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We study the chiral separation effect (CSE) in two-color and two-flavor QCD to delineate quasiparticle
pictures in dense matter from low to high temperatures. Both massless and massive quarks are discussed.
We particularly focus on the high density domain where diquarks form a color-singlet condensate with the
electric charge 1=3. The condensate breaks the baryon number and Uð1ÞA axial symmetry, and induces the
electromagnetic Meissner effects. Within a quark quasiparticle picture, we compute the chiral separation
conductivity at one-loop. We have checked that Nambu-Goldstone modes, which should appear in the
improved vertices as required by the Ward-Takahashi identities, do not contribute to the chiral-separation
conductivity due to their longitudinal natures. In the static limit, the destructive interferences in the particle-
hole channel, as in the usual Meissner effects, suppress the conductivity (in the chiral limit, to 1=3 of that of
the normal phase). This locally breaks the universality of the CSE coefficients, provided quasiparticle
pictures are valid in the bulk matter.
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I. INTRODUCTION

The quantum anomaly [1–3] and topological properties
of matter have been attracting much attention in a wide area
of physics, due to their universal natures valid for abruptly
different energy scales [4–10]. The nonrenormalization
theorem for the anomaly relation [11–13], as well as the
robustness of topology under local perturbations, are the
key concepts for such universality.
The chiral conductivities are constrained by such universal

relations, especially in the chiral limit (see e.g., a review
[14]). One can also use the relations to constrain or enrich
our pictures on the nonperturbative dynamics [15–22] which
have important implications to the physics of neutron stars
(for a review, see e.g., [23]). With this perspective in mind, in
this paper we study the conductivity for the chiral separation
effect (CSE) [24] and chiral separation (CS) conductivity, in
two-color QCD with two-flavor (QC2D) at high baryon
density. The relation is

J5i ¼ q̄γiγ5q ¼ C
2π2

μBi; ð1Þ

with q quark fields, μ quark chemical potential, and C being
some constant related to the anomaly. The dense QC2D
matter [25,26] can be studied in lattice Monte-Carlo sim-
ulations [27–30] and hence can be used as laboratories to
test the concepts and methodologies of dense QCD calcu-
lations [31–33]. The results may be extended to our main
target—the three-color dense QCD.
The CSE in QC2D was studied for hadronic and quark-

gluon-plasma phases [34], and was found to agree with
theoretical predictions including explicit chiral symmetry
breaking. Meanwhile, for cold dense matter the CSE has
not been studied yet. At μ ≥ mπ=2 (mπ is the pion mass),
the dense matter has condensations of diquarks, ∼ud,
which are color-singlet, JP ¼ 0þ, and have electric charges
of 1=3. We call this phase the ‘diquark condensed phase’. A
number of new ingredients appear here, modifying quali-
tative pictures conventionally used to explain the CSE [24];
(i) A quark acquires the mass gap around the Fermi surface
and arguments based on the lowest Landau level no longer
directly apply, (ii) Diquarks are charged and should induce
the electromagnetic Meissner effects, expelling magnetic
fields from the bulk, and (iii) The spontaneous symmetry
breaking demands the improved vertices to fulfill the Ward-
Takahashi identity (WTI), and the vertices contain the poles
of the Nambu-Goldstone (NG) modes [35], both in the
axial vector and the vector vertices.
We address these qualitative issues within one-loop

calculations in the linear response regime, as done for the
chiral magnetic conductivity [36]. We assume the quasi-
particle pictures for quarks with the gap Δ, in a similar
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manner as in our previous calculations [31–33]. The CS
conductivity in the static and dynamic limits will be
analyzed for various temperatures. We find that the
dependence on temperatures and the orders of static
and dynamic limits can be understood through the
particle-hole dynamics; in the chiral limit and at T ¼ 0,
the static CS conductivity in the diquark condensed
(normal) phase acquires 0 (2=3) of the anomaly coefficient
from the particle-hole contributions and 1=3 (1=3) from
particle-antiparticle contributions. Thus the static CS
conductivity in the diquark condensed phases provides
only 1=3 of that expected from the universal relation.1

Inclusion of the NG modes through the improved
vertices does not help as they are longitudinal modes
and hence decouple. This suggests that, if the coefficient
of the CS conductivity is indeed constrained by the
anomaly, we should go beyond our quasiparticle descrip-
tions or the linear response regime, e.g., by manifestly
treating vortices with fermion zero modes or zero modes on
the boundaries of the diquark condensed phase.
This paper is structured as follows. In Sec. II we set up

our frameworks and introduce quasiparticle propagators in
the diquark condensed phase. In Sec. III we summarize the
expressions for the CS conductivity within the linear
response regime. In Sec. IV we present our numerical
results for various chemical potentials, temperatures, quark
masses, and diquark gaps. In Sec. V we address the
contributions not included in our quasiparticle calculations
in the bulk. This paper is closed with summary in Sec. VI.

II. MODEL

Here we introduce an effective model to investigate the
CSE in QC2D. Previous works using lattice QCD [27–30]
and model calculations such as the Nambu–Jona-Lasinio
model [39–42] and the low-energy effective theory based
on the nonlinear realization [25,26] imply the existence of
the diquark condensed phase, or the diquark condensate
phase, in a region of μ ≥ mπ=2 (μ is the quark chemical
potential and mπ is the pion mass) at zero temperature
in QC2D. The diquark condensed phase is described by
S-wave, color-singlet, and flavor-singlet diquark conden-
sate Δ ∼ hψTCγ5σ2τ2ψi. Here, ψ ¼ ðψu;ψdÞT is a quark
spinor in the two-color and two-flavor system, C ¼ iγ2γ0 is
the charge-conjugation operator, and σ2 and τ2 are the
antisymmetric Pauli matrices for color and flavor spaces,
respectively.
In the present study, in order to incorporate effects from

the diquark condensate but investigate the CSE in the most
transparent way, we start with the following concise
effective model,

Leff ¼ ψ̄ði=Dþ μγ0 −mÞψ þ ψTΔψ : ð2Þ

In this Lagrangian a covariant derivative Dμψ ¼ ð∂μ −
ieQAμÞψ with Q ¼ diagðþ 2

3
;− 1

3
Þ the charge matrix has

been included to describe interactions with the external
magnetic field. m is a quark mass and Δ ¼ γ5σ

2τ2Δ is
responsible for the diquark condensate. For convenience we
rewrite Eq. (2) into the Nambu-Gorkov basis as

Leff ¼ Ψ̄
�
i=∂ þ μγ0 −m Δ̄

Δ i=∂ − μγ0 −m

�
Ψ

þ eΨ̄
�
Q=A 0

0 −Q=A

�
Ψ; ð3Þ

where

Ψ≡ 1ffiffiffi
2

p
�

ψ

ψc

�
; Ψ̄≡ 1ffiffiffi

2
p

�
ψ̄ ; ψ̄c

�
; ð4Þ

are the Nambu-Gorkov spinors (ψc ¼ Cψ̄T). From the first
line of Eq. (3), the inverse of the fermion propagator
S−1ðp0; pÞ reads as

iS−1ðp0; pÞ ¼
�
=pþ μγ0 −m Δ̄

Δ =p − μγ0 −m

�
; ð5Þ

with Δ̄≡ γ0Δ†γ0. By taking the inverse of S−1ðp0; pÞ, the
fermion propagator is obtained as

Sðp0; pÞ ¼
�

S11ðp0; pÞ σ2τ2S12ðp0; pÞ
σ2τ2S21ðp0; pÞ S22ðp0; pÞ

�
; ð6Þ

where each component has the Dirac structure as

S11ðp0; pÞ ¼
X
ξ¼p;a

Sξ11ðp0; pÞΛξγ
0;

S12ðp0; pÞ ¼
X
ξ¼p;a

Sξ12ðp0; pÞΛξγ5;

S21ðp0; pÞ ¼
X
ξ¼p;a

Sξ21ðp0; pÞΛC
ξ γ5;

S22ðp0; pÞ ¼
X
ξ¼p;a

Sξ22ðp0; pÞΛC
ξ γ

0; ð7Þ

with
1In contrast, the CS conductivity was found to be enhanced by

heavy impurities in Refs. [37,38].
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Sξ11ðp0; pÞ ¼ i

