )η(σ7 )η( σ14)

15A 0 η(ρ)η(3ρ)η(5ρ)η(15ρ) η(σ)η(σ3 )η(σ5 )η( σ15)

Table 4. Factorization of Φ̃k(ρ, σ, v) as lim v → 0 as shown in, p ∈ {1, 2, 3, 5, 7, 11}.

2.2 Comparison with statistical entropy at one loop

We compare the logarithm of the degeneracy obtained from the Fourier expansion given

in (2.1)

Sstat = ln d(Q,P ) (2.41)

and the statistical entropy at one loop which is given by

S
(1)
stat =

π

2τ2
|Q− τP |2 − ln g(τ)− ln g(−τ̄)− (k + 2) ln(2τ2)− ln(NC1), (2.42)

τ1 =
Q · P
P 2

, τ2 =
1

P 2

√
Q2P 2 − (Q · P )2, C1 = N

k+2
2 .

We perform this comparison for all the orbifolds g′ listed in table 1 for low value of charges.

It is easy to evaluate the logarithm of the degeneracy by performing the Fourier expansion

in Mathematica for low value of charges. Then the comparison with the statistical entropy

is done both with and without constant − ln(NC1). We see that for low values of charges,

the constant is crucial in bringing the agreement of the statistical entropy to within a few

percent of the actual degeneracy.

In the tables below δ and δ′ are defined as follows

δ =
Sstat − S(1)

stat

Sstat
× 100, (2.43)

δ′ =
{S(1)

stat + ln(NC1)} − Sstat

Sstat
× 100

Thus δ′ measures the percentage difference from Sstat without the constant − ln(NC1) in

the statistical entropy at one loop. We list the comparisons for orbifolds of the order N

where N is prime first and then move to the non-prime cases.

2.3 Exponentially suppressed corrections: the 2A orbifold

In section 2.2 we have compared the contribution of the leading saddle point to the exact de-

generacy We have shown that the constant C1 present in the modular transformation (2.15)

contributes substantially to the statistical entropy at low values of charges for the orbifold

theories. In this section we show that this constant is also important in the sub-leading
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(Q2, P 2Q.P ) d(Q,P ) Sstat S
(1)
stat δ δ′

(1, 2, 0) 2164 7.67971 7.28409 5.15 50.28

(1, 2, 1) 360 5.8861 5.34077 9.26 68.14

(1, 4, 1) 4352 8.37839 8.39542 −0.2 41.16

(2, 4, 0) 198144 12.1967 11.727 3.85 32.27

(1, 6, 1) 36024 10.4919 11.1568 −6.33 26.7

(3, 6, 0) 15219528 16.5381 16.1699 2.22 23.18

(3, 6, 3) 149226 11.9132 11.624 2.43 31.52

(3, 6, 4) 2164 7.67971 7.28409 5.15 50.28

Table 5. Comparison of the statistical entropy and statistical entropy at one loop for 2A orbifold.

(Q2, P 2Q.P ) d(Q,P ) Sstat S
(1)
stat δ δ′

(2/3, 2, 0) 540 6.29157 5.95751 5.31 75.16

(2/3, 4, 0) 3294 8.09986 8.12528 −0.31 53.94

(2/3, 4, 1) 378 5.93489 6.0378 −1.73 72.31

(2/3, 6, 0) 16200 9.69277 10.3187 −6.46 38.88

(2/3, 6, 1) 2646 7.8808 8.58224 −8.90 46.86

(4/3, 6, 0) 128706 11.7653 11.4413 2.75 40.10

(4/3, 6, 1) 37422 10.53 10.546 −0.15 41.58

(2, 6, 0) 820404 13.6176 13.2127 2.97 35.24

(2, 6, 1) 318267 12.6706 12.546 0.98 35.66

(2, 6, 2) 37818 10.5405 10.4379 0.97 42.66

Table 6. Comparison of the statistical entropy and statistical entropy at one loop for 3A orbifold.

(Q2, P 2Q.P ) d(Q,P ) Sstat S
(1)
stat δ δ′

(2/5, 2, 0) 100 4.60517 4.57546 0.64 105

(2/5, 4, 0) 460 6.13123 6.30791 −2.88 75.86

(2/5, 4, 1) 20 2.99573 2.87779 3.94 165

(2/5, 6, 0) 1720 7.45008 8.08384 −8.51 56.30

(2/5, 6, 1) 125 4.82831 5.46281 −13.14 86.85

(4/5, 6, 0) 9180 9.12478 8.84163 3.10 56.02

(4/5, 6, 1) 1460 7.28619 7.49625 −2.88 63.38

(6/5, 6, 0) 39960 10.5956 10.1953 3.78 49.35

(6/5, 6, 1) 9345 9.1426 9.21235 −0.76 52.05

(6/5, 6, 2) 390 5.96615 5.88441 1.37 82.3

Table 7. Comparison of the statistical entropy and statistical entropy at one loop for 5A orbifold.
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(Q2, P 2Q.P ) d(Q,P ) Sstat S
(1)
stat δ δ′

(2/7, 2, 0) 36 3.58352 3.74248 −4.43 131

(2/7, 4, 0) 138 4.92725 5.23041 −6.15 92.58

(2/7, 6, 0) 444 6.09582 6.76722 −11.01 68.79

(2/7, 6, 1) 18 2.89037 3.22552 −11.59 156.7

(4/7, 6, 0) 1916 7.55799 7.35616 2.67 67.04

(4/7, 6, 1) 210 5.34711 5.60863 −4.89 86.09

(6/7, 6, 0) 6892 8.83812 8.49212 3.91 58.96

(6/7, 6, 1) 1152 7.04925 7.23465 −2.63 66.38

(6/7, 6, 2) 18 2.89037 2.58629 10.52 178.83

Table 8. Comparison of the statistical entropy and statistical entropy at one loop for 7A orbifold.

(Q2, P 2Q.P ) d(Q,P ) Sstat S
(1)
stat δ δ′

(6/11, 10, 0) 4962 8.50956 8.32923 2.12 54.2

(6/11, 10, 1) 937 6.84268 7.13426 −4.26 74.35

(6/11, 12, 0) 11132 9.31758 9.22308 1.01 50.4

(6/11, 12, 1) 2558 7.72223 8.16335 −5.7 67.8

(6/11, 12, 2) 72 4.27667 4.36939 −2.16 114

(6/11, 22, 0) 366378 12.8114 13.1652 −2.76 40

(6/11, 22, 1) 139955 11.8491 12.4283 4.88 45.6

(6/11, 22, 2) 12760 9.45407 10.0209 5.99 56.7

(6/11, 22, 3) 114 4.7362 4.86058 2.6 103

Table 9. Comparison of the statistical entropy and statistical entropy at one loop for 11A orbifold.

(Q2, P 2Q.P ) d(Q,P ) Sstat S
(1)
stat δ δ′

(4/23, 8, 0) 91 4.51086 3.63606 19.3 84.87

(6/23, 6, 0) 103 4.63473 3.5562 23.27 78.2

(6/23, 8, 0) 190 5.24702 4.21628 19.6 70

(6/23, 10, 0) 312 5.743 4.86463 15.2 66.6

(6/23, 10, 1) 74 4.30407 2.90311 32.5 76.7

Table 10. Comparison of the statistical entropy and statistical entropy at one loop for 23A orbifold.
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(Q2, P 2Q.P ) d(Q,P ) Sstat S(1) δ δ′

(1/2, 2, 0) 176 5.17048 4.9493 4.28 98.12

(1/2, 4, 0) 896 6.79794 6.84008 −0.62 70.75

(1/2, 4, 1) 80 4.38203 4.25615 2.87 113

(1/2, 6, 0) 3616 8.19312 8.7606 −6.92 52.29

(1/2, 6, 1) 480 6.17379 6.65185 −7.74 70.85

(1, 4, 0) 5024 8.52198 8.09089 5.06 61.99

(1, 4, 1) 832 6.72383 6.68116 0.63 72.79

(3/2, 8, 0) 491920 13.1061 12.7909 2.40 39.43

(3/2, 8, 1) 196960 12.1908 12.1281 0.51 40.31

(3/2, 8, 2) 23616 10.0697 10.0251 0.44 48.64

Table 11. Comparison of the statistical entropy and statistical entropy at one loop for 4B orbifold.

(Q2, P 2Q.P ) d(Q,P ) Sstat S
(1)
stat δ δ′

(1/3, 2, 0) 40 3.68888 3.50247 5.05 150

(1/3, 4, 0) 148 4.99721 5.04572 −0.97 106

(1/3, 6, 0) 478 6.16961 6.61552 −7.23 79.9

(2/3, 6, 0) 2128 7.66294 7.38342 3.65 73.79

(2/3, 6, 1) 436 6.07764 6.03979 0.62 89.07

(1, 12, 0) 240612 12.3909 12.3009 0.726 44.11

(1, 12, 1) 106096 11.5721 11.6461 −0.639 45.81

(1, 12, 2) 13856 9.53647 9.55433 −0.187 56.18

Table 12. Comparison of the statistical entropy and statistical entropy at one loop for 6A orbifold.

(Q2, P 2Q.P ) d(Q,P ) Sstat S
(1)
stat δ δ′

(1/4, 2, 0) 20 2.99573 3.0419 −1.54 172

(1/4, 4, 0) 68 4.21951 4.41444 −4.62 118

(1/4, 6, 0) 196 5.27811 5.82516 −10.36 88.13

(1/4, 6, 1) 10 2.30259 2.16053 6.17 231

(1/4, 8, 0) 504 6.22258 7.13849 −14.71 68.82

(1/4, 8, 1) 40 3.68888 4.06787 −10.27 130

(3/4, 6, 0) 2280 7.73193 7.48478 3.196 70.43

(3/4, 6, 1) 450 6.10925 6.19909 −1.47 83.62

(3/4, 8, 0) 6704 8.81046 8.59292 2.47 61.47

(3/4, 8, 1) 1728 7.45472 7.54122 −1.16 68.57

Table 13. Comparison of the statistical entropy and statistical entropy at one loop for 8A orbifold.
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(Q2, P 2Q.P ) d(Q,P ) Sstat S
(1)
stat δ δ′

(1/7, 2, 0) 4 1.38629 1.5854 −14.3 395

(1/7, 4, 0) 10 2.30259 2.63796 −14.56 243.8

(1/7, 6, 0) 24 3.17805 3.72617 −17.2 183

(2/7, 6, 0) 70 4.2485 4.14076 2.5 121

(2/7, 8, 0) 156 5.04986 5.01278 0.73 103.7

(3/7, 8, 0) 406 6.00635 5.7842 3.7 84

(5/7, 12, 0) 11512 9.35115 9.12825 2.38 54

(5/7, 12, 1) 4156 8.33231 8.34407 0.14 63.4

(5/7, 12, 2) 292 5.67675 5.6847 −0.14 93

Table 14. Comparison of the statistical entropy and statistical entropy at one loop for

14A/B orbifold.

(Q2, P 2Q.P ) d(Q,P ) Sstat S
(1)
stat δ δ′

(2/15, 2, 0) 4 1.38629 1.32743 4.24 386

(2/15, 4, 0) 8 2.07944 2.33276 −12.18 272

(2/15, 6, 0) 20 2.99573 3.36918 −12.4 193

(4/15, 6, 0) 50 3.91202 3.79203 3 135

(4/15, 8, 0) 102 4.62497 4.62705 −0.044 117

(8/15, 12, 0) 2844 7.95297 7.76586 2.35 65.7

(8/15, 12, 1) 898 6.80017 6.83215 −0.47 80

(8/15, 12, 2) 40 3.68888 3.54063 4 142.8

Table 15. Comparison of the statistical entropy and statistical entropy at one loop for

15A/B orbifold.

saddles which are exponentially suppressed compared to the leading saddle. For this pur-

pose we will study 2A orbifold, a similar analysis also applies for all the other orbifolds g′

listed in table 1.

