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A R T I C L E I N F O A B S T R A C T

Editor: Stephan Stieberger This article primarily investigates the existence of the charged compact star under the conformal 
motion treatment within the context of 𝑓 (𝑄) gravity. We have developed two models by 
implementing the power-law and linear form of conformal factor, enabling an in-depth 
comparison in our study. We have selected the MIT Bag model equation of state to describe the 
connection between pressure and energy density and matched the interior spherically symmetric 
space-time with the Bardeen space-time. In addition, the present research examines various 
physically valid characteristics of realistic stars, such as PSR J1614 −2230, PSR J1903 +327, Vela 
X-1, Cen X-3, and SMC X-1. We compare two constructed models by attributing the behavior of 
density, pressure, equilibrium conditions, and the adiabatic index. We have additionally included 
a brief analysis of the scenario involving Reissner-Nordstrom spacetime as an external geometry 
for the matching condition. In contrast to the Reissner-Nordstrom instance, the Bardeen model 
with the extra term in the asymptotic representations yields a more intriguing and viable result. 
The current analysis reveals that the resulting compact star solutions are physically acceptable 
and authentic when considering the presence of charge with conformal motion in 𝑓 (𝑄) gravity.

1. Introduction

The study of compact stars has gained significant attention in recent years. Essentially, “compact stars” encompass celestial objects 
such as quark stars, white dwarfs, brown dwarfs, and neutron stars. However, compact objects are considered to have small radii 
and massive masses, and this is the property that gives these objects their intense density. Discovering precise solutions for stellar 
objects is a major breakthrough in gravitational physics. The utilization of isotropic fluid in creating stellar formations was widely 
accepted. However, Ruderman [1] was the first to propose that compact structures have anisotropic characteristics. The analysis 
of stellar structures has also been conducted by incorporating the equation of state (EoS) in the presence of anisotropic pressure 
[2]. Researchers have recently investigated the properties of charged compact stars in the context of an anisotropic fluid for the 
Her X-I candidate [3]. Karmarkar formulated a prerequisite condition for space-time that exhibits spherical symmetry and a class I 
embedding condition [4]. Additionally, it is noted that the Schwarzchild interior solution leads to the formation of matter according 
to Karmarkar’s condition with pressure isotropy. The study of charged, compact stars is an intriguing field of research for scholars. 
Rahaman et al. [5] examined many models of compact stars with electric charge. Singh et al. [6] provided precise solutions for the 
structure of anisotropic stars using the Karmakar spacetime.
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The investigation of conformal symmetries is significant as it enhances our understanding of the intrinsic composition of space-
time geometry when addressing the solution of the geodesic equation of motion related to spacetimes. This symmetry greatly 
facilitates examining the usual connection between geometry and matter. The behavior of the metric is crucial when combined 
with curves on a manifold in the context of relativity, which will be discussed in the following section. Several intriguing literary 
works propose that compact stars can be effectively represented by solutions that allow for a single parameter group of conformal 
motions. Herrera and his colleagues [7–10] were among the early researchers that provided a comprehensive analysis of the spheres 
that can accommodate a one parameter group of conformal motions. There are also some significant findings employing conformal 
killing vectors (CKVs) in recent literature [11–15]. Mak and Harko [16] derived a precise solution that describes the interior of a 
charged strange star with spherical symmetry based on the assumption of a one-parameter group of conformal motions. The issue 
of discovering static, spherically symmetric anisotropic compact star solutions has been investigated in general relativity through 
conformal motions. Esculpi and Aloma [17] investigated two novel families of compact star solutions characterized by charged 
anisotropic fluid capable of accommodating a one-parameter group of conformal motion.

While general relativity (GR) is a remarkable, well-established, and highly relevant theory, numerous valuable enhancements 
have been proposed by scholars in recent times. Several gravitational theories are encompassed by the following modifications: 
𝑓 (𝑅) [18–22], 𝑓 (𝑅, 𝐺) [23,24], 𝑓 (𝐺) [25], 𝑓 (𝑅, 𝑇 ) [26,27], 𝑓 (𝑄) [28], 𝑓 (𝑅, 𝜙) [29], and 𝑓 (𝑅, 𝜙, 𝑋) [30]. These theories entail 
modifications to traditional GR to better explain the accelerated Universe and investigate circumstances for which GR might not be 
sufficient. This led to the search for altered or expanded gravitational theories that may effectively tackle these issues. The researcher 
has discovered two enigmatic constituents, namely dark matter (DM) and dark energy (DE), responsible for the accelerated expansion 
of the Universe. These modified theories of gravity are presumed to provide improved explanations for the issues of dark matter (DM) 
and dark energy (DE) [31–33]. Moreover, these modified theories of gravities are also highly beneficial for examining stellar model 
formations. In this study, we incorporate the symmetric teleparallel gravity known as 𝑓 (𝑄) gravity, in which the non-metricity 𝑄
plays a vital role in describing the gravitational interaction between the particles. The “co-incident gauge,” a commonly employed 
technique in this theory, is utilized to verify that the affine connection is zero, while maintaining the metric as the basic fundamental 
variable. This particular gauge selection has continuously been employed in numerous research projects investigating extensions of 
the Standard Theory of General Relativity (STGR). The 𝑓 (𝑄) theory, presented by J. B. Jimenez and colleagues in 2018 [34], has 
acquired acceptance among cosmologists. The main difference between 𝑓 (𝑄) gravity and classical GR lies in the nature of the affine 
connection rather than the characteristics of the physical manifold. The authors in the work [34] have shown that 𝑓 (𝑄) gravity is 
equivalent to GR in a flat spacetime. Several astrophysical object models have been explored in this newly developed 𝑓 (𝑄) theory 
[35–37]. In addition to compact objects, researchers have also investigated the 𝑓 (𝑄) gravity in cosmology and have discovered 
several acceptable cosmological models that can explain the current accelerated expansion of our Universe. In the work [38], we 
have taken a power law model of 𝑓 (𝑄) and examined the cosmological constraints observationally. We use Markov Chain Monte 
Carlo (MCMC) statistical analysis to compare our model to the Hubble, Pantheon+SHOES, and their combined observational data. 
The results of our study indicate that our constructed model in 𝑓 (𝑄) gravity can explain the observed cosmological parameters and 
provide a coherent explanation for the Universe’s accelerating expansion despite some variations from the ΛCDM model. EoS is a 
valuable tool for exploring compact object equilibrium structures in GR. Recent research has focused on the physical features of 
strange quark combinations using the EoS, notably the MIT bag model. A suitable EoS was utilized to determine the accelerating 
expansion of the early cosmos using a quark bag model [39]. Deb et al. [40] used the MIT bag model and Schwarzschild metric 
as an exterior space-time to solve Einstein’s field equations for compact stellar objects without singularities. Coley and Tupper [41]
investigate ideal fluid spherically symmetric spacetimes with proper CKV inheritance. Abbas and Shahzad [42] investigated a new 
solution for an isotropic compact star model with conformal motion using Rastall’s theory. They analyzed many physical elements 
of the model to observe compact star behavior. Jape et al. [43] developed a new type of charged anisotropic exact model with 
conformal symmetry in static spherical spacetime. The model was tested for its physical acceptability as a realistic stellar model. 
In this work, our main focus is to examine the development of charged compact stellar objects that accept CKV using two different 
models of conformal factor. In addition, we employ Bardeen geometry as the external space-time framework and assume isotropic 
matter for our present research.

