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1 Introduction

Over the past decade, the investigation of Euclidean-separated, gauge-invariant, bi-local
operators via lattice gauge formalism has garnered significant interest due to its ability
to provide direct access to parton distribution functions (PDFs) from first principles (for
a review see [1–4]). The foundation for this surge in activity lies in the observation that
space-like separated operators can be examined through lattice QCD formalism, and that
in the infinite momentum frame, they reduce to the conventional light-cone operators
through which PDFs are defined [5]. Deviations from the infinite momentum frame emerge
as inverse powers of the large parameter of the boost, suggesting that such corrections can
be systematically suppressed.

The distributions introduced in [5], known as quasi-PDFs, were later complemented by
alternative PDFs called pseudo-PDFs in [6]. The Bjorken-x (xB) dependence of these two
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distributions has been extensively studied in recent years [7–11]; however, lattice formalism
is unlikely to provide access to their behavior at small xB values.

We are going to demonstrate (preliminary result have been presented in [12]) that
despite being defined through the same space-like separated bi-local operators [13–16],
quark quasi- and pseudo-PDFs exhibit markedly different behavior at small xB values.

The importance of understanding the small-xB behavior of quark pseudo- and quasi-
PDFs cannot be overstated, even when the corresponding behavior for gluon pseudo- and
quasi-PDFs has been established [17]. This is primarily due to the fact that most lattice
calculations focus on quark distributions rather than gluon ones. Comprehensive knowl-
edge of small-xB behavior for quark distributions is essential for providing a more complete
picture of the underlying dynamics in QCD, ultimately leading to more accurate predic-
tions and a deeper understanding of the fundamental interactions within the strong force.
Moreover, insights into the quark pseudo- and quasi-PDFs’ behavior at small-xB values will
be indispensable for the interpretation of experimental results from future QCD colliders
probing this regime, such as the Electron-Ion Collider (EIC) in the USA [18], the EIC in
China [19], and the Large Hadron electron Collider (LHeC) in Europe [20].

The small-xB behavior of deep inelastic scattering (DIS) structure functions can be
calculated using the high-energy operator product expansion (OPE) [21], wherein the T-
product of two electromagnetic currents is expanded in terms of coefficient functions, also
known as impact factors, convoluted with the matrix elements of infinite Wilson lines.
The evolution equation of the matrix elements of infinite Wilson lines with respect to
the rapidity factorization parameter is the BK equation [21–25], which addresses small-
xB leading-log resummation through its linear term and the unitarity property of the
theory through its non-linear term. Due to its non-linear nature, the BK equation is a
generalization of the BFKL equation.

The high-energy OPE is a complementary procedure to the OPE in non-local (finite
gauge-link) operators adopted in the Bjorken limit, where the factorization scale is the
transverse momentum of the fields and the evolution equation of the finite gauge-link with
respect to the factorization parameter is the DGLAP evolution equation.

In the DGLAP regime, the structure functions of DIS are governed by the anomalous
dimensions of twist-2 operators, while in the BFKL regime, the structure functions receive
contributions from an infinite series of twist expansion. By moving beyond the BFKL limit
to the overlapping region, one can obtain the anomalous dimension of twist-2 (and poten-
tially higher twist) operators in the small-xB limit from the small-xB structure function.
With the analytic continuation of the twist-2 local operator to non-integer spin, the local
operators become non-local light-ray operators, making the prediction of the small-xB limit
of the twist-2 anomalous dimension from the BFKL resummation more transparent [26].
In this work, we demonstrate that this formalism enables us to obtain the leading (LT)
and next-to-leading twist (NLT) corrections from the full BFKL resummed results for the
pseudo- and quasi-PDFs.

In the appendix we will study correlation function of two light-ray operators [26–32],
in the BFKL limit. Investigating this correlation function in this limit is of great impor-
tance, particularly as recent works have primarily focused on the gluon case. Studying the
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quark correlation function provides a more comprehensive understanding of the underly-
ing physics in the BFKL regime and is crucial for elucidating the behavior of four-point
functions in the general case of conformal field theories.

The organization of the paper is as follows. In section 2, we provide a concise introduc-
tion to the high-energy OPE formalism and demonstrate its application to the Ioffe-time
distribution. In section 3, we examine the Ioffe-time distribution in the context of leading
and next-to-leading twist approximations. In order to reinforce our conclusions pertaining
to the high-energy behavior of the Ioffe-time amplitude reached using the Golec-Biernat
Wusthoff model, in section 4, our focus will shift to the photon impact factor model, which
distinctly, does not embody saturation mechanisms. Sections 5 and 6 are dedicated to the
investigation of pseudo and quasi PDFs, respectively, within the BFKL limit and in the
leading and next-to-leading twist approximations. Finally, in section 7, we present our
conclusions and discuss the implications of our findings.

2 Ioffe-time distribution in the BFKL limit

The quark distribution is defined through the light-cone matrix element [27]:

〈P |ψ̄(z)/z[z, 0]ψ(0)|P 〉 = 2P ·z
∫ 1

−1
dxB e

iP ·z xBQ(xB) (2.1)

with z2 = 0, P the hadronic momentum, and with the gauge link defined as

[x, y] = Pexp
{
ig

∫ 1

0
du (x− y)µAµ (x+ (1− u)y)

}
. (2.2)

The distribution Q(xB) is defined through the quark distribution, Dq, and anti-quark
distribution, Dq̄ as

Q(xB) = θ(xB)Dq(xB)− θ(−xB)Dq̄(−xB) . (2.3)

In order to calculate the low-xB behavior of the Deep Inelastic Scattering (DIS) struc-
ture function, one can employ the high-energy Operator Product Expansion (OPE) frame-
work. In this approach, the T-product of two electromagnetic currents, TJµ(x)Jν(y), is
expanded in terms of coefficient functions (impact factors), convoluted with the matrix el-
ements of infinite Wilson lines, which are the relevant operators in the high-energy (Regge)
limit. The evolution equations governing the matrix elements of infinite Wilson lines with
respect to the factorization parameter, or rapidity, are the BK-JIMWLK evolution equa-
tions [21–25]. This equation accounts for both leading-log resummation and preservation
of the unitarity property of the theory. The BK equation is considered a generalization
of the BFKL equation, which, although it handles leading-log resummation, results in a
violation of unitarity.

The high-energy OPE is analogous to the OPE in non-local (finite gauge-link) oper-
ators employed in the Bjorken limit. In this case, the factorization scale is in transverse
momentum, and the evolution equation of the finite gauge-link with respect to the factor-
ization parameter is the DGLAP evolution equation.
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To examine the high-energy behavior of the Ioffe-time distribution and, consequently,
the low-xB behavior of pseudo- and quasi-PDFs, we consider Lorentz decomposition of the
structure function defined through the bi-local operator [9]:

〈P |ψ̄(z)γµ[z, 0]ψ(0)|P 〉 = 2PµM(%, z2) + 2zµN (%, z2) . (2.4)

Here, % = z · P , and P represents the hadronic momentum.
In the high-energy limit, the 0 component and the 3 component are indistinguishable.

Let us introduce the light-cone vectors n and n′ such that n2 = n′2 = 0, n · n′ = 1, and
x · n′ = x+, x− · n = x−. Here, x± = x0±x3

√
2 . In this way, a generic vector can be writ-

ten as xµ = x+nµ + x−n′µ + xµ⊥, where the transverse coordinate is xµ⊥ = (0, x1, x2, 0).
We adopt the high-energy limit in which the largest light-cone component of the tar-
get’s momentum is P−. Under this large boost, we have ψ̄(x+, x−, x⊥)γµψ(x+, x−, x⊥)→
ψ̄(x+, x⊥)n′µγ−ψ(x+, x⊥). Projection of (2.4) along zµ gives

zµ
2%〈P |ψ̄(z)γµ[z, 0]ψ(0)|P 〉 =M(%, z2) + z2

%
N (%, z2) . (2.5)

In the high-energy limit z2

% →
2z+z−−z2

⊥
z+P− → 0. Consequently, the component of the structure

function (2.4) that survives after the boost is M(%, z2) which contains the leading twist
as well as higher twist. On the other hand, the component N (%, z2) contains only higher
twists which are suppressed in the high-energy limit.

At high-energy, the bi-local operator is written in terms of integration along the lon-
gitudinal direction as

1
2P− 〈P |ψ̄(L, x⊥)γ−[Lnµ + x⊥, 0]ψ(0)|P + ε−n′〉 2πδ(ε−)

=
∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+ − y+ − L)

× 1
2P− 〈P |ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + 0⊥]ψ(y+, 0⊥)|P + ε−n′〉 (2.6)

where, as discussed above, at high-energy we can write /z
2z·P →

γ−

2P− . We can now apply
the high-energy OPE to (2.6). This method was also used in [17] for the study of the
high-energy behavior of the gluon Ioffe-time distribution.

To begin calculating the impact factor diagram, we consider the operator in equa-
tion (2.6) in the external gluon field, which, at high-energy, shrinks to a shock-wave (rep-
resented by the red vertical band in the figure). In the high-energy (Regge) limit, the main
degree of freedom are gluons, so it is natural to assume that the field of the target state
is predominantly made of gluons . For this purpose, we need the quark propagator in the
shock-wave in coordinate space [21]

〈ψ(x)ψ̄(y)〉 x
+>0>y+

=
∫
d4zδ(z+) /x− /z

2π2[(x− z)2 − iε]2 /n
′Uz

/y − /z
2π2[(y − z)2 − iε]2 . (2.7)

where Ux = U(x⊥) = Pexp
{
ig
∫+∞
−∞ dx+A−(x+, x⊥)

}
.
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z1
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(x)

(y)

Figure 1. Diagram for the LO impact factor. We indicate in blue the quantum fields and in red
the classical background field which, in the leading accuracy, is made by gluons.

Functionally integrating over the quantum field, which are the quark fields at point x
and point y, the Ioffe-time non-local operator, eq. (2.6), becomes∫

dx+dy+δ(x+ − y+ − L)〈ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y
+nµ + y⊥]ψ(y+, y⊥)〉A

y+<0<x+
=

∫ +∞

0

dx+

x+2

∫ 0

−∞

dy+

y+2 δ(x
+ − y+ − L)

×
∫
d2z2
2π3
−i tr

{
γ−(ŷ − ẑ2)γ+(x̂− ŷ2)}[ (y−z2)2
⊥

|y+| + (x−z2)2
⊥

x+ + iε
]3 〈Tr{Uz1U †z2}〉A (2.8)

The subscript A on the angle bracket means that the operator is being evaluated in the
background of the gluon field. In eq. (2.8) we have reduced (expanded) the operator on
the left-hand-side (l.h.s. ) of the equal sign into a convolution between a coefficient (the
impact factor) and new operators given by the trace in the fundamental representation of
two infinite Wilson lines, one at the transverse point z1⊥ and another one at the transverse
point z2⊥. Let us define X1⊥ = x⊥ − z1⊥ and Y1⊥ = y⊥ − z1⊥, and from eq. (2.8) we
arrive at∫

dx+dy+δ(x+ − y+ − L)〈ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y
+nµ + y⊥]ψ(y+, y⊥)〉A (2.9)

=
∫ +∞

0

dx+

x+2

∫ 0

−∞
d
y+

y+2 δ(x
+ − y+ − L)

∫
d2z2
2π3

−4 i (X2, Y2)⊥[ (y−z2)2
⊥

|y+| + (x−z2)2
⊥

x+ + iε
]3 〈Tr{Uz1U †z2}〉A

where we also used tr{γ−Ŷ2⊥γ
+X̂2⊥} = 4(X2, Y2)⊥. Note that we indicated with z2 the

point at which the shock wave cuts the quark propagator. The point z1, instead, is the point
at which the shock-wave cut the straight dotted blue line which represents the gauge-link,
and it is a point that runs from point x to point y.