In [10] the first sub-leading saddle was analysed for the un-orbifolded theory of type II

K3× T 2. We generalize this analysis to the case of an orbifold of order N . Starting from

the degeneracy formula (2.1) and using the symmetry (2.13) and a change of variables we

obtain the following

d(Q,P ) =
1

N
(−1)Q·P+1

∫
dρ̃σ̃dṽe−πi(ρ̃P

2+σ̃Q2+2ṽQ.P ) 1

Φ̃k(ρ̃, σ̃, ṽ)
(2.44)

The contour is same as that given in (2.2). Note, however the change in the arguments of

the exponent. The saddle points of the integral occur at zeros of Φ̃k. These occur at the
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following hyper surfaces

n2(σ̃ρ̃− ṽ2) + bṽ + n1σ̃ − ρ̃m1 +m2 = 0, (2.45)

m1 ∈ NZ, n1 ∈ Z, b ∈ 2Z + 1, m2, n2 ∈ Z,

m1n1 +m2n2 +
b2

4
=

1

4
.

From the product representation of the modular form Φ̃k it can be seen that it is invariant

under the transformations ρ̃ → ρ̃ + 1, σ̃ + N, ṽ → ṽ + 1. Applying these transformations,

we can bring the locations of the points which characterize the hyper surface in (2.45) to

n1 = 0, 1 · · · (n2 − 1), (2.46)

m1 = 0, N, 2N, · · · (n2 − 1)N,

b = 1, 3, 5, · · · 2n2 − 1.

Then m2 is obtained by solving the last equation in (2.45).

Let us now specialize to the case of N = 2 and the second saddle n2 = 2. Then using

the conditions in (2.46), the points that characterize the hyper surface on which the zeros

of Φ̃k lie are given by

(m1, n1,m2, n2, j)i = {(0, 0, 0, 2, 1), (2, 0, 0, 2, 1), (2.47)

(0, 1, 0, 2, 1), (2, 1,−1, 2, 1),

(0, 0,−1, 2, 3), (2, 0,−1, 2, 3),

(0, 1,−1, 2, 3), (2, 1,−2, 2, 3).}

Here the subscript i = 1, · · · 8 labels the solution in the order written in the above equation.

For illustration, the location of the first zero of the second saddle n2 = 2 is given by

the equation

2(ρ̃σ̃ − ṽ2) + ṽ = 0 (2.48)

We now need to obtain the Sp(2,Z) transformation that allow us to determine how

Φ̃k behaves close to these zeros. Let write the Sp(2,Z) transformation more formally. We

define the symplectic matrix

U−1
0 =

(
A0 B0

C0 D0

)
=


1 0 0 0

1 0 0 −1

0 −1 1 0

0 1 0 0

 (2.49)

and construct

Ω̂1 = (A0Ω̃ + B̃0)(C0Ω̃ +D0)−1. (2.50)

From examining this transformation we can see that (2.21) is written as

− (i)kC1Φ̂k(Ω̂1) = {det(C0Ω̃ +D0)}kΦ̃k(Ω̃). (2.51)
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Note that the expression for v̂′ in terms of ṽ does not coincide with any of the zeros we have

in the list (2.47). We need the transformation such that Φ̂k is evaluated at these zeros.

For this, we perform a further Sp(2,Z) transformation that keeps Φ̂k invariant. Then the

transformation is restricted to the following sub-group G of Sp(2,Z) defined by [10]

U1 =

(
A1 B1

C1 D1

)
→ C1 = O mod N, det A1 = 1 mod N, det D1 = 1 mod N. (2.52)

Let

Ω̂ = (A1Ω̂1 + B̂1)(C1Ω̂1 +D1)−1, (2.53)

then we define

Φk(Ω̂) = {det(C1Ω̂1 +D1)}kΦk(Ω̂1). (2.54)

Now combining (2.51) and (2.54) using the group property we obtain

− (i)kC1Φk(Ω̂) = {det(CΩ̃ +D)}kΦ̃k(Ω̃) (2.55)

where

U =

(
A B

C D

)
= U1U

−1
0 . (2.56)

We can use the additional degree of freedom of performing a transformation within the

sub-group G defined in (2.52) so that v̂ as a function of ṽ coincides with the locations of

the zeros given in (2.47).

We construct U as follows:

1. First take U1 to be any 4× 4 matrix and evaluate U1U
−1
0 .

2. Evaluate the action of U = U1U
−1
0 on Ω̃, we get

Ω̂ = (AΩ̃ +B)(CΩ̃ +D)−1. (2.57)

Demand that the equation for v̂ = 0 in terms of ṽ coincides with the zeros given

in (2.47).

3. Impose the conditions that result from Sp(2,Z) on U1.

4. Examine the resulting equations and finally impose the conditions of the sub-group

G given in (2.52) on U1.

These steps can be implemented in Mathematica and the final expression for Ω̂ written in

terms of Ω̃ for each the locations of the 8 zeros in (2.47) are given by

Ω̂1 =

 ρ̃− ṽ2

σ̃

2ρ̃σ̃ − 2ṽ2 + ṽ

σ̃
2ρ̃σ̃ − 2ṽ2 + ṽ

σ̃

4ρ̃σ̃ − 4(ṽ − 1)ṽ − 1

σ̃

 (2.58)

Ω̂2 =

 ρ̃σ̃ − ṽ2

8ṽ2 − 4ṽ + σ̃ + ρ̃(4− 8σ̃)

−2ṽ2 + ṽ + 2ρ̃(σ̃ − 1)

8ṽ2 − 4ṽ + σ̃ + ρ̃(4− 8σ̃)
−2ṽ2 + ṽ + 2ρ̃(σ̃ − 1)

8ṽ2 − 4ṽ + σ̃ + ρ̃(4− 8σ̃)

−4(ṽ − 1)v + 4ρ̃σ̃ − 1

8ṽ2 − 4ṽ + σ̃ + ρ̃(4− 8σ̃)
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Ω̂3 =

 ρ̃− ṽ2

σ̃

−2ṽ2 + ṽ + 2ρ̃σ̃ + σ̃

σ̃
−2ṽ2 + ṽ + 2ρ̃σ̃ + σ̃

σ̃

−4(ṽ − 1)ṽ + 4ρ̃σ̃ + σ̃ − 1

σ̃


Ω̂4 =

 ṽ(ṽ + 2)− ρ̃(σ̃ − 4) + 1

2ṽ2 − (2ρ̃+ 1)(σ̃ − 2)

ṽ + 2ρ̃+ 1

(2ρ̃+ 1)(σ̃ − 2)− 2ṽ2 + 1

ṽ + 2ρ̃+ 1

(2ρ̃+ 1)(σ̃ − 2)− 2ṽ2 + 1
2ρ̃+ 1

2ṽ2 − (2ρ̃+ 1)(σ̃ − 2)
− 1


Ω̂5 =

 −4(ṽ − 1)ṽ + 4ρ̃σ̃ − 1

σ̃

ṽ(3− 2ṽ) + 2ρ̃σ̃ − 1

σ̃
ṽ(3− 2ṽ) + 2ρ̃σ̃ − 1

σ̃
ρ̃− (ṽ − 1)2

σ̃


Ω̂6 =

 −4(ṽ − 1)ṽ + ρ̃(4σ̃ − 2)− 1

6ṽ2 − 8ṽ + σ̃ + ρ̃(4− 6σ̃) + 2

ṽ(3− 2ṽ) + 2ρ̃(σ̃ − 1)− 1

6ṽ2 − 8ṽ + σ̃ + ρ̃(4− 6σ̃) + 2
ṽ(3− 2ṽ) + 2ρ̃(σ̃ − 1)− 1

6ṽ2 − 8ṽ + σ̃ + ρ̃(4− 6σ̃) + 2

ρ̃σ̃ − (ṽ − 1)2

6ṽ2 − 8ṽ + σ̃ + ρ̃(4− 6σ̃) + 2


Ω̂7 =

 −4(ṽ − 1)ṽ + 4ρ̃σ̃ + σ̃ − 1

σ̃

ṽ(3− 2ṽ) + 2ρ̃σ̃ + σ̃ − 1

σ̃
ṽ(3− 2ṽ) + 2ρ̃σ̃ + σ̃ − 1

σ̃
− (ṽ − 1)2

σ̃
+ ρ̃+ 1


Ω̂8 =

 2ρ̃+ 1

2(ṽ − 2)ṽ − 2ρ̃(σ̃ − 2)− σ̃ + 4

ṽ − 2(ρ̃+ 1)

2(ṽ − 2)ṽ − 2ρ̃(σ̃ − 2)− σ̃ + 4
+ 1

ṽ − 2(ρ̃+ 1)

2(ṽ − 2)ṽ − 2ρ(σ̃ − 2)− σ̃ + 4
+ 1

−ṽ2 + ρ̃σ̃ + σ̃

2(ṽ − 2)ṽ − 2ρ̃(σ̃ − 2)− σ̃ + 4

 .

We can now find the behaviour of the Φ̃k at these zeros. Using the transformation

in (2.55) and the factorization property of Φ̂k in (2.16), we find that

Φ̃k(ρ̃, σ̃, ṽ)|zeros → (i)k[det(CΩ̃ +D)]−k4π2v̂g(ρ̂)g(σ̂). (2.59)

Since we are restricting our attention to the 2A case, k = 6 and g(ρ̂) = η8(ρ)η8(2ρ). In

the above equation for each of the zeros we have to substitute the corresponding value of

ρ̂, σ̂, v̂ in terms of ρ̃, σ̃, ṽ and the value of CΩ̃ +D can also be read from (2.58). The next

step is to perform the contour integral over ṽ in (2.44), which will pick up the residue at

the double pole at v̂ = 0. Then perform the saddle point integration over ρ̂ and v̂. To the

leading order the saddle point is obtained by minimizing the exponent in (2.44) given by

E = −πi(ρ̃P 2 + σ̃Q2 + 2ṽQ · P ) (2.60)

subject to the constraint of the location of the zero given in (2.45). The result for the

saddle point is given by

(ρ̃, σ̃, ṽ) = i
[
2n2

√
Q2P 2 − (Q · P )2)

]−1
(Q2, P 2, Q · P )− 1

n2

(
n1,−m1,

j

2

)
. (2.61)

Repeating the analysis of [10] for the and keeping track of the differences for the case of

2A we see that the value at the sub-leading saddle including the one loop corrections is
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Q2 1 2 3 3 3 6 6

P 2 2 4 6 6 6 6 6

Q · P 0 0 0 1 3 0 1

d(2) 19.751 91.058 1679.22 895.668 0 83807.5 63637.7

Table 16. Contribution of the second saddle to the degeneracy: ∆d(Q,P ) for 2A orbifold.

given by

∆d(Q,P )|i =
1

NC1

1

n2
exp(π

√
Q2P 2 − (Q · P )2) (2.62)

×
{

[det(CΩ̃ +D)]k+2(g(ρ̂)g(σ̂))−1(1 +O(Q−2, P−2))
}

×(−1)Q·P exp

[
i
π

n2
(n1P

2 −m1Q
2 − jQ · P )

]∣∣∣∣
saddlei

.