Our paper is organized as follows: In section-2, we briefly discuss the mathematical formalism of 𝑓 (𝑄) gravity and derive the 
field equation. Next, by introducing the conformal motion technique, we develop two models in our study in sec-3. Furthermore, we 
have examined various physically valid characteristics and stability of realistic stars, such as PSR J1614 − 2230, PSR J1903 + 327, 
Vela X−1, Cen X−3, and SMC X−1 in sec-4 and sec-5. A brief comparative study has been done between R-N space-time and Bardeen 
space-time as an outer structure in sec-6. Finally, we conclude in sec-7.

2. Basic formulation of 𝒇 (𝑸) gravity: field equation

The action integral for 𝑓 (𝑄) gravity can be generalized as: [44],

𝑆 = ∫
√
−𝑔

[ 1
16𝜋

𝑓 (𝑄) +𝑀

]
𝑑4𝑥. (1)

Here, 𝑀 is known as Lagrangian matter density, 𝑔 is the determinant of the metric tensor, and 𝑑4(𝑥) is known as a four-volume 
element along the 4-dimensional space-time co-ordinate (𝑡, 𝑟, 𝜃, 𝜙).

The following expression describes the non-metricity tensor associated with the affine connection:
2

𝑄𝜅𝜇𝜈 ≡∇𝜅𝑔𝜇𝜈 = 𝜕𝜅 𝑔𝜇𝜈 − Γ𝛿
𝜅𝜇 𝑔𝛿𝜈 − Γ𝛿

𝜅𝜈 𝑔𝜇𝛿, (2)
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where Γ𝛿
𝜅𝜇 denotes the general affine connection, which could be expressed as,

Γ𝛿
𝜅𝜇 =

{
𝛿

𝜅𝜇

}
+𝐾𝛿

𝜅𝜇 +𝐿𝛿
𝜅𝜇. (3)

In the above expression, 
{

𝛿

𝜅𝜇

}
, 𝐿𝛿

𝜅𝜇 , and 𝐾𝛿
𝜅𝜇 are denoted as Levi-Civita connection, contortion tensor, and disformation tensor, 

respectively. The geometrical expression for the aforementioned quantities is given by:{
𝛿

𝜅𝜇

}
= 1

2
𝑔𝛿𝜆

(
𝜕𝜅𝑔𝜆𝜇 + 𝜕𝜇𝑔𝛿𝜈 − 𝜕𝛿𝑔𝜅𝜇

)
, (4)

𝐾𝛿
𝜅𝜇 = 1

2
𝑇 𝛿

𝜅𝜇 + 𝑇(𝜅
𝛿

𝜇), (5)

𝐿𝛿
𝜅𝜇 = 1

2
𝑄𝛿

𝜅 𝜇 −𝑄(𝜅
𝛿

𝜇). (6)

In the above expression, 𝑇 𝛿
𝜅𝜇 denotes torsion tensor. In the STEGR formalism, another significant quantity is the superpotential 𝑃 𝜆

𝜇𝜈

which is defined as follows:

𝑃 𝜆
𝜇𝜈

= −1
2

𝐿𝜆
𝜇𝜈

+ 1
4

(
𝑄𝜆 −𝑄𝜆

)
𝑔𝜇𝜈 −

1
4

𝛿𝜆
(𝜇 𝑄𝜈). (7)

The following expression determines the trace of the non-metricity tensor:

𝑄𝜆 = 𝑄
𝜇

𝜆 𝜇
, �̃�𝜆 = 𝑄

𝜇

𝜆𝜇
.