The evolution of the trace of two infinite Wilson lines with respect to the rapidity is
the BK equation. However, for our purpose, it will be enough the linearization of the BK
eq. i.e. the BFKL equation which we can write as

2a d
da
Va(z⊥) = αsNc

π2

∫
d2z′

[ Va(z′⊥)
(z − z′)2

⊥
− (z, z′)⊥Va(z⊥)

z′2⊥(z − z′)2
⊥

]
, (2.10)

with
1
z2
⊥
U(z⊥) ≡ V(z⊥) , (2.11)
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where U(z⊥) is the forward matrix element which depends only on its transverse size and
it is obtained from U(x⊥, y⊥) = 1− 1

Nc
tr{U(x⊥) U †(y⊥)}. In eq. (2.10) we made use of the

two dimensional scalar product defined as (x, y)⊥ = x1y1 + x2y2.
Evolution equation (2.10) is with respect to the coordinate space evolution parameter

defined as

a = − 2x+y+

(x− y)2a0
+ iε , (2.12)

which is reminiscent of the composite Wilson lines operators introduced to restore the
Möbius conformal invariance lost at NLO level (for details see refs. [33–36]). The peculiarity
of the evolution parameter a is that it is in coordinate space and it suits well our purpose.

The solution of evolution equation (2.10) is

Va(z12) =
∫
dν

2π2 (z2
12)−

1
2 +iν

(
a

a0

)ℵ(γ)
2
∫
d2ω(ω2

⊥)−
1
2−iνVa0(ω⊥) , (2.13)

where ℵ(γ) ≡ ᾱsχ(γ), with ᾱs = αsNc
π , χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ), and, as usual,

γ = 1
2 + iν. The parameter a0 is the initial point of evolution which is a0 = P−

MN
with MN

the mass of the hadronic target.
It is convenient to define the parameters u = |y+|

∆+ , ū = x+

∆+ , and use them to rewrite
the solution of the BFKL equation, eq. (2.13) as

Va(z12) =
∫

dν

2π2 (z2
12)−

1
2 +iν

(
−2L2uū

∆2
⊥

P−
2

M2
N

+ iε

)ℵ(γ)
2 ∫

d2ω(ω2
⊥)−

1
2−iνVa0(ω⊥) (2.14)

with ∆+ = x+ + |y+| = L, Va(z12) = 1
z2
12
Ua(z12), and ∆ = (x− y).

Let us convolute the solution of the evolution equation of forward matrix element,
eq. (2.14), with eq. (2.9) and we arrive at∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+−y+−L)〈ψ̄(x+,x⊥)γ−[x+nµ+x⊥,y+nµ+y⊥]ψ(y+,y⊥)〉

= iNc

π3

∫ +∞

0

dx+

x+2

∫ 0

−∞

dy+

y+2 δ(x
+−y+−L)

∫
d2z2

(x−z2)2
⊥+(y−z2)2

⊥−(x−y)2
⊥[ (y−z2)2

⊥
|y+| + (x−z2)2

⊥
x+ +iε

]3 〈U(z12)〉A

= iNc

π3

∫ +∞

0

dx+

x+2

∫ 0

−∞

dy+

y+2 δ(x
+−y+−L)

∫
d2z2

(x−z2)2
⊥+(y−z2)2

⊥−(x−y)2
⊥[ (y−z2)2

⊥
|y+| + (x−z2)2

⊥
x+ +iε

]3 z2
12

×
∫

dν

2π2 (z2
12)−

1
2 +iν

(
−2L2uū

∆2
⊥

P−
2

M2
N

+iε
)αsNc

2π χ(ν)∫
d2ω(ω2

⊥)−
1
2−iν〈Va0(ω⊥)〉GBW (2.15)

The GBW notation within the angle bracket signifies that the matrix element will be
evaluated using the GBW model [37]. For an alternative model with saturation we can use
the McLerran-Venugopalan (MV) [38] model. In the next section, instead, we will consider
a model without saturation mechanism.
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e
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z1
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2

(x)

(y)

z1

z
2

(x)

(y)

|P
GBW

P|

Figure 2. In this diagrammatic illustration of the high-energy OPE, the target state is depicted
by a green blob in the left panel, while the target is evaluated using the GBW model in the right
panel. The dashed black line in the left panel signifies the factorization in rapidity, separating the
fields into quantum (upper part of the diagram) and classical (lower part of the diagram). In the
right panel, the red band represents the classical field of the target, consisting of gluon fields that
undergo Lorentz contraction and time dilation, ultimately forming a shock wave. The resummation
of the ladder diagrams, which represent the logarithms of the Ioffe-time parameter, is incorporated
through the exponentiation of the Pomeron intercept.

We need the projection of the impact factor on the power like eigenfunctions which is∫
d2z

[
(x− z2)2

⊥ + (y − z2)2
⊥ − (x− y)2

⊥
]
z2γ

12[ (y−z2)2
⊥

|y+| + (x−z2)2
⊥

x+ + iε
]3 = 2π2∆+3

[∆2
⊥]1−γ

γ2 (uū)γ+2

sin πγ (2.16)

Result (2.16) is obtained using (y−z2)2
⊥

|y+| + (x−z2)2
⊥

x+ = 1
∆+uū

[
(z2 − xu)2

⊥ + ∆2
⊥uū

]
, where z1⊥

is a point which runs from x⊥ to y⊥, so it can be parametrized as z1⊥ = xu = ux⊥ + ūy⊥.
In (2.16) notation z2

12 = (z1 − z2)2
⊥ is also used. Using result (2.16), we have∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+ − y+ − L)〈ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]ψ(y+, y⊥)〉

= iNc

π3

∫ +∞

0

dx+

x+2

∫ 0

−∞

dy+

y+2 δ(x
+ − y+ − L)

×
∫
dν

∆+3
γ2

[∆2
⊥]1−γ

(uū)γ+2

sin πγ

(
−2L2uū

∆2
⊥

P−
2

M2
N

+ iε

)ℵ(γ)
2 ∫

d2ω(ω2
⊥)−

1
2−iν〈Va0(ω⊥)〉GBW

= iNc

π2

∫
dν

γ2[∆2
⊥]γ−1

sin πγ
Γ2(1 + γ)
Γ(2 + 2γ)

(
−2L2

∆2
⊥

P−
2

M2
N

+ iε

)ℵ(γ)
2 ∫

d2ω(ω2
⊥)−

1
2−iν〈Va0

ω 〉GBW(2.17)

where we used ∫ 1

0
du (uū)γ+ℵ(γ)

2 =
Γ2(1 + γ + ℵ(γ)

2 )
Γ(2 + 2γ + ℵ(γ)) '

Γ2(1 + γ)
Γ(2 + 2γ) +O(αs) (2.18)
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The αs correction omitted in equation (2.18) would contribute if we were to also compute
the next-to-leading order (NLO) impact factor and employ the solution of the NLO BFKL
equation, i.e., perform a comprehensive NLO calculation.

As mentioned above, we will use the GBW model to evaluate the forward dipole matrix
element

〈P |U(x)|P + ε−n′〉 = P−2πδ(ε−)〈〈P |U(x)|P 〉〉

= P−2πδ(ε−)σ0

(
1− exp

(
−x2
⊥Q

2
s

4

))
(2.19)

where Qs is the saturation scale and σ0 = 29.12 mb is the dimension of the dipole cross
section whose numerical value was obtained from fitting Hera data [37]. In high-energy
QCD, the saturation scale Qs is particularly important when studying the behavior of
hadronic matter at small Bjorken-x. The saturation scale is related to the gluon density
inside hadrons and offers a quantitative measure of the transition between the linear regime
of parton evolution and the non-linear regime dominated by parton saturation. In our case,
we can view the saturation scale as a non-perturbative parameter.

Using model (2.19) in eq. (2.17) and integrating over ω⊥ we arrive at∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+ − y+ − L) 1

2P− 〈P |ψ̄(x+, x⊥)γ−

×[x+nµ + x⊥, y
+nµ + y⊥]ψ(y+, y⊥)|P 〉

= iNcσ0
2π3∆2

⊥

∫
dν

Γ3(1 + γ)
Γ(2 + 2γ)Γ2(1− γ)

(
−2L2

∆2
⊥

P−
2

M2
N

+ iε

)ℵ(γ)
2
(
Q2
s∆2
⊥

4

)γ
. (2.20)

Now, we can finally rewrite result (2.20) using the space like vector zµ, z2 < 0, and obtain
the high-energy behavior of the operator defined in eq. (2.5)

M(%, z2) = iNcσ0
2π|z|2

∫
dν

(
2%2

z2M2
N

+ iε

)ℵ(γ)
2 γ3

sin2(πγ)
Γ(γ)

Γ(2 + 2γ)

(
Q2
s|z|2

4

)γ
(2.21)

As previously mentioned, at high energy, we do not distinguish the 0 component from the
3 component, allowing us to define the Ioffe-time parameter as % = z · P = LP−, since
(P−)2 = (P · z|z|)

2 = %2

−z2 .
The evaluation of the integral over the parameter ν in result (2.21) can be performed

numerically or in the saddle point approximation. In eq. (2.21), the factor γ3

sin2(πγ)
Γ(γ)

Γ(2+2γ)
is a slowly varying function of ν. Thus, in the saddle point approximation, eq. (2.21) is

M(%, z2) ' iNc

64
Qsσ0
|z|

(
2%2

z2M2
N

+ iε

)ᾱs2 ln 2
e

−
ln2 Qs|z|

2

7ζ(3)ᾱs ln

(
2%2

z2M2
N

+iε

)
√

7ζ(3)ᾱs ln
(

2%2

z2M2
N

+ iε

) . (2.22)

The outcome presented in eq. (2.22) embodies the characteristic logarithm resummation,
featuring the exponentiation of the well-known Pomeron intercept within the saddle point
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Figure 3. In the left and right panel we plot the real and imaginary part, respectively, of the
Ioffe-time amplitude; we compare the numerical evaluation of eq. (2.21) (orange curve) with its
saddle point approximation, eq. (2.22) (blue dashed curve). To obtain the plots we used |z| = 0.5,
and MN = 1GeV.

approximation. In this particular instance, the resummed logarithms correspond to the
large values of the Ioffe-time parameter ρ.

In figure 3, we have plotted both the real and imaginary parts of the quark Ioffe-time
distribution using the saddle point approximation, as given by equation (2.22) (represented
by the blue dashed curve), and the numerical evaluation of equation (2.21) (depicted by the
orange curve). The plots were obtained using Qs = (x0/xB)

0.277
2 with x0 = 0.41×10−4 [37].

However, for the Ioffe-time amplitude, we will use Qs = (x0%0)
0.277

2 where %0 is the starting
point of the evolution, which, as can be observed from figure 3, is %0 = 8, so Qs = 0.33 GeV.
The value of the strong coupling we used is ᾱs = αsNc

π = 0.2.

3 Ioffe-time distribution at leading twist and next-leading twist

In the previous section we have obtained the behavior of the Ioffe-time distribution in
the BFKL limit. As it is known, the BFKL limit captures the behavior of the structure
function at all twist. To better understand this statement, let us rewrite result (2.20) as
an integral along the imaginary axes by changing the integration variable from parameter
ν, to γ = 1

2 + iν and take its Mellin transform, thus obtaining

∫ +∞

∆2
⊥MN

dLL−j
∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+ − y+ − L) (3.1)

×〈ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y
+nµ + y⊥]ψ(y+, y⊥)〉

= Nc

π∆2
⊥

∫ 1
2 +i∞

1
2−i∞

dγ

∫ +∞

∆2
⊥MN

dLL−j+ℵ(γ)
(
Q2
s∆2
⊥

4

)γ
γ3

sin2(πγ)
Γ(γ)

Γ(2 + 2γ)

(
− 2

∆2
⊥

P−
2

M2
N

+ iε

)ℵ(γ)
2

– 9 –



J
H
E
P
0
7
(
2
0
2
3
)
0
6
8

Performing the Mellin transform we have∫ +∞

∆2
⊥MN

dLL−j
∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+ − y+ − L)

×〈ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y
+nµ + y⊥]ψ(y+, y⊥)〉

= Nc

π∆2
⊥

∫ 1
2 +i∞

1
2−i∞

dγ θ(<[ω − ℵ(γ)])(∆2
⊥MN )−ω+ℵ(γ)

ω − ℵ(γ)

(
Q2
s∆2
⊥

4

)γ

× γ3

sin2(πγ)
Γ(γ)

Γ(2 + 2γ)

(
− 2

∆2
⊥

P−
2

M2
N

+ iε

)ℵ(γ)
2

(3.2)

The integration over γ can be calculated by taking the residue closing the contour to the
right because 0 < Q2

s∆2
⊥

4 < 1. If we indicate with γ̃ the solution of ω − ℵ(γ̃) = 0, we get∫ +∞

∆2
⊥MN

dLL−j
∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+ − y+ − L)

×〈ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y
+nµ + y⊥]ψ(y+, y⊥)〉

= 2iNc

∆2
⊥ℵ′(γ̃)

(
Q2
s∆2
⊥

4

)̃γ
γ̃3

sin2(πγ̃)
Γ(γ̃)

Γ(2 + 2γ̃)

(
− 2

∆2
⊥

P−
2

M2
N

+ iε

)ω
2

(3.3)

Where, we recall, ω = j − 1. If we take the inverse Mellin transform of (3.3), we would
reproduce again the result of the Ioffe-time amplitude in the BFKL approximation that we
already obtained in the previous section.