Here n2 = 2, k = 6, and g(ρ̂) = η8(ρ̂)η8(2ρ̂) and N = 2. The constant C1 is given by

C1 = 24; ρ̂, σ̂ as well as det(CΩ̃ + D) are evaluated by examining the matrices given

in (2.58) for each of the 8 saddles. This dependence on the zeros of Φ̃k is indicated by the

subscript ‘i’.6 The complete contribution of all saddles at n2 = 2 is given by

∆d(Q,P ) =

8∑
i=1

∆d(Q,P )|i . (2.63)

We have listed the contributions to the 2nd saddle to the degeneracies for a few low

lying charges of dyons in the 2A orbifold in table 16.

We mention two consistency checks on evaluating the correction to the degeneracies at

the second saddle. The contribution to the degeneracy from the second saddle ∆d(Q,P )

has to be real, however the contribution from each of ∆d(Q,P )|i need not be real. One of

the checks is that on summing the contribution of the 8 saddles we obtain a real number.

The second check is that the solutions of the matrices given in (2.58) are not unique. For

example for 5th solution it is also possible to choose the matrix consistent with all the

requirements discussed earlier.

Ω̂′5 =

 (1− 2ṽ)2 − 4ρ̃σ̃

8(ṽ − 1)ṽ − (8ρ̃+ 1)σ̃ + 2

ṽ(3− 2ṽ) + 2ρ̃σ̃ − 1

−8(ṽ − 1)ṽ + 8ρ̃σ̃ + σ̃ − 2
ṽ(3− 2ṽ) + 2ρ̃σ̃ − 1

−8(ṽ − 1)ṽ + 8ρ̃σ̃ + σ̃ − 2

(ṽ − 2)ṽ − ρ̃(σ̃ − 2) + 1

8(ṽ − 1)ṽ − (8ρ̃+ 1)σ̃ + 2
.

 (2.64)

However we have explicitly verified that the correction ∆d(Q,P )5 is independent of the

choice of the matrix Ω̂5 or Ω̂′5 for the charges listed in table 16. Finally we mention that

for the charge Q2 = 3, P 2 = 6, Q · P = 3 the contribution to the second saddle vanishes.

Such a property was also observed for the un-orbifolded theory in [6].

6We have kept track of all signs for k = 6. Note that we obtain that sign of jQ · P in the second line

opposite to that obtained in [10].
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In conclusion the observation that the constant C1 is an important factor of all the

saddle points, not just the leading one at n1 = 1. It also occurs in the modular trans-

formation relating Φ̃k to all the other saddle points. We have demonstrated this for the

2A orbifold and for the saddle at n2 = 2, but it is clear from the derivation that it will

persist for all the other sub-leading saddles as well the other orbifolds. Finally we would

also like to mention that the contribution of all the sub-leading saddles for the case of the

un-orbifolded theory was evaluated in [20]. This was done by a characterization of all the

solutions of the zeros of Φ10 for all the sub-leading saddles by determining the Sp(2,Z)

transformation which maps the zeros to the zero at v = 0. It will be interesting to repeat

this analysis for the ZN orbifolds considered in this paper. Performing this would lead to

a Farey tale like expansion of the dyon partition function for these theories. This would

be important to understand the sub-leading contributions from semi-classical geometry.

2.4 Implications of the constant C1

We briefly discuss the implication of the presence of the non-trivial constant C1 in the one

loop saddle point approximation to the entropy S
(1)
stat. In the large charge limit, the 1/4

BPS dyon can be described by an extremal black hole with the same charge (Q,P ). We

can evaluate the Wald’s generalization of the Bekenstein-Hawking entropy to this black

hole. This is done by considering the four derivative correction to the effective action of

the N = 4 string theory given by the Gauss-Bonnet term7

L = φ(a, S)
(
RµνρσR

µνρσ − 4RµνR
µν +R2

)
, (2.65)

where a, S is the axion and dilaton respectively in the heterotic description of the theory.

Using the analysis of [23, 24] we can compute the function φ. It is given by

φ(a, S) = − 1

64π2
[(k + 2) lnS + ln g(a+ iS) + ln g(−a+ iS)] + constant (2.66)

Here g is the same function that occurs in the statistical entropy function given in (2.19)

and listed in table 3 for all the orbifolds. However the constant present in (2.66) cannot

be fixed. This is because the a constant coefficient in the Gauss-Bonnet term is a total

derivative and therefore does not affect the equations of motion. The evaluation of the

Gauss-Bonnet term is done through a string amplitude calculation which can determine

the effective action only up to on shell terms. A constant in Gauss-Bonnet cannot be

determined using this procedure. Now going evaluating the Wald entropy of the extremal

dyonic black hole, one obtains the same minimizing problem as encountered in (2.19).

That is

S(a, S) =
π

2S
|Q+ (a+ iS)P |2 − ln g(a+ iS)− ln g(−a+ iS)− (k + 2) ln(2S)

+constant. (2.67)

The Wald entropy is given by

SWald = S(a, S)|minimum . (2.68)

7See [6] for a review.
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Therefore the undetermined constant in the Gauss-Bonnet term turns out to be the

O(Q0, P 0) term in the Wald entropy. Thus it is cleat that a string amplitude calcula-

tion will not be able to fix this constant coefficient in the Gauss-Bonnet term.

Recently beginning with the works of [25, 26] the method of localization in AdS2×S2

has proposed to evaluate the entropy of these black holes exactly from a geometric descrip-

tion. All of the works so far address only the un-orbifolded theory of compactification on

K3 × T 2. From the analysis in this paper it is clear that the constant C1 substantially

contributes to the entropy at low charges for all the orbifolds. We see that it is a O(Q0, P 0)

term. The method of localization is exact and is hoped that partition functions agree with

the microscopic description at finite order in charges. Therefore an important test for the

method of localization is to reproduce this constant C1.

3 Fourier-Jacobi coefficients of 1/Φ̃k

Consider the following Fourier expansion if the partition function of dyons of the un-

orbifolded theory, ie. type II compactified on K3× T 2,8

1

Φ10(q, p, y)
=

∞∑
m=−1

ψm(τ, z)pm, q = e2πiτ , p = e2πiσ, y = e2πiz. (3.1)

The Fourier-Jacobi coefficients ψm after multiplying by η24(τ) are meromorphic Jacobi

forms of weight 2 and index m. Note that the Fourier-Jacobi coefficients count degeneracies

for a given magnetic charge of the dyon. In [11] it was shown that the Fourier-Jacobi

coefficients ψm for m > 0 admits the following unique decomposition

ψm(ρ, z) = ψP
m(τ, z) + ψF

m(τ, z), (3.2)

in which the polar part ψPm(τ, z) has the same pole structure in the z-plane as ψm(τ, z) and

ψF
m(τ, z) has no poles. The polar part is given by the following Appell-Lerch sum

ψP
m(τ, z) =

p24(m+ 1)

η24(τ)
A2,m(τ, z), (3.3)

A2,m(τ, z) =
∑
s∈Z

qms
2+sy2ms+1

(1− qsy)2
.

The Appell-Lerch sum exhibits wall-crossing and therefore ψF
m capture the degeneracies

of multi-centered black holes. The Fourier coefficients of ψF
m(τ, z) are independent of the

choice of contour in the (z, τ) space and counts the degeneracies of immortal black holes.

Further more ψF
m(τ, z) is a mock Jacobi form.

In this section we generalize these observations for the partition function of dyons in

type II compactifications on K3×T 2/ZN, where the orbifold is performed by the action of

g′ given in table 1. This observation is made for the 2 lowest values of magnetic charges. In

this case ψm after multiplying by an appropriate Γ0(N) form are meromorphic Jacobi forms

under Γ0(N). We will begin with the case of 2A and then move to all the other orbifolds.

8We have changed variables ρ→ τ and v → z to confirm with the standard notation for Jacobi forms.
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3.1 The 2A orbifold

The relevant Siegel modular form for the 2A orbifold is Φ̃6. In the product form given

in (2.3), the input required for its construction is given by the twisted elliptic genus of the

2A orbifold which is given by

F (0,0) = 4A (τ, z) , (3.4)

F (0,1) =
4

3
A (τ, z)− 2

3
B (τ, z) E2 (τ) ,

F (1,0) =
4

3
A (τ, z) +

1

3
B (τ, z) E2

(τ
2

)
,

F (1,1) =
4

3
A (τ, z) +

1

3
B (τ, z) E2

(
τ + 1

2

)
.

Here A and B are defined in (2.6) and EN is defined as

EN (τ) = NE2(Nτ)− E2(τ). (3.5)

Using the expansions of the twisted elliptic genus c(r,s) as defined in (2.4) we can construct

Φ̃6. It is easy to see that for the 2A orbifold, the expansions for the inverse of Φ̃6 is given by

1

Φ̃6(q, p, y)
=

∞∑
m=−1

ψm(τ, z)p
m
2 . (3.6)

Note that the expansion in terms of the magnetic variable y can now take half integral

values. Furthermore from (2.1) we see that m is related to the magnetic charge by P 2 = 2m.

From the explicit construction of Φ6 and the expansion in terms of y, we can read out

the following

[η(τ)η(2τ)]8ψ−1 = − 1

B(2τ, z)
, (3.7)

[η(τ)η(2τ)]8ψ0 = −2
F (1,0)(2τ, z)

B(2τ, z)
,

[η(τ)η(2τ)]8ψ1 = − 1

B(2τ, z)

×
[
F (0,0)(τ, z) + F (0,1)(τ + 1/2, z) + 2[F (1,0)(2τ, z)]2 + F (1,0)(4τ, z2)

]
.

We define

g(8)(τ) = [η(τ)η(2τ)]8(τ). (3.8)

The next step is to follow the procedure of [11] and write down an Appell-Lerch sum whose

poles and residues coincide with the weight 2 Jacobi forms transforming under Γ0(2) on the

left hand side of (3.7). We do not consider m = −1, since the Appell-Lerch sum diverges.

This is easy to see, because the meromorphic Jacobi form 1/B(2τ, z) is identical to the

function for the un-orbifolded theory with the replacement of τ → 2τ .
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P 2 = 0,m = 0. Let us examine the case m = 0. Using the expression for the twisted

elliptic genus in (3.4) we see that it reduces to

− g(8)(τ)ψ0 =
8

3

A(2τ, z)

B(2τ, z)
+

2

3
E2(τ). (3.9)

Now we can re-write

4
A(2τ, z)

B(2τ, z)
= −12

∑
n∈Z

q2ny

(1− q2ny)2
− E2(2τ), (3.10)

where E2 is the non-holomorphic Eisenstein series of weight 2. This identity was used

in [11].9 Combining (3.9) and (3.10) we see that the polar and the finite part is given by

g(8)(τ)ψP
0 = 8

∑
n∈Z

q2ny

(1− q2sy)2
, (3.11)

g(8)(τ)ψF
0 =

2

3
(E2(2τ)− E2(τ)) .

Therefore we have decomposed the meromorphic Jacobi form that occurs in the expan-

sion (3.6) at m = 0 to a polar part and a finite term. The finite term contains the mock

modular form E2(2τ) as well as E2(τ) both of which transforms under Γ0(2) with weight 2.

In appendix B we show that E2(2τ) is a Mock modular form of weight 2 in Γ0(2).