At last, the scalar form of non-metricity could be written as,

𝑄 = −𝑄𝜆𝜇𝜈𝑃
𝜆𝜇𝜈 . (8)

The field equations for 𝑓 (𝑄) theory are derived by varying the action in equation (1) with respect to the inverse metric tensor 
𝑔𝜇𝜈 as, [45]

2√
−𝑔

∇𝜆

(
𝑓𝑄

√
−𝑔 𝑃 𝜆

𝜇𝜈

)
+ 𝑓𝑄

(
𝑃𝜇𝜆𝜅𝑄 𝜆𝜅

𝜈
− 2𝑄𝜆𝜅

𝜇
𝑃𝜆𝜅𝜈

)

+1
2

𝑓 𝑔𝜇𝜈 = −8𝜋𝑇 eff
𝜇𝜈

(9)

Here, 𝑓𝑄 = 𝜕𝑓 (𝑄)
𝜕𝑄

. The formula for energy momentum tensor 𝑇𝜇𝜈 could be written as,

𝑇𝜇𝜈 = − 2√
−𝑔

𝛿(
√
−𝑔𝑚)

𝛿𝑔𝜇𝜈
; (10)

Moreover, through the utilization of Eq. (1), an additional constraint can be deduced, expressed as:

∇𝜇∇𝜈(
√
−𝑔𝑓𝑄𝑃 𝜆

𝜇𝜈) = 0. (11)

The imposition of curvature-free and torsion-free constraints enables the affine connection in the form as: [45]

Γ𝜆
𝜇𝜈 =

(
𝜕𝑥𝜆

𝜕𝜉𝛼

)
𝜕𝜇𝜕𝜈𝜉

𝛼. (12)

We can adopt a specific coordinate choice known as the co-incident gauge, where the affine connection Γ𝜆
𝜇𝜈 = 0. Subsequently, 

the non-metricity equation undergoes a reduction, leading to:

𝑄𝜅𝜇𝜈 ≡∇𝜅𝑔𝜇𝜈 = 𝜕𝜅 𝑔𝜇𝜈. (13)

As a result, this simplification streamlines the computation process, with the metric serving as the primary variable. However, 
it is important to highlight that the action loses diffeomorphism invariance, except when considering the Standard General Theory 
of Relativity (STGR) [46]. This challenge can be addressed by employing the covariant formulation of 𝑓 (𝑄) gravity. Given that the 
affine connection mentioned in Equation (12) is entirely inertial, the covariant formulation can be implemented by first defining the 
affine connection without gravity [47].

Moreover, the formula for the electromagnetic energy-momentum tensor 𝜀𝑖𝑗 could be written as,

𝜀𝑖𝑗 = 2
(
𝐹𝑖𝑘𝐹𝑗𝑘 −

1
4

𝑔𝑖𝑗𝐹𝑘𝑙𝐹
𝑘𝑙
)

.

3

Furthermore,
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𝐹𝑖𝑗 =𝑖,𝑗 −𝑗,𝑖.

The following expression defines the electromagnetic field tensor:

𝐹𝑖𝑗,𝑘 + 𝐹𝑘𝑖,𝑗 + 𝐹𝑗𝑘,𝑖 = 0,
(√

−𝑔𝐹 𝑖𝑗
)

,𝑗
= 1

2
√
−𝑔𝑗𝑖. (14)

The electromagnetic four potential is given by 𝑖, and the four current density is indicated by 𝑗𝑖. Within the framework of a 
stationary fluid configuration and under the assumption of spherical symmetry, the only constituent of the four-current density that 
has a non-zero magnitude is referred to as 𝑗0 and is aligned along the radial direction 𝑟. Therefore, apart from the radial component 
𝐹01 of the electric field, the static and spherically symmetric characteristics of the electric field indicate that all other components of 
the electromagnetic field tensor become zero. If the condition 𝐹01 = −𝐹10, which indicates antisymmetry, is met, then the equation 
(14) is fulfilled. The electric field equation can be derived from equation (14) as follows:

𝐸(𝑟) = 1
2𝑟2

𝑒𝜆(𝑟)+𝑣(𝑟)

𝑟

∫
0

𝜎(𝑟)𝑒𝜆(𝑟)𝑟2𝑑𝑟 = 𝑞(𝑟)
𝑟2

, (15)

where, 𝜎(𝑟) = 𝑒
−𝜆
2

4𝜋𝑟2
(𝑟2𝐸)′ denotes the total charge density, while 𝑞(𝑟) represents the overall charge of the system.

In the above mathematical formulation, the spherically symmetric space-time metric has been considered whose form is,

𝑑𝑠2 = −𝑒𝜈(𝑟)𝑑𝑡2 + 𝑒𝜆(𝑟)𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃 𝑑𝜙2). (16)

In the current study, we consider the isotropic fluid matter to model the dense star whose components are given by 𝑇 𝜈
𝜇
= (−𝜌, 𝑝, 𝑝, 𝑝), 

where 𝜌 and 𝑝 are the energy density and isotropic pressure of the fluid. Furthermore, we have calculated the non-metricity scalar 
for the above metric which is of the form,

𝑄 = −2𝑒−𝜆(𝑟)(𝑟𝜈′(𝑟) + 1)
𝑟2

. (17)

All the aforementioned constraints have been used to derive the field equation, which is given by;

𝜌eff + 𝑞2

𝑟4
= 𝑓 (𝑄)

2
− 𝑓𝑄

[
𝑄+ 𝑒−𝜆

(𝜆′

𝑟
− 1

𝑟

)
+ 1

𝑟2

]
, (18)

𝑝eff − 𝑞2

𝑟4
= −𝑓 (𝑄)

2
+ 𝑓𝑄

(
𝑄+ 1

𝑟2

)
, (19)

𝑝eff + 𝑞2

𝑟4
= −𝑓 (𝑄)

2
+ 𝑓𝑄

[
𝑄

2
− 𝑒−𝜆

{
𝜈′′

2
+
( 𝜈′

4
+ 1

2𝑟
)(

𝜈′ − 𝜆′
)}]

. (20)

3. Conformal motion treatment

Besides isometries, there exist other types of motions that are highly useful in the context of four-dimensional Lorentzian metrics, 
their properties, and their applications to mathematical physics. Conformal motions, or CKVs represent motions along which the 
metric tensor of spacetime remains invariant up to a scale factor known as the conformal factor. The equation governing CKV is 
expressed as:

𝜉𝑔𝑖𝑗 = 𝜙𝑔𝑖𝑗 . (21)

The mathematical quantity on the left-hand side is the Lie derivative of the metric tensor 𝑔𝑖𝑗 concerning the vector field 𝜉. It 
is important to emphasize that, generally, 𝜙 represents a function that can vary with the radial coordinate 𝑟 and time 𝑡 known as 
the conformal factor. Significantly, while the factor 𝜙 is constant, Eq. (21) results in a homothetic vector (HV), and killing vectors 
(KV) are formed when 𝜙 equals zero. Therefore, HVs and KVs are particular cases of CKVs. Several studies suggest that solutions 
that enable a one-parameter group of conformal motions can be used to simulate compact stars. We obtain the following conformal 
killing equations by substituting Eq. (21) into the spacetime (16).