� juξðpÞj2
p0 − ηξϵξðpÞ

þ jvξðpÞj2
p0 þ ηξϵξðpÞ

�
;

Sξ12ðp0; pÞ ¼ −i
�
u�ξðpÞv�ξðpÞ
p0 − ϵξðpÞ

−
u�ξðpÞv�ξðpÞ
p0 þ ϵξðpÞ

�
;

Sξ21ðp0; pÞ ¼ i

�
uξðpÞvξðpÞ
p0 − ϵξðpÞ

−
uξðpÞvξðpÞ
p0 þ ϵξðpÞ

�
;

Sξ22ðp0; pÞ ¼ i

� jvξðpÞj2
p0 − ηξϵξðpÞ

þ juξðpÞj2
p0 þ ηξϵξðpÞ

�
: ð8Þ

Here we introduce ηp ¼ þ1 and ηa ¼ −1. In these expres-
sions, we defined the positive-energy and negative-energy
projection operators Λp and Λa by

Λξ ¼ γ0
Epγ0 þ ηξðmþ γ · pÞ

2Ep
; ð9Þ

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

p
, and ΛC

pðaÞ ¼ ΛaðpÞ, and

ϵξðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEp − ηξμÞ2 þ jΔj2

q
; ð10Þ

are the dispersion relations for quasiparticles. The factors
upðpÞ, vpðpÞ, uaðpÞ, and vaðpÞ satisfy relations

juξðpÞj2 ¼
1

2

�
1þ Ep − ηξμ

ϵξðpÞ
�
;

jvξðpÞj2 ¼
1

2

�
1 −

Ep − ηξμ

ϵξðpÞ
�
; ð11Þ

and

juξðpÞj2 þ jvξðpÞj2 ¼ 1; uξðpÞvξðpÞ ¼
Δ

2ϵξðpÞ
: ð12Þ

By using the propagator of the quasiparticles in Eq. (6)
together with Eqs. (7) and (8), and with the help of linear
response theory, the CSE in the diquark condensed phase
under a weak magnetic field can be evaluated.

III. CS CONDUCTIVITY

In the present work we investigate the CSE in the diquark
condensed phase within linear response theory. Our cal-
culations are similar to that for the chiral magnetic
conductivity [36], but are more complicated due to the
presence of diquark condensates. The axial current is
defined by ji5 ¼ ψ̄γiγ5ψ (i ¼ 1, 2, 3). In linear response
theory we measure the difference between the current with
and without external electromagnetic vector potential A,

hji5i≡ hji5iA − hji5iA¼0: ð13Þ

We note that the Uð1ÞA axial current couples to the gluon
topological density as ∂μjAμ ∼ G̃μνGμν. Below we neglect
the impact of A on the color gauge dynamics, i.e.,
hG̃μνGμνiA ¼ hG̃μνGμνiA¼0. Then we focus on the anoma-
lous contributions coupled to the μ and A.
In the following calculation, we will make use of the

imaginary time formalism to incorporate finite temperature
effects. In momentum space the axial current induced by
the external electromagnetic field is evaluated as the
retarded correlator between the axial vector and vector
currents, [

R
p ≡

R
d3p=ð2πÞ3]

hji5ðiω̄n; qÞi≡
Z

β

0

dτ
Z

d3xhψ̄ðxÞγiγ5ψðxÞie−iω̄nτþiq·x

¼ e
2

Z
p
T
X
m

Tr½ΓiΓ5Sðiωm; pÞ

× ðΓbare
ψ̄Aψ ÞμSðiω0

m; p0Þ�Aμðiω̄n; qÞ; ð14Þ

with p0 ¼ pþ q, iω0
m ¼ iωm þ iω̄n, and Nc ¼ 2, where we

have defined the vertices in the Nambu-Gorkov space as

ΓiΓ5¼
�
γiγ5 0

0 γiγ5

�
; ðΓbare

ψ̄AψÞμ¼
�
Qγμ 0

0 −Qγμ

�
: ð15Þ

Here ωm ¼ ð2mþ 1ÞπT and ω̄n ¼ 2nπT (n, m are inte-
gers) are the Matsubara frequencies for fermions and
bosons, respectively. The symbol “Tr” stands for the trace
with respect to the color, flavor, spinor, and Nambu-Gorkov
spaces. (We note that, in the presence of symmetry break-
ing, the use of the bare vertices violates the conservation
law and one must improve the vertices to recover it. We will
come back to this point later but we are just mentioning that
such improvements will not change the main conclusion of
the simplest one loop results.)
We will leave only spatial components of the external

gauge field Aμðiω̄n; qÞ because the magnetic field is solely
generated by them. The real-time axial current hji5ðq0; qÞi is
given by the analytic continuation as

hji5ðq0; qÞi ¼ hji5ðiω̄n; qÞijiω̄n→q0þiη; ð16Þ

with η an infinitesimal positive number.
Performing the trace with respect to the color, spinor, and

Nambu-Gorkov spaces in Eq. (14), the axial current is
reduced to the form

hji5ðiω̄n; qÞi ¼ −ietr½Q�ϵijkAjðiω̄n; qÞσkCSEðiω̄n; qÞ
¼ −etr½Q�BiσCSEðiω̄n; qÞ; ð17Þ

where we used that σkCSEðiω̄n; qÞ ¼ qkσCSEðiω̄n; qÞ because
of the Lorentz structure, and Bi ¼ ϵimnð−iqmÞAn. Hence
we can extract the conductivity σCSEðiω̄n; qÞ as
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σCSEðiω̄n; qÞ ¼
qk

jqj2 σ
k
CSEðiω̄n; qÞ: ð18Þ

The function σkCSE is computed using propagators decom-
posed into the particle and antiparticle pieces with normal
and anomalous components, as in Eq. (7). Accordingly the
function σCSE is also decomposed as

σCSEðiω̄n; qÞ ¼
X

ξ;ξ0¼p;a

σξξ
0

CSEðiω̄n; qÞ: ð19Þ

The set ðξ; ξ0Þ ¼ ðp; pÞ and (a, a) correspond to the particle-
hole and antiparticle-antihole contributions, while (p, a)
or (a, p) are from the particle-antiparticle contributions.
Explicitly,

σξξ
0

CSEðiω̄n; qÞ ¼
Ncqk

jqj2
Z
p
F ξξ0 ðω̄n; q; pÞKk

ξξ0 ðq; pÞ; ð20Þ

with the kinematic factor

Kk
ξξ0 ðq; pÞ ¼ −ηξ

pk

Ep
þ ηξ0

ðp0Þk
Ep0

; ð21Þ

which are independent of the diquark condensates, and the
propagator part

F ξξ0 ðω̄n; q; pÞ ¼ T
X
m

½Sξ11ðiωm; pÞSξ
0
11ðiω0

m; p0Þ

− Sξ12ðiωm; pÞSξ
0
21ðiω0

m; p0Þ
− Sξ21ðiωm; pÞSξ

0
12ðiω0

m; p0Þ
þ Sξ22ðiωm; pÞSξ

0
22ðiω0

m; p0Þ�; ð22Þ

which carries the effects from the diquark condensates. In
F ξξ0 we can carry out the Matsubara summation using an
identity

T
X
m

1

ðiωm − ϵ1Þðiω0
m − ϵ2Þ

¼ f̃ðϵ1Þ − f̃ðϵ2Þ
iω̄n − ϵ2 þ ϵ1

; ð23Þ

where f̃ðϵÞ ¼ 1=ðeβϵ þ 1Þ is the Fermi-Dirac distribution
function. Using this identity, the function F ξξ0 can be
written as

F ξξ0 ðω̄n; q; pÞ ¼ Cξξ
0

1 ðq; pÞGξξ0
1 ðq;pÞ

þ Cξξ
0

2 ðq; pÞGξξ0
2 ðq;pÞ; ð24Þ

where the second term is nonzero only at finite temperature.
The factors Cξξ

0
and C̃ξξ

0
are the coherence factors which

carry the information about the wave functions uξ and vξ,

Cpp1;2ðq; pÞ ¼
1

2

�
1 ∓ ðEp − μÞðEp0 − μÞ þ jΔj2

ϵpðpÞϵpðp0Þ
�
;