P 2 = 2,m = 1.y The first step in the analysis of the meromorphic Jacobi from that

occurs at m = 1 is to use the equations in the expression of the twisted elliptic genus (3.4)

to obtain

−g(8)(τ)ψ1 =
44

9

A2(2τ, z)

B(2τ, z)
+

8

3

A(τ, z)

B(2τ, z)
+

16

9
A(2τ, z)E2(τ) +

2

9
B(2τ, z)E2

2 (τ)

+
1

4
E4(2τ)B(2τ, z) +

4

3

θ2
2(2τ, z)

θ2
2(2τ)

E2(2τ)− 2

3

θ2
3(2τ, z)

θ2
3(2τ)

E2(τ + 1/2). (3.12)

Here we have also used the identities

3

4
E4 (τ)B (τ, z)2 = 4

(
A (2τ, 2z) +A

(τ
2
, z
)

+A

(
τ + 1

2
, z

)
−A2 (τ, z)

)
(3.13)

B
(
2τ, z2

)
B (τ, z)

= 4
θ2

2 (τ, z)

θ2
2 (τ)

,
B
(
τ
2 , 2z

)
B (τ, z)

=
θ2

4 (τ, z)

θ2
4 (τ)

,
B
(
τ+1

2 , 2z
)

B (τ, z)
=
θ2

3 (τ, z)

θ2
3 (τ)

.

It is more convenient to convert the ratios of theta functions in (3.12) to Jacobi forms A

and B. For this we use the identities

4
θ2(τ, z)2

θ2
2(τ)

=
4

3
A(τ, z)− 2

3
B(τ, z)E2(τ), (3.14)

4
θ4(τ, z)2

θ2
4(τ)

=
4

3
A(τ, z) +

1

3
B(τ, z)E2(τ/2),

4
θ3(τ, z)2

θ2
3(τ)

=
4

3
A(τ, z) +

1

3
B(τ, z)E2((τ + 1)/2).

9Let us remark about the notation of [11] in comparison with ours. 4A(τ, z)ours =

B(τ, z)theirs, B(τ, z)ours = −A(τ, z)theirs.
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Thus (3.12) becomes

−g(8)(τ)ψ1 =
44

9

A2(2τ, z)

B(2τ, z)
+

8

3

A(τ, z)

B(2τ, z)
+

16

9
A(2τ, z)E2(τ) +

2

9
B(2τ, z)E2

2 (τ)

+
1

4
E4(2τ)B(2τ, z) +

1

3

[
4

3
A(2τ, z)− 2

3
B(2τ, z)E2(2τ)

]
E2(2τ)

− 1

6

[
4

3
A(2τ, z) +

1

3
B(2τ, z)E2(τ + 1/2)

]
E2(τ + 1/2).

(3.15)

It is clear from this expression that polar terms arise from the meromorphic Jacobi

forms A2(2τ, z)/B(2τ, z) and A(τ, z)/B(2τ, z) of weight 2 transforming under Γ0(2) with

index 1/2. We can use the following identity derived in [11] to re-write A2(2τ, z)/B(2τ, z)

into an Appell-Lerch sum and a mock modular form

− 16
A2(2τ, z)

B(2τ, z)
= 144

∑
n∈Z

q2n2+2ny2n+1

(1− q2ny)2
− E4(2τ)B(2τ, z)− 288H(2τ, z). (3.16)

Here H is the simplest Jacobi mock modular form related to the generating function of

Hurwitz-Kronecker class numbers

H(τ, z) =

∞∑
n=0

H(4n− j2)qnyl. (3.17)

The coefficients H(n) are defined by

H(n) = 0 for n < 0, (3.18)∑
n∈Z

H(n)qn = − 1

12
+

1

3
q3 +

1

2
q4 + q7 + q8 + q11 + · · · (3.19)

What remains is to figure out how to write the meromorphic Jacobi form A(τ, z)/B(2τ, z)

as a polar part and a finite term. Note that the location of the poles of order 2 lie precisely

at the same point as the form A2(2τ, z)/B(2τ, z). Further more some bit of analysis shows

that the residue at the double pole and the simple pole of 3 A(τ,z)
B(2τ,z) is precisely equal to the

corresponding residues of A2(2τ, z)/B(2τ, z). A bit more study show that we can derive

the following identity satisfied by the meromorphic Jacobi forms

A(τ, z)

B(2τ, z)
=

1

3

A2(2τ, z)

B(2τ, z)
+

1

12
A(2τ, z)E2(τ) +

1

80
B(2τ, z)E4(τ)− 1

80
B(2τ, z)E4(2τ).

(3.20)

Further more we have the identities

−2E2 (τ) + E2

(τ
2

)
+ E

(
τ + 1

2

)
= 0, (3.21)

E4 (2τ) =
−1

4
E4 (τ) +

5

4
E2

2 (τ) ,

E2 (2τ) E2 (τ + 1/2) =
−3

8
E4 (τ) +

11

8
E2

2 (τ) ,

4E2
2 (2τ) + E2

2 (τ + 1/2) =
13

2
E2

2 (τ)− 3

2
E4 (τ) .
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Figure 1. Figure reproduced from [15] showing chamber R in the upper half axion-dilaton plane,

bounded by the walls of marginal stability, for the un-orbifolded theory, the 2A and the 3A orbifolds.

Now substituting (3.20), (3.21) in (3.15) we obtain

−g(8)(τ)ψ1 =
52

9

A2(2τ, z)

B(2τ, z)
+

20

9
A(2τ, z)E2(τ) +B(2τ, z)

(
1

16
E4(τ) +

19

144
E2

2 (τ)

)
Finally using the expansion in (3.16) and the identities in (3.21) we obtain

g(8)(τ)ψP
1 = 52

∑
n∈Z

q2n2+2ny2n+1

(1−q2ny)2
(3.22)

g(8)(τ)ψF
1 =−20

9
A(2τ,z)E2(2τ)−B(2τ,z)

(
13

36
E4(2τ)+

1

16
E4(τ)+

19

144
E2

2 (τ)

)
−104H(2τ,z)

From the final expression for the finite part ψF1 we see that the relevant mock modular

forms is the one constructed from the Hurwitz-Kronecker class numbers. It is the “optimal”

choice for the mock modular form. This is because the Fourier coefficients of qnyl of the

expansion of H(q, z) grow polynomially in 4n− l2. In appendix B we show that H(Nτ, z)

is a Mock Jacobi form of index 1/N in Γ0(N).

One important observation from our analysis at m = 1 is that there existed a differ-

ent meromorphic Jacobi form A(τ, z)/B(2τ, z) at the intermediate steps of our analysis.

However the identity (3.20) related it to the form A2(2τ, z)/B(2τ, z). We could then use

the identities obtained by [11] to obtain the polar and finite parts of the Fourier-Jacobi

coefficient of 1/Φ̃6(ρ, σ, v) at m = 1. Though we demonstrated this feature only till m = 1,

our preliminary analysis indicates that this persists in the expansion at higher magnetic

charges and the identities obtained by [11] are sufficient to obtain the mock modular forms

that determine the polar and the finite parts.

Fourier coefficients of ψF
1 and single centered dyons. The decomposition of ψ1

given in (3.22) has physical implications. Note that there is no ambiguity in the Fourier

expansion of ψF
1 , while the Fourier expansion of ψP

1 depends on the domain in the space

(q, y) where the expansion is performed. Let us elaborate on this further. We have defined

the degeneracy using the contour defined in (2.2). The ensures that we are in the region

R, right of the line that joins 0 and i∞ in the axion-dilaton moduli space The region R
was found in [21] and is shown in figure 1. of [15]. For completeness we have included the

figure 1 of [15] below. Using the definitions in (3.1) we see that we can first perform the
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expansions in p and therefore obtain the partition function ψ1 for fixed magnetic charge

P 2 = 2. Now from the contour defined in (2.2) we see that

|q| � 1,
1

|y|
� 1, |qny| � 1, |q

n

y
| � 1 (3.23)

where n > 0. This implies that we expand the polar part as

g(8)(τ)ψP
1 = 52

(
· · · q4y−3

(1− q2

y )2
+

1

y(1− 1
y )2

+
q4y3

(1− q2y)
+ · · ·

)
(3.24)

We can then further expand the denominator in each of the terms. It is clear from this

expansion, which is determined by the contour in (3.1) that the polar part contributes

only to the degeneracies with Q · P ≤ −1 and Q · P ≥ 3. Therefore the degeneracies for

Q · P = 0, Q · P = 1, Q · P = 2 with P 2 = 2 and Q2 ≥ 1/2 are entirely determined by ψF
1

for the contour choice in (2.2).

Let us now examine the kinematic constraints on charges found by [15] which ensures

that the attractor moduli for single centered black holes line in the region R. For the 2A

orbifold the conditions are given by10

Q2 > 0; P 2 > 0; Q2P 2 > (Q.P )2; 2Q2 + P 2 − 3(Q · P )2 ≥ 0; (3.25)

2Q2 ≥ Q · P ; P 2 ≥ Q · P ; Q · P ≥ 0.

For P 2 = 2, the condition Q·P ≤ P 2 tell us that 0 ≤ Q·P ≤ 2. This fact combined with the

discussion in the previous paragraph allows us to conclude that is the Fourier coefficients

of ψF
1 which determines the degeneracies of the single centered black hole and ψP

1 does

not contribute to these degeneracies. Note however that ψF
1 also contains degeneracies

for example Q2 = 1/2, Q · P = 2, P 2 = 2. This however does not satisfy the constraint

(Q ·P )2 < Q2P 2 or the constraint 2Q2 ≥ Q ·P . Thus we conclude: the degeneracies of the

single centered dyons are contained in ψF1 , but not all Fourier coefficients of ψF1 represent

single centered dyons.

A similar conclusion was also reached in [11] for the un-orbifolded theory by considering

the attractor contour. In that work an aprioi definition of ψF
m was given in terms of a

contour originally introduced by [22]. The attractor contour extracts the degeneracies of

single centered black holes. Here we have defined ψF
1 in terms of the splitting equation (3.2)

and (3.22). The crucial meromorphic form that occurs at this level which is given by

A2(2τ, z)/B(2τ, z) is the same as that found in [11] but with the argument τ → 2τ . Thus

one can indeed carry provide an a priori definition of ψF
m by following the steps of [11]. We

leave this for future work. As we will subsequently see, for the discussions in the rest of the

paper, the above analysis indicates that ψF1 contains the degeneracy of the single centered

black holes is sufficient.

3.2 Other orbifolds g′ of K3× T 2

In this section we study the Fourier-Jacobi coefficients of 1/Φ̃k of all the other orbifolds

listed in table 1. Our objective is to demonstrate that the mock modular forms which

10See inequalities in equation 3.9 along with the discussion around equation 3.5 of [15].
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determine the finite part of the Fourier-Jacobi coefficients till m = 1 is that same as that

for the un-orbifolded theory. The Fourier-Jacobi coefficients of 1/Φ̃k are defined as

1

Φ̃k(q, p, y)
=

∞∑
m=−1

φm(τ, z)p
m
N (3.26)

We restrict our analysis to m = −1, 0, 1. The first step is to use the product form given

in (2.3) to obtain ψ
(g′)
m . We divide our analysis for g′ whose order N is odd and g′ whose

order is even.

g′ with order N odd. This case includes the orbifolds pA with p = 3, 5, 7, 11 and 15A

and 15B. From the product form given in (2.3) we obtain

−ψ−1 =
1

B(Nτ,z)g(k+2)(τ)
(3.27)

−ψ0 =
NF (1,0)(Nτ,z)

B(Nτ,z)g(k+2)(τ)
,

−ψ1 =
1

B(Nτ,z)g(k+2)(τ)

×

[(
N2

2
F (1,0) (Nτ,z)

)2

+
N

2

(
F (1,0) (2Nτ,2z)+F (2,0)

(
Nτ

2
,z
)

+F (2,0)
(
N (τ+1)

2
,z
))]

.