𝜉1𝜈′ = 𝜙, 𝜉4 = 𝐾, 𝜉1 = 𝜙𝑟

2
, 𝜉1𝜆′ + 2𝜉11 = 𝜙, (22)

which additionally produces the following simultaneous solution:

𝑒𝜈 = 𝐻2𝑟2, 𝑒𝜆 =
(

𝐼

𝜙

)2
, 𝜉𝑖 = 𝐾𝛿𝑖

4 +
(

𝑟𝜙

2

)
𝛿𝑖
1, (23)

where 𝐻, 𝐾 and 𝐼 are arbitrary constants. The research carried out in this paper is conducted by employing two separate and 
4

efficient models of the conformal factor 𝜙(𝑟). The complete formulation will be presented in the following subsections:
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3.1. Model-I

In our first proposed model, under the assumption that 𝜙 depends solely on the radial coordinate 𝑟, we have assumed the 
functional form of 𝜙(𝑟) as,

𝜙(𝑟) = 𝐼
√

𝜓(𝑟) (24)

The above power-law form of conformal factor is well established in the context of GR and it is motivated from the work [48]. An 
EoS characterizes a fluid consisting of quarks, namely the up, down, and strange quarks. Here, we have employed the MIT Bag model 
EoS to describe the fluid’s pressure and energy density relations. The MIT EoS model is represented by the equation 𝑝 = 1

3 (𝜌 − 4 𝛽). 
The parameter 𝛽 is referred to as the Bag constant of units MeVf𝑚−3 [49].

Now, using the Eq. (23, 24) and manipulating the field equations, we get the solution of 𝜓(𝑟) as:

𝜓(𝑟) = 1
3𝑚

(𝑚+ 𝛽𝑟2) − 𝑛𝑟2

6𝑚
+ 𝐶

𝑟2
. (25)

Where 𝐶 is the integrating constant. We have considered the linear model of 𝑓 (𝑄) = 𝑚 𝑄 + 𝑛 which is motivated by some other 
studies given in the above references. This study focuses on the case where 𝐶 is not equal to zero and uses Bardeen geometry as 
the external space-time framework to examine compact stars. Therefore, we get the subsequent explicit and precise solution that 
accurately describes the internal geometrical and physical structure of a strange star:

𝑒𝜈 = 𝐻2𝑟2 ; 𝐸2 = −
𝑚
(
𝑟2 − 12𝐶

)
6𝑟4

,

𝑒𝜆 = 6𝑚𝑟2

−𝑟4(𝑛− 2𝛽) + 2𝑚
(
𝑟2 + 3𝐶

) ,

𝜌eff = 2𝛽𝑟4 −𝑚(𝑟2 + 6𝐶)
2𝑟4

,

𝑝eff =
−6𝛽𝑟4 −𝑚

(
𝑟2 + 6𝐶

)
6𝑟4

. (26)

Furthermore, the physical parameters exhibit a central singularity due to employing conformal symmetries. Indeed, this formalism 
cannot overcome the core singularity in the physical parameters. Nonetheless, the solutions of a core-envelope type model can be 
explored to represent the envelope portion of a star. Now, we will consider appropriate boundary conditions to ensure compatibility 
between the solutions of the interior spacetime.

3.1.1. Boundary and matching condition

Now, one of the most important parts is determining the values of the constants. For that, we usually match the interior geometry 
with the outer space-time. In this study, we have matched the interior space-time with the Bardeen exterior space-time, which is 
given by,

𝑑𝑠2 = −𝐿(𝑟)𝑑𝑡2 +𝐿(𝑟)−1𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2), (27)

where 𝐿(𝑟) = 1 − 2𝑟2(2+𝑟2
) 3
2

. Here,  is the star’s total mass, and  is the total charge surroundings of the outer region of the star. 

By applying binomial expansion, one can get the expression of 𝐿(𝑟) = 1 − 2
𝑟

+ 32

𝑟3
+𝑂

(
1
𝑟5

)
. Here in this expression of 𝐿(𝑟), the 

presence of the fraction term 1
𝑟3

distinguishes Bardeen geometry from the usual Reissner-Nordstrom space-time configuration. We 

shall ignore the term 𝑂
(

1
𝑟5

)
and its subsequent quantity because of its modest value. By applying the continuity equation, we have 

matched the exterior and interior space-time metric potentials at the boundary.

1 − 2
𝑟𝑏

+ 32

𝑟𝑏
3 = 𝐻2 𝑟2

𝑏
, (28)

(
1 − 2

𝑟𝑏

+ 32

𝑟𝑏
3

)−1
=

6𝑚𝑟2
𝑏

2𝑚
(
𝑟2
𝑏
+ 3𝐶 − 𝑟4

𝑏
(𝑛− 2𝛽)

) .