Caa1;2ðq; pÞ ¼
1

2

�
1 ∓ ðEp þ μÞðEp0 þ μÞ þ jΔj2

ϵaðpÞϵaðp0Þ
�
;

Cpa1;2ðq; pÞ ¼
1

2

�
1� ðEp − μÞðEp0 þ μÞ − jΔj2

ϵpðpÞϵaðp0Þ
�
;

Cap1;2ðq; pÞ ¼
1

2

�
1� ðEp þ μÞðEp0 − μÞ − jΔj2

ϵaðpÞϵpðp0Þ
�
: ð25Þ

The upper (lower) sign in the right-hand side corresponds
to the subscript 1 (2) in the left-hand side. The factors Gξξ0

1;2

are the propagator factors which carry the information
about the excitation spectra,

Gξξ0
1 ðq;pÞ ¼ 1

2
½1 − f̃ðϵξðpÞÞ − f̃ðϵξ0 ðp0ÞÞ�

×

�
1

iω̄n þ ϵξðpÞ þ ϵξ0 ðp0Þ

þ 1

−iω̄n þ ϵξðpÞ þ ϵξ0 ðp0Þ
�
; ð26Þ

and

Gξξ0
2 ðq;pÞ ¼ −

1

2
½f̃ðϵξðpÞÞ − f̃ðϵξ0 ðp0ÞÞ�

×

�
1

iω̄n þ ϵξðpÞ − ϵξ0 ðp0Þ

þ 1

−iω̄n þ ϵξðpÞ − ϵξ0 ðp0Þ
�
: ð27Þ

Below we examine how the contributions in different
sectors affect the CSE conductivity.

A. Particle-hole

The coherence factors and propagators behave very
differently for the normal and condensed phases. We
consider the low temperature case T ≪ Δ where quantum
effects are important. The contributions which are most
sensitive to the condensates are particle-hole contributions
near the edge of the Fermi sea with jpj ≃ jp0j ≃ pF. Below
we discuss the particle-hole contributions for the jqj ≪ Δ
and jqj ≫ Δ cases. The latter can be seen as the results in
the normal phase.

1. jqj ≪ Δ
Depending on the size of q, the coherence factors

appear constructively or destructively. To see this, first
we set q ¼ 0 as a special case of jqj ≪ Δ. Then we find

Cpp1 ðq ¼ 0; pÞ ¼ 0; Cpp2 ðq ¼ 0; pÞ ¼ 1: ð28Þ
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For Cpp1 , the correction starts with OðqÞ. With this F pp ∼
Gpp
2 for small q. For Gpp

2 , we focus on jpj ≃ jp0j ≃ pF, where
ϵpðpFÞ ¼ Δ and f̃ ∼ e−Δ=T ≪ 1. We expand

f̃ðϵpðpÞÞ − f̃ðϵpðp0ÞÞ ≃ −
∂f̃ðxÞ
∂x

����
x¼ϵp

∂ϵp
∂p · q; ð29Þ

and get

Gpp
2 ∼

∂f̃ðxÞ
∂x

����
x¼ϵp

ð∂ϵp∂p · qÞ2
ω̄2
n þ ð∂ϵp∂p · qÞ2

∼
1

T
e−Δ=T: ð30Þ

For T → 0, ∂f̃=∂x → 0 at x > 0, and Gpp
2 is vanishing for

Δ ≠ 0 as e−Δ=T=T → 0.
Finally we look at the kinematic factor coupling to qk,

qkKk
ppðq; pÞ ¼ −

q · p
Ep

þ q · ðpþ qÞ
Epþq

≃
q2

Ep
−
ðp · qÞ2
E3
p

∼
q2

Ep

�
1 −

1

3

jpj2
E2
p

�
; ð31Þ

where in the last expression we averaged ðp · qÞ2 → p2q2=3
in the integral over p. Then the CSE conductivity from the
particle-hole can be written as

σppCSEðiω̄n; qÞ ∼ Nc

Z
p
Gpp
2

1

Ep

�
1 −

1

3

jpj2
E2
p

�
; ð32Þ

for small q. Note that the thermal factor makes the
expression Eq. (32) UV finite.
At zero temperature the particle-hole contributions

vanish by the presence of the diquark gap as
Gpp
2 ∼ e−Δ=T=T → 0. This suppression of particle-hole is

what happens for the Meissner effect in a superconductor.
In contrast, in a normal conductor the particle-hole induces
the paramagnetic effects which cancel with the diamagnetic
contributions from particle-antiparticle contributions. The
absence of particle-hole contributions or paramagnetic
effects, as found in our calculations for the diquark
condensed phase, makes the material diamagnetic. The
particle-hole pairs contribute only as thermal excitations.

2. jqj ≫ Δ or normal phase

For jqj ≫ Δ, the above expression is qualitatively
modified. Here it is important to note that ðEp − μÞ
ðEp0 − μÞ < 0 for the particle-hole contributions; one of
the excitations has E > μ and the other E < μ. Then,
neglecting Δ, one finds

ðEp − μÞðEp0 − μÞ þ jΔj2
ϵpðpÞϵpðp0Þ

≃ −1; ð33Þ

so that

Cpp1 ðq; pÞ ≃ 1; Cpp2 ðq; pÞ ≃ 0: ð34Þ

With this F pp ∼ Gpp
1 for jqj ≫ Δ. This function is evalu-

ated by focusing on the domain jpj ≃ jp0j ≃ pF. For Ep −
μ ≫ Δ and μ − Ep0 ≫ Δ, we use

1 − f̃ðϵpðpÞÞ − f̃ðϵpðp0ÞÞ ∼ f̃ðEp0 − μÞ − f̃ðEp − μÞ

∼
∂f̃ðxÞ
∂x

����
x¼Ep−μ

∂Ep

∂p · q; ϵξðpÞ þ ϵξ0 ðp0Þ

∼ Ep − Ep0 ≃ −
∂Ep

∂p · q; ð35Þ

to get

Gpp
1 ∼ −

∂f̃ðxÞ
∂x

����
x¼Ep−μ

×
ð∂Ep

∂p · qÞ2
ω̄2
n þ ð∂Ep

∂p · qÞ2
: ð36Þ

For T → 0, the contribution entirely comes from jpj ¼ pF

where ∂f̃=∂x yields −δðjpj − pFÞ, as in the usual Debye
screening calculations. Including the kinematic factor as
before, we find

σppCSEðiω̄n; qÞ ∼ Nc

Z
p
Gpp
1

1

Ep

�
1 −

1

3

jpj2
E2
p

�
; ð37Þ

for jqj ≫ Δ. The expression Eq. (37) is UV finite and the
integrand is dominated by the contributions from jpj ≃ pF.
As mentioned before, the result for jqj ≫ Δ can be taken

as a result for the normal phase with Δ ¼ 0. In the normal
phase the particle-hole contributions are large at T ¼ 0 as
they are gapless, in contrast to fermions in the diquark
condensed phase. In the massless limit, we find, for the
static limit,

σppðnormalÞ
CSE;m¼0 jω¼0

q→0 →
Ncμ

3π2
; ð38Þ

and for the dynamic limit

σppðnormalÞ
CSE;m¼0 jω→0

q¼0 → 0: ð39Þ

B. Particle-antiparticle

Next we discuss the particle-antiparticle contributions.
These contributions are not regulated by thermal factors
and are potentially UV divergent. Our main concern is the
UV finiteness and for this purpose it is sufficient to
study T ∼ 0.
The coherence factors in the particle-antiparticle con-

tributions are not dominated by the contributions from
jpj ∼ jp0j ≃ pF, but come from large phase space with
momenta much larger than Δ. For this reason we set
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Δ → 0 and focus on the leading order contributions. Then
for Ep − μ > 0,

ðEp − μÞðEp0 þ μÞ − jΔj2
ϵpðpÞϵaðp0Þ

→ 1; ð40Þ

Accordingly,

Cpa1 ðq; pÞ → 1; Cpa2 ðq; pÞ → 0; ð41Þ

and we find

F pa → Gpa
1 ¼ ½1 − f̃ðEp − μÞ − f̃ðEp0 þ μÞ�Gpa; ð42Þ

where

Gpa ¼
Ep þ Ep0

ω̄2
n þ ðEp þ Ep0 Þ2

: ð43Þ

Likewise,

F ap → Gap
1 ¼ ½1 − f̃ðEp þ μÞ − f̃ðEp0 − μÞ�Gpa: ð44Þ

Meanwhile the kinematic factor is

Kk
pa ¼ −Kk

ap ¼ −
�
pk

Ep
þ ðp0Þk

Ep0

�
∼ −2

pk

Ep
; ð45Þ

for small q. While each of (pa) and (ap) contributions is UV
divergent, the sum cancels the UV divergence.