Here the Γ0(N) form g(k+2)(τ) of weight k + 2 for each case can be read out from the

table 3. The weights can be read out from table 2. For example for pA it is given by

g(k+2)(τ) = ηk+2(τ)ηk+2(pτ). Now we can use the from of the twisted elliptic genus in (2.5)

to separate out the meromorphic Jacobi form. For m = 0 we obtain

− g(k+2)ψ0 = α
(1,0)
g′

A(Nτ, z)

B(Nτ, z)
+Nβ

(1,0)
g′ (Nτ). (3.28)

Recall the constants α
(r,s)
g′ and the Γ0(N) form β

(r,s)
g′ (τ) are read out from the explicit

computation of the twisted elliptic genus for all the orbifolds in table 1 from [9]. Using the

identity in (3.10) we see that the polar and the finite parts of ψ0 are given by

g(k+2)ψP0 = 3Nα(1,0)
∑
n∈Z

qNny

(1− qNny)2
, (3.29)

g(k+2)ψF0 =
Nα(1,0)

4
E2(Nτ)−Nβ(1,0)(Nτ).

For m = 1 we use the identities in (3.13) to isolate the meromorphic Jacobi form of weight

2 and index 1/N transforming under Γ0(N). This results in

−g(k+2)ψ1 =
N

2
α

(1,0)
g′

(
N

2
α

(1,0)
g′ +1

)
A2 (Nτ,z)

B (Nτ,z)
+
N

2
α(1,0) 3

16
E4 (Nτ)B (Nτ,z)+ (3.30)

+N2α
(1,0)
g′ A(Nτ,z)β(1,0) (Nτ)+

N2

2
β

(1,0)
g′ (Nτ)2B (Nτ,z)

+
N

2

[
4
θ2 (Nτ,z)2

θ2
2 (Nτ)

β
(1,0)
g′ (2Nτ)+

θ3 (Nτ,z)2

θ2
3 (Nτ)

β
(1,0)
g′

(
N (τ+1)

2

)
+
θ4 (Nτ,z)2

θ2
4 (Nτ)

β
(1,0)
g′

(
Nτ

2

)]
.
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From the above expression, we see that the only meromorphic Jacobi form is the term with

A2(Nτ, z)/B(Nτ, z). We can use the identity in (3.16), to write this form as a polar part

and a finite term. Also we can see that the rest of the terms in (3.30) can in principle be

written in terms of Jacobi forms transforming under Γ0(N). The polar term is given by

g(k+2)ψ1 =
9N

2
α

(1,0)
g′

(
N

2
α

(1,0)
g′ + 1

)∑
n∈Z

qNn
2
yNn+1

1− qNny
. (3.31)

It is not illuminating to write the finite term explicitly, but it can be written down if

needed. We note that the mock modular form that appears in the finite term is essentially

the generating function of Hurwitz-Kronecker class numbers H(Nτ, z).

g′ with order N even. Here we deal with the orbifolds belonging to class 4B, 6A, 8A,

14A, 14B. Again examining the product representation (2.3) we obtain

−ψ−1(q, z) =
1

B(Nτ, z)g(k+2)(τ)
, (3.32)

−ψ0(q, z) =
NF (1,0)(Nτ, z)

B(Nτ, z)g(k+2)(τ)
.

Comparing the m = 0 expression with that of (3.27) we see that this is same as that when

N is odd. Therefore the analysis proceeds identically and we obtain (3.29) for the polar

and the finite part. For m = 1 all the orbifolds with N even yield different expressions

4B : − g(k+2)(τ)ψ1 = (8F (1,0)(4τ, z))2

+2

[
F (1,0)(8τ, 2z) + F (2,0)(2τ, z) + F (2,1)

(
2τ +

1

2
, z

)]
,

6A : − g(k+2)(τ)ψ1 = (18F (1,0)(6τ, z))2

+3

[
F (1,0)(12τ, 2z) + F (2,0)(3τ, z) + F (2,3)

(
3τ +

3

2
, z

)]
,

8A : − g(k+2)(τ)ψ1 = (32F (1,0)(8τ, z))2

+4

[
F (1,0)(16τ, 2z) + F (2,0)(4τ, z) + F (2,1)

(
4τ +

1

2
, z

)]
,

14A : − g(k+2)(τ)ψ1 = (98F (1,0)(14τ, z))2

+7

[
F (1,0)(28τ, 2z) + F (2,0)(7τ, z) + F (2,7)

(
7τ +

7

2
, z

)]
.

Again using the expression for the twisted elliptic genus in (2.5) as well as the identi-

ties (3.13) we can isolate the meromorphic Jacobi-form that occurs for each of these cases.

We write this as

−g(k+2) (τ)ψ1 =
N

2
α

(1,0)
g′

(
N

2
α

(1,0)
g′ +1

)
A2 (Nτ,z)

B (Nτ,z)
+
N

2

(
α

(2,0)
g′ −α

(1,0)
g′

)A(Nτ2 ,z)
B (Nτ,z)

(3.33)

+N2α
(1,0)
g′ A(Nτ,z)β

(1,0)
g′ (Nτ)+

N2

2
β

(1,0)
g′ (Nτ)2B (Nτ,z)+

N

2
α

(1,0)
g′

3

16
E4 (Nτ)B (Nτ,z)

+
N

2

(
θ4 (Nτ,z)2

θ2
4 (Nτ)

β
(2,0)
g′

(
Nτ

2

)
+4

θ2 (Nτ,z)2

θ2
2 (Nτ)

β
(1,0)
g′ (2Nτ)

)
+φg′(τ,z).
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The Jacobi-form φg′(τ, z) for each of the orbifolds is given by

4B : φg′ (τ, z) =
2θ2

3 (4τ, z)

θ2
3 (4τ)

β(2,1)

(
2τ + 1

2

)
, (3.34)

6A : φg′ (τ, z) =
3θ2

3 (6τ, z)

θ2
3 (6τ)

β(2,3)

(
3 (τ + 1)

2

)
,

8A : φg′ (τ, z) =
4θ2

3 (8τ, z)

θ2
3 (8τ)

β(2,1)

(
4τ + 1

2

)
,

14A : φg′ (τ, z) =
7θ2

3 (14τ, z)

θ2
3 (14τ)

β(2,7)

(
7(τ + 1)

2

)
.

From (3.33) and (3.34) we see that the only meromorphic Jacobi forms that occur in the

expansion at m = 1 are A2(Nτ, z)/B(Nτ, z) and A(Nτ/2, z)/B(Nτ, z). Therefore we

can use the identity in (3.20) to first convert the form A(Nτ/2, z)/B(Nτ, z) to the form

A2(Nτ, z)/B(Nτ, z) and then use the identity in (3.16) to obtain the polar and the finite

term. All these manipulations can be done explicitly if necessary. It is clear that the mock

modular form that occurs at m = 1 in the finite part is again the generating function

Hurwitz-Kronecker class number H(Nτ, z).

In conclusion we have written the Fourier-Jacobi coefficients that occur at levels m =

0,m = 1, that is magnetic charge P 2 = 0, 2 as a polar part and a finite part for all

the orbifolds in table 1. We have shown that the Mock modular forms that occur in the

finite term are E2(Nτ) and the generating function of Hurwitz-Kronecker class numbers

H(Nτ, z) for these levels. There are identities that allow us to use the results of [11] to

obtain the finite terms though we are dealing with forms that meromorphic Jacobi forms

that transform under Γ0(N). In appendix B we show that H(Nτ, z) is a Mock Jacobi form

of index 1/N in Γ0(N). Finally we mention that just as in the Z2 case, the degeneracies of

single centered black holes can be extracted by examining Fourier coefficients of ψF1 . Most

likely this pattern persists at higher levels in the magnetic charge expansion. It will be

interesting to explore this further.

4 Toroidal orbifolds

In this section we study N = 4 string theories originally constructed by [13]. These involve

compactification of type IIB string theory on T 6 with a reflection along 4 of the co-ordinates

together with a 1/2 shift along one of the remaining circles. The type IIA description of the

theory is that of a freely acting orbifold with the action of (−1)FL and a 1/2 shift along one

of the circles of T 6. For details of these two descriptions and the dyon configuration in this

theory see [19]. A similar compactification but in which the reflection in the 4 directions

along the T 4 in type IIB theory is replaced by 2π/3 rotation along one two dimensional

plane of T 4 and a −2π/3 rotation along the other two dimension place together with a 1/3

shift along one of the circles of the remaining T 2 was also discussed in [19]. We will call

these models Z2 and Z3 toroidal orbifolds. The dyon partition function for these model is
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given by the same expression as in (2.1) but the Siegel form given by

Φ̃(ρ, σ, v) = e2πi(ρ̃+ṽ) (4.1)∏
b=0,1

N−1∏
r=0

∏
k′∈Z+ r

N
,l∈Z,

j∈2Z+b
k′,l≥0, j<0 k′=l=0

(1− e2πi(k′σ+lρ+jv))
∑N−1
s=0 e2πisl/N cr,sb (4k′l−j2).

Note the difference in the factor on the first line in comparison with (2.3). The coefficients

c(r,s) are read out from the following twisted elliptic genus for the Z2 toroidal orbifold.

F (0,0) = 0, (4.2)

F (0,1) =
8

3
A(τ, z)− 4

3
B(τ, z)E2(τ),

F (1,0) =
8

3
A (τ, z) +

2

3
B (τ, z) E2

(τ
2

)
,

F (1,1) =
8

3
A(τ, z) +

2

3
B(τ, z)E2

(
τ + 1

2

)
.

Since this twisted elliptic genus is closely related to the 2A orbifold given in (3.4) with

F (0,0 set to zero and the remaining indices multiplied by a factor of 2. The corresponding

Siegel form is of weight k = 2 and can be written as

Φ̃2(ρ, σ, v) =
Φ̃2

6(ρ, σ, v)

Φ̃10(ρ, σ, v)
. (4.3)

Here Φ̃6 is the weight 6 Siegel modular form associated with the 2A orbifold. For the Z3

toroidal orbifold the twisted elliptic genus is given by

F (0,0) = 0 (4.4)

F (0,s) = A(τ, z)− 3

4
B(τ, z)E3(τ)

F (r,rk) = A(τ, z) +
1

4
B(τ, z)E3

(
τ + k

3

)
, r = 1, 2.

Note that F (r,s) are defined with r, s mod 3. The Siegel modular form associated with the

Z3 toroidal orbifold is of weight k = 1 and is given by

Φ̃1(ρ, σ, v) =
Φ̃

3/4
4 (ρ, σ, v)

Φ̃
1/2
10 (ρ, σ, v)

. (4.5)

In [15] it was argued that the index d(Q,P ) as defined in (2.1) must be positive for

single centered black holes.11 The argument relied on the fact that single centered black

holes are spherically symmetric and therefore carry zero angular momentum. The only

source of signs in the index d(Q,P ) for single centered black holes then arise only from

11In [15] d(Q,P ) was refered to as the index −B6.
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fermionic zero modes associated with a 1/4 BPS state. This results in the d(Q,P ) being

positive. This conjecture was verified for the orbifolds pA with p = 2, 3, 5, 7 in [15]. In [9]

the conjecture was verified for all the orbifolds listed in table 1 which includes the CHL

orbifolds 4B, 6A, 8A as well as the non-geometric orbifolds associated with the class 23A/B

and classes 2B, 3B which lie in the Mathieu group M24. However it was noticed in [9] that

Siegel modular forms associated with certain twisted elliptic genera written down in [27]

did not satisfy the conjecture12 These twisted elliptic genera satisfied the property

N−1∑
r,s=0

F (r,s) = 0 (4.6)

At present there are no known string compactification which results in the twisted elliptic

genera written down by [27]13

In this section we show that even the toroidal Z2,Z3 orbifolds defined above which

admit a string compactification as well as a construction of dyons do not satisfy the pos-

itivity conjecture for the index d(Q,P ) for single centered dyons at low values of charges.