If we relax the BFKL condition αs
ω ' 1, and consider the limit αs � ω � 1, we

can demonstrate that the result (3.3) can be computed by resumming an infinite series of
residues, with each contribution having a higher power of ∆. Since we consider 0 < ∆2

⊥ < 1,
the series consists of contributions that become less significant as the power of ∆2

⊥ increases.
This is essentially a twist expansion in coordinate space. Our objective is then to calculate
the first two twist contributions, which are the ones most likely to be computed within the
lattice formalism.

To proceed let us observe that

ℵ(γ) = ᾱs

(
2ψ(1)− ψ(γ)−

N∑
n=1

1
n− γ

− ψ(N + 1− γ)
)
, (3.4)

In the limit γ → 1 we have ℵ(γ) → ᾱs
1−γ and 1

ℵ(γ)−ω →
1

ᾱs
1−γ−ω

= 1−γ
ω(γ−1+ ᾱs

ω
) . Taking the

residue at γ = 1− ᾱs
ω , from eq. (3.2) we have∫ +∞

x2
⊥MN

dLL−j
1

2P− 〈P |ψ̄(L, x⊥)γ−[nL+ x⊥, 0]ψ(0)|P 〉

= iNcQ
2
sσ0

24π2ᾱs

(
Q2
sx

2
⊥

4

)− ᾱs
ω
(
− 2
x2
⊥

P−
2

M2
N

+ iε

)ω
2

(3.5)

where we used the small αs expansion for

γ3

sin2(πγ)
Γ(γ)

Γ(2 + 2γ)(1− γ)
γ=1− ᾱs

ω' ω

6π2ᾱs
+O(ᾱ0

s) (3.6)

– 10 –



J
H
E
P
0
7
(
2
0
2
3
)
0
6
8

The next-to-leading residue, i.e. the next-to-leading contribution in terms of Q2
sx

2
⊥

expansion for x2
⊥ → 0, is at γ = 2− ᾱs

ω . Indeed, as done for the leading residue, in the limit
of ᾱs � ω � 1, it is easy to show that we just need to make the substitution ℵ(γ)→ ᾱs

2−γ
and 1

ℵ(γ)−ω →
1

ᾱs
2−γ−ω

= 2−γ
ω(γ−2+ ᾱs

ω
) . So from eq. (3.2) we take the residue at γ = 2 − ᾱs

ω

and obtain ∫ +∞

x2
⊥MN

dLL−j
1

2P− 〈P |ψ̄(L, x⊥)γ−[nL+ x⊥, 0]ψ(0)|P 〉

= iNcQ
2
sσ0

24π2ᾱs

(
Q2
sx

2
⊥

4

)− ᾱs
ω
(
− 2
x2
⊥

P−
2

M2
N

+ iε

)ω
2 Q2

sx
2
⊥

5 , (3.7)

where expanding in ᾱs we used

γ3

sin2(πγ)
Γ(γ)

Γ(2 + 2γ)(2− γ)
γ=2− ᾱs

ω' ω

15π2ᾱs
+O(ᾱ0

s) . (3.8)

Besides the series of the moving (dynamical) poles of which we calculated the first two
leading ones, there is also a non moving pole at γ = 1. The contribution of this pole does
not contribute as explain in the appendix and as also demonstrated in the gluon case [17].

Summing the two leading residues, results (3.5) and (3.7), we finally arrive at∫ +∞

x2
⊥MN

dLL−j
1

2P− 〈P |ψ̄(L, x⊥)γ−[nL+ x⊥, 0]ψ(0)|P 〉

= iNcQ
2
sσ0

24π2ᾱs

(
Q2
sx

2
⊥

4

)− ᾱs
ω
(
− 2
x2
⊥

P−
2

M2
N

+ iε

)ω
2
(

1 + Q2
sx

2
⊥

5

)
. (3.9)

The two leading residues we just calculated organize themselves as an expansion in x2
⊥: the

sub-leading term is suppressed by an extra power of x2
⊥ which is typical of the coordinate

space twist expansion.
We now need to perform the inverse Mellin transform. We will consider only the case

0 < Q2
sx

2
⊥

4 < 1 which is consistent with twist expansion. Indeed, in performing the inverse
Mellin transform, one could also consider the case Q2

sx
2
⊥

4 > 1, but this case is inconsistent
with twist expansion because higher powers of x2

⊥ cannot be disregarded. The inverse
Mellin transform of (3.9) is

1
2πi

∫ 1+i∞

1−i∞
dω Lω

iNcQ
2
sσ0

24π2ᾱs

(
Q2
s|z|2

4

)− ᾱs
ω
(

2
z2
P−

2

M2
N

+ iε

)ω
2
(

1 + Q2
s|z|2

5

)

= iNcQ
2
sσ0

12π2ᾱs

 ᾱs ln 2
Qs|z| |

ln
(

2%2

z2M2
N

+ iε

)


1
2 (

1 + Q2
s|z|2

5

)
I1(u) +O

(
Q4
s|z|4

16

)
(3.10)

where I1(u) is the modified Bessel function with

u =
[
4ᾱs ln

( 2
Qs|x⊥|

)
ln
(

2%2

z2M2
N

+ iε

)] 1
2

(3.11)
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Figure 4. In the left and right panel we plot the real and imaginary part, respectively of the Ioffe-
time amplitude; we compare the numerical evaluation of eq. (2.21) (orange curve) with its saddle
point approximation, eq. (2.22) with the LT, eq. (3.5) (green dashed curve), and the NLT (3.9) (red
solid curve).

The result given in eq. (3.10) represents the Ioffe-time amplitude, including next-to-leading
twist corrections. In figure 4, we show the real and imaginary components of the leading
(eq. (2.22), green dashed curve) and next-to-leading (eq. (3.9), solid red curve) twist cor-
rections, in comparison with the BFKL resummation result.

For the real part, the leading and next-to-leading twist corrections exhibit a value of
approximately −1 at Ioffe-time % = 8 and display a modest decrease for larger values of
%. Conversely, the BFKL resummed curves possess a value of roughly −2 for % = 8 and
demonstrate a swift decline for higher values of %. Regarding the imaginary part, although
an overlap between the leading and next-to-leading twist corrections and the numerical
outcome of the BFKL resummation (blue dashed curve) is observed at % = 12, the leading
and next-to-leading twist corrections exhibit a gentle increase, while the BFKL resummed
result rises more rapidly.

It is noteworthy that the behavior observed for large values of % in the leading and
next-to-leading twist, as illustrated in figure 4, is consistent with the lattice calculation
results shown in figure 1 of ref. [9] (see also [39]). We can observe a similar consistency
also with the results presented in figure 2 and 3 of ref. [40] even though in [40] the pseudo-
Ioffe-time distribution has been calculated for a maximum value the Ioffe-time parameter
% = 8, thus making the comparison (especially for the imaginary part) for large Ioffe-time
values a bit difficult.

This consistency suggests that lattice calculations may not adequately capture higher
twist contributions. Indeed, the behavior of the pseudo Ioffe-time distribution with BFKL
resummation (all twist resummed) represented by the orange solid curve and dashed blue
curve in figure 4 suggests a stepper decrease for the real part and a steeper increase for the
imaginary part.
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4 Ioffe-time amplitude with the photon impact factor model

In this section, our main goal lies in demonstrating that the twist expansion, as derived
in the prior section, is not simply an incidental result of the chosen model. To maintain
the focus on the salient findings, we confine the intricate details of the computation to the
appendix, while here, we concentrate on the presentation of the primary outcomes.

The Ioffe-time amplitude, when considered in relation to the photon impact factor, is
as follows (please see figure 5).∫

dx+dy+δ(x+ − y+ − L)
〈
ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]ψ(y+, y⊥)

×ελ, µελ, ν∗
(2
s

)1
2
∫
d4x′d4y′δ(y′+) eiq·(x′−y′)jµ(x′)jν(y′)

〉
(4.1)

with transverse polarizations ελ,µ = (0, 0, ~ελ⊥), ~ελ⊥ = (−1/
√

2)(λ, i), and λ = ±1. Here s is
the large parameter with dimension of energy square (Mandelstam variable).

Applying the high-energy OPE to (4.1) as done in the case of the GBW model in the
previous section, we arrive at (see section A for the details of the calculation)∫

dx+dy+δ(x+ − y+ − L)
〈
ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]ψ(y+, y⊥)
〉

×
〈
ελ, µελ, ν

∗
(2
s

)1
2
∫
d4x′d4y′δ(y′+) eiq·(x′−y′)jµ(x′)jν(y′)

〉
= iα2

sN
2
c

32π4|Q||∆⊥|

∫
dν

(γγ̄ + 2)
(1− γ)γ

Γ2(1− γ)
2γ + 1

Γ3(1 + γ)
Γ(2 + 2γ)

Γ2(γ)
Γ(2γ)

×Γ3(2− γ)
Γ(4− 2γ)

(
Q2∆2

⊥
4

)iν (2L2

∆2
⊥

√
2q−2

Q2

)αsNc
2π χ(ν)

(4.2)

where we remind that ∆2
⊥ = (x − y)2

⊥, and −q2 = Q2 > 0. The initial point of the
evolution is a0 = Q2

√
2q−2 (see appendix A for details). We can now evaluate result (4.2) in

the saddle-point approximation and arrive at∫
dx+dy+δ(x+ − y+ − L)

〈
ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]ψ(y+, y⊥)

×ελ, µελ, ν∗
(2
s

)1
2
∫
d4x′d4y′δ(y′+) eiq·(x′−y′)jµ(x′)jν(y′)

〉

= iᾱ2
s

32|Q||∆⊥|
9π3√π

512
e

−ln2 Q
2∆2
⊥

4

7ζ(3)ᾱs ln

(
− 2
√

2%2
∆2
⊥Q

2 +iε

)
√

7ζ(3)ᾱs ln
(
−2
√

2%2

∆2
⊥Q

2 + iε

)
(
−2
√

2%2

∆2
⊥Q

2 + iε

)ᾱs2 ln 2

(4.3)

In the case of photon impact factor the role of the Ioffe-time parameter is % = Lq− and
the large logarithms resummed are of the type ln % for large %.
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Figure 5. Here we diagrammatically illustrate the high-energy OPE with the photon impact
factor model. The two black dashed lines represent the factorization in rapidity. The diagram at
the bottom of the right panel is the diagram for the photon impact factor.

