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1 Introduction

In this paper we develop a lattice field theory method for computing the real-time dynamics of
spin systems in a thermal bath. By “spin-system”, we mean a collection of SU(2) generators,
s(x), assigned to sites on a lattice, interacting through a Hamiltonian H(s). This lattice could
correspond to an actual lattice in space, but may be also be an arbitrary graph. No assumptions
are made about the Hamiltonian except that it is a function of a finite number of spins.

Our purpose is twofold. First, we wish to provide an alternative to exact diagonalization
for reproducing the real-time dynamics of digital quantum computers. Today, the only way to
check a digital quantum computer’s simulation of real-time physics for a general hamiltonian
is to diagonalize it or perform a Trotterized task of equal complexity [1–4]. The cost of such
computations is exponential in the number of qubits in both storage and run-time. The
method we develop is exponential in runtime, but is linear in storage. Our method remains
NP hard, however, and our method should be viewed as a complementary approach to exact
diagonalization. Second, we wish to provide an alternative to tensor networks for computing
the real-time properties of spin systems, especially in more than one spatial dimension, where
tensor networks are generally less efficient [5, 6].

Our main result is a path integral discretization for spin systems which provably repro-
duces the exact real-time dynamics for any Hamiltonian of a finite number of spins. The path
integral is discretized in both space and time, and the desired dynamics are recovered in the
“time continuum limit”. The field variables of this path integral are points on the two-sphere
which are in one-to-one correspondance with points on the Bloch sphere. What is shown is
that correlation functions of points on the Bloch sphere in the lattice theory converge exactly
to spin correlation functions in the quantum theory. What is perhaps unconventional about
our formulation is the appearance of a “Schwinger-Keldysh action” [7, 8], which encodes
both real-time and thermal information.

The most important property of our discretization is that has the correct continuum limit.
The same cannot be said of all discretizations on the market. Demonstrated analytically
in [9] then corroborated numerically in [10], even textbook path integrals for spin systems,
such as those found in [11, 12], do not in general have time continuum limits. In spite of
being explicitly mentioned [12], this fact appears little appreciated today.

Our discretization builds upon a foundation layed by Takano in the 1980’s [13], where he
developed a Monte Carlo method for computing thermal properties of spin systems. The basic
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building block of Takano’s path integral are “spin coherent states”.1 Developed in [14–17], spin
coherent states are to spin operators what bosonic coherent states are to bosonic operators:
they are an overcomplete set of states providing a resolution of the identity that can be used
to build a path integral. The resolution of the identity involves an integral over the Bloch
sphere, and this is ultimately why the path integral has field variables on the sphere.

What we add to Takano’s work is real-time dynamics and simplification. In his original
work the possibility of real-time dynamics was not considered. Furthermore, the original
formulation relies on a certain “product formula” for inserting observables into the thermal
trace [18]. Implementing the product formula quickly becomes prohibitively difficult as
both the hamiltonian and observables increase in complexity. We skirt the product formula
altogether by using functional differentiation, a common technique in lattice field theory
for observable insertions. This allows for the analysis of more general Hamiltonians and
observables than would have otherwise been practical. In the following sections we derive
the path integral, demonstrate that it works, then offer a discussion.

2 Derivation

Consider a spatial lattice of spin-s spins s(x) interacting through a hamiltonian H and
satisfying the canonical commutation relations [si(x), sj(y)] = iϵijksk(x)δxy. In this section
we develop a path integral representation of correlation functions

⟨si(x, t)si′(x′, t′)⟩ ≡
tr
(
si(x, t)si′(x′, t′)e−βH

)
tr
(
e−βH

) (2.1)

where x, x′ are lattice sites, t, t′ are real times, and β = T −1 is the inverse temperature of the
system. This path integal representation is obtained in two steps. First, a trotterized, Hilbert-
space object is formed which reproduces the correlation functions in the time continuum
limit. Second, this Hilbert-space object is approximated by a path integral with controlled
errors. While our presentation is for two-point functions it will be clear the procedure
generalizes to n-point functions. Throughout we assume a lattice of finite extent but arbitrary
spatial dimension.