By imposing the above matching conditions, we have derived the values of the following constants,

𝐻 = ±

√
5𝑚− 2𝑛𝑟2

𝑏
+ 4𝛽𝑟2

𝑏
+ 4− 2𝑟𝑏√

12𝑚𝑟2
𝑏
− 2𝑟3

𝑏

, (29)

𝑟2
𝑏

(
−3𝑚2− 12𝑚+ 4𝑚𝑟𝑏 + 𝑛𝑟3

𝑏
− 2𝛽𝑟3

𝑏

)

5

𝐶 =
6𝑚(𝑟𝑏 − 6𝑚)

. (30)
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We have given the numerical values of the constants for model I and model II by varying the model parameter 𝑚, 𝑛 in the Table-1. 
The corresponding numerical values of the constants have been calculated by considering the observational data for the star PSR 
J1614-2230.

3.2. Model-II

Here, we have implemented an alternate model of conformal factor 𝜙(𝑟) to analyze the compact star, which is given by,

𝜙(𝑟) = 𝐻 +𝑁 𝑟, (31)

where 𝐻, 𝑁 are arbitrary constant. This linear form of conformal factor has been widely studied in the literature [50,51]. Our work 
is well motivated by these articles. By imposing the above linear form of the conformal vector into the motion equations, we get the 
solution of the field equation as,

𝑒𝜈(𝑟) = 𝐻2𝑟2,

𝑒𝜆(𝑟) =
( 𝐼

𝐻 +𝑁 𝑟

)
,

𝜌eff = −3𝐻2𝑚+ 3𝐻𝑁𝑚𝑟− 2𝛽𝐼2𝑟2

2𝐼2𝑟2
,

𝑝eff = −𝐻2𝑚+𝐻𝑁𝑚𝑟+ 2𝛽𝐼2𝑟2

2𝐼2𝑟2
,

𝐸2 = 1
2𝐼2𝑟2

(
5𝐻2𝑚+ 11𝐻𝑁𝑚𝑟− 2𝐼2𝑚+

𝐼2𝑛𝑟2 − 2𝛽𝐼2𝑟2 + 6𝑁2𝑚𝑟2
)
.

Upon examining the solution of the field equation, it becomes apparent that there are three constants: H, I, and N. To establish 
the extra requirement for model II, we will employ the second fundamental condition of the continuity equation, which states that 
𝑝(𝑟 = 𝑟𝑏) must equal zero, where 𝑟𝑏 corresponds to the stellar radius. The derived constants for model-II are given by:

𝐻 = ∓

√
6𝑚− 3𝑛𝑟2

𝑏
+ 4− 2𝑟𝑏√

18𝑚𝑟2
𝑏
− 2𝑟3

𝑏

(32)

𝐼 = −
𝑚
(
6𝑚− 3𝑛𝑟2

𝑏
+ 4− 2𝑟𝑏

)
4𝛽𝑟3

𝑏
(9𝑚− 𝑟𝑏)

(33)

𝑁 = ±

√
2(

6𝑚− 3𝑛𝑟2
𝑏
+ 4

)
− 4𝑟𝑏 ×

8𝛽𝑟𝑏

(
−𝑟2

𝑏
(𝑟𝑏 − 9𝑚)

)3∕2 (34)

𝐻 = ±

√
6𝑚− 3𝑛𝑟2

𝑏
+ 4− 2𝑟𝑏√

18𝑚𝑀𝑟2
𝑏
− 2𝑟3

𝑏

(35)

𝐼 = +
𝑚
(
6𝑚− 3𝑛𝑟2

𝑏
+ 4− 2𝑟𝑏

)
4𝛽𝑟3

𝑏
(9𝑚− 𝑟𝑏)

(36)

𝑁 = ∓

√
2(

6𝑚− 3𝑛𝑟2
𝑏
+ 4

)
− 4𝑟𝑏 ×

8𝛽𝑟𝑏

(
−𝑟2

𝑏
(𝑟𝑏 − 9𝑚)

)3∕2 (37)

where  =
(
6𝑚2 + 𝑚 

(
4 − 3𝑟2

𝑏
(𝑛− 12𝛽)

)
− 2𝑚𝑟𝑏 − 4𝛽𝑟3

𝑏

)
. In the next section, we will analyze and compare our two constructed 

models physically.

4. Physical analysis

To attain a well-behaved and feasible solution, the following conditions must be satisfied for a stellar configuration:

1. Metric potential Since the metric potential inherently incorporates the geometric and causal structure of space-time, it must 
have finite and bounded values. They should not exhibit any singularities within the star or at its boundary, defined as 0 ≤ 𝑟 ≤ 𝑟𝑏. 
From the left panel of Fig. 1 one can observe that, for model I, the metric potential gives the finite values at every point through 
the stellar region. Furthermore, it demonstrates a continuous and increasing behavior towards the boundary region. However, 
6

in the case of model II, the metric potential does display a central singularity. Indeed, this is the one disadvantage of utilizing 
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Table 1

The corresponding numerical values of the constants for 
different model parameters where we have taken the ob-
servational mass-radius data for the star PSR J1614-2230.

Model-I

𝑚 𝑛 H 𝐶

2 0.02 0.189272 0.0387991
3 0.05 0.701516 0.0208653
0.2 0.1 1427.6 0.21629
-0.5 0.4 −802.576 0.255184

Model-II

m n H I N

0.5 -1 1.25289 479.831 −601.298
1.5 -2 0.551493 278.909 −153.87
-0.5 1.5 0.532217 −86.584 46.0298
-2 4 0.530841 −344.547 182.848

Fig. 1. The metric coefficients for model-I (left panel) and model-II (right panel). Here, we consider 𝑚 = −2, 𝑛 = 0.02 for model I and 𝑚 = 2, 𝑛 = −1 for model-II.

conformal symmetries by employing the conformal factor 𝜙(𝑟) as a linear function of the radial coordinate. Except at the star’s 
core, the metric function gives finite and bounded values throughout the stellar configuration.