This suggests that these single centered dyons are not spherically symmetric and possibly

admit hair modes which contain additional fermionic zero modes. We identify the single

centered dyon by both the constraints given in [15] as well as subtracting the polar part in

the meromorphic Jacobi-form that occurs at a definite magnetic charge.

4.1 Z2 toroidal orbifold

The Z2 orbifold compactification involves a 1/2 shift on one of the circles of T 2. Thus

the SL(2,Z) symmetry of the torus is broken down to Γ0(2), which is now the duality

symmetry of the dyon system. In [15] the positivity property of d(Q,P ) was studied for

the 2A orbifold was studied and the constraints on charges for the single centered black

hole was identified. To arrive at these conditions only the Γ0(2) duality symmetry of the

dyon system was used. This symmetry was used to map the wall of marginal stability

that runs from 0 to i∞ in the axion-dilaton moduli space to all the walls which border the

region R,14 (figure 1). Since the duality symmetry of the Z2 toroidal orbifold is also Γ0(2),

the conditions will remain same. Given the fact that the Fourier coefficients are extracted

using the contour (2.2), the conditions on charges that the attractor moduli lie in R are

given by

Q2 > 0; P 2 > 0; Q2P 2 > (Q.P )2; 2Q2 + P 2 − 3(Q · P )2 ≥ 0; (4.7)

2Q2 ≥ Q · P ; P 2 ≥ Q · P ; Q · P ≥ 0.

Later in this section we will also identify single centered dyons by subtracting out the

polar part in the meromorphic Jacobi form that occurs at a definite magnetic charge.

As discussed earlier, the degeneracies of single centered black holes can be obtained by

12See tables XVI, XVII of the Phys. Rev. D version of [9].
13See equations 3.20, 3.22 of Phys. Rev. D version of [9] for the explicit form of the twisted elliptic genera.
14As discussed earlier the region R in the axion-dilaton moduli space corresponds to the contour given

in equation (2.2).
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Q2 \P 2 0 2 4 6 8

0 2 64 816 6912 45584

1 −12 −224 −1248 1728 95104

2 48 1152 18240 233984 2432544

3 −168 −3392 −10320 542976 12103360

4 528 −11520 200736 4575744 86712256

5 −1512 −30336 −55424 12914944 412163328

6 4032 83968 1544832 61928448 2013023104

7 −10176 −202560 −179022 175358304 8292093664

8 24528 496512 9480000 638922240 32998944096

9 −56796 −1118496 −155232 1735394112 119618619520

10 127008 2521600 49523328 5364983808 415768863360

11 −275544 −5374656 2684560 13858160960 1359548367552

12 581952 11389440 228872064 38347445760 4277873003392

13 −1199688 −23194176 24502656 94345755264 12874682948352

14 2419584 46824960 959446272 240772494336 37480253184000

15 −4783968 −91770432 142728318 566613885216 105389524965472

16 9288528 178117376 3712290336 1358448247296 288023853905856

17 −17735256 −337839744 678230784 3072125756544 765208401512448

18 33343344 634494592 13426540992 7004675317248 1983801614528672

19 −61794600 −1169806144 2834120592 15289076372544 5022356020513856

20 113002848 2136181248 45830851200 33439408301056 12447769083229056

21 −204081024 −3841753664 10783524096 7071452719680 30229570751178240

22 364274496 6846494720 148756097664 149298142934016 72059338059045504

23 −643092768 −12044893632 38123432260 306899147706368 168747648892043328

Table 17. The index d(Q,P ) for the Z2 toroidal orbifold some low lying values of Q2, P 2 with

Q · P = 0.

examining the Fourier coefficients of the finite part of the meromorphic Jacobi form. We

will also need to impost the conditions in (4.7) for the Fourier coefficients so that they

correspond to single centered dyons.

We extract the Fourier coefficients from the finite part of the meromorphic part of the

magnetic charge expansion, or more directly using the contour in (2.2) with the constraints

in (4.7) which ensure that we are studying single centered dyons. We show that there are

cases in which the positivity conjecture of [15] is violated.

Let us first list the some of the violations. Tables 17, 18 19 list out the degeneracy

d(Q,P ) for small values of Q2, P 2 with Q ·P = 0, 1, 2 respectively. The charges correspond-

ing to single centered dyons in the range (3.25) and violating the positivity conjecture are

marked in bold.

Let us again confirm that the charges as well as the degeneracies which are violating

the positivity conjecture for d(Q,P ) is that of the single centered black hole. For this we

study the Fourier-Jacobi coefficients that occur at for low but fixed magnetic charges but

arbitrary electric charge and angular momentum. Thus we look for the expansion

1

Φ̃2(q, p, y)
=
∞∑
m=0

ψm(τ, z)p
m
2 . (4.8)
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Q2 \P 2 0 2 4 6 8

0 0 0 −8 −128 −1160

1 1 96 1968 22528 190047

2 −8 −256 840 70912 1127672

3 37 1376 34656 728256 11046139

4 −136 −3840 16632 2497408 61486056

5 439 13152 343152 13144832 348876305

6 −1288 −33536 171152 42058240 1603241304

7 3503 92928 2476752 162898624 7016918625

8 −8968 −220672 1265256 480911872 27503872048

9 21854 540416 14545584 1556561664 102315259287

10 −51080 −1204992 7558560 4271142656 354800345088

11 115154 2711616 73540080 12261114752 1175752005781

12 −251528 −5741824 38736600 31586749312 3705255587616

13 534304 12144096 331284816 83106163712 11241057088056

14 −1107080 −24613888 176485368 202830655232 32810366529704

15 2242936 49597408 1360242048 499048223424 92762004787995

16 −4452488 −96865536 731764656 1162636791680 254219096542800

17 8675803 187681920 5172820416 2710918677760 678135519966520

18 −16618760 −355014144 2806978216 6065899132672 1762706150153656

19 31335779 665705664 18435647328 13529566137472 4476930500026908

20 −58228616 −1224694784 10082072832 29223048194432 11122701903357048

21 106740533 2233279616 62133135120 62776998234368 27083291897745248

22 −193201800 −4009231104 34221009384 131432145572096 64699862426642976

23 345565877 7135993088 199430638848 273349419121472 151855990384385978

Table 18. The index d(Q,P ) for the Z2 toroidal orbifold some low lying values of Q2, P 2 with

Q · P = 1.

Note that the expansion in terms of the magnetic variable y can take half integral values

but cannot be negative. Here also m is related to the magnetic charge by P 2 = 2m. From

the product form of Φ̃2 given in (2.3) constructed using the twisted elliptic genus in (4.2)

we obtain

[
η16 (2τ)

η8 (τ)

]
ψ0 = −F

(1,0) (2τ, z)

8B (2τ, z)
, (4.9)[

η16(2τ)

η8(τ)

]
ψ1 = −F

(1,0)(2τ, z)2

4B(2τ, z)
.

We define

g(4)(τ) =

[
η16(2τ)

η8(τ)

]
. (4.10)

We re-write the meromorphic Jacobi form ψ0 and ψ1 corresponding to magnetic charges

P 2 = 0, P 2 = 2 as a polar part and finite term. We perform this decomposition for m = 0

and m = 1.
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Q2 \P 2 0 2 4 6 8

0 0 0 0 0 16

1 0 0 −12 −224 −1248

2 0 64 2592 43264 491904

3 −2 −224 2432 191168 3805600

4 16 1152 43392 1440256 30853488

5 −72 −3392 33720 5363680 171782688

6 256 11520 414336 24533248 893029504

7 −806 −30336 302400 80281536 3963098880

8 2320 83968 2926080 287831552 16432262672

9 −6200 −202560 2049968 851816352 62214237440

10 15616 496512 16919712 2627695616 222752294016

11 −37508 −1118496 11568000 7176834368 750069187008

12 86544 2521600 84554880 19942216704 2414262572768

13 −192800 −5374656 56838432 51008186976 7425202332576

14 416512 11389440 377428608 131082715648 22009992439296

15 −875808 −23194176 250745920 317429798336 62951326894880

16 1797648 46824960 1538196480 767174552576 174613994718000

17 −3610064 −91770432 1013176056 1773519888864 470403008967552

18 7107328 178117376 5813224704 4077368575488 1234828601424128

19 −13741542 −337839744 3805021440 9056713382272 3162966840870720

20 26130192 634494592 20608359552 19969539018240 7923569863533760

21 −48930016 −1169806144 13425820256 42839061178880 19436689033887616

22 90327040 2136181248 69137356032 91147913531648 46764751712533632

23 −164551050 −3841753664 44883305472 189628816546240 110476832098945280

Table 19. The index d(Q,P ) for the Z2 toroidal orbifold some low lying values of Q2, P 2 with

Q · P = 2.

P 2 = 0,m = 0. Now we examine the case m = 0. Using the expression for the twisted

elliptic genus in (4.2) we see that it reduces to

− g(4)(τ)ψ0 =
1

3

A(2τ, z)

B(2τ, z)
+

1

12
E2(τ). (4.11)

Combining (3.9) and (4.11) we see that the polar and the finite part is given by

g(4)(τ)ψP
0 =

∑
s∈Z

q2sy

(1− q2sy)2
, (4.12)

ψF
0 =

1

12g(4)(τ)
(E2(2τ)− E2(τ)) .

The finite part is certainly not of definite sign. Examining the numerator we see that each

of the terms are of the same sign. This is because

E2(2τ)− E2(τ) = −24
∞∑
n=1

(σ(n)qn − σ(n)q2n) (4.13)
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where σ(n) is the divisor function of n. However due to the presence g(4)(τ) in the de-

nominator the signs of the terms in the q expansion are not definite. We can contrast

this situation with the 2A orbifold. The finite part for the meromorphic Jacobi form for

the 2A orbifold at m = 0 is given by (3.11) which by the same analysis is manifestly of a

definite sign.

As discussed for the 2A orbifold, let us also examine what is the effect of the subtraction

of the polar part to the degeneracy d(Q,P ). For this recall the degeneracy is evaluated by

extracting out the Fourier coefficients using the contour (2.2). This implies that we expand

the polar part as follows

g(4)(τ)ψP
0 =

q2y

(1− q2y)2
+

q4

(1− q4y)2
+ · · · (4.14)

+
1

y(1− 1
y )2

+
q2

y(1− q2

y )2
+ · · ·

This is because from the contour in (2.2) and using the definitions in (3.1) we see that

|q| � 1, 1/|y| � 1 and |qny| � 1, |qn/y| � 1. In each of the above lines we can further

expand the denominators in q. Thus we see that subtraction of the polar part at m = 0

affects only the d(Q,P ) with Q · P ≥ 1 or Q · P ≤ −1 with P 2 = 0. Thus the degeneracies

with Q · P = 0, P 2 = 0 are not affected by the subtraction of the polar part. This implies

that the list of degeneracies in the first column of table 17 is that can be obtained from

the q expansion of the finite term ΨF
0 . This can be verified explicitly and indeed the terms

have the sign which is given by (−1)Q
2
.

However note that according to the domain of charges given in (4.7) the charges which

satisfy Q ·P = 0 are not single centered. Therefore we see that the domain (3.25) is a more

restrictive definition of single centered black holes. However the Fourier coefficients of ψF0
is not of the same sign for the Z2 toroidal orbifold.