To obtain the leading and next-to-leading twist correction from (4.2) we perform first
a Mellin transform, calculate the first two residues and then Mellin transform back and
obtain (see section A for the details of the calculation)

1
2πi

∫ 1+i∞

1−i∞
dω Lω

∫ +∞

∆2
⊥∆E

dLL−j
∫
dx+dy+δ(x+ − y+ − L)

〈
ψ̄(x+, x⊥)γ−

× [x+nµ + x⊥, y
+nµ + y⊥]ψ(y+, y⊥)ελ, µελ, ν∗

(2
s

)1
2
∫
d4x′d4y′δ(y′+) eiq·(x′−y′)jµ(x′)jν(y′)

〉
= i

288π

2ᾱs ln 4
Q2∆2

⊥

ln
(
−2
√

2%2

∆2
⊥Q

2 + iε

)I2(h)
(

1− 3
50
Q2∆2

⊥
4

)
(4.4)

where I2(h) is the modified Bessel function with

h =
[
2ᾱs ln 4

Q2∆2
⊥

ln
(
−2
√

2%2

∆2
⊥Q

2 + iε

)] 1
2

. (4.5)

Result (4.4) shows that the twist corrections organize themselves as an expansion in Q2∆2
⊥

like the one we obtained using the GBW model, thus proving that this feature is not
peculiar to the model GBW model only. Moreover, from figure 6, where we plot only the
leading residue (the next-to-leading residue is just a very small shift), we observe that the
behavior of the Ioffe-time amplitude at leading twist (and next-to-leading) with the photon
impact factor model is not only similar to the one obtained with the GBW model which is
presented in figure 4 but also quite close to the one obtained through Lattice calculation
in ref. [9].
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Figure 6. In the left and right panel we plot the real and imaginary part, respectively of the
Ioffe-time amplitude at the leading twist eq. (4.4); the plot is obtained using the photon-impact
factor model with Q = 0.33GeV which is the same value as Qs at Ioffe-time % = 8.

5 Quark pseudo-PDF

In this section, we will perform the Fourier transform of the Ioffe-time distribution in
the BFKL limit to derive the quark pseudo PDF. Following this, we will calculate the
same transformation for both leading and next-to-leading twist corrections. Finally, we
will compare the pseudo-PDF in the BFKL approximation with the leading and next-to-
leading twists by plotting their corresponding values within the xB range of [0.01, 0.1].

5.1 Pseudo PDF in the BFKL approximation

We will perform the Fourier transform of eq. (2.21) following the pseudo PDF definition.
With the assumption that 0 ≤ xB ≤ 1, we have∫ +∞

−∞

d%

2π e
−i%xBM(%, z2)

= iNcσ0
2π|z|2

∫ +∞

−∞

d%

2π e
−i%xB

∫
dν

(
2%2

z2M2
N

+ iε

)ℵ(γ)
2 γ3

sin2(πγ)
Γ(γ)

Γ(2 + 2γ)

(
Q2
s|z|2

4

)γ

= − iNcQsσ0
4π2|z|xB

∫
dν

(
2

z2M2
Nx

2
B

+ iε

)ℵ(γ)
2

sin
[π
2ℵ(γ)

]
×γ

2 Γ(1 + ℵ(γ))
sin2(πγ)

Γ(1 + γ)
Γ(2 + 2γ)

(
Q2
s|z|2

4

)iν
, (5.1)

with, we recall, z2 < 0. Result (5.1) is the quark pseudo PDF. We can simplify this result
further using the approximation Γ(1 + ℵ(γ)) sin[πℵ(γ)/2] ' π

2ℵ(γ) + O(ᾱs). However, in
plotting this result we will not take into account such approximation.

The integration over the parameter ν can be evaluated in saddle point approximation.
Using again ℵ(γ = 1/2) = ᾱs4 ln 2 and

γ2

sin2(πγ)
Γ(1 + γ)
Γ(2 + 2γ)

γ=1/2=
√
π

16 , (5.2)
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Figure 7. Here we plot the real and imaginary parts of the numerical evaluation of eq. (5.1) (orange
curve) with its saddle point approximation, eq. (5.3) (blue curve).

we have

∫ +∞

−∞

d%

2π e
−i%xBM(%, z2) = − iNcQsσ0

64π|z||xB|
e

−
ln2 Qs|z|

2

7ζ(3)ᾱs ln

(
2

x2
B
z2M2

N

+iε

)
√

7ζ(3)ᾱs ln
(

2
x2
Bz

2M2
N

+ iε

)

×

(
2

x2
Bz

2M2
N

+ iε

)ᾱs2 ln 2

(
Γ(1 + ᾱs4 ln 2) sin

[
2πᾱs ln 2

])−1 , (5.3)

where we can use again Γ[1 + ᾱs4 ln 2] sin
[
2πᾱs ln 2

]
' 2πᾱs ln 2 +O(ᾱs). We observe that

the behavior of the pseudo-PDF in the BFKL limit is primarily dictated by the well-known
exponentiation of the Pomeron intercept, which effectively resums the logarithms of 1/xB.
This point is described in figure 7, in which we present the results from eq. (5.3) along with
the numerical evaluation of (5.1). The comparison demonstrates the efficacy of our saddle
point approximation as described in eq. (5.3).

5.2 Pseudo PDF in the leading and next-to-leading approximation

Let us proceed by calculating the pseudo-PDF in the leading and next-to-leading approxi-
mation, that is we perform the Fourier transform of the leading and next-to-leading twist
correction calculated for the Ioffe-time distribution.

It is convenient to perform the inverse Mellin transform after the Fourier transform.
So, our starting point is eq. (3.9) (here L > 0)∫ 1+i∞

1−i∞

dω

2πi L
ω
∫ +∞

0

dLP−

2π e−iLP
−xB

∫ +∞

x2
⊥MN

dLL−j
1

2P− 〈P |ψ̄(L,x⊥)γ−[nL+x⊥,0]ψ(0)|P 〉

= iQ2
sσ0

24παs

∫ 1+i∞

1−i∞

dω

2πi

∫ +∞

0

dLP−

2π e−iLP
−xB

(
Q2
sx

2
⊥

4

)− ᾱs
ω
(
− 2
x2
⊥

L2P−
2

M2
N

+iε
)ω

2
(

1+Q2
sx

2
⊥

5

)

= Q2
sσ0

48π2αsxB

∫ 1+i∞

1−i∞

dω

2πi

(
Q2
sx

2
⊥

4

)− ᾱs
ω

Γ(1+ω)
(

2
x2
⊥x

2
BM

2
N

)ω
2
(

1+Q2
sx

2
⊥

5

)
(5.4)
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Figure 8. The plot presents the quark pseudo PDF by comparing the numerical evaluation of
eq. (5.1) (illustrated by the orange curve) with its saddle point approximation derived from eq. (5.3)
(portrayed by the blue curve). Furthermore, we display the LT (marked by the green dashed curve)
and the NLT (signified by the solid red curve) obtained from eq. (5.4).

Since we are in the approximation ω� 1 we can use Γ(1+ω)∼ 1 in (5.4) and we obtain

∫ 1+i∞

1−i∞

dω

2πi L
ω
∫ +∞

0

dLP−

2π e−iLP
−xB

∫ +∞

x2
⊥MN

dLL−j
1

2P− 〈P |ψ̄(L,x⊥)γ−[nL+x⊥,0]ψ(0)|P 〉

= Q2
sσ0

24π2αsxB

 ᾱs ln 2
Qs|x⊥|

ln
(

2
x2
⊥x

2
BM

2
N

)


1
2(

1+Q2
sx

2
⊥

5

)
I1(v) , (5.5)

where I1 is the modified Bessel function and we defined

v ≡
[
4ᾱs ln 2

Qs|x⊥|
ln
(

2
x2
⊥x

2
BM

2
N

)] 1
2

. (5.6)

We again performed the inverse Mellin transform only in the region 0 < Qsx2
⊥

4 < 1 where the
higher twist effects can be considered small corrections. in figure 9, we compare result (5.4)
with eq. (5.5), where the approximation Γ(1 + ω) ' 1 has been employed. Our analysis
demonstrates the validity of the approximation Γ(1 + ω) ' 1.

In figure 8, we observe that the first two twist contributions, which have only the
real part, as described by eq. (5.5), exhibit strong agreement with the all-twists resummed
BFKL results (5.3) and (5.1) for larger values of xB. However, as we approach smaller xB
values, the two twist corrections deviate from the full BFKL result, suggesting that, lattice
calculations, now available only at large values of xB, may describe well only the region
where leading twist contributions dominate, which is the domain of DGLAP dynamics. On
the other hand, the small-xB region, where all twist corrections contribute equally and are
described by the BFKL dynamics, is not attainable by lattice calculations.
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Figure 9. The plot illustrates the quark pseudo PDF for both LT and NLT, considering the cases
with and without the approximation Γ(1 +ω) ' 1 for ω � 1. The blue and orange curves represent
the results obtained without employing the approximation Γ(1 + ω) ' 1.

6 Quark quasi-PDF

6.1 Quark quasi-PDF in the BFKL approximation

In this section we are going to obtain the quark quasi-PDF by performing the Fourier
transform of the Ioffe-time distribution given in eq. (2.21). To this end, following ref. [17],
we introduce the real parameter ς, with −z2 = ς2 > 0, and the four-vector ξµ ≡ zµ

|z| = zµ

|ς|
with |z| =

√
−z2. Under the large boost we can then identify (LP−)2 = (zµPµ)2 = ς2P 2

ξ .
So, we can perform the following substitution

(
%2

z2M2
N

+ iε

)ℵ(γ)
2

→
(
−
P 2
ξ

M2
N

+ iε

)ℵ(γ)
2

. (6.1)

Therefore, starting from (2.5) and (2.21), and using /z
2z·p = 1

2Pξ /ξ, the quasi-distribution,
i.e. the pseudo Ioffe-time distribution rewritten á la quasi-PDF is

1
2Pξ
〈P |ψ̄(ς)/ξ[ς, 0]ψ(0)|P 〉 = iNcQsσ0

4π|ς|

∫
dν

(
−

2P 2
ξ

M2
N

+ iε

)ℵ(γ)
2

× γ3

sin2(πγ)
Γ(γ)

Γ(2 + 2γ)

(
Q2
s|ς|2

4

)iν
+O(αs) . (6.2)

In figure 10 we plot the quasi-Distribution, eq. (6.2), for Pξ = 10GeV (red dashed curve),
Pξ = 4GeV (Blue dashed curve), and Pξ = 2GeV (orange dashed curve). Result presented
in figure 10 can be compared with the ones obtained, although with smaller values of Pξ,
in lattice calculations in refs. [41, 42].
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Figure 10. The plot illustrates the quark quasi-Distribution, eq. (6.2) for two different values of
Pξ. The red dashed curve is obtained with Pξ = 10GeV, the blue dashed one with Pξ = 4GeV,
and the orange dashed one with Pξ = 2GeV. For the numerical evaluation we also used ᾱs = 0.2,
Qs = 0.33GeV, and MN = 1GeV.

Evaluating the integration over the ν parameter in the saddle point approximation the
quasi-distribution (6.2) becomes

1
2Pξ
〈P |ψ̄(ς)/ξ[ς, 0]ψ(0)|P 〉 ' iNcQsσ0

64|ς|

(
−

2P 2
ξ

M2
N

+ iε

)ᾱs2 ln 2
e

−
ln2 Qs|ς|

2

7ζ(3)ᾱs ln

(
−

2P2
ξ

M2
N

+iε

)
√

7ζ(3)ᾱs ln
(
−

2P 2
ξ

M2
N

+ iε

) .
(6.3)

The quark quasi-PDF is obtained performing the Fourier transform with respect to the
ς parameter. We notice that, contrary to the pseudo-PDF case, if we perform the Fourier
transform of eq. (6.2) first, and then the integration with respect to the ν parameter, we
end up with a divergent integral. So, in this case we will proceed as follow. We first
integrate the ν parameter in the saddle point approximation, and then perform the Fourier
transform. So, the numerical evaluation of the Fourier transform of eq. (6.3) is

Pξ

∫ +∞

−∞

dς

2π e
−iςPξxB 1

2Pξ
〈P |ψ̄(ς)/ξ[ς,0]ψ(0)|P 〉

=
∫ +∞

−∞
dς e−iςPξxB

iNcPξ
8π2|ς|

Qsσ0

∫
dν

(
−

2P 2
ξ

M2
N

+iε
)ℵ(γ)

2 γ3Γ(γ)
sin2(πγ)Γ(2+2γ)

(
Q2
s|ς|2

4

)iν
+O(αs)

' iNcPξQsσ0
128π

(
−

2P 2
ξ

M2
N

+iε
)ᾱs2ln2∫ +∞

−∞

dς

|ς|
e−iςPξxB

e

−
ln2 Qs|ς|

2

7ζ(3)ᾱs ln

(
−

2P2
ξ

M2
N

+iε

)
√

7ζ(3)ᾱs ln
(
−

2P 2
ξ

M2
N

+iε
) (6.4)

In figure 11, we exhibit the numerical evaluation of eq. (6.4) with Pξ = 10GeV (red curve),
Pξ = 4GeV (blue curve) and Pξ = 2GeV1 (orange curve), demonstrating the distinctive

1The allowed values of Pξ are the ones such that ᾱs ln
(

2P2
ξ

M2
N

)
∼ 1. The value of Pξ = 2GeV, although
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Figure 11. In the left and the right panel we plot, respectively, the real and the imaginary part
of the numerical evaluation of eq. (6.4) with Pξ = 10GeV (red curve), Pξ = 4GeV (blue curve),
Pξ = 2GeV (orange curve). For the numerical evaluation we used ᾱs = 0.2, MN = 1GeV. and
Qs = 0.33GeV.

behavior of the quark quasi-PDF. It is crucial to emphasize that this behavior significantly
deviates from the quark pseudo-PDF, as represented in figure 8. This divergence can
be ascribed to the lack of the typical logarithm resummation that is a hallmark of the
BFKL formalism. We should also enphasize that the saddle point approximation is a valid
approximation for large values of Pξ.