2. Nature of physical quantities: This subsection focuses on examining and analyzing the crucial behaviors of physical quantities, 
specifically pressure and matter density. The following physical properties must be held for a viable and well-behaved stellar 
model.
• The surface pressure is preciously zero, denoted by 𝑝eff(𝑟 = 𝑟𝑏) = 0.
• The pressure and density functions must exhibit positive values and demonstrate a consistent decrease. Additionally, at the 

center, their values should reach a maximum. i.e.

𝑝eff(0) > 0, 𝑑𝑝eff

𝑑𝑟

|||||𝑟=0 = 0, 𝑑2𝑝eff

𝑑𝑟2

|||||𝑟=0 < 0, 𝜌eff(0) > 0

𝑑𝜌eff

𝑑𝑟

|||||𝑟=0 = 0, 𝑑2𝜌eff

𝑑𝑟2

|||||𝑟=0 < 0.

We have conducted a thorough examination and analysis of the physical parameters of many compact stars, such as PSR J1614-
2230, PSR J1903+327, Vela X-1, Cen X-3, and SMC X-1, by utilizing different observational data on their mass and radius. 
By referring to Fig. 2, it is evident that the pressure and matter density of the star exhibits a prominent peak at the central 
area, followed by a continuous decrease towards the surface region of each compact star. Furthermore, the surface pressure 
of the star reaches a value of zero near its boundary. The upward concave expansion of the curve for energy density and 
pressure can be attributed to the dynamics of conformal symmetry and the existence of electric charge. Moreover, the current 
investigation results in negative values for the derivatives of the energy density and pressure functions concerning the radial 
coordinate, denoted as 𝑑𝜌eff

𝑑𝑟
and 𝑑𝑝eff

𝑑𝑟
, respectively. The presence of negative gradients in Fig. 3 indicates that the solutions we 

have discovered meet the physical requirement and are physically acceptable for both models.
3. Energy condition: The investigation of energy circumstances holds numerous important implications in the realms of GR 
7

and cosmology. The study of the Hawking-Penrose singularity theorems and the reliability of the second law of black hole 
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Fig. 2. Behavior of pressure and matter density (km−2) for model I (upper panel) and model II (lower panel). Here, we consider 𝑚 = −2, 𝑛 = 0.02 for model I and 
𝑚 = 2, 𝑛 = −1 for model-II.

Fig. 3. Behavior of pressure gradient and matter density gradient for model I (upper panel) and model II (lower panel). Here, we consider 𝑚 =−2, 𝑛 = 0.02 for model 
8

I and 𝑚 = 2, 𝑛 = −1 for model-II.
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Fig. 4. Behavior of energy conditions for model I (upper panel) and model II (lower panel). Here, we consider 𝑚 = −2, 𝑛 = 0.02 for model I and 𝑚 = 2, 𝑛 = −1 for 
model-II.

thermodynamics can be facilitated by analyzing the energy circumstances [52]. Relativistic cosmology explores many intriguing 
findings by utilizing energy conditions which are given below:
• Null energy condition (𝑁𝐸𝐶): 𝜌eff + 𝑝eff ≥ 0
• Weak energy condition (𝑊 𝐸𝐶): 𝜌eff ≥ 0, 𝜌eff + 𝑝eff ≥ 0.
• Strong energy condition (𝑆𝐸𝐶): 𝜌eff + 3𝑝eff ≥ 0, 𝜌eff + 𝑝eff ≥ 0
• Dominant energy condition (𝐷𝐸𝐶): 𝜌 ≥ 0, 𝜌eff ± 𝑝eff ≥ 0
From the Figs. 2, 4, it is evident that all the energy conditions are justified, indicating that the charged compact star under 
Bardeen space-time is feasible for both of our constructed models. The physical parameters like pressure and density exhibit a 
central singularity due to the use of conformal symmetries. Indeed, this formalism cannot overcome the core singularity in the 
physical parameters. In fact this is the only disadvantage of this conformal motion treatment which can be seen in the earlier 
studies in [48,51].

4. Equation of State: An essential method for analyzing the relationship between matter density and pressure is to determine the 
equation of states. The formula for determining the equation of state is 𝜔 = 𝑝eff

𝜌eff , 𝜔 is the state parameter. From the graphical 
analysis of Fig. 2 it is clear that the EoS parameter 𝜔 lies in the range 0 < 𝜔 < 1 (a preferable limit for compact stars), i.e., it lies 
inside the bounds of the radiation era.

5. Equilibrium and stability analysis

1. Causality requirement: The causality condition must be maintained, which says that the magnitude of the speed of sound must 
be lower than the speed of light. In other words, the inequality 0 ≤ 𝑣2 = 𝑑𝑝eff

𝑑𝜌eff ≤ 1 must be satisfied. In this investigation, we 

determined the square of the speed of sound 𝑣2 = 1
3 maintains the above criterion for stability for both the case of model I and 

model II.
2. Relativistic Adiabatic Index: The stability of a compact star can be discussed through another physical parameter, namely the 

adiabatic index. The adiabatic index, which is defined as Γ𝑟, can be expressed as,

Γ𝑟 =
𝜌eff + 𝑝eff

𝑝eff

𝑑𝑝eff

𝑑𝜌eff
. (38)

This significant parameter encompasses two conditions described by Hillebrandt and Steinmetz [53]. Given this requirement, if 
9

the value of Γ𝑟 is more than 4∕3, it indicates the stability of a compact star. However, Γ𝑟 was supposed to be an unstable sphere 
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Fig. 5. Behavior of adiabatic index for model I (left panel) and model II (right panel). Here, we consider 𝑚 = −2, 𝑛 = 0.02 for model I and 𝑚 = 2, 𝑛 = −1 for model-II.