P 2 = 2,m = 1. Using the expression of the twisted elliptic genus (4.2) we can write the

meromorphic Jacobi from that occurs at m = 1 in (4.9). This results in

−g(4)(τ)ψ1 =
16

9

A2(2τ, z)

B(2τ, z)
+

8

9
A(2τ, z)E2(τ) +

1

9
B(2τ, z)E2

2 (τ).

We can use the identity in (3.16) to extract out the polar and the finite parts of ψ1. This

results in

g(4)(τ)ψP
1 = 16

∑
n∈Z

q2n2+2ny2n+1

(1− q2ny)2
, (4.15)

g(4)(τ)ψF
1 = −8

9
A(2τ, z)E2(τ)− 1

9
B(2τ, z)

[
E4(2τ) + E2

2 (τ)
]
− 32H(2τ, z).

Note again the appearance of the function H. Let us examine if the sign of the Fourier

coefficients of the finite part ψF
1 is the same. For this let again go through the analysis

of what is the effect of the subtraction of the polar part ψP
1 . Since we are evaluating the
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degeneracies in the domain (2.2) we expand the polar part as

g(4)(τ)ψP
1 =

16q4y3

(1− q2y)2
+

16q10y5

(1− q4y)2
+ · · · (4.16)

+
16

y(1− 1
y )2

+
16q4

y3(1− q2

y )2
+ · · ·

Therefore subtraction of the polar part at m = 1 affects d(Q,P ) with P 2 = 2 and Q ·P ≥ 3

or Q ·P ≤ −1. Thus the degeneracies in listed in the second column of tables 17, 18, 19 are

unchanged by the subtraction, and therefore equal to that given by the finite part ψF
1 . We

have verified this explicitly, in fact this is within the domain given in (3.25). Also in [11]

it was argued that the finite part captures the degeneracies of the single centered black

hole. It is clear from the second column of the tables 17, 18, 19 that the signs violate the

positivity conjecture.

Further more note that from the tables for P 2 = 2 and Q · P ≤ 2 we see that the sign

is d(Q,P ) is given by (−1)Q
2
. This can be seen also analytically by writing ψ1 in terms of

its product form. Using the form of ψ1 given in (4.9) and writing all the modular forms in

terms of their product representation we obtain

ψ1 =
1

(q2
∞)4qy(1− 1/y)2

∏∞
m=1(1− q2m−1y)4(1− q2m−1/y)4∏∞
m=1(1− q2my)2(1− q2m/y)2

.

(4.17)

Here q2
∞ =

∏∞
n=1(1 − q2n). From the above equation it is evident that the sign of the

coefficient of odd or even powers of q is independent of the power of z. This implies that

no matter what is the value of Q · P , the sign of the coefficient of qn is given by (−1)n.

This is what is seen in the tables 17, 18, 19 for Q · P = 0, 1, 2 respectively. In fact this

analysis shows that the positivity conjecture is violated for infinite values of Q2 in with

Q ·P = 0, 1, 2 and P 2 = 2. Note that these charges satisfy the condition (3.25). As argued

above they are also counted in ψF
1 and therefore correspond to single centered black holes.

The violation of the sign of d(Q,P ) with P 2 = 2, 4 for the case of single centered dyons

suggest that these states might have fermionic zero modes as hairs. This was one of the

options provided in [15] if the positivity conjecture fails. As further evidence of possible

other degrees of freedom, we evaluate the leading saddle point statistical entropy at one

loop for charges satisfying the condition (3.25) and therefore single centered. We then

compare it to the exact degeneracy obtained by evaluating the Fourier coefficient d(Q,P ).

Going through a similar analysis as in section 2 for the Z2 toroidal orbifold, we find that

the statistical entropy at one loop is given by

S
(1)
stat =

π

2τ2
| P√

2
−
√

2τQ|2 − ln g(4)(τ)− ln g(4)(−τ̄)− 4 ln(2τ2)− 9 ln 2 +O(Q−2, P−2),

τ1 =
Q · P
2Q2

, τ2 =
1

2Q2

√
Q2P 2 − (Q · P )2 (4.18)

The reason that there is a replacement of Q → P/
√

2 and P → Q
√

2 compared to (2.42)

is that Siegel modular form Φ̃2 does not posses the symmetry in (2.13) which is obeyed
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(Q2, P 2Q.P ) dstat Sstat S1
stat δ

(2, 4, 0) 18240 9.81137 9.95979 −1.5

(4, 4, 0) 200736 12.2097 11.9331 2.2

(4, 8, 2) 30853488 17.2448 17.5761 −1.92

(6, 8, 1) 1603241304 21.1953 21.5658 −1.75

(8, 6, 0) 638922240 20.2753 20.5197 −1.2

(11, 4, 0) 2684560 14.80 18.12 −22.43

(3, 4, 2) 2432 7.79 9.21 −18.23

(2, 4, 1) 840 6.73 9.26 −37.6

(2, 8, 1) 16632 9.72 11.6 19.34

(1, 6, 0) 1728 7.45 13.26 −77.98

Table 20. Comparison of the statistical entropy and the statistical entropy at one loop for the

toroidal Z2 orbifold.

by the modular form corresponding to the orbifolds of K3 × T 2 Note that we have also

evaluated the constant C1 in the statistical entropy function. This was done using the

relation obeyed by Φ̃2 in (4.3).

We now compare the one loop statistical entropy in (4.18) to the exact degeneracy

which is obtained from extracting the Fourier coefficients using (2.1) in table 20. The

charges chosen are in the range (3.25). Therefore they are single centered, they also obey

the property that d(Q,P ) is positive. We note that there is a set of charges for which the

one loop statistical entropy is off from the exact degeneracy by over 75%. There is also a

set of charges for which the statistical entropy agrees with the exact degeneracy to within

2%. The fact that there is a set of small charges for which the deviation from the one loop

statistical entropy is high certainly indicates that we need to understand the geometric

description for dyons in these theories better.

4.2 Z3 toroidal orbifold

In this section we briefly discuss the Z3 orbifold, We first list out the violations of the

positivity conjecture in table 21. The violations are indicated in bold face. Again let us

mention that by performing the Fourier expansion using the contour in (2.2) we in the

region R in the axion-dilaton moduli. Now demanding that the attractor moduli lie in

the region R so that the dyon is single centered results in following constraints on the

charges [15].

The condition for the dyon to be single centered are given by [15].

Q2 > 0, P 2 > 0; Q2P 2 > (Q · P )2, Q · P ≥ 0, Q · P ≤ 3Q2, Q · P ≤ P 2, (4.19)

5Q · P ≤ 6Q2 + P 2, 5Q · P ≤ 3Q2 + P 2, 7Q · P ≤ 6Q2 + 2P 2

The single centered charges that violate the positivity conjecture are given in the table 21.
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(Q2, P 2) \Q · P −1 0 1 2 3 4

(2/3, 2) 0 18 9 0 0 0

(4/3,2) −252 −36 45 0 0 0

(4/3, 4) −1458 540 864 54 0 0

(4/3, 8) 18378 93816 72099 9846 45 0

(4/3,12) −119502 3522240 2436363 447606 9243 −6

Table 21. Some results for the index −B6 for the torus order 3 orbifold of T 4 for different values

of Q2, P 2 and Q · P .

For completeness we provide the meromorphic Jacobi forms that occur in the expansion

of the inverse Siegel modular form Φ̃1 Again we define

1

Φ1(q, y, z)
=
∞∑
m=0

ψm(q, z)y(m)/3, (4.20)

where φm(q, z) is a modular function of 2 variables.

ψ0 =
F (1,0)

3B(3τ, z)

η3(τ)

η9(3τ)
, (4.21)

ψ1 = ψ0 (3F (1,0)).

Rewriting these in terms in the Jacobi forms A,B we obtain

ψ0 =
1

3

η3(τ)

η9(3τ)

(
A(3τ, z)

B(3τ, z)
+

1

12

η3(τ)

η9(3τ)
E3(τ)

)
, (4.22)

ψ1 =
η3(τ)

η9(3τ)

(
A2(3τ, z)

B(3τ, z)
+

1

2
A(3τ, z)E3(τ) +

1

16
B(3τ, z)E2

3 (τ)

)
Note again since only the meromorphic forms A(3τ, z)/B(3τ, z) and A2(3τ, z)/B(3τ, z)

occur. We can use the identities (3.10) and (3.16) to obtain the polar and the finite part

for these ratios respectively.

5 Conclusions

We have observed three properties of 1/4 BPS dyons in N = 4 theories at low charges.

We have seen that the constant C1 contributes crucially to the entropy at low charges. As

we have discussed in section 2.4 reproducing this constant using the method of localization

proposed in [25, 26] will be interesting to pursue. In fact all the present works in this

direction do not address the ZN orbifolds of K3× T 2.

We have extended the observations of [11]. We showed that the for all the orbifolds

considered in this paper, we can decompose the meromorphic Jacobi form that occurs in

the Fourier-Jacobi decomposition of the inverse of Siegel modular forms in to a polar part

and a finite part which involves a mock modular form. This has been done to magnetic

charge P 2 = 2. We have seen that the mock modular form that occurs is same as that
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occurred in the un-orbifolded theory to this order in magnetic charge. It will be interesting

to go to higher levels in magnetic charge and see if this is always the case.

Finally we have observed a infinite set of violations of the positivity conjecture for the

Fourier coefficient of the inverse Siegel modular form [15]. This was seen for the case of Z2

toroidal orbifold. We have demonstrated that the charges which violate the conjecture are

single centered. Therefore according to the arguments of [15] it is possible that these vio-

lations might be due to the presence of hair. It will be interesting to understand this more

precisely. Violations of the positivity conjecture was also seen for the Z3 toroidal orbifold.
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A Details on obtaining C1 from the threshold integral

In this appendix we provide the details on how to obtain the constant C1 by performing

the threshold integrals Î in (2.33) and Ĩ given in (2.26). The un-folding technique is

used to perform these integrals. We can do the integral Ĩ following [19] and we obtain

the result (2.30). The constant arises in the integral Î. Here we outline the steps in the

integration which gives rise to the constant C1. The first step to do the integral Î in (2.33)

is to perform the Poisson sum on m1,m2. This results in

Îr,s,l =

∫
F

d2τ

τ2
2

Y

U2

∑
r,s

∑
n1,n2,k1,k2∈Z

e−2πisn2/Ne2πik2r/N exp(G(n1, n2, k1, k2))hr,sl , (A.1)

where G(n1, n2, k1, k2) is given as,

G(n1, n2, k1, k2) = − πY

U2
2 τ2
|A|2 − 2πi det(A)T (A.2)

+
πb

U2
(V Ã − V̄A)− πn2

U2
(V 2Ã − V̄ 2A)2πi

V 2
2

U2
2

(n1 + n2Ū)A+
2πiτb2

4
,

and

A =

(
n1 k1

n2 k2

)
, A =

(
1 U

)
A

(
τ

1

)
, Ã =

(
1 Ū

)
A

(
τ

1

)
(A.3)
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Using the unfolding technique as in [19], the integration splits into the zero orbit,

degenerate orbit and the non-degenerate orbit. What we need to keep track of is the

constants and that too the difference of the constants that occur in the integral Ĩ of (2.26)

and the integral Î. Constants can arise in the zero orbit and the degenerate orbit. In the

zero orbit here we have A = 0 therefore

Izero orbit =
Y

U2

∫
F

d2τ

τ2
2

∑
r,s

F (r,s)(τ, 0).