F paKk
pa þ F apKk

ap ∼Kk
paðF pa − F apÞ

∼ −2
pk

Ep
Gpa½f̃ðEp0 − μÞ − f̃ðEp − μÞ� − ðμ ↔ −μÞ

∼ −2
pk

Ep

ðp · qÞ
Ep

Gpa

X
ξ¼p;a

ηξ
∂f̃ðxÞ
∂x

����
x¼Ep−ηξμ

∼ −
2qk

3

p2

E2
p
Gpa

X
ξ¼p;a

ηξ
∂f̃ðxÞ
∂x

����
x¼Ep−ηξμ

; ð46Þ

where we took the angular average for p. The CS conduc-
tivity is

σpaþap
CSE ðiω̄n;qÞ∼−Nc

Z
p

2

3

p2

E2
p
Gpa

X
ξ¼p;a

ηξ
∂f̃ðxÞ
∂x

����
x¼Ep−ηξμ

:

ð47Þ

Because of ∂f̃=∂x, the integrand is dominated by states
with Ep � μ. In the massless limit, we find, for the static
limit,

σppðnormalÞ
CSE;m¼0 jω¼0

q→0 →
Ncμ

6π2
; ð48Þ

and for the dynamic limit

σppðnormalÞ
CSE;m¼0 jω→0

q¼0 →
Ncμ

6π2
: ð49Þ

That is, the static and dynamic limits are the same, as the
propagators do not have sensitivity to the limiting order.

C. Antiparticle-antihole

The computations of antiparticle-antihole proceed in the
very similar way as the particle-hole case. The contribu-
tions are suppressed by thermal factor as ∼e−ðμþΔÞ=T .

IV. NUMERICAL RESULTS

In this section, we present the numerical results of the CS
conductivity for plural density, quark mass, and temper-
ature. We discuss a normalized CS conductivity,

Rξξ0 ≡ σξξ
0

CSE=σ0; R ¼
X

ξ;ξ0¼p;a

Rξξ0 ; ð50Þ

with a μ dependent normalization factor

σ0 ¼
Ncμ

2π2
; ð51Þ

where σ0 is the conductivity at massless, zero temperature,
and static limits in the normal phase.
To understand the results in this section, it is useful to use

the massless and zero temperature limit in the normal phase
as a baseline. The static conductivity is

ðRpp þ Rpaþap þ RaaÞω¼0
q→0 →

2

3
þ 1

3
þ 0 ¼ 1; ð52Þ

and the dynamic conductivity is

ðRpp þ Rpaþap þ RaaÞω→0
q¼0 → 0þ 1

3
þ 0 ¼ 1

3
: ð53Þ

The difference comes from the response of particle-hole to
the external fields.
To delineate the CS conductivity we found it convenient

to discuss the normal phase as a guideline. We discuss the
CS conductivity including the mass effects, μ dependence,
and temperature dependence. Finally we include the
diquark gap. We focus on the ω ¼ 0 case; the impact of
ω can be readily seen from the propagator factors.
In this section we present the CS conductivity pretending

that quark matter exists from μ ≥ m. This picture is not
realistic at μ ∼m for QC2D where a hadronic phase should
exist at μ < mπ=2 and diquarks with the massmπ condense
at μ ≥ mπ=2. At low density there are more appropriate
presentations based on the chiral Lagrangian [43], and we
will not repeat those discussions. Hence, only our results at
μ ≫ m can be taken at its face value. Here the chiral
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symmetry is supposed to get restored and m will be
regarded as the current quark mass. As for comparisons
with the lattice simulation setup, we note that the pion mass
used is about 700 MeV, and we should regard the current
quark mass as rather heavy. We take m ∼ 100 MeV as a
typical value.

A. Normal phase

First we examine the current quark mass dependence. A
finite current quark mass breaks the chiral symmetry
explicitly, blurring qualitative pictures for chiral conduc-
tivities whose descriptions are usually based on massless
quarks. Whether the mass effects enter as a quark mass or
the mass of NG modes depend on the phase structure of the
QC2D, but we consider the former case as a guide for the
domain of μ ≫ m. Shown in Fig. 1 is the (normalized)
static CS conductivity at zero temperature. It sets the
overall size. The cases with various quark masses m are
displayed. Clearly the mass characterizes the onset of quark
density. We have checked the scaling

σCSEjω¼0
q→0 ¼

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 −m2

p
2π2

¼ NcpF

2π2
; ð54Þ

where pF is the Fermi momentum in the normal phase,
related to the baryon density as pF ¼ ð3π2nB=NfÞ1=3. This
expression is useful to understand that the CS conductivity
is sensitive to the number density, rather than the chemical
potential. Below we set m ¼ 0.
Next we examine the μ dependence of the normalized CS

conductivity R at various external momenta jqj, shown in
Fig. 2. The R in low momentum limit approaches 1 but
damps at larger momenta. Its size becomes half at
jqj ¼ 2μ ¼ 2pF, but after that the damping proceeds rather
slowly.

Shown in Fig. 3 is the temperature dependence of R. We
fixed μ ¼ 500 MeV. The R at q → 0 limit stays constant at
a larger temperature. The growth is more evident at high
momentum modes.

B. Diquark condensed phase: Schematic setup

Now we turn on the diquark gap. The major roles of Δ is
to distinguish the regimes, jqj < Δ and jqj > Δ, and to
determine the abundance of thermal quarks which is con-
trolled by a thermal factor f̃ ∼ e−Δ=T. Its impact is substantial
only for the low-momentum or low-temperature behaviors,
jqj < Δ or T < Δ. In the other domains the results are
similar to the normal phase.
Shown in Fig. 4 is the Δ dependence of the static CS

conductivity as a function of spatial momenta q. The
values of Δ are 0,1,10,50,100,150, and 200 MeV. We set
T ¼ m ¼ ω ¼ 0 and μ ¼ 500 MeV. It is clear that the size

FIG. 1. The μ dependence of the CS conductivity for the quark
masses m ¼ 0, 100, 200, and 300 MeV, where ω, T, Δ are set
to zero.

FIG. 2. The μ dependence of the CS conductivity as a function
of spatial momenta q. As an eye guide we show a R ¼ 0.5 line
which is found at jqj ¼ 2μ ¼ 2pF.

FIG. 3. The T dependence of the CS conductivity as a function
of spatial momenta q.
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of Δ determines the domain of q where the CS conduc-
tivity deviates from that in the normal phase. With a finite
Δ, the static conductivity is R ¼ 1=3, reflecting the
suppression of the particle-hole contributions by diquark
gaps.
The temperature dependence of the CS conductivity can

be also understood by the suppression of particle-holes.
Shown in Fig. 5 is the temperature dependence of the
static CS conductivity at a fixed gap, Δ ¼ 200 MeV (more
realistic treatments of Δ will be discussed in the next
section). At low temperature R ¼ 1=3; as the temperature
increases from T ¼ 0 to T ≃ Δ, thermal quarks contribute
as in the normal phase, and R increases from R ¼ 1=3 to
the value R ¼ 1 of the normal phase.