Consider a time extent tmax larger than t & t′ and the following object:

Z̃(j+, j−, jE) = tr
(

N∏
t=1

P̃+(j+
t )

N∏
t=1

P̃−(j−
t )

N∏
t=1

P̃E(jE
t )
)

, (2.2)

where

P̃+(j+
t ) = 1 + i∆t

(
H −

∑
x

j+
t (x) · s(x)

)
P̃−(j−

t ) = 1 − i∆t
(
H −

∑
x

j−
t (x) · s(x)

)
P̃E(jE

t ) = 1 − ∆τ
(
H −

∑
x

j+
E (x) · s(x)

)
, (2.3)

1In the literature these are also called “Bloch coherent states” (e.g. in [14]).
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Figure 1. Schematic of the discretized Schwinger-Keldysh contour. The path followed is indicated by
the arrows: beginning at zero the contour sweeps right to positive tmax, then back to zero, then down
an amount β. The vertical splitting between the real-time segments is only drawn so that the forward
and backward contours do not overlap; an iϵ prescription is neither needed nor employed.

where the sums run over lattice sites, 1 is the identity operator, N is an integer number
of “timeslices”, ∆τ = β/N , ∆t = tmax/N , and j+, j−, jE are classical sources. For brevity,
we collect all sources into a symbol j and define Z̃(j) ≡ Z̃(j+, j−, jE). The short-time
propagators P̃+, P̃−, P̃E build up a discretized “Schwinger-Keldysh contour” in the complex
time plane, shown in figure 1. This contour defines a “Schwinger-Keldysh action” [7, 8],
which we will elaborate on later.

We presently show that derivates of Z̃ with respect to sources produce the real-time
correlation functions eq. (2.1) when N → ∞ at fixed β, tmax. We borrow language from
lattice field theory and call this the “time-continuum limit”. First, since the Hilbert space is
finite dimensional, the Hamiltonian is bounded and N can always be taken large enough that

P̃E(0) = e−∆τH + O(∆τ2)
P̃±(0) = e±i∆tH + O(∆t2) ,

where the errors are small as desired. Therefore Z̃(0) converges linearly to tr
(
e−βH

)
in the

time continuum limit. Next, consider two spacetime points (x, t) & (x′, t′) with t < t′ < tmax,
and define integers (t̂, t̂′, t̂max) = (t, t′, tmax)/∆t. Then

( 1
−i∆t

)2 1
Z̃(j)

∂

∂j+
t̂,i

(x)
∂

∂j+
t̂′,i′(x′)

Z̃(j)
∣∣∣∣∣
j=0

= 1
Z̃(0)

tr
(

P̃ t̂−1
+ si(x)P̃ t̂′−t̂−1

+ si′(x′)P̃ N−t̂′
+ P̃ N

− P̃ N
E

)
(2.4)

where P̃a ≡ P̃a(0) for a = +, −, E. Since P̃ t̂−1
+ = eiHt + O(∆t), and similarly for the other

products of short time propagators, one obtains

( 1
i∆t

)2 1
Z̃(j)

∂

∂j+
t̂,i

(x)
∂

∂j+
t̂′,i′(x′)

Z̃(j)
∣∣∣∣∣
j=0

= ⟨si(x, t)si′(x′, t′)⟩ + O(∆t, ∆τ), for t < t′. (2.5)
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Taking a time-continuum limit while holding the physical time separation between derivatives
fixed, a real-time correlator is obtained. While this construction produced a time-anti-ordered
correlator, any time ordering can be obtained. One finds:

( 1
i∆t

)2 1
Z̃(j)

∂

∂j−
t̂,i

(x)
∂

∂j−
t̂′,i′(x′)

Z̃(j)
∣∣∣∣∣
j=0

=⟨si(x,t)si′(x′,t′)⟩+O(∆t,∆τ), for t>t′,

−
( 1

i∆t

)2 1
Z̃(j)

∂

∂j+
t̂,i

(x)
∂

∂j−
t̂max−t̂′,i′(x′)

Z̃(j)
∣∣∣∣∣
j=0

=⟨si(x,t)si′(x′,t′)⟩+O(∆t,∆τ), for any t,t′.