6.2 Quasi PDF in the leading and next-to-leading approximation

To obtain the quasi-PDF in the leading and next-to-leading approximation, we follow a
similar approach as employed for the pseudo-PDF. Thus, our starting point is eq. (3.9),
which we rewrite using the notation specific to the quasi-PDF as we did in the previous
subsection. The result (3.9) must undergo an inverse Mellin transformation and a Fourier
transformation in the quasi-PDF definition, i.e., maintaining the orientation of the zµ

vector fixed.
First, let us obtain the quasi-distribution in the LT and NLT as inverse Mellin trans-

form of eq. (3.9) which is (recall that ω = j − 1):

1
2πi

∫ 1+i∞

1−i∞
dω ςω

∫ +∞

x2
⊥MN

dς ς ′
−j 1

2Pξ
〈P |ψ̄(ς ′)/ξ[ς ′, 0]ψ(0)|P 〉

= iNcQ
2
sσ0

24π2ᾱs

1
2πi

∫ 1+i∞

1−i∞
dω

(
Q2
sς

2

4

)− ᾱs
ω
(
−

2P 2
ξ

M2
N

+ iε

)ω
2
(

1 + Q2
sς

2

5

)

= iNcQ
2
sσ0

24π2ᾱs

 4ᾱs ln 2
Qs|ς|

ln
(
−

2P 2
ξ

M2
N

+ iε

)


1
2

I1(ũ) , (6.5)

barely satisfies this condition, it is used because it is a value attainable in lattice calculations. One should
also consider that plots in figure 11 are obtained using saddle point approximation which works better at
large values of Pξ.
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Figure 12. Here we present the plots for the LT (magenta curve) and NLT (green dashed curve),
eq. (6.5), and compare them with the BFKL result (blue dashed curve), eq. (6.2). In the left panel
we plot the real parts, while in the right panel we plot the imaginary parts. The plots are obtained
using Pξ = 4GeV, ᾱs = 0.2, MN = 1GeV. and Qs = 0.33GeV.

with

ũ =
[
4ᾱs ln 2

Qs|ς|
ln
(
−

2P 2
ξ

M2
N

+ iε

)] 1
2

. (6.6)

The Inverse Mellin transform (6.5) has been performed only in the region 0 < Q2
sς

2 < 1
which is consistent with higher twist expansion.

In figure 12 we plot the real and imaginary parts of the LT and NLT of eq. (6.5),
and compare them with the BFKL result eq. (6.2). We notice that the first two leading
twist contributions (the green and magenta curves which are one on top of the other), are
consistent with the BFKL result (resummation of large logarithms of Pξ) within the region
ς ∈ [0.01, 1].

The quark quasi-PDF in the LT and NLT is obtained performing the Fourier transform
of (6.5) with respect to the ς parameter. So we have

Pξ

∫ +∞

0

dς ′

2π e
−iς′PξxB 1

2πi

∫ 1+i∞

1−i∞
dω ς ′

ω
∫ +∞

x2
⊥MN

dς ς−j
1

2Pξ
〈P |ψ̄(ς)ξµγµ[ς, 0]ψ(0)|P 〉

= iQ2
sPξσ0

48π2αs

1
2πi

∫ 1+i∞

1−i∞
dω

∫ +∞

0
dς e−iςPξxB

(
Q2
sς

2

4

)− ᾱs
ω
(
−

2P 2
ξ

M2
N

+ iε

)ω
2
(

1 + Q2
sς

2

5

)

= iQ2
sσ0

48π2αs

1
2πi

∫ 1+i∞

1−i∞
dωPξ

(
Q2
s

4

)− ᾱs
ω
(
−

2P 2
ξ

M2
N

+ iε

)ω
2

×
(

Γ(1− 2αs
ω )

(iPξxB)1− 2αs
ω

+
Γ(3− 2αs

ω )
(iPξxB)3− 2αs

ω

Q2
s

5

)
. (6.7)

We should recall that now we are working in the αs � ω � 1 approximation, which
means that we are slightly stepping away from the BFKL limit to enter in the DGLAP
one. To perform the Inverse Mellin we have to distinguish two ranges of the values xB.
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For xB < Qs
MN

√
2 we have

Pξ

∫ +∞

0

dς ′

2π e
−iς′PξxB 1

2πi

∫ 1+i∞

1−i∞
dω ς ′

ω
∫ +∞

x2
⊥MN

dς ς−j
1

2Pξ
〈P |ψ̄(ς)ξµγµ[ς,0]ψ(0)|P 〉

= NcQ
2
sσ0

48π3ᾱs

1
xB

1
2πi

∫ 1+i∞

1−i∞
dω

(
−

4P 2
ξ x

2
B

Q2
s

+iε
) ᾱs

ω
(
−

2P 2
ξ

M2
N

+iε
)ω

2
(

1− 2Q2
s

5P 2
ξ x

2
B

)
+O

(
αs
ω

)

=−NcQ
2
sσ0

48π3ᾱs

1
xB

2ᾱs ln
(
− Q2

s

4P 2
ξ
x2
B
−iε

)
ln
(
−

2P 2
ξ

M2
N

+iε
)


1
2

J1(t)
(

1− 2Q2
s

5P 2
ξ x

2
B

)
+O

(
αs
ω

)
(6.8)

with

t=
[
2ᾱs ln

(
− Q2

s

4P 2
ξ x

2
B

−iε
)

ln
(
−

2P 2
ξ

M2
N

+iε
)] 1

2

(6.9)

While for xB > Qs
MN

√
2 we have

Pξ

∫ +∞

0

dς ′

2π e
−iς′PξxB 1

2πi

∫ 1+i∞

1−i∞
dω ς ′

ω
∫ +∞

x2
⊥MN

dς ς−j
1

2Pξ
〈P |ψ̄(ς)ξµγµ[ς,0]ψ(0)|P 〉

= NcQ
2
sσ0

48π3ᾱs

1
xB

1
2πi

∫ 1+i∞

1−i∞
dω

(
−

4P 2
ξ x

2
B

Q2
s

+iε
) ᾱs

ω
(
−

2P 2
ξ

M2
N

+iε
)ω

2
(

1− 2Q2
s

5P 2
ξ x

2
B

)
+O

(
αs
ω

)

= NcQ
2
sσ0

48π3ᾱs

1
xB

2ᾱs ln
(
− Q2

s

4P 2
ξ
x2
B
−iε

)
ln
(
−

2P 2
ξ

M2
N

+iε
)


1
2

I1(t)
(

1− 2Q2
s

5P 2
ξ x

2
B

)
+O

(
αs
ω

)
(6.10)

In figure 13, we present the leading and next-to-leading twist contributions, as described
by eqs. (6.8) and (6.10), for the quasi quark PDF as well as the BFKL resummed result
eq. (6.8). The integral in eqs. (6.8) and (6.10) is performed by closing the contour to the left.
To this end, we have to impose ln 2P 2

ξ

M2
N
− π > 0. The plots for the LT and NLT corrections

in figure 13 are obtained using Pξ = 4GeV. A different choice, such as Pξ = 2GeV, would
lead to a divergent integral. This means that the formalism we adopted to study the
small-xB behavior of the twist corrections imposes a limit on the allowed values of Pξ. The
behavior of the quasi-PDF at LT and NLT is particularly noteworthy due to two primary
factors. Firstly, it exhibits a stark deviation from the pseudo-PDF case, and secondly, the
next-to-leading twist correction displays a divergent trend that opposes the direction of
the leading one at small-xB. This unusual behavior is attributable to the peculiar nature
of the higher twist corrections, which are characterized by the 1/(x2

BP
2
ξ ) factor. Indeed,

such higher twist corrections, instead of being suppressed as was hoped, are enhanced at
small-xB. We also notice that the full BFKL result is consistent with the LT correction.
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Figure 13. In the left panel we plot the real part of the LT (dark green dashed curve) and NLT
(magenta dashed curve) of the quasi-PDF distribution eq. (6.8) and BFKL resummation (blue
curve) eq. (6.4). In the right panel we plot the imaginary parts. The plots are obtained using
Pξ = 4GeV, ᾱs = 0.2, MN = 1GeV, and Qs = 0.33GeV.

7 Conclusions

By employing the high-energy operator product expansion, we have derived the high-
energy behavior of the Ioffe-time distribution for the quark non-local operator. This finding
bears considerable importance for lattice calculations, which are not optimally suited for
computing large Ioffe-time behavior. In order to obtain the pseudo distribution from lattice
calculations, an extrapolation for extensive Ioffe-time values is required prior to conducting
the Fourier transform.

In figure 4, we presented the Ioffe-time behavior, demonstrating that the Ioffe-time
amplitude at leading and next-to-leading twist corrections exhibits a large Ioffe-time pa-
rameter behavior that aligns with the results obtained through lattice calculations in ref. [9].
Nonetheless, our analysis also indicates that the leading and next-to-leading twist correc-
tions are insufficient to accurately characterize the behavior determined from the complete
BFKL result. Indeed, the higher twist corrections become more important at larger Ioffe-
time parameters. While lattice calculations are, in principle, capable of capturing all twist
effects, their restriction to lower values of Ioffe-time parameters prohibit them from ade-
quately capturing the domain where the higher twist effects bear the same weight as the
leading ones. Consequently, lattice calculations limited to low Ioffe-time parameters likely
remain valid only for the first two twist effects which align well with the dynamics as
described by DGLAP. To strengthen our findings, we evaluated a model without satura-
tion effects in section 4 (see figure 6). The assessment confirmed that both the pattern
of the twist expansion and the behavior of the first two leading twists at high Ioffe-time
parameters are not exclusive to the GBW model.

Subsequently, we performed an explicit Fourier transform for both the pseudo-PDF
and quasi-PDF from the Ioffe-time amplitude. The pseudo-PDF, demonstrated in figure 8,
follows the expected result in the saddle point approximation, capturing the BFKL resum-
mation (resummation of all twists) and exhibiting an expected rising behavior for small
xB values. Conversely, the quasi-PDF resulted in a different and unusual behavior, reaf-
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firming that they are unsuited for small-xB studies as was previously observed in the gluon
case [17].