Fig. 6. Behavior of different forces for model I (left panel) and model II (right panel). The different colors represent, PSR J1614-2230(⋆), PSR J1903+327 (⋆), Vela 
X-1 (⋆), Cen X-3 (⋆), and SMC X-1 (⋆). Here, we consider 𝑚 =−2, 𝑛 = 0.02 for model I and 𝑚 = 2, 𝑛 = −1 for model-II.

with a value less than 4∕3. From Fig. 5, it is clear that all the curve for different compact stars maintains the range Γ𝑟 >
4
3 . 

Through this study, the result Γ𝑟 >
4
3 proves that solutions with conformal motion and the Bardeen model as the star’s outer 

space-time, meet the stability requirements based on the Adiabatic index.
3. Equilibrium Conditions: This subsection examines the equilibrium conditions for studying the current charged star structure 

in the background of Bardeen geometry, admitting the conformal motions. It is essential to note that the Tolman-Oppenheimer-
Volkoff (TOV) equation is crucial for analyzing the equilibrium conditions of a stellar structure. A static spherically symmetric 
object in static gravitational equilibrium has its structure primarily constrained by the TOV equation. It is particularly intriguing 
to see the behavior of gravitational and other fluid forces as the electrostatic repulsion near the star’s border increases. The 
explicit form of the different forces is given below.

• Gravitational forces: 𝐹𝑔 = − 𝜈′

2 (𝜌
eff + 𝑝eff),

• Hydrostatic force: 𝐹ℎ = − 𝑑𝑝eff

𝑑𝑟
,

• Electric force: 𝐹𝑒 = 𝜎𝐸𝑒
𝜆

2 .
By combining, the TOV equation can be written as,

𝐹𝑔 + 𝐹ℎ + 𝐹𝑒 = 0. (39)

We have graphically analyzed all the different forces for various compact objects like PSR J1614-2230, PSR J1903+327, Vela X-
1, Cen X-3, and SMC X-1, by utilizing different observational data on their mass and radius in Fig. 6. In model I, it is noteworthy 
that the gravitational force and hydrostatic force are in equilibrium, and the electric force remains constant along the x-axis. 
However, in the case of model II, while the gravitational force and hydrostatic force balance out each other, but the behavior 
of the electric force can lead to instability in the stellar model. Thus, we can see how these forces balance out using Bardeen 
geometry and conformal motion with electric charge. This shows that our constructed power-law model is more stable and 
physically acceptable than the linear model.

4. Andreasson’s Limit: Prior research has determined that in the case of a black hole, collapse consistently occurs at a critical 
radius 𝑅𝑐 beyond the outer horizon when 𝑄 < . As the value of 𝑄 approaches 𝑀 , this critical radius approaches the event 
10

horizon [54]. In the case of a non-charged object, the situation is comparable to the one described by the Buchdahl inequality 
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Table 2

The estimated values of mass and Andreasson’s limit.

Model-I

Stars
√

√
𝑟𝑏

3
+
√

𝑟𝑏

9
+ 𝑞2

3𝑟𝑏

PSR J164-2230 [57] 1.40357 3.64223
PSR J1903+327 [58] 1.33041 3.55699
Vela X-1 [59] 1.29112 3.50867
Cen X-3 [59] 1.22066 3.46229
SMC X-1 [59] 1.13578 3.30119

Model-II

Stars
√

√
𝑟𝑏

3
+
√

𝑟𝑏

9
+ 𝑞2

3𝑟𝑏

PSR J164-2230 [57] 1.40357 13.8682
PSR J1903+327 [58] 1.33041 13.6346
Vela X-1 [59] 1.29112 13.5013
Cen X-3 [59] 1.22066 13.4968
SMC X-1 [59] 1.13578 12.9331

Fig. 7. Comparison between the Bardeen and R-N space-time.

[55], which states that collapse will occur when the radius 𝑟𝑏 < 9∕4. The mass function for charged compact stars must satisfy 

Andreasson’s limit [56]
√ <

√
𝑟𝑏

3 +
√

𝑟𝑏

9 + 𝑞2

3𝑟𝑏
, which is given in Table-2 for both of the models.

6. Comparison with Reissner-Nordstrom case

Here, we present a brief overview of the scenario with Reissner-Nordstrom (R-N) spacetime as the external geometry for the 
matching condition. Additionally, this will allow us to make comparisons with our study. The R-N space-time is defined by:

𝑑𝑠2 = −
(
1 − 2

𝑟
+ 2

𝑟2

)
𝑑𝑡2 +

(
1 − 2

𝑟
+ 2

𝑟2

)−1
+ 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2). (40)

Similarly, as in the previous case, we implement the continuity equation to get the constant of our proposed model I, and we have 
shown those comparative studies in Fig. 7.

In this comparative study, we have examined the energy density and adiabatic index, which play an important role in studying 
a stellar model’s physical behavior and stability. We have varied the model parameter in a wide range and observed that, for the 
Bardeen space-time, the positive behavior of energy density and its increasing behavior towards the star’s core, but for the R-N 
model, as the model parameter 𝑚 increases, we get the negative energy density and it gradually decreases towards −∞ which is not 
feasible in the regime of astrophysical object. Besides, from the second panel of Fig. 7, readers can observe that our proposed model-I 
with the Bardeen space-time gives the value Γ𝑟 >

4
3 for a wide range of 𝑚. But, in the case of R-N space-time, as 𝑚 increases, it 

maintains the adiabatic index limit Γ𝑟 >
4
3 for a certain range of radius, particularly in the core region, but as it approaches towards 

the outer surface region, it doesn’t maintain the above-mentioned limit, which doesn’t support proving a viable model. However, our 
11

constructed model II doesn’t show any significant differences between the Bardeen and R-N space-time.
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7. Conclusion