(2.6)

We will now relate Z̃(j) to a lattice path integral using Takano’s framework [13].
The key step is to express the short-time propagators in terms of spin coherent states,
which is accomplished using a “diagonalization theorem” [14, 15, 19]. We first set nota-
tion: to every spatial lattice site x we associate a sphere whose points we denote Ωx =(
sinθxcosϕx, sinθxsinϕx, cosθx

)
. A spin coherent state is then defined as

|Ω⟩ =
∏
x

|Ωx⟩ ≡
∏
x

eiθx(s1sinϕx−s2cosϕx)|s, s⟩ , (2.7)

where |s, s⟩ is the highest weight state in the spin-s representation of SU(2). While spin
coherent states are defined for any spin representation, we take s in eq. (2.7) to be the
representation of the spins appearing in the Hamiltonian. With this choice, the diagonalization
theorem states that any operator the Hamiltonian’s Hilbert space can be written as an
integral over spin coherent states:

O =
∫

d̄Ω fO(Ω) |Ω⟩⟨Ω| , (2.8)

where the function fO depends on the choice of operator and d̄Ω = ∏
x

(2s+1)
4π dΩx. Useful

examples include

1 =
∫

d̄Ω 1 |Ω⟩⟨Ω|

s(x) =
∫

d̄Ω (s + 1)Ωx |Ω⟩⟨Ω| . (2.9)

The theorem allows to write

P̃+(j+
t ) =

∫
d̄Ω
(

1 + i∆t

[
h(Ω) − (s + 1)

∑
x

Ωx · j+
t (x)

])
|Ω⟩⟨Ω| (2.10)

and similarly for P̃−, P̃E .2 Here h is related to the Hamiltonian through H =
∫

d̄Ω h(Ω) |Ω⟩⟨Ω|.

2Since the only way the spin representation appears in the coherent state picture is through the constant s,
it is simple generalize our procedure to site-dependent spin representations.
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We now introduce the operators3

P+(j+
t ) =

∫
d̄Ω+e+i∆t

[
h(Ω+)−(s+1)

∑
x

Ω+
x ·j+

t (x)
]

|Ω+⟩⟨Ω+|

P−(j−
t ) =

∫
d̄Ω−e−i∆t

[
h(Ω−)−(s+1)

∑
x

Ω−
x ·j−

t (x)
]

|Ω−⟩⟨Ω−|

PE(jE
t ) =

∫
d̄ΩEe−∆τ

[
h(ΩE)−(s+1)

∑
x

ΩE
x ·jE

t (x)
]

|ΩE⟩⟨ΩE | , (2.11)

which are equal to P̃+(j+
t ), P̃−(j−

t ), P̃E(jE
t ) up to errors of O(∆t2, ∆τ2). Therefore,

Z(j) = tr
(

N∏
t=1

P+(j+
t )

N∏
t=1

P−(j−
t )

N∏
t=1

PE(jE
t )
)

, (2.12)

is equal to Z̃(j) up to errors of O(∆t, ∆τ). Computing the trace, one finds:

Z(j) =
∫

DΩ eSSK(Ω,j) , (2.13)

where:

eSSK(Ω,j) = e

i∆t
∑̂

t

(
h(Ω+

t̂
) − (s + 1)

∑
x

Ω+
t̂ x

· j+
t (x)

)
− i∆t

∑̂
t

(
h(Ω−

t̂
) − (s + 1)

∑
x

Ω−
t̂ x

· j−
t (x)

)
−∆τ

∑̂
t

(
h(ΩE

t̂
) − (s + 1)

∑
x

ΩE
t̂ x

· jE
t (x)