We also examined the behavior of the pseudo-PDF and quasi-PDF within the first
two leading twist contributions, which are potentially attainable from lattice calculations.
Although the pseudo-PDF’s next-to-leading twist contribution exhibits similar behavior to
that with BFKL resummation, it does not approach the BFKL resummation result signifi-
cantly faster than the leading contribution. This observation confirms that an appropriate
small-xB behavior cannot be achieved solely through DGLAP dynamics; rather, an all-twist
(BFKL) resummation is required. Indeed, although lattice calculations may in principle
capture all twist contributions, the inability to study them in the small-xB region, where
the higher twist are as important as the leading one, make lattice calculations relevant only
for the leading twist effect which are described by DGLAP dynamics. Furthermore, while
the equivalence between the pseudo-PDF and quasi-PDF formalisms can be demonstrated
at moderate xB values, the situation differs for small-xB. Our findings show that the higher
twist contributions in the quasi-PDF case are not suppressed but instead enhanced, scaling
as O(1/(x2

BP
2
ξ )), as shown in equations (6.8) and (6.10). Consequently, this equivalence

between the two formalisms is not expendable to include small xB values. We also studied
the quasi-Distribution (see figure 12), and we established that at LT and NLT it is in good
agreement with the full BFKL resummed result. A similar conclusion can be drawn for
the quasi-PDF displayed in figure 13. Indeed, although the NLT correction diverges from
the LT one for reasons previously discussed, the behavior of the LT, instead, is in good
agreement with the full BFKL resummation.
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A Derivation of the Ioffe-time amplitude with the photon impact factor
model

In this section we are going to provide more details on the derivation of the Ioffe-time
amplitude with the photon impact factor (IF) model we presented in section 4. The Ioffe-
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time amplitude with photon IF model can be written as∫
dx+dy+δ(x+ − y+ − L)

〈
ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]ψ(y+, y⊥)

×ελ, µελ, ν∗
(2
s

)1
2
∫
d4x′d4y′δ(y′+) eiq·(x′−y′)jµ(x′)jν(y′)

〉
. (A.1)

We will consider virtual photon with transverse polarizations ελ,µ = (0, 0, ~ελ⊥), ~ελ⊥ =
(−1/

√
2)(λ, i), and λ = ±1. Here s is the large parameter with dimension of energy

square.
The high-energy limit in coordinate space is obtained considering the limits x+, y+ →

∞ and x′−, y′− →∞. Consequently, we can rewrite (A.1) in a factorized form [34]∫
dx+dy+δ(x+ − y+ − L)

〈
ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]ψ(y+, y⊥)
〉

×
〈
ελ, µελ, ν

∗
(2
s

)1
2
∫
d4x′d4y′δ(y′+) eiq·(x′−y′)jµ(x′)jν(y′)

〉
(A.2)

We may now apply the high-energy OPE to the two factors in (A.2). We will use the
intermediate result (2.17) for the top part of the diagram in figure 5, and for the photon
impact factor, bottom part of figure 5 we use result of section B and arrive at∫

dx+dy+δ(x+ − y+ − L)
〈
ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]ψ(y+, y⊥)
〉

〈
ελ, µελ, ν

∗
(2
s

)1
2
∫
d4x′d4y′δ(y′+) eiq·(x′−y′)jµ(x′)jν(y′)

〉
= iNc

2π2

∫
dν ′

2π2
γ′ Γ(1− γ′)Γ(1 + γ′)

[∆2
⊥]1−γ′

4Γ2(1 + γ′)
Γ(2 + 2γ′)

×
(

2L2

∆2
⊥

√
2q−

Q2

)αsNc
2π χ(ν′) ∫

d2ω(ω2
⊥)−

1
2−iν

′Va0(ω⊥)

×Nc

∫
d2ν

π3
Γ(γ̄)Γ3(2− γ)

Γ(4− 2γ)Γ(2 + γ)
2γ − 1
2γ + 1

Γ2(γ̄)
Γ(2γ̄)

(Q2)γ−1Γ(2 + γ)
4γ+1 (γγ̄ + 2)Ũ(ν) , (A.3)

where in this case γ′ = 1
2 + iν ′, and Ũ(ν) is defined in eq. (C.32). Notice that in the

photon IF case, the initial point of the evolution, a0 of the evolution parameter (2.11), of
the BFKL equation (2.10) has changed. Indeed we have

aGBW0 = M2
N

P−2 , aIF0 = ∆E
q−

= Q2
√

2q−2 , (A.4)

where ∆E = Q2
√

2q+ is the inverse of the life-time of the quark-anti-quark pair which fluctu-
ates from the virtual photon. The projection of the dipole operator V(ω⊥) onto to the LO
eigenfunctions is∫

d2ω(ω2
⊥)−

1
2−iνVa0(ω⊥) = (ω2

⊥)−
1
2−iν

1
ω2
⊥
Ua0(ω⊥)

= 2πΓ(1− 2γ)Γ2(γ)
Γ2(1− γ)Γ(2γ) ν

2 U(−ν) . (A.5)
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So, eq. (A.3) becomes

∫
dx+dy+δ(x+ − y+ − L)

〈
ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]ψ(y+, y⊥)
〉

〈
ελ, µελ, ν

∗
(2
s

)1
2
∫
d4x′d4y′δ(y′+) eiq·(x′−y′)jµ(x′)jν(y′)

〉
= iN2

c

π

∫
dν ′

2π2
γ′ Γ(1− γ′)Γ(1 + γ′)

[∆2
⊥]1−γ′

4Γ2(1 + γ′)
Γ(2 + 2γ′)

Γ(1− 2γ′)Γ2(γ′)
Γ2(1− γ′)Γ(2γ′) ν

′2

×
∫
d2ν

π3
Γ(γ̄)Γ3(2− γ)

Γ(4− 2γ)Γ(2 + γ)
2γ − 1
2γ + 1

Γ2(γ̄)
Γ(2γ̄)

(Q2)γ−1Γ(2 + γ)
4γ+1 (γγ̄ + 2)

×
(

2L2

∆2
⊥

√
2q−

Q2

)ᾱsℵ(γ′)

〈U(−ν ′)Ũ(ν)〉 (A.6)

We need the dipole-dipole amplitude at LO which in the Mellin space is

〈U(−ν ′)Ũ(ν)〉 = −4π2(N2
c − 1)

N2
c

α2
s

ν2(1 + 4ν2)2 δ(ν − ν
′) (A.7)

So, using (A.5) and the LO dipole-dipole scattering (A.7)we arrive at

∫
dx+dy+δ(x+ − y+ − L)

〈
ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]ψ(y+, y⊥)
〉

×
〈
ελ, µελ, ν

∗
(2
s

)1
2
∫
d4x′d4y′δ(y′+) eiq·(x′−y′)jµ(x′)jν(y′)

〉
= iα2

s(N2
c − 1)

32π4|Q||∆⊥|

∫
dν

(γγ̄ + 2)
(1− γ)γ

Γ2(1− γ)
2γ + 1

Γ3(1 + γ)
Γ(2 + 2γ)

Γ2(γ)
Γ(2γ)

×Γ3(2− γ)
Γ(4− 2γ)

(
Q2∆2

⊥
4

)iν (2L2

∆2
⊥

√
2q−2

Q2

)ᾱsℵ(γ)

(A.8)

At this point we may proceed similarly to the case GBW model. We take the Mellin
transform, calculate the first two leading residue and then Mellin transform back. Starting
with the Mellin transform of (A.8) we have

∫ +∞

∆2
⊥∆E

dLL−j
∫
dx+dy+δ(x+ − y+ − L)〈ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]ψ(y+, y⊥)

×ελ, µελ, ν∗
(2
s

) 1
2
∫
d4x′d4y′δ(y′+) eiq·(x′−y′)jµ(x′)jν(y′)〉

= iα2
sN

2
c

32π4|Q||∆⊥|

∫
dν

θ[<(ω − ℵ(γ))]
ω − ℵ(γ)

(γγ̄ + 2)
(1− γ)γ

Γ2(1− γ)
2γ + 1

Γ3(1 + γ)
Γ(2 + 2γ)

Γ2(γ)
Γ(2γ)

Γ3(2− γ)
Γ(4− 2γ)

×
(
Q2∆2

⊥
4

)iν ( 2
∆2
⊥

√
2q−2

Q2

)αsNc
2π χ(ν)

(∆2
⊥∆E)ℵ(γ)−ω (A.9)
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In the limit αs � ω � 1 use ℵ(γ)→ ᾱs
1−γ and γ → 1− ᾱs

ω , the leading residue is∫ +∞

∆2
⊥∆E

dLL−j
∫
dx+dy+δ(x+ − y+ − L)〈ψ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]ψ(y+, y⊥)

×ελ, µελ, ν∗
∫
d4x′d4y′δ(y′∗) eiq·(x

′−y′)jµ(x′)jν(y′)〉

= α2
sN

2
c

32π4|Q||∆⊥|

∫ 1
2 +i∞

1
2−i∞

dγ θ[<(ω − ℵ(γ))] (γ − 1)
ω(γ − 1 + ᾱs

ω )
(γγ̄ + 2)
(1− γ)γ

Γ2(1− γ)
2γ + 1

Γ3(1 + γ)
Γ(2 + 2γ)

×Γ2(γ)
Γ(2γ)

Γ3(2− γ)
Γ(4− 2γ)

(
Q2∆2

⊥
4

)iν ( 2
∆2
⊥

√
2q−2

Q2

)ℵ(γ)
2

(∆2
⊥∆E)ℵ(γ)−ω

' − iω

288π

(
Q2∆2

⊥
4

)− ᾱs
ω
(

2
∆2
⊥

√
2q−2

Q2

)ω
2

(A.10)

with ω = j − 1 and where for γ → 1− ᾱs
ω we used

(γγ̄ + 2)
γ

Γ2(1− γ)
2γ + 1

Γ3(1 + γ)
Γ(2 + 2γ)

Γ2(γ)
Γ(2γ)

Γ3(2− γ)
Γ(4− 2γ) = ω2

9ᾱ2
s

+O(αs) (A.11)

The next-to-leading residue is obtain in the same way, we use ℵ(γ) → ᾱs
2−γ and calculate

the residue closing the contour to the right. Summing the first two residue and performing
the inverse Mellin transform for the relevant case ln Q2∆2

⊥
4 < 0, we get

1
2πi

∫ 1+i∞

1−i∞
dω Lω

∫ +∞

∆2
⊥∆E

dLL−j
∫
dx+dy+δ(x+ − y+ − L)〈ψ̄(x+, x⊥)γ−

× [x+nµ + x⊥, y
+nµ + y⊥]ψ(y+, y⊥)ελ, µελ, ν∗

(2
s

) 1
2
∫
d4x′d4y′δ(y′+) eiq·(x′−y′)jµ(x′)jν(y′)〉

= − i

288π

(
1− 3

50
Q2∆2

⊥
4

)
1

2πi

∫ 1+i∞

1−i∞
dω ω

(
4

Q2∆2
⊥

) ᾱs
ω
(

2L2

∆2
⊥

√
2q−2

Q2

)ω
2

= i

288π

2ᾱs ln 4
Q2∆2

⊥

ln
(
−2
√

2%2

∆2
⊥Q

2 + iε

)I2(h)
(

1− 3
50
Q2∆2

⊥
4

)
(A.12)

with h defined in (4.5) and % = Lq−.

B Photon Impact factor

Using result of ref. [36], the T product of two electromagnetic currents can be expanded in
terms of the impact factor and matrix elements of the trace of two Wilson lines.(2

s

)1
2
∫
d4xd4yδ(y+) eiq·(x−y)T{jµ(x)jν(y)}

= Nc

∫
d2ν

π3
Γ(γ̄)Γ2(2− γ)Γ(2− γ)

Γ(4− 2γ)Γ(2 + γ)
2γ − 1
2γ + 1

Γ2(γ̄)
Γ(2γ̄)

(Q2)γ−1Γ(2 + γ)
4γ+1

×
{

(γγ̄ + 2)Pµν1 + (3γγ̄ + 2)Pµν2

}∫
d2z0Ũam(z0, ν) (B.1)
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where we defined −q2 = Q2 > 0. Further, we define

Ũ(ν) ≡
∫
dz0 Ũ(z0, ν) = Γ(1− 2γ)

Γ2(γ̄)
Γ2(γ)
Γ(2γ)

1
π

∫
d2z(z2)−1−γ̄ U(z) , (B.2)

with

Ũ(ν, z0) ≡
∫
d2z1d

2z2
π2z4

12
Ũ(z1, z2)

(
z2

12
z2

10z
2
20

)γ̄
. (B.3)

The symbol tilde indicates that the Wilson lines run along x− direction as

Ũ(x⊥) = Pexp
{
ig

∫ +∞

−∞
dx−A+(x−, x⊥)

}
. (B.4)

In eq. (B.1) we defined the two tensor structures Pµν1 and Pµν2 as

Pµν1 = gµν − qµqν

q2 , Pµν2 = 1
q2

(
qµ − pµ2q

2

q · p2

)(
qν − pν2q

2

q · p2

)
. (B.5)

C Correlation function with light-ray operators

Correlation functions in Conformal Field Theory play an essential role: they encode in-
formation about the spectrum of the operators and their scaling dimensions. In two-
dimensional CFTs, the primary fields and their descendants can be organized into repre-
sentations of the Virasoro algebra, and the correlation functions of these primary fields can
be determined by conformal symmetry and the operator product expansion (OPE) [43].