C. Diquark condensed phase: Realistic setup

Finally we consider a parameter set consistent with
lattice simulations for QC2D, and consider the static CS
conductivity at ω ¼ 0 and q → 0 for various μ and T. Most
of the lattice simulations have been done for relatively
heavy pion mass ≃700 MeV and ρ meson mass of
∼900 MeV. The onset chemical potential μc for the baryon
density is μc ¼ mπ=2 ≃ 350 MeV. For comparisons of our
analytic results with the future lattice simulations in the
diquark condensed phase, we use a relatively large current
quark mass of m ¼ 100 MeV as in our previous works
[31,32], and assume mπ ¼ 700 MeV in this setup.
Also, at this stage we introduce the μ and T dependence

of the gap. For the μ dependence, we assume the zero
temperature gap of the form [25]

Δ0ðμÞ ¼ Δ̄0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðμc=μÞ4

q
θðμ − μcÞ; ð55Þ

as predicted by the chiral effective theories. The Δ0

vanishes at μ ¼ μc, while approaches Δ̄0 at high density.
As for the temperature dependence, we assume the
Bardeen-Cooper-Schrieffer (BCS) formulas as our base-
line [44]

TSFðμÞ ≃ 0.57Δ0ðμÞ; ð56Þ

where TSFðμÞ is the critical temperature of the diquark
condensed phase at given μ. The gap depends on T as

Δðμ; TÞ ≃ Δ0ðμÞð1 − T=TSFÞ1=2: ð57Þ

For the high density value of the diquark gap, we take
Δ̄0 ¼ 200 MeV which, according to the BCS formulas,
leads to TSF ≃ 114 MeV. This value is consistent with the
lattice results TSF ¼ 90–120 MeV in the BCS domain of
QC2D matter for μ ≳ 500 MeV, where the lattice results
showed that TSF depends on μ weakly. See Ref. [31] for
more detailed considerations on the applicability of the
formulas.
Shown in Fig. 6 is the static CS conductivity for various

T and μ. We display results only for μ ≥ μc and T < TSF; at
lower μ and T we should use the hadronic degrees of
freedom. The normalized CS conductivity R is close to 1=3
at low temperature and approaches R ¼ 1 at higher temper-
atures as expected for the normal phase. The growth of R is
much quicker than in Fig. 5 because now we are including
the temperature dependence of gaps. For the same reason,
the rapid change in R at low μ happens because the TSF is
low, accordingly Δ is smaller and thermal quarks can more
easily contribute to the conductivity.
We emphasize that our results on the temperature depend-

ence are based on the assumption that thermal quarks behave
as in an ideal gas of (quasi)particles; that is, once particles
and holes are released from diquark condensates, they

FIG. 4. The Δ dependence of the CS conductivity. We set
T ¼ m ¼ ω ¼ 0 and μ ¼ 500 MeV. The values of Δ are 0, 1,
10, 50, 100, and 200 MeV. We show R ¼ 1=3 and 1 for eye
guides.

FIG. 5. The T dependence of the CS conductivity. We set
m ¼ ω ¼ 0, μ ¼ 500 MeV, and Δ ¼ 200 MeV. The values of T
are 1, 50, 100, 150, and 200 MeV.
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behave individually. But the validity of this picture is not
immediately obvious except at very high density. The
thermally excited particles and holes may need to form
hadronic objects to avoid the energetic cost of the color
electric flux from isolated quarks. If this is the case, the
thermal factor necessary for excitations are ∼e−2Δ=T of a
particle-hole pair, instead of ∼e−Δ=T for an isolated quark
[31]; the thermal corrections would be much smaller than we
computed. In this respect the lattice simulations in diquark
condensed phase at low density are important to delineate the
properties of thermal excitations in dense matter.

V. DISCUSSIONS

Our calculations of the CS conductivity rely on the
validity of quasiparticle pictures in the diquark condensed
phase. While our results on the normal phase lead to the
static CS conductivity at q → 0 limit as expected from the
anomaly arguments, our calculations for the diquark con-
densed phase lead to only the one-third; the coefficient of
the CSE is not universal even in chiral limit.
This conclusion puzzled us. The triangle graph for the

A-V-V type (A: axial-vector, V: vector) arises when we
expand the A-V correlator by the term μγ0 in the quark
propagators as S ≃ S0 þ S0ð−μγ0ÞS0 þ � � � where S0 is the
propagator at μ ¼ 0. However, it turned out that such
expansion does not yield the same result as the usual
triangle calculations. In fact, the static CS conductivity at
vanishing temperature in the diquark condensed phase can
be expanded with respect to μ as

σCSEjω¼0
q→0 ¼

Nc

6π2
jΔj2

m2 þ jΔj2 μþOðμ2Þ at T ¼ 0: ð58Þ

Here we have checked that the higher-order contributions
Oðμ2Þ are proportional to jΔj2m2. In this way, the con-
ductivity is shown to be given by S0ð−μγ0ÞS0 part solely in
chiral limit (m → 0), resulting in

σCSEjω¼0
q→0 →

Cuiv:

3
μ; ð59Þ

with Cuniv: ¼ Nc=ð2π2Þ the universal value. It should be
noted that, in Eq. (58), the dimensionless expansion
parameter is found to be μ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jΔj2 þm2

p
, hence m → 0

limit to obtain (59) and has been safely taken due to a
regulator played by Δ. On the other hand, the other limit
Δ → 0 in Eq. (58) leads to an incorrect answer;
σCSEjω¼0

q→0 → 0, showing the diquark gap Δ changes the
analytic properties of the conductivity in the infrared.
The above violation of the universality does not seems to

be unnatural to us. The μγ0 vertex in S0ð−μγ0ÞS0 introduces
no momenta; the only available momentum, after integrat-
ing out the loop momenta, is the external momentum q.
Thus the possible form from the expansion of the A-V
correlator in obtaining Eq. (59) should be

hji5ðqÞjjemð−qÞj0Bð0Þiμ¼0
A¼0μAj ∼ ϵ0ijkμqjAk: ð60Þ

Contracting with the external momentum qi, the spatial
divergence of axial current vanishes, showing that our
results do not affect ∂μj

μ
5 and hence the anomaly relation.

From this viewpoint it is not clear to us why the CS
coefficient should be constrained by the anomaly. The
possible exceptions for this discussion are the cases when
Ak is singular [45,46], as in the Dirac string on which
ð∂i∂j − ∂j∂iÞA ≠ 0, but this sort of external fields are
presumably not compatible with the linear response regime
utilized in this paper. The radiative corrections to chiral
transport coefficients have been discussed in Refs. [47–49].
On the other hand, our one-loop calculations shown in

the previous sections have not taken into account the vertex
correction, and hence would miss some qualitatively
important effects. In particular, we must treat the quasi-
particle propagators and the vertices consistently in order to
keep the conservation laws. Our quasiparticle propagators
include diquark mean fields which break the Uð1ÞA axial,
baryon number, and electric charge conservations. The
improved vertices produce the poles of the NG modes that
recover the conservation laws.
Below we give a brief discussion on the structure of the

improved vertices and will conclude that they do not
influence the conclusions in the simplest quasiparticle
computations.
The vertex corrections appear both in the axial-vector

current and the vector current coupled to background
electromagnetic fields. The WTI for the axial-vector vertex
leads to

FIG. 6. The T and μ dependence of the static CS conductivity
with Δ prepared for comparisons with the lattice simulations. We
terminate the lines for low μ as our descriptions based on quarks
are valid only for μ ≥ μc and T < TSF. The low density and
temperature domain should be calculated with hadronic degrees
of freedom.
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qμΓ̄A
μ − 2mΓ5 ¼ iS−1ðpþ qÞγ5 þ γ5iS−1ðpÞ; ð61Þ

where the improved vertex is the sum of the bare and the
correction, Γ̄A

μ ¼ ðΓbareÞ5μ þ δΓA
μ , with

qμδΓA
μ ¼ 2

�
0 Δ̄
Δ 0

�
¼ ZA: ð62Þ

[Reminder: Δ ¼ γ5σ
2τ2Δ and Δ̄ ¼ −γ5σ2τ2Δ�.] Similarly,

the WTI with respect to the Uð1Þem gauge symmetry
leads to

qμΓ̄V
μ ¼ QiS−1ðpþ qÞ − iS−1ðpÞQ; ð63Þ

where Q ¼ diagðQ;−QÞ and Γ̄V
μ ¼ Γbare

μ þ δΓV
μ with

qμδΓV
μ ¼

�
0 QΔ̄þ Δ̄Q

−QΔ − ΔQ 0

�
¼ ZV: ð64Þ

For Eqs. (62) and (64) to be valid for q → 0, the correction
of the vertices (δΓA