)
×
∏

t

⟨Ωt|Ωt+1⟩∏
t

⟨Ωt|Ωt+1⟩ = ⟨Ω+
1 |Ω+

2 ⟩ . . . ⟨Ω+
N |Ω−

1 ⟩⟨Ω−
1 |Ω−

2 ⟩ . . . ⟨Ω−
N |ΩE

1 ⟩⟨ΩE
1 |ΩE

2 ⟩ . . . ⟨ΩE
N |Ω+

1 ⟩

DΩ =
∏

t

d̄Ω+
t

∏
t

d̄Ω−
t

∏
t

d̄ΩE
t . (2.14)

We call SSK(Ω, j) the Schwinger-Keldysh action. To clarify the notation, the Ω+
t appearing

within Z(j) arise from the product of P+ operators, while the Ω−
t and ΩE

t arise from the
products of P− and PE . We collect these three into a composite variable Ω which is a “path
ordered” concatenation of Ω+, Ω−, ΩE , in that order. Referring to the Schwinger-Keldysh
contour in figure 1, Ω+

t , Ω−
t , ΩE

t are assigned to the forward, backward, and Euclidean
segments, respectively. Since Z̃(j) and Z(j) differ at O(∆t, ∆τ), so do their derivatives.
One therefore has the following relations, up to errors of O(∆t, ∆τ), which vanish in the
time continuum limit:

(s + 1)2⟨Ω+
t̂ x i

Ω+
t̂′ x′ i′⟩SK = ⟨si(x, t)si′(x′, t′)⟩, for t < t′ (time-anti-ordered)

(s + 1)2⟨Ω−
t̂ x i

Ω−
t̂′ x′ i′⟩SK = ⟨si(x, t)si′(x′, t′)⟩, for t > t′ (time-ordered)

(s + 1)2⟨Ω+
t̂ x i

Ω−
t̂max−t̂′ x′ i′⟩SK = ⟨si(x, t)si′(x′, t′)⟩, for any t, t′ (unordered) . (2.15)

Here ⟨O⟩SK ≡ Z(0)−1 ∫ DΩ eSSK(Ω,0)O(Ω) and Ωa
t̂ x i

is the ith component of Ωa on lattice
site x and timeslice t̂. Eq. (2.14) and eq. (2.15) are our main results.

3Note that Ω±, ΩE are simply suggestive variable names: all three are points on the sphere.
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We conclude with some details about the Schwinger-Keldysh action. The inner product of
coherent states appearing in eq. (2.14) is the analog of the “Berry phase” in our formulation [12].
Each overlap has the explicit expression

⟨Ω′|Ω⟩ =
∏
x

(
cosθ′

x

2 cosθx

2 + e−i(ϕ′
x−ϕx)sinθ′

x

2 sinθx

2

)2s

. (2.16)

The only dependence of the path integral on the system in question is through the structure
of the lattice and the function h(Ω). As long as the hamiltonian does not involve products of
spins on the same site, h is obtained from the Hamiltonian through the simple rule:

h(Ω) = H
(
ŝ → (s + 1)Ω

)
, (2.17)

where on the right hand side we have distinguished the operator ŝ from the spin representation
s. If the Hamiltonian does contain products of spins on the same site, eq. (2.17) no longer
holds, and it becomes necessary to use the product formula of [13] to derive h. We emphasize
however that the only complication is in the relation between H and h. Correlation functions
retain the form eq. (2.15). The simple rule eq. (2.17) and the general relation between H

and h can be easily deduced from the discussion in section 2 of Takano [13].