In higher-dimensional CFTs, correlation functions can be analyzed using the conformal
bootstrap method, which is based on the OPE and the crossing symmetry of the correlation
functions. This approach has led significant progress in determining the scaling dimensions
and OPE coefficients of higher-dimensional CFTs [44].

In CFTs, local operators, the observables of the theory, are classified according to their
scaling dimensions and their transformation properties under the conformal group, and can
be organized into representations of the conformal group called conformal multiplets.

Correlation functions, which are the expectation values of products of local operators
at distinct spacetime points, are important for the understanding of the dynamics and
symmetries of the theory. In CFTs the conformal invariance imposes strong constraints on
the form of the correlation functions, leading to a set of algebraic relations known as the
conformal bootstrap equations [45].

Conformal invariance completely fixes the form of the two- and three-point functions
up to constants, known as the operator product expansion (OPE) coefficients. These
coefficients play an essential role in the structure of the theory and can be calculated using
various techniques, such as the conformal bootstrap method and integrability [44].
N=4 super Yang-Mills theory is a four-dimensional quantum field theory with maxi-

mal supersymmetry, described by a gauge field, four Weyl fermions, and six scalar fields,
all transforming in the adjoint representation of the gauge group [46]. The N=4 SYM La-
grangian is invariant under supersymmetry transformations, which relate the bosonic and
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fermionic degrees of freedom. This invariance leads to a rich structure of non-renormalization
theorems and exact results that make N=4 SYM particularly tractable [47].

Similar to CFTs, correlation functions in N=4 SYM are central to the understanding
the dynamics of the theory. However, the presence of supersymmetry imposes additional
constraints on the correlation functions, simplifying their calculation.

In this section we are going to consider the corelation functions of the supermultiplet of
twist-two conformal operators, which is a fundamental concept in N=4 super-Yang-Mills
theory. A supermultiplet is a collection of states that transform under the same irreducible
representation of the superconformal algebra. Twist-two operators are a class of operators
with specific scaling dimensions and transformation properties under conformal transfor-
mations. They are important because they allow us to study the renormalization properties
of the theory by revealing the structure of the theory under conformal transformations.

The twist-two supermultiplets can be classified according to their collinear twist.
The term “collinear twist” refers to the difference between the scaling dimension and the
collinear spin of the operator, which determines how the operator behaves under conformal
transformations. Operators sharing the same collinear twist form a multiplet with the same
properties. For example, they have the same scaling behavior under renormalization and
similar transformation properties under conformal transformations.

In the context of the superconformal algebra, the irreducible representations are the
fundamental building blocks that describe how operators transform under the action of
the superconformal algebra. Each irreducible representation is characterized by a set of
quantum numbers, such as scaling dimension, spin, and R-charge, which determine the
transformation properties of the operators in that representation. The classification of
twist-two multiplets by collinear twist is essential for identifying the irreducible represen-
tations of the superconformal algebra. When studying the conformal structure of N=4
super-Yang-Mills theory, it is important to understand how the operators transform under
the action of the superconformal algebra. By classifying the twist-two multiplets accord-
ing to their collinear twist, it becomes possible to identify the corresponding irreducible
representations and to analyze their transformation properties in a systematic way [48].

C.1 Twist-two non-local operator with non-integer spin j

In this section it is convenient to introduce the light-cone vectors pµ1 =
√
s/2nµ and

pµ2 =
√
s/2n′µ such that p1 ·p2 = s/2. We will also use the notation xp1 = pµ1xµ =

√
s/2x−,

and xp2 = pµ2xµ =
√
s/2x+.

To study the correlation function of operators with spin j and j′ in the high-energy
limit, i.e. in the limit in which the contributions αs

j−1 ∼ 1 are dominant and needs to be
resummed with BFKL, we need to consider the analytic continuation of local operators
to non-integers values of spin j. In supersymmetric N=4 gauge theory one can construct
the super-multiplet of non-local operators as an analytic continuation of the local ones to
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non-integer values of spin j [31, 48] (see also [17])

F jp1(x⊥) =
∫ ∞

0
duu1−jFp1(up1 + x⊥) , (C.1)

Λjp1(x⊥) =
∫ ∞

0
duu−jΛp1(up1 + x⊥) , (C.2)

Φj
p1(x⊥) =

∫ ∞
0
duu−1−jΦp1(up1 + x⊥) , (C.3)

with

Fp1(up1, x⊥) =
∫
dv F ap1µ(up1 + vp1 + x⊥)[up1 + vp1, vp1]abx F bp1

µ(vp1 + x⊥) , (C.4)

Λp1(up1, x⊥) = i

2

∫
dv
(
− λ̄aA(up1 + vp1 + x⊥)[up1 + vp1, vp1]abx σp1λ

b
A(vp1 + x⊥)

+ λ̄aA(vp1 + x⊥)[vp1, up1 + vp1]abx σp1λ
b
A(up1 + vp1 + x⊥)

)
, (C.5)

Φp1(u, x⊥) =
∫
dv φaI (up1 + vp1 + x⊥)[up1 + vp1, vp1]abx φbI(vp1 + x⊥) . (C.6)

The corresponding multiplicatively renormalizable light-ray operators with non-integer j
for forward matrix elements are

S1 = F jp1 + j − 1
4 Λjp1 − j(j − 1)1

2Φj
p1 , (C.7)

S2 = F jp1 −
1
4Λjp1 + j(j + 1)

6 Φj
p1 , (C.8)

S3 = F jp1 −
j + 2

2 Λjp1 −
(j + 1)(j + 2)

2 Φj
p1 . (C.9)

As demonstrated in ref. [28], the analytic continuation of anomalous dimensions of local
operator to non integer j gives the anomalous dimension of light-ray operators. So, the
anomalous dimensions are

γS1
j (αs) = 4[ψ(j − 1) + γE ] +O(α2

s) , γS2
j = γS1

j+2 , γS3
j = γS1

j+4 . (C.10)

In CFT the two-point correlators of light-ray operators is entirely fixed by conformal sym-
metry up to some unknown structure constant like for the correlators of local operators.
So, we may write

〈Sj(z1⊥)Sj′(z2⊥)〉 = δ(j − j′) C(j,∆)sj−1

[(z1⊥ − z2⊥)2]∆−1µ
−2γan (C.11)

where in (C.11) ∆ is the dimension of the operator and γan is the anomalous dimension.
Our aim is to calculate the gluino correlation function (see figure 14)

〈Λjp1(x⊥)Λjp2(x′⊥)〉 (C.12)

in the BFKL limit. However, it is known that correlation functions of non-local operator on
the light-cone are divergent in the BFKL limit i.e. in the limit of j → 1 with αs

j−1 ∼ 1. For
this reason, to regulate the UV divergences one may adopt the point-splitting regulator,
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e

0
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z
2

(x)

(y)

(x)

(y)

(x)

(y)
z’

2

z’1

(x’)

(y’)

z1

z
2

z’
2

z’1

Figure 14. Here we present a diagrammatic representation of the four-point fermion correlation
function. The left diagram illustrates the four-point function utilizing the BFKL approximation,
whereas the right diagram demonstrates the four-point function with the application of the high-
energy OPE.

thus defying the set of point-splitting super-multiplet of non-local operator with non-integer
j as

F jp1(x⊥, y⊥) =
∫ +∞

0
du1−jFp1(u;x⊥, y⊥) , (C.13)

Λjp1(x⊥, y⊥) =
∫ +∞

0
du1−jΛp1(u;x⊥, y⊥) , (C.14)

Φj
p1(x⊥, y⊥) =

∫ +∞

0
du1−jΛp1(u;x⊥, y⊥) , (C.15)

with

Fp1(u;x⊥,y⊥) =
∫
dvF ap1i(up1+vp1+x⊥)

×[up1+vp1+x⊥,vp1+y⊥]abF bp1
i(vp1+y⊥) , (C.16)

Λp1(u;x⊥,y⊥) = i

2

∫
dv
(
−λ̄aA(up1+vp1+x⊥)[up1+vp1+x⊥,vp1+y⊥]abσp1λ

b
A(vp1+y⊥)

+λ̄aA(vp1+x⊥)[vp1+x⊥,up1+vp1+y⊥]abσp1λ
b
A(up1+vp1+y⊥)

)
, (C.17)

Φp1(u;x⊥,y⊥) =
∫
dvφaI (up1+vp1+x⊥)[up1+vp1+x⊥,vp1+y⊥]abφbI(vp1+y⊥) . (C.18)
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Let us rewrite the operators Λj and F j in terms of operators S1,S2,S3 using (C.7), (C.8),
and (C.9)

Λj = 4(1 + j)
3j2 Sj1 −

4(1 + 2j)
j2(3 + 2j)S

j
2 + 4(1− 2j)

3j(3 + 2j)S
j
3 (C.19)

F j = (1 + j)(2 + j)
6j2 Sj1 −

(1− j)(2 + j)(1 + 3j)
2j2(3 + 2j) Sj2 + (1− j)(2− j)

6j(3 + 2j) Sj3 (C.20)

Using (C.20) the correlator with F j operators can be written in terms of the S’s operators as〈
F jn1 (x⊥, y⊥)F j′n2

(
x′⊥, y

′
⊥
)〉

(C.21)

∆⊥,∆′⊥→0
= δ(j − j′)

[
(1 + j)2(2 + j)2

36j4
C1(j,∆(j))sj−1

[(X⊥ −X ′⊥)2]∆(j)−1 |∆⊥∆′⊥|
−2γS1

j

+(1− j)2(2− j)2(1 + 3j)2

4j4(3 + 2j)2
C2(j,∆(j))sj−1

[(X⊥ −X ′⊥)2]∆(j)−1 |∆⊥∆′⊥|
−2γS1

j+2

+(1− j)2(2− j)2

36j2(3 + 2j)2
C3(j,∆(j))sj−1

[(X⊥ −X ′⊥)2]∆(j)−1 |∆⊥∆′⊥|
−2γS1

j+4

]

with X⊥ = x⊥+y⊥
2 , X ′⊥ = x′⊥+y′⊥

2 , and ∆⊥ = x⊥ − y⊥ and the same for ∆′⊥.
Comparing (C.21) with (C.11) we can appreciate how the point-splitting act as an UV

regulator. Indeed, the UV regulator µ in (C.21) is now given by |∆⊥∆′⊥|: if the transverse
distances go to zero we get UV divergence.