μ ; δΓV
μ ) must contains poles; otherwise

the left-hand side would vanish in spite of the finite right-
hand side. The general form of solutions is (assuming the
linear dispersion between q0 and q)

δΓs
μ ¼

δμ0q0 þ vsδiμqi
q20 − v2sq2

Zs; ð65Þ

where s ¼ V, A, and vs is the medium velocity of the NG
mode. From this expression it is clear the corrections to
the vertices are proportional to the external momenta q.
Therefore, it yields a term of the form ∼ϵ0ijkqiqjAk, and
drops off from the evaluation of hji5i for a regular Ak. Thus,
while the NG modes join the anomalous processes, they
do not contribute to the coefficients of the anomaly
relations.
With these discussions, it seems plausible to us that the

CS conductivity in chiral limit depends on the phase
structure. We note that our calculations correspond to
the bulk part of matter. If the coefficient of the CSE is
indeed universal, it likely requires the manifest treatments
of the boundaries of matter which in turn introduce space
variation of the chemical potential. We expect that such
boundaries accommodate surface zero modes that contrib-
ute to the CS conductance as a global quantity, rather than
the conductivity as a local quantity.

VI. CONCLUSIONS

In this paper we have delineated the CS conductivity
within the quasiparticle picture. The CS conductivity has
been calculated in lattice simulations but the result was for
the domain other than the diquark condensed phase [34].

We hope that our considerations in this paper will be tested
in near future.
The results depend on the particle-hole contributions

which are sensitive to the phase structure of QC2D. The
particle-hole contributions are suppressed in the presence
of diquark condensates. As a consequence, the static CS
conductivity at a low-momentum limit leads to only the
one-third of the normal phase. We note that this particle-
hole suppression is also the origin of the electromagnetic
Meissner mass, relating the CS conductivity to the
Meissner effects. As the temperature increases, the par-
ticles-holes come back to enhance the CS conductivity to
the size of the normal phase.
In a more general context, the nature of thermal

corrections carry important information on the properties
of matter other than the diquark condensates. Thermal
excitations on top of the diquark condensed Fermi surface
may be hadronic. This sort of picture has been suggested in
the quarkyonic matter conjecture where the quark matter
has the baryonic Fermi surface [50–54]. We studied this
point of view by examining gluon propagators in the
diquark condensed phase [31], and found indications that
thermal quarks, rather than thermal hadrons, induce too
strong thermal corrections to gluons. In order to derive
definite conclusions, however, we need more lattice data
points at low temperatures and should also examine the
systematics in our calculations. The CS conductivity may
provide us information complementary with those from
gluon propagators.
In the astrophysical aspect, the understandings of excita-

tions in dense QC2D have important applications to the
physics of neutron stars [55]. In this context, recently the
picture of quark-hadron continuity has been actively dis-
cussed [23,56–65]) to account for the interplay between the
low-density nuclear physics [66], the neutron star radii for
1.4- [67,68] and 2-solar mass (M⊙) neutron stars [69–72],
and the maximum mass ≃2.08� 0.07 M⊙ [73]. In particu-
lar the latest result by NICER [69–72] shows that the radii of
1.4 M⊙ and 2 M⊙ neutron stars are close (12–13 km for
both), disfavoring strong first-order transitions from the
nuclear to quark matter domain, and implying that there
should be rather stiff matter with the sound velocity exceed-
ing the conformal value,2

ffiffiffiffiffiffiffiffi
1=3

p
[23,74–78]. These con-

tinuity discussions are basically for neutron star matter at
zero temperature. In order to expand them into the level of
finite temperature and general charge chemical potentials,
we need to have more detailed insights on the excitations in
dense QCD [79]. QC2D is an ideal laboratory to delineate
these issues and further studies are called for.

2To the best of our knowledge, this behavior first appeared in
Ref. [74,75] in the context of quark-hadron crossover model. A
more general argument based on nuclear physics and neutron star
observations was given in Ref. [76], and a microscopic description
was proposed in Ref. [77] in the quarkyonic matter context.

DAIKI SUENAGA and TORU KOJO PHYS. REV. D 104, 034038 (2021)

034038-10



ACKNOWLEDGMENTS

D. S. wishes to thank Naoki Yamamoto for useful
comments. Also, the authors thank Yoshimasa Hidaka

and Noriyuki Sogabe for fruitful discussions and
comments. T. K. is supported by NSFC Grant No.
11875144.

[1] S. L. Adler, Axial vector vertex in spinor electrodynamics,
Phys. Rev. 177, 2426 (1969).

[2] J. S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ
model, Nuovo Cimento A 60, 47 (1969).

[3] L. Alvarez-Gaume and E. Witten, Gravitational anomalies,
Nucl. Phys. B234, 269 (1984).

[4] A. Vilenkin, Equilibrium parity violating current in a
magnetic field, Phys. Rev. D 22, 3080 (1980).

[5] D. E.Kharzeev,L. D.McLerran,andH. J.Warringa,Theeffects
of topological charge change in heavy ion collisions: ‘Event by
event P and CP violation’, Nucl. Phys. A803, 227 (2008).

[6] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, The
chiral magnetic effect, Phys. Rev. D 78, 074033 (2008).

[7] D. T. Son and P. Surowka, Hydrodynamics with Triangle
Anomalies, Phys. Rev. Lett. 103, 191601 (2009).

[8] D. Thanh Son and N. Yamamoto, Berry Curvature, Triangle
Anomalies, and the Chiral Magnetic Effect in Fermi
Liquids, Phys. Rev. Lett. 109, 181602 (2012).

[9] M. A. Stephanov and Y. Yin, Chiral Kinetic Theory, Phys.
Rev. Lett. 109, 162001 (2012).

[10] N. Yamamoto, Chiral transport of neutrinos in supernovae:
Neutrino-induced fluid helicity and helical plasma insta-
bility, Phys. Rev. D 93, 065017 (2016).

[11] S. L. Adler and W. A. Bardeen, Absence of higher order
corrections in the anomalous axial vector divergence equa-
tion, Phys. Rev. 182, 1517 (1969).

[12] S. L. Adler, Anomalies to all orders, in 50 Years of Yang-
Mills Theory, edited by G. ’t Hooft (World Scientific
Publishing, Hackensack, NJ, 2005).

[13] S. Golkar and D. T. Son, (Non)-renormalization of the
chiral vortical effect coefficient, J. High Energy Phys. 02
(2015) 169.

[14] K. Landsteiner, Notes on anomaly induced transport, Acta
Phys. Pol. B 47, 2617 (2016).

[15] H. Itoyama and A. H. Mueller, The axial anomaly at finite
temperature, Nucl. Phys. B218, 349 (1983).

[16] F. Sannino, A note on anomaly matching for finite density
QCD, Phys. Lett. B 480, 280 (2000).

[17] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized global symmetries, J. High Energy Phys. 02
(2015) 172.

[18] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg,
Theta, time reversal, and temperature, J. High Energy Phys.
05 (2017) 091.

[19] Y. Tanizaki, Y. Kikuchi, T. Misumi, and N. Sakai, Anomaly
matching for the phase diagram of masslessZN-QCD, Phys.
Rev. D 97, 054012 (2018).

[20] Y. Tanizaki, Anomaly constraint on massless QCD and the
role of Skyrmions in chiral symmetry breaking, J. High
Energy Phys. 08 (2018) 171.

[21] Z. Wan and J. Wang, Higher anomalies, higher symmetries,
and cobordisms III: QCD matter phases anew, Nucl. Phys.
B957, 115016 (2020).

[22] Y. Tanizaki and M. Ünsal, Modified instanton sum
in QCD and higher-groups, J. High Energy Phys. 03
(2020) 123.