3 Demonstration

We now engage in a numerical demonstration. We consider the Hamiltonian

H = − j

2
∑

x

s1(x)s1(x + 1) + s3(x)s3(x + 1) , (3.1)

for two spins in one spatial dimension with periodic boundary conditions and s = 1/2. We
will obtain the real-time correlation functions ⟨si(x, t)si′(x′, t′)⟩ by computing the Schwinger-
Keldysh path integral eq. (2.13) and taking a time-continuum-limit. The h function cor-
responding to this hamiltonian is

h = −j(s + 1)2

2
∑

x

Ω1(x)Ω1(x + 1) + Ω3(x)Ω3(x + 1) . (3.2)

Usually, lattice path integrals can only be estimated stochastically using Monte Carlo methods.
However, by considering a small system, we are able to elide the Monte Carlo and compute
the lattice path integral exactly. Without the burden of stochastic noise we demonstrate
that the time continuum limit of the Schwinger-Keldysh path integral eq. (2.13) both exists
and converges to the correct result. Since the method works for multiple qubits, albeit two,
we see no reason it should fail for any finite number of them.

To circumvent the Monte Carlo, we compute matrix representations of the P+, P−, PE

appearing in eq. (2.12). For this two-qubit theory, these are 4 × 4 matrices which, at fixed ∆t

and ∆τ , can be computed numerically by evaluating the integrals over spheres in eq. (2.11).
To form correlation functions, we also numerically compute the matrices∫

d̄Ω±e±i∆t h(Ω+) Ω±
x i |Ω±⟩⟨Ω±| . (3.3)

– 6 –
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Re〈sx(x,t)sx(x,0)〉
Im〈sx(x,t)sx(x,0)〉
Re〈sx(x,t)sx(x+1,0)〉
Im〈sx(x,t)sx(x+1,0)〉

-10 -5 5 10
t [j-1]

-0.2

0.2

0.4
N=25
N=50
N=100
N=1000

-10 -5 5 10
t [j-1]

-0.2

0.2

0.4

Re〈sx(x,t)sx(x,0)〉
Im〈sx(x,t)sx(x,0)〉
Re〈sx(x,t)sx(x+1,0)〉
Im〈sx(x,t)sx(x+1,0)〉

1/1001/2001/3001/5001/1000
N-1

0.005

0.010

0.015

0.020

0.025

Error

Figure 2. Left: real-time correlation functions. The transparent curves are unordered correlators
obtained from the disctetized theory at fixed N = 5000, while the dashed curves are the exact result
obtained by matrix exponentiation. Right: plot of Re⟨sx(x, t)sx(x, 0)⟩ at different lattice spacings.
The bold green line is the exact correlation function while the points are calculations at various N ;
the transparent green lines are interpolations to guide the eye. Bottom: time continuum limits at
fixed t = 5.0j−1. Error is defined as the difference between the lattice and exact theories, and each
point is obtained from a lattice calculation with N timesteps. The lines are linear fits to the finest
three lattice spacings.

In the following example we take β = 3.0j−1 and tmax = 10j−1. Due to spacetime and
internal symmetries, there are only four independent two-point correlation functions in this
theory: ⟨si(x, t)si(x, 0)⟩, ⟨si(x, t)si(x + 1, 0)⟩ for i = x, y. We show results only for i = x

correlation functions; the qualitative conclusions drawn from i = y are the same.
Our numerical results are found in figure 2. In the left panel we plot the exact correlation

functions ⟨sx(x, t)sx(x′, 0)⟩ in dotted lines, and the unordered correlation functions (s +
1)2⟨Ω+

t̂ x i
Ω−

t̂max x′ i′⟩SK in transparent lines. The lattice theory is taken to have N = 5000
timeslices. The visual agreement between the dashed and transparent curves is evidence
the lattice method works. This evidence is corroborated in the bottom panel of figure 2,
which illustrates time continuum limits. The vertical axis is the difference between the lattice
and exact results at fixed time separation t = 5.0j−1. The points are the results of lattice
calculations at different number of timeslices N , and the lines are linear fits to the finest three
lattice spacings. Linear convergence to zero as N−1 → 0 demonstrates both the existence and
correctness of a continuum limit of the lattice theory. Clearly the fits in the right panel of
figure 2 converge very close to zero. However, our fits to not converge to exactly zero. This
is simply because at any non-zero lattice spacing there are always some O(∆t2, ∆τ2) errors
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Fit window Re⟨sx(x,t)sx(x,0)⟩ Im⟨sx(x,t)sx(x,0)⟩ Re⟨sx(x,t)sx(x+1,0)⟩ Im⟨sx(x,t)sx(x+1,0)⟩