This study examines the solutions of field equations for investigating compact stars in the context of 𝑓 (𝑄) gravity. To achieve this 
aim, we have considered a perfect fluid as the source of matter, which also possesses an electric charge. In this analysis, we select 
the MIT Bag model equation of state (EoS) to describe the link between pressure and energy density. In addition, CKV’s are utilized 
to examine the suitable configurations for gravitational metric coefficients. The MIT Bag model EoS is important in formulating a 
differential equation by utilizing field equations and solutions via conformal motion. This offers us a foundational mathematical 
basis for subsequent analysis. Here, we have studied two models of conformal factor 𝜙(𝑟). In model I, we have derived the solution 
of 𝜙(𝑟) by incorporating a functional form 𝜙(𝑟) = 𝐼

√
𝜓(𝑟) and using the field equation. We must note that we do not consider the 

integration constant 𝐶 zero when solving the differential equation. Our current study of compact stars relies significantly on this 
integration constant. Whereas the second model we have studied by taking conformal factor 𝜙(𝑟) simply as a linear function of 𝑟. 
In addition, we select the Bardeen model to represent the outside spacetime, which allows us to impose the boundary requirements. 
With remarkable precision, the Bardeen model presents the information originally and interestingly. Also, in a specific case of non-
linear electrodynamics, the Bardeen solution can be seen as a gravitationally collapsed magnetic monopole. Here is an overview of 
the current work’s qualitative analysis:

• Metric potential: For the model I, the metric potential gives the positive, bounded, and finite values throughout the stellar 
configuration. Also, it avoids any kind of stellar singularity in the region 0 < 𝑟 < 𝑟𝑏. Besides, our constructed model II shows 
some unacceptable properties at the core, as 𝑒𝜆 → ∞ when 𝑟 → 0. Except for the core, it gives positive, finite, and bounded 
values up to the stellar boundary. So, from here, we can conclude that for studying the Bardeen star in 𝑓 (𝑄) gravity through the 
conformal motion, it is better to consider the power-law form of the conformal factor than the linear form.

• Nature of physical quantity: The changes in energy density and pressure functions are displayed in Fig. 2. The energy density 
and pressure profiles exhibit realistic behavior, with the exception of an unavoidable central singularity. The value of 𝜌 is 
observed to be positive, gradually dropping to a minimum at 𝑟 = 𝑟𝑏, while the pressure tends to approach zero at the star’s edge. 
The whole analysis is done by considering some compact objects for different observational data of their radius and mass. Apart 
from that, the negative pressure gradient and density gradient in Fig. 3 confirm the stability of our constructed model.

• Energy condition: From Figs. 2, 4, it is evident that all the energy conditions are justified, indicating that the charged compact 
star under Bardeen space-time is feasible for both of our constructed models.

• Stability analysis: The stability analysis plays an important role in studying the compact object in the background of GR or any 
modified gravity. The causality condition is one of the important features to check the stability. It says that the speed of sound 
inside the star must be subluminal. For both of our constructed models, we obtained 𝑣2 = 1

3 < 1. Apart from that, from Fig. 5, it is 
clear that the value of the adiabatic index Γ > 4

3 . Therefore, the EoS of the neutron star with the quark matter meets the stability 
criterion. For a charged compact star, the mass function must satisfy Andreasson’s limit, which is shown in Table 2. For model 

I and model II, one can see that 
√ <

√
𝑟𝑏

3 +
√

𝑟𝑏

9 + 𝑞2

3𝑟𝑏
which satisfy the aforementioned Andreasson’s limit. But, in model II, 

the value of 
√

𝑟𝑏

3 +
√

𝑟𝑏

9 + 𝑞2

3𝑟𝑏
is slightly higher than expected, as previously explored in the work of Bardeen Star. However, in 

the study of equilibrium conditions via the TOV equation, we have observed clearly how all the three forces 𝐹𝑔, 𝐹ℎ, 𝐹𝑒 balance 
out each other for our constructed model I. Whereas in the case of model II, while the gravitational force and hydrostatic force 
balance out each other, the behavior of the electric force can lead to instability in the stellar equilibrium.

Additionally, we presented a brief overview of the scenario where the matching condition is satisfied using R-N spacetime as the 
exterior geometry. Through this, we can make some comparisons and draw conclusions about our study. For comparison with GR 
[48], we would like to describe that, here in his study, we have extended the work up to considering two models of conformal factor 
and compared our obtained solution by using Bardeen’s geometry and R-N geometry for model-I. In the first step, we have examined 
the density behavior for both space-time by taking the same values of the model parameters 𝑚 and 𝑛 in Fig. 7. We observe that the 
energy density exhibits positive behavior within Bardeen space-time and increases as it approaches the star’s core. However, in the 
R-N model, as the model parameter 𝑚 increases, the energy density becomes negative and gradually decreases towards ∞, which is 
not feasible within a compact star. In the second comparison, from the second panel of Fig. 7, one can see that Bardeen space-time 
yields Γ𝑟 >

4
3 for a large range of 𝑚. But, in R-N space-time, as 𝑚 increases, the adiabatic index limit Γ𝑟 >

4
3 is maintained for a 

certain radius range but not for the outer surface region. This prevents the proof of a viable model. The above comparison is made 
for the power law model by considering the compact star PSR J1903+327. However, our constructed linear model shows no major 
differences between Bardeen and R-N space-time.

To summarize, we can look into a stable and possible structure for a compact star with charge using the modified 𝑓 (𝑄) gravity 
model with Bardeen’s black hole geometry and conformal motion. By employing two models of conformal factors, we have shown 
that the power-law model gives a better result than our constructed linear model. Conformal symmetries are useful for building the 
mathematical formulation of a physical solution in compact star research, but they have a major flaw: they have a singularity in 
the center. Except for the core singularity, the computed results utilizing Bardeen geometry as an outer space-time are inherently 
12

well-behaved.
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