[23] G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and T.
Takatsuka, From hadrons to quarks in neutron stars: A
review, Rep. Prog. Phys. 81, 056902 (2018).

[24] M. A. Metlitski and A. R. Zhitnitsky, Anomalous axion
interactions and topological currents in dense matter, Phys.
Rev. D 72, 045011 (2005).

[25] J. B. Kogut, M. A. Stephanov, D. Toublan, J. J. M.
Verbaarschot, and A. Zhitnitsky, QCD—like theories at
finite baryon density, Nucl. Phys. B582, 477 (2000).

[26] J. B. Kogut, M. A. Stephanov, and D. Toublan, On two color
QCD with baryon chemical potential, Phys. Lett. B 464, 183
(1999).

[27] T. Boz, P. Giudice, S. Hands, and J.-I. Skullerud, Dense two-
color QCD towards continuum and chiral limits, Phys. Rev.
D 101, 074506 (2020).

[28] K. Iida, E. Itou, and T.-G. Lee, Two-colour QCD phases and
the topology at low temperature and high density, J. High
Energy Phys. 01 (2020) 181.

[29] N. Astrakhantsev, V. V. Braguta, E. M. Ilgenfritz, A. Yu.
Kotov, and A. A. Nikolaev, Lattice study of thermodynamic
properties of dense QC2D, Phys. Rev. D 102, 074507
(2020).

[30] T. Boz, O. Hajizadeh, A. Maas, and J.-I. Skullerud, Finite-
density gauge correlation functions in QC2D, Phys. Rev. D
99, 074514 (2019).

[31] T. Kojo and D. Suenaga, Thermal quarks and gluon
propagators in two-color dense QCD, Phys. Rev. D 103,
094008 (2021).

[32] D. Suenaga and T. Kojo, Gluon propagator in two-color
dense QCD: Massive Yang-Mills approach at one-loop,
Phys. Rev. D 100, 076017 (2019).

[33] T. Kojo and G. Baym, Color screening in cold quark matter,
Phys. Rev. D 89, 125008 (2014).

[34] P. V. Buividovich, D. Smith, and L. von Smekal, Numerical
study of the chiral separation effect in two-color QCD at
finite density, Phys. Rev. D 104, 014511 (2021).

[35] Y. Nambu, Quasiparticles and gauge invariance in the theory
of superconductivity, Phys. Rev. 117, 648 (1960).

[36] D. E. Kharzeev and H. J. Warringa, Chiral magnetic con-
ductivity, Phys. Rev. D 80, 034028 (2009).

[37] Y. Araki, D. Suenaga, K. Suzuki, and S. Yasui, Spin-
orbital magnetic response of relativistic fermions with
band hybridization, Phys. Rev. Research 3, 023098
(2021).

DELINEATING CHIRAL SEPARATION EFFECT IN TWO-COLOR … PHYS. REV. D 104, 034038 (2021)

034038-11

https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1016/0550-3213(84)90066-X
https://doi.org/10.1103/PhysRevD.22.3080
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevLett.103.191601
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevLett.109.162001
https://doi.org/10.1103/PhysRevD.93.065017
https://doi.org/10.1103/PhysRev.182.1517
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.1007/JHEP02(2015)169
https://doi.org/10.5506/APhysPolB.47.2617
https://doi.org/10.5506/APhysPolB.47.2617
https://doi.org/10.1016/0550-3213(83)90370-X
https://doi.org/10.1016/S0370-2693(00)00395-6
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1103/PhysRevD.97.054012
https://doi.org/10.1103/PhysRevD.97.054012
https://doi.org/10.1007/JHEP08(2018)171
https://doi.org/10.1007/JHEP08(2018)171
https://doi.org/10.1016/j.nuclphysb.2020.115016
https://doi.org/10.1016/j.nuclphysb.2020.115016
https://doi.org/10.1007/JHEP03(2020)123
https://doi.org/10.1007/JHEP03(2020)123
https://doi.org/10.1088/1361-6633/aaae14
https://doi.org/10.1103/PhysRevD.72.045011
https://doi.org/10.1103/PhysRevD.72.045011
https://doi.org/10.1016/S0550-3213(00)00242-X
https://doi.org/10.1016/S0370-2693(99)00971-5
https://doi.org/10.1016/S0370-2693(99)00971-5
https://doi.org/10.1103/PhysRevD.101.074506
https://doi.org/10.1103/PhysRevD.101.074506
https://doi.org/10.1007/JHEP01(2020)181
https://doi.org/10.1007/JHEP01(2020)181
https://doi.org/10.1103/PhysRevD.102.074507
https://doi.org/10.1103/PhysRevD.102.074507
https://doi.org/10.1103/PhysRevD.99.074514
https://doi.org/10.1103/PhysRevD.99.074514
https://doi.org/10.1103/PhysRevD.103.094008
https://doi.org/10.1103/PhysRevD.103.094008
https://doi.org/10.1103/PhysRevD.100.076017
https://doi.org/10.1103/PhysRevD.89.125008
https://doi.org/10.1103/PhysRevD.104.014511
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/PhysRevD.80.034028
https://doi.org/10.1103/PhysRevResearch.3.023098
https://doi.org/10.1103/PhysRevResearch.3.023098


[38] D. Suenaga, Y. Araki, K. Suzuki, and S. Yasui, Chiral
separation effect catalyzed by heavy impurities, Phys. Rev.
D 103, 054041 (2021).

[39] G.-f. Sun, L. He, and P. Zhuang, BEC-BCS crossover in the
Nambu-Jona-Lasinio model of QCD, Phys. Rev. D 75,
096004 (2007).

[40] L. He, Nambu-Jona-Lasinio model description of weakly
interacting Bose condensate and BEC-BCS crossover in
dense QCD-like theories, Phys. Rev. D 82, 096003 (2010).

[41] J. O. Andersen and T. Brauner, Phase diagram of two-color
quark matter at nonzero baryon and isospin density, Phys.
Rev. D 81, 096004 (2010).

[42] J. O. Andersen, T. Brauner, and W. Naylor, Confronting
effective models for deconfinement in dense quark matter
with lattice data, Phys. Rev. D 92, 114504 (2015).

[43] A. Avdoshkin, A. V. Sadofyev, and V. I. Zakharov, IR
properties of chiral effects in pionic matter, Phys. Rev. D
97, 085020 (2018).

[44] J. R. Schrieffer, Theory Of Superconductivity, Advanced
Books Classics (Avalon Publishing, New York, 1999).

[45] D. T. Son and Ariel R. Zhitnitsky, Quantum anomalies in
dense matter, Phys. Rev. D 70, 074018 (2004).

[46] D. T. Son andM. A. Stephanov,Axial anomaly andmagnetism
of nuclear and quark matter, Phys. Rev. D 77, 014021 (2008).

[47] K. Jensen, Triangle anomalies, thermodynamics, and hydro-
dynamics, Phys. Rev. D 85, 125017 (2012).

[48] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and X. Wang,
Radiative corrections to chiral separation effect in QED,
Phys. Rev. D 88, 025025 (2013).

[49] B. Feng, D.-F. Hou, and H.-C. Ren, QED radiative correc-
tions to chiral magnetic effect, Phys. Rev. D 99, 036010
(2019).

[50] L. McLerran and R. D. Pisarski, Phases of cold, dense
quarks at large N(c), Nucl. Phys. A796, 83 (2007).

[51] T. Kojo, Y. Hidaka, L. McLerran, and R. D. Pisarski,
Quarkyonic chiral spirals, Nucl. Phys. A843, 37 (2010).

[52] T. Kojo, R. D. Pisarski, and A. M. Tsvelik, Covering the
fermi surface with patches of quarkyonic chiral spirals,
Phys. Rev. D 82, 074015 (2010).

[53] T. Kojo, A (1þ 1) dimensional example of Quarkyonic
matter, Nucl. Phys. A877, 70 (2012).

[54] T. Kojo, Y. Hidaka, K. Fukushima, L. D. McLerran, and
R. D. Pisarski, Interweaving chiral spirals, Nucl. Phys.
A875, 94 (2012).