Performing this integral, for all the orbifolds in table 1 we see that the constant that arises

here is same as that of the un orbifolded K3 and equal to the constant that arises in the

zero orbit of the Ĩ integral. Lets now examine the degenerate orbit. Here the matrix A is

given by

A =

(
0 k1

0 k2

)
, k1, k2 ∈ Z, (k1, k2) 6= (0, 0). (A.4)

The integration region in the degenerate orbit is the strip given by

− 1

2
≤ τ1 ≤

1

2
, τ2 ≥ 0 (A.5)

Apart from the moduli dependent terms and the constant −2k lnκ as in the integral Ĩ there

is an additional constant due to the contribution from the twisted sector. The twisted sector

does not contribute in the zero orbit of the Ĩ integral. Furthermore from (A.2) the only

τ1 dependence arises from the q expansion of the twisted elliptic genus. Note that since

n2 = 0, we obtain a sum over s. Then it can be seen that the twisted elliptic genus obeys

the property
N−1∑
s=0

F (r,s)(τ + 1, z) =

N−1∑
s=0

F (r,s)(τ, z) (A.6)

Due to this periodicity in τ , only the coefficient of q0 contributes on performing the τ1

integral in the domain (A.5). Then doing the τ2 integral in the twisted sectors we are left

with the additional constant term15

C =
∑
s

c(r,s)(0)
∑

k2∈Z,k2>0

2

k2
e2πik2r/N . (A.7)

From the explicit evaluation of the twisted elliptic genus in [9] we list the values of∑N−1
s=0 c(r,s)(0) for each twisted sector in different orbifolds of K3 given in table 1. For a

prime N we have,∑
s

c(r,s)(0)
∑

k2∈Z,k2>0,r 6=0

2

k2
e2πik2r/N = 2(k + 2)

∑
k2∈Z,k2>0

1

k2
e2πik2r/N . (A.8)

We have the identity ∑
k2∈Z,k2>0

1

k2
e2πik2r/N = − ln(1− e2πir/N ). (A.9)

15In principle there can be another moduli dependent term in this sector if
∑
s c

(r,s)(−1) be non-zero.

However for all orbifolds g′ in table 1 this vanishes.
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Now summing this on the required range of r ie, 0 < r < n we get,

N−1∑
r=1

∑
k2∈Z,k2>0

1

k2
e2πik2r/N = − log

(
N−1∏
r=1

(1− e2πir/N )

)
= − lnN. (A.10)

Thus, we have the result

C =
N−1∑
r=1

∑
s

c(r,s)(0)
∑

k2∈Z,k2>0

2

k2
e2πik2r/N = −2(k + 2) ln(N). (A.11)

Again from the list given in table 22 we perform the sums in C for every other orbifolds

listed in table 1. For 4B we have,

C =
3∑
r=1

∑
s

4
∑

k2∈Z,k2>0,r 6=0

2

k2
e2πik2r/4 + 2

∑
k2∈Z,k2>0

2

k2
e2πik2/2

= (−8 ln 4 + 4 ln 2) = −10 log(4)

= −2(k + 2) ln 4. (A.12)

In case of 6A we have,

C =

5∑
r=1

∑
s

2
∑

k2∈Z,k2>0,r 6=0

2

k2
e2πik2r/6 + 2

∑
k2∈Z,k2>0

2

k2
e2πik2/3 + 2

∑
k2∈Z,k2>0

2

k2
e2πik2/2

= −(4 ln 6 + 4 ln 3 + 4 ln 2) = −8 ln(6)

= −2(k + 2) ln 6. (A.13)

Similarly for 8A orbifold we get,

C =
7∑
r=1

∑
s

2
∑

k2∈Z,k2>0,r 6=0

2

k2
e2πik2r/6 +

∑
k2∈Z,k2>0

2

k2
e2πik2/4 +

∑
k2∈Z,k2>0

2

k2
e2πik2/2

= −(4 ln 8 + 2 ln 4 + 2 ln 2) = −6 ln(8)

= −2(k + 2) ln 8. (A.14)

Similarly one can perform this computation for the orbifolds 14A and 15A resulting in

C = −2(k + 2) ln 14 and C = −2(k + 2) ln 15 respectively. It is interesting to note that

though the sums initially seems different for all the different orbifolds, they all yield C =

−2(k + 2) lnN . This concludes our derivation of the additional constant C in (2.35).

B Mock modular forms

In this appendix we define the Mock modular forms taking the definitions from [11] as fol-

lows:

A weakly holomorphic pure mock modular form of weight k ∈ Z/2 h(τ) is defined as:

1. h(τ) is a holomorphic function in H with at most exponential growth at all cusps.
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Orbifold Order k r
∑N−1

s=0 c(r,s)(0)

pA p (prime) 24
p+1 − 2 r 6= 0 k + 2

4B 4 3 r = 1, 3 4

r = 2 6

6A 6 2 r = 1, 5 2

r = 2, 4 4

r = 3 4

8A 8 1 r = 1, 3, 5, 7 2

r = 2, 6 3

r = 4 4

14A 14 0 r = 1, 3, 5, 9, 11, 13 1

r = 2, 4, 6, 8, 10, 12 2

r = 7 2

15A 15 0 r = 1, 2, 4, 7, 8, 11, 13, 14 1

r = 3, 6, 9, 12 2

r = 5, 10 2

Table 22. List of c(r,s)(0).

2. The function g(τ), called the shadow of h, is a holomorphic modular form of weight

2− k, and

3. the sum ĥ := h+g∗ is called the completion of h, which transforms like a holomorphic

modular form of weight k for some congruent subgroup of SL(2,Z).

Here g∗(τ) is the non-holomorphic Eichler integral which is the solution of the differen-

tial equation

(4πτ2)k∂τ̄g
∗(τ) = −2πig(τ) (B.1)

The simplest examples we encounter in the Fourier-Jacobi expansions of Siegel modular

forms is E2(τ) which is mock modular and its completion Ê2(τ) = E2(τ) − 3
πτ2

. In this

case we have

h(τ) = E2(τ), g∗(τ) = − 3

πτ2
, ĥ(τ) = Ê2(τ). (B.2)

Computing g(τ) for E2(τ) we get −12 ie, a constant. Now if we replace τ with Nτ we

would get,

h(Nτ) = E2(Nτ), g∗(Nτ) = − 3

πNτ2
, ĥ(Nτ) = Ê2(Nτ). (B.3)

Now since ĥ(τ) is a modular form of SL(2,Z) we have under a Γ0(N) transformation:

ĥ (Nτ)→ ĥ

(
N

aτ + b

cNτ + d

)
with ad− bcN = 1, (B.4)
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where a, b, c, d ∈ Z.

ĥ

(
N

aτ + b

cNτ + d

)
= ĥ

(
aNτ + bN

cNτ + d

)
= ĥ

(
aτ ′ + bN

cτ ′ + d

)
, (B.5)

= (cτ ′ + d)kĥ(τ ′) = (cNτ + d)kĥ(Nτ),

with ad − bcN = 1, τ ′ = Nτ . Therefore ĥ(Nτ) is a modular form under Γ0(N). This

observation can be easily generalized if ĥ(τ) itself is a modular form under subgroups of

SL(2,Z). For instance if ĥ(τ) is a modular form under Γ0(n), then ĥ(τ) is a modular form

under Γ0(nN). The second example we deal with in this paper is the generating function

of Hurwitz-Kronecker class numbers H(τ) which is a mock modular form under Γ0(4). Its

shadow function is given by θ3(2τ) =
∑

n∈Z q
n2

. Therefore H(Nτ) is a mock modular form

under Γ0(4N) and its shadow function is θ3(2Nτ).

Jacobi forms. A Jacobi form F (τ, z) of weight k and index m is defined with the fol-

lowing transformation properties:

F

(
aτ + b

cτ + d
,

ν

cτ + d

)
= (cτ + d)k e

2πimcν
cτ+d F (τ, ν) , (B.6)

F (τ, ν + λτ + µ) = e−2πim(λ2τ+2λν)F (τ, ν), (B.7)

where

(
a b

c d

)
∈ SL(2,Z) and (λ, µ) ∈ Z2

Mock Jacobi forms. By a (pure) mock Jacobi form of weight k and index m we denote

a holomorphic function φ on H×C that satisfies the elliptic transformation property (B.7).

A few specific properties follow for the Jacobi forms. If F be a Jacobi form of weight k

and index m then we have,

F (τ, z) =
∑
n,r

c(4mn− r2)qnzr (B.8)

A weakly holomorphic Jacobi form satisfies c(4mn − r2) = 0, if 4mn − r2 < n0, if m = 1

this is −1. The Jacobi forms also satisfy:

F (τ, z) =
∑
l∈Z

ql
2/4mhl(τ)zl (B.9)

Also this can be written as:

F (τ, z) =
∑

l∈Z/2mZ

hl(τ)θm,l(τ, z), (B.10)

where θm,l(τ, z) =
∑

r∈Z
r=l mod 2m

qr
2/4mzr. For a mock Jacobi form φ(τ, z) the modular

property (B.6) is weakened. However the completed function φ̂ satisfies (B.6).

φ̂(τ, z) = φ(τ, z) +
∑

l∈Z/2mZ

g∗l (τ)θm,l(τ, z), (B.11)

with g∗l being the corresponding Eichler integral.
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Since φ̂(τ, z) satisfies (B.6) for the full SL(2,Z) it is easy to show that φ̂(Nτ, z) obeys

the transformation (B.6) for Γ0(N). This is proved as follows. Under a modular transfor-

mation of Γ0(N)

φ̂(Nτ, ν)→ φ̂

(
N

aτ + b

cNτ + d
,

ν

cNτ + d

)
(B.12)

where ad− bcN = 1. Now we know, from (B.6) that if a′d′ − b′c′ = 1, a′, b′, c′, d′ ∈ Z then,

φ̂

(
a′τ ′ + b′

c′τ ′ + d′
,

ν

c′τ ′ + d′

)
= (c′τ ′ + d′)ke

2πim′c′ν
c′τ ′+d′ φ̂(τ ′, ν). (B.13)

Putting τ ′ = Nτ in the above equation and choosing a′ = a, b′ = bN, c′ = c, d′ = d the

above equation becomes:

φ̂

(
aNτ + bN

cNτ + d
,

ν

cNτ + d

)
= (cNτ + d)ke

2πim′cν
cNτ+d φ̂(Nτ, ν) (B.14)

= (cNτ + d)ke
2πimNcν
cNτ+d′ φ̂(Nτ, ν), if m′ = Nm.

Therefore we conclude that φ̂(Nτ, ν) is a Jacobi form of index m′/N and weight k under

Γ0(N) if φ̂(τ, ν) is a Jacobi form of index m′ and weight k.

This implies that completion of H(Nτ, z) denoted by Ĥ(Nτ, z) will transforms as:

Ĥ
(
N

aτ + b

cNτ + d
,

ν

cNτ + d

)
= (cNτ + d)2e2πi cν

cNτ+d Ĥ(Nτ), (B.15)

where, ad − bcN = 1 and a, b, c, d ∈ Z. So it is a Jacobi form under Γ0(N) with weight 2

and index 1/N . The shadow for H(Nτ, z) will be the same as for H(τ, z), with τ → Nτ .

The shadow of H(τ, z) is given in [11].

Remarks. The above analysis both in case of Mock modular and Mock Jacobi forms

would go through if b ∈ Z/N and ad− bcN = 1 and a′d′ − b′c′N = 1 and also with further

restrictions on b, b′ being integer multiples of M/N and c, c′ being integer multiples of some

integer M .
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