We now observe that, taking the limit j → 1, which is the high-energy limit as we
discussed above, the correlation function with F j operators is given only in terms of the
S1 operator so we have〈

F jn1 (x⊥, y⊥)F j′n2

(
x′⊥, y

′
⊥
)〉

∆⊥,∆′⊥→0
= δ(j − j′)(1 + j)2(2 + j)2

36j4
C1(j,∆(j))sj−1

[(X⊥ −X ′⊥)2]∆(j)−1 |∆⊥∆′⊥|
−2γS1

j (C.22)

Now, le us consider the correlation function for gluino operator (C.19)〈
Λjn1 (x⊥, y⊥) Λj′n2

(
x′⊥, y

′
⊥
)〉

∆⊥,∆′⊥→0
= δ(j − j′)16(1 + j)2

9j2
C1(j,∆)sj−1

[(X⊥ −X ′⊥)2]∆(j)−1 |∆⊥∆′⊥|
−2γS1

j

+δ(j − j′)16(1 + 2j)2

j2(3 + 2j)2
C2(j,∆)sj−1

[(X⊥ −X ′⊥)2]∆(j)−1 |∆⊥∆′⊥|
−2γS1

j+2

+δ(j − j′) 16(1− 2j)2

9j2(3 + 2j)2
C3(j,∆)sj−1

[(X⊥ −X ′⊥)2]∆(j)−1 |∆⊥∆′⊥|
−2γS1

j+4 (C.23)

Therefore, the correlation function with gluinos we have to consider is

〈Λp1(x⊥, y⊥)Λp2(x′⊥, y′⊥)〉 (C.24)
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and study it at high-energy (Regge limit) x+, x′+ → ∞ and y−, y′− → −∞ keeping all
other components fixed. In this limit the correlation function (C.24) factorizes as [34] (see
figure 14)

〈Λp1(x⊥, y⊥)〉〈Λp2(x′⊥, y′⊥)〉 . (C.25)

Before proceeding with the calculation, we rewrite the operator Λjp1 as

Λjp1(x⊥, y⊥) =
(
s

2

) j−1
2
∫ +∞

0
dLL−j

i

2

∫
dx+

(
− λ̄aA(x+n+ y+n+ x⊥) (C.26)

×[x+n+ x+n+ x⊥, y
+n+ y⊥]abσ+λbA(y+n+ y⊥)

+λ̄aA(y+n+ x⊥)[y+n+ x⊥, x
+n+ y+n+ y⊥]abσ+λbA(x+n+ y+n+ y⊥)

)
Now, each factor of (C.25) we can apply the HE-OP which is diagrammatically shown

in figure and arrive at∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+−y+−L)〈iλ̄(x+,x⊥)γ−[x+nµ+x⊥,y+nµ+y⊥]λ(y+,y⊥)〉figure1

×
∫ +∞

0
dx′−

∫ 0

−∞
dy′−δ(x′−−y′−−L′)〈iλ̄(x′−,x′⊥)γ+[x′−n′µ+x′⊥,y′−n′µ+y′⊥]λ(y′−,y′⊥)〉figure1

=
∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+−y+−L)

∫ +∞

0
dy′−

∫ 0

−∞
dx′−δ(x′−−y′−−L′)

× −1
x+2y+2

∫
d2z2
π3

[
(x−z2)2

⊥+(y−z2)2
⊥−(x−y)2

⊥

]
[ (y−z2)2

⊥
|y+| + (x−z2)2

⊥
x+ +iε

]3 [
−2N2

c U(z1,z2)
]

× −1
x′−2y′−2

∫
d2z′2
π3

[
(x′−z′2)2

⊥+(y′−z′2)2
⊥−(x′−y′)2

⊥

]
[ (y′−z′2)2

⊥
|y′−| + (x′−z′2)2

⊥
x′− +iε

]3 [
−2N2

c Ũ(z′1,z′2)
]

(C.27)

where we remind that z1 = ux⊥+ ūy⊥ and u = |y+|
∆+ and ū = x+

∆+ , and ∆+ = x+ + |y+| = L.
In eq. (C.27) we introduced the operator Ũz1z2 = 1 − 1

Nc
tr{Ũz1Ũ †z2} with the Wilson line

along n′µ direction defined as

Ũx = Ũ(x⊥) = Pexp
{
ig

∫ +∞

−∞
dx−A+(x−n′ + x⊥)

}
. (C.28)

Moreover, since the gluino lives in the adjoint representation, we also need the substitu-
tion Uabz2U

ab
z1 → −2N2

c U(z12). To complete the calculation of the correlation function at
high-energy we need the scattering of the two dipole-Wilson lines at the leading-log approx-
imation. To this end we use the solution of the evolution equation for the dipole-Wilson
line operator in the linear case, i.e. the BFKL equation,

UYa(ν, z0) = e(Ya−Y0)ℵ(ν)UY0(ν, z0) , (C.29)
UYb(ν, z′0) = e(Y0+Yb)ℵ(ν)UY0(ν, z′0) , (C.30)
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where ℵ(ν) = ℵ(γ(ν)) with γ = 1
2 + iν. The operator U(ν, z0) is defined through the

projection onto the LO eigenfunctions as

U(ν, z0) ≡
∫
d2z′1d

2z′2
π2z′412

(
z′212
z′210z

′2
20

)γ̄
U(z′1, z′2) , (C.31)

and using the completeness relation of the LO eigenfunctions we have

U(z1, z2) =
∫
d2z0

∫
dν

π2 ν
2
(

z2
12

z2
10z

2
20

)γ
U(ν, z0) , (C.32)

with γ = 1
2 + iν and γ̄ = 1 − γ. Implementing eqs. (C.29), (C.30), (C.31), and (C.32) we

obtain the dipole-dipole scattering in the LLA as (see ref. [34] and appendix C of ref. [17]
for further details on the dipole-dipole scattering calculation)

〈UYa(z1, z2)ŨYb(z′1, z′2)〉

= −α
2
s(N2

c − 1)
N2
c

∫
dν

π

16 ν2

(1 + 4ν2)2

( 2LL′

|(x− y)⊥||(x′ − y′)⊥|
)ℵ(γ)

×
Γ2(1

2 + iν)Γ(−2iν)
Γ2(1

2 − iν)Γ(1 + 2iν)

(
z2

12z
′2
12

(X −X ′)4

)γ
, (C.33)

where, as done above, we defined X⊥ = x⊥+y⊥
2 and the same for X ′⊥ and we used

e(Ya+Yb)ℵ(ν) =
( 2LL′

|(x− y)⊥||(x′ − y′)⊥|

)ℵ(γ)
, (C.34)

with resummation parameter the rapidities [34]

Ya = 1
2 ln 2L2

(x− y)2
⊥
, Yb = 1

2 ln 2L′2

(x′ − y′)2
⊥
. (C.35)

Using result (C.33) in (C.27) for operator Λp1 is

〈Λp1(x⊥, y⊥)Λp2(x′⊥, y′⊥)〉

= −32α2
s

π4

(
s

2

)j−1 N2
c (N2

c − 1)
∆2
⊥∆′2⊥

∫
dν

π

8 ν2

(1 + 4ν2)2
(2LL′)ℵ(γ)

[(X −X ′)2
⊥]2γ

× γ4Γ8(γ)Γ(1− 2γ)
Γ3(2γ) [∆2

⊥∆′2⊥]γ−
ℵ(γ)

2 (C.36)

where we used

i

∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+ − y+ − L)

×
∫

d2z2
x+2y+2

[
(x− z2)2

⊥ + (y − z2)2
⊥ − (x− y)2

⊥

]
[ (y−z2)2

⊥
|y+| + (x−z2)2

⊥
x+ + iε

]3 z2γ
12 = 4 i π2

[∆2
⊥]1−γ

γ2B(γ)
sin(πγ) (C.37)
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and the same result with replacement ∆⊥ → ∆′⊥ for the integration over x′+ and y′+ for
the impact factor with operators along the light-cone vector n′. In eq. (C.37) we used
B(γ) = Γ2(γ)

Γ(2γ) .
We need the correlation function for the of the gluino operators with specific spins j

and j′, so using eq. (C.2) we have∫ +∞

0
dLL−j

∫ +∞

0
dL′ L′−j

′
∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+ − y+ − L)

×
∫ +∞

0
dx′−

∫ 0

−∞
dy′−δ(x′− − y′− − L′)〈 iλ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]λ(y+, y⊥)〉

×〈 iλ̄(x′−, x′⊥)γ+[x′−n′µ + x′⊥, y
′−n′µ + y′⊥]λ(y′−, y′⊥)〉θ(2LL′ − (X −X ′)2

⊥)

= i8α2
s

π4 N2
c (N2

c − 1)
∫ 1

2 +i∞

1
2−i∞

dγ
(1− 2γ)2

(1− γ)2
2ω [∆2

⊥∆′2⊥]γ−1

[(X −X ′)2
⊥]2γ+ω

γ2Γ8(γ)Γ(1− 2γ)
Γ3(2γ)

×
θ
(
Re[j − 1− ℵ(γ)]

)
ℵ(γ)− ω

(
(X −X ′)2

⊥
|∆⊥||∆′⊥|

)ℵ(γ)

δ(ς ′ − ς) (C.38)

with ω = j − 1 and where we used∫ +∞

0
dLL−j

∫ +∞

0
dL′ L′−j

′(LL′)ℵ(γ) θ
(
2LL′ − (X −X ′)2

⊥

)
=
θ
(
Re[j − 1− ℵ(γ)]

)
j − 1− ℵ(γ)

[
2−1(X −X ′)2

⊥

]1−j+ℵ(γ)
(2π)δ(ς ′ − ς) (C.39)

with j = a + iς, j′ = a + iς ′, a ∈ <, and a > 1 + ℵ(γ). The next step is to perform the
integration over γ. To this end, we recall that we are in the limit of small ∆2

⊥ and ∆′2⊥,
so we can calculate the integral by taking the residues closing the contour to the right.
Therefore, we need to consider the residue at ℵ(γ)− ω = 0 and at γ = 1.

Let γ̃ be the solution of ℵ(γ̃) − ω = 0 and expanding around γ̃ we have ℵ(γ̃) + (γ −
γ̃)ℵ′(γ̃). The residue at γ̃ is∫ +∞

0
dLL−j

∫ +∞

0
dL′ L′−j

′
∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+ − y+ − L)

×
∫ +∞

0
dx′−

∫ 0

−∞
dy′−δ(x′− − y′− − L′)〈 iλ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]λ(y+, y⊥)〉

×〈 iλ̄(x′−, x′⊥)γ+[x′−n′µ + x′⊥, y
′−n′µ + y′⊥]λ(y′−, y′⊥)〉θ(2LL′ − (X −X ′)2

⊥)

= α2
sN

2
c (N2

c − 1)16
π3

(1− 2γ∗)2

(1− γ∗)2
γ∗2Γ8(γ∗)Γ(1− 2γ∗)

N ′(γ∗)Γ3(2γ∗)
2ω|∆⊥∆′⊥|2γ

∗−2−ω

[(X −X ′)2
⊥]2γ∗

δ(ς ′ − ς) (C.40)

In result (C.40), ∆⊥∆′⊥ is like the UV cut-off µ−2 so comparing with the general expression
for the two-point function in CFT, (C.11), we obtain an equation which relate the equation
2γ∗− 2−ω = γan and 2γ∗ = ∆− 1 so we get that γan +ω = ∆− 3. From this we conclude
that the anomalous dimension of light-ray operators in the BFKL limit is given by the
solution of equation ω = ℵ(∆).

Let us now consider the overlapping region between the BFKL and the DGLAP regime,
that is we now consider αs � ω � 1. So, using (3.4), for γ → 1 we have ℵ(γ)→ ᾱs

1−γ and
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1
ω−ℵ(γ) →

1
ω− ᾱs

1−γ
= 1−γ
−ω(γ−1+ ᾱs

ω
) . Using this in (C.38), we have∫ +∞

0
dLL−j

∫ +∞

0
dL′ L′−j

′
∫ +∞

0
dx+

∫ 0

−∞
dy+

∫ +∞

0
dx′−

∫ 0

−∞
dy′−

×〈iλ̄(x+, x⊥)γ−[x+nµ + x⊥, y
+nµ + y⊥]λ(y+, y⊥)〉δ(x+ − y+ − L)

×〈iλ̄(x′−, x′⊥)γ+[x′−n′µ + x′⊥, y
′−n′µ + y′⊥]λ(y′−, y′⊥)〉δ(x′− − y′− − L′)

= iα2
sN

2
c (N2

c − 1) 8
π4

∫ 1
2 +i∞

1
2−i∞

dγ
(1− 2γ)2

(1− γ)
2ω [∆2

⊥∆′2⊥]γ−1

[(X −X ′)2
⊥]2γ+ω

γ2Γ8(γ)Γ(1− 2γ)
Γ3(2γ)

×
(

(X −X ′)2
⊥

|∆⊥||∆′⊥|

) ᾱs
1−γ δ(ς ′ − ς)

ω(γ − 1 + ᾱs
ω )

(C.41)

Taking the residue at γ = 1− αs
ω we finally have∫ +∞

0
dLL−j

∫ +∞

0
dL′ L′−j

′
∫ +∞

0
dx+

∫ 0

−∞
dy+