{300,400,500} −2.0×10−4 1.3×10−4 −8.2×10−5 1.8×10−4

{1000,1500,2000} −1.6×10−5 1.1×10−5 −6.9×10−6 1.5×10−5

{3000,4000,5000} −2.3×10−6 1.4×10−6 −1.0×10−6 1.9×10−6

{10000,12500,15000} −4.0×10−7 2.5×10−7 −2.2×10−7 2.6×10−7

Table 1. Table of continuum extrapolation errors. Printed within each row is the error in a linear
continnum extrapolation of three lattice calculations with the number of timeslices indicated by the
fit window. The column labels indicate the observable whose error is printed.

contaminating the fit. We have therefore performed fits at extremely fine lattice spacing. As
tabulated in table 1, we find a strictly shrinking error as we approach the continuum. We
find this to be evidence beyond reasonable doubt that the method works. While we have
presented detailed results only for the ⟨Ω+Ω−⟩SK correlator, which is able to access twice the
time separation as the ⟨Ω+Ω+⟩SK and ⟨Ω−Ω−⟩SK correlators, we have computed all three
and find they all converge to the correct continuum, limit. We have also computed the ⟨sysy⟩
correlation functions and obtain correct continuum limits in all cases.

4 Discussion

In this paper we developed a lattice field theory method for computing the real-time dynamics
of spin systems. This method extends previous work by Takano with Schwinger-Keldysh and
functional differentiation techniques. Our main results are eq. (2.14) and eq. (2.15), which
respectively give the Schwinger-Keldysh action for generic hamiltonians and formulae for spin
correlation functions. We then demonstrated the method on a simple two-qubit system.

Our method can be easily extended in several ways. First, convergence to the continuum
can be accelerated with higher-order approximations to the short-time propagators. The cost
of this acceleration is the need to write products like H2, H3, . . . in terms of coherent states
which requires the product formula. Such expressions are cumbersome though not impossible
to write. Second, three-point and higher-order spin correlation function are simple to obtain
by taking more functional derivatives. In fact, n-point functions of arbitrary observables O
are simple to obtain too. From the beginning one simply couples sources to O rather than
to spins. The same Schwinger-Keldysh path integral results, but rather than Ω correlators
one requires fO correlators (fO is defined through eq. (2.8)). Combining this fact with the
Schwinger-Keldysh path integral’s ability to compute any time ordering, “out of time ordered
correlators” of arbitrary observables can be computed with our method. This may prove to
be useful in studies of quantum chaos [20, 21]. Third, though we have chosen a particular
approach to the continuum (i.e. we have taken the number of timeslices to be idential on all
three legs of the Schwinger-Keldysh contour), infinity other approaches exist and may be
more efficient. Indeed, in highly asymmetric cases such as high-temperate & long real-time,
or low-temperature & short real-time, it may be profitable to choose a different number
of timeslices on each of the legs. Finally, we emphasize that no “+iϵ” prescription ever
appears in our method. It is not needed. This is important: it is unwise to add unnecessary
parameters to lattice simulations requiring extrapolation. There are already enough to do.
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A Monte Carlo evaluation of the path integral will be unavoidable for larger systems.
While the storage cost for Monte Carlo evaluations of lattice path integrals is linear in
the number of space time points, our path integral has a sign problem. This generally
requires exponential runtime to resolve [22]. However, our path integral has a holomorphic
path integrand for any Hamiltonian. This means it is anemable to “path integral contour
deformations”, a general method for taming sign problems where the integration manifold is
deformed into complex field space to a surface with reduced phase oscillations [23]. That our
path integral is over many spheres makes it particularly straightforward to apply contour
deformations, and existing machine-learned manifolds developed for other systems may prove
useful [24]. While the real-time dynamics of spins is a challenging problem, it is encouraging
that other real-time problems have been solved with contour deformations [25, 26].
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