[55] T. Kojo, QCD equations of state and speed of sound in
neutron stars, AAPPS Bull. 31, 11 (2021).

[56] T. Kojo, P. D. Powell, Y. Song, and G. Baym, Phenomeno-
logical QCD equation of state for massive neutron stars,
Phys. Rev. D 91, 045003 (2015).

[57] T. Kojo, Phenomenological neutron star equations of state:
3-window modeling of QCD matter, Eur. Phys. J. A 52, 51
(2016).

[58] G. Baym, S. Furusawa, T. Hatsuda, T. Kojo, and H. Togashi,
New neutron star equation of state with quark-hadron
crossover, Astrophys. J. 885, 42 (2019).

[59] T. Zhao and J. M. Lattimer, Quarkyonic matter equation of
state in beta-equilibrium, Phys. Rev. D 102, 023021 (2020).

[60] K. Fukushima, T. Kojo, andW.Weise, Hard-core deconfine-
ment and soft-surface delocalization from nuclear to quark
matter, Phys. Rev. D 102, 096017 (2020).

[61] K. Sang Jeong, L. McLerran, and S. Sen, Dynamically
generated momentum space shell structure of quarkyonic
matter via an excluded volume model, Phys. Rev. C 101,
035201 (2020).

[62] D. C. Duarte, S. Hernandez-Ortiz, and K. Sang Jeong,
Excluded-volume model for quarkyonic Matter: Three-flavor
baryon-quark Mixture, Phys. Rev. C 102, 025203 (2020).

[63] D. C. Duarte, S. Hernandez-Ortiz, and K. Sang Jeong,
Excluded-volume model for quarkyonic matter. II. Three-
flavor shell-like distribution of baryons in phase space,
Phys. Rev. C 102, 065202 (2020).

[64] Y.-L. Ma and M. Rho, Towards the hadron–quark continuity
via a topology change in compact stars, Prog. Part. Nucl.
Phys. 113, 103791 (2020).

[65] Y.-L. Ma and M. Rho, The sound speed and core of massive
compact stars: A manifestation of hadron-quark duality,
arXiv:2104.13822.

[66] I. Tews, J. Carlson, S. Gandolfi, and S. Reddy, Constraining
the speed of sound inside neutron stars with chiral effective
field theory interactions and observations, Astrophys. J.
860, 149 (2018).

[67] M. C. Miller et al., PSR J0030þ 0451mass and radius from
NICER data and implications for the properties of neutron
star matter, Astrophys. J. Lett. 887, L24 (2019).

[68] T. E. Riley et al., A NICER view of PSR J0030þ 0451:
Millisecond pulsar parameter estimation, Astrophys. J. Lett.
887, L21 (2019).

[69] NICER Collaboration, Press release (2021), https://www
.nasa.gov/feature/goddard/2021/.

[70] M. C. Miller et al., The radius of PSR J0740þ 6620 from
NICER and XMM-newton data, arXiv:2105.06979.

[71] T. E. Riley et al., A NICER view of the massive pulsar PSR
J0740þ 6620 informed by radio timing and XMM-newton
spectroscopy, arXiv:2105.06980.

[72] G. Raaijmakers, S. K. Greif, K. Hebeler, T. Hinderer, S.
Nissanke, A. Schwenk, T. E. Riley, A. L. Watts, J. M.
Lattimer, and W. C. G. Ho, Constraints on the dense matter
equation of state and neutron star properties from NICER’s
mass-radius estimate of PSR J0740þ 6620 and multimes-
senger observations, arXiv:2105.06981.

[73] E. Fonseca et al., Refined mass and geometric measure-
ments of the high-mass PSR J0740þ 6620, Astrophys. J.
Lett. 915, L12 (2021).

[74] K. Masuda, T. Hatsuda, and T. Takatsuka, Hadron-quark
crossover and massive hybrid stars with strangeness, As-
trophys. J. 764, 12 (2013).

[75] K. Masuda, T. Hatsuda, and T. Takatsuka, Hadron–quark
crossover and massive hybrid stars, Prog. Theor. Exp. Phys.
2013, 073D01 (2013).

[76] P. Bedaque and A.W. Steiner, Sound Velocity Bound and
Neutron Stars, Phys. Rev. Lett. 114, 031103 (2015).

[77] L. McLerran and S. Reddy, Quarkyonic Matter and Neutron
Stars, Phys. Rev. Lett. 122, 122701 (2019).

[78] M. Hippert, E. S. Fraga, and J. Noronha, Insights on the
peak in the speed of sound of ultradense matter, Phys. Rev.
D 104, 034011 (2021).

[79] T. Kojo, D. Hou, J. Okafor, and H. Togashi, Phenomeno-
logical QCD equations of state for neutron star dynamics:
Nuclear-2SC continuity and evolving effective couplings,
arXiv:2012.01650.

DAIKI SUENAGA and TORU KOJO PHYS. REV. D 104, 034038 (2021)

034038-12

https://doi.org/10.1103/PhysRevD.103.054041
https://doi.org/10.1103/PhysRevD.103.054041
https://doi.org/10.1103/PhysRevD.75.096004
https://doi.org/10.1103/PhysRevD.75.096004
https://doi.org/10.1103/PhysRevD.82.096003
https://doi.org/10.1103/PhysRevD.81.096004
https://doi.org/10.1103/PhysRevD.81.096004
https://doi.org/10.1103/PhysRevD.92.114504
https://doi.org/10.1103/PhysRevD.97.085020
https://doi.org/10.1103/PhysRevD.97.085020
https://doi.org/10.1103/PhysRevD.70.074018
https://doi.org/10.1103/PhysRevD.77.014021
https://doi.org/10.1103/PhysRevD.85.125017
https://doi.org/10.1103/PhysRevD.88.025025
https://doi.org/10.1103/PhysRevD.99.036010
https://doi.org/10.1103/PhysRevD.99.036010
https://doi.org/10.1016/j.nuclphysa.2007.08.013
https://doi.org/10.1016/j.nuclphysa.2010.05.053
https://doi.org/10.1103/PhysRevD.82.074015
https://doi.org/10.1016/j.nuclphysa.2011.12.002
https://doi.org/10.1016/j.nuclphysa.2011.11.007
https://doi.org/10.1016/j.nuclphysa.2011.11.007
https://doi.org/10.1007/s43673-021-00011-6
https://doi.org/10.1103/PhysRevD.91.045003
https://doi.org/10.1140/epja/i2016-16051-0
https://doi.org/10.1140/epja/i2016-16051-0
https://doi.org/10.3847/1538-4357/ab441e
https://doi.org/10.1103/PhysRevD.102.023021
https://doi.org/10.1103/PhysRevD.102.096017
https://doi.org/10.1103/PhysRevC.101.035201
https://doi.org/10.1103/PhysRevC.101.035201
https://doi.org/10.1103/PhysRevC.102.025203
https://doi.org/10.1103/PhysRevC.102.065202
https://doi.org/10.1016/j.ppnp.2020.103791
https://doi.org/10.1016/j.ppnp.2020.103791
https://arXiv.org/abs/2104.13822
https://doi.org/10.3847/1538-4357/aac267
https://doi.org/10.3847/1538-4357/aac267
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.3847/2041-8213/ab481c
https://www.nasa.gov/feature/goddard/2021/
https://www.nasa.gov/feature/goddard/2021/
https://www.nasa.gov/feature/goddard/2021/
https://arXiv.org/abs/2105.06979
https://arXiv.org/abs/2105.06980
https://arXiv.org/abs/2105.06981
https://doi.org/10.3847/2041-8213/ac03b8
https://doi.org/10.3847/2041-8213/ac03b8
https://doi.org/10.1088/0004-637X/764/1/12
https://doi.org/10.1088/0004-637X/764/1/12
https://doi.org/10.1093/ptep/ptt045
https://doi.org/10.1093/ptep/ptt045
https://doi.org/10.1103/PhysRevLett.114.031103
https://doi.org/10.1103/PhysRevLett.122.122701
https://doi.org/10.1103/PhysRevD.104.034011
https://doi.org/10.1103/PhysRevD.104.034011
https://arXiv.org/abs/2012.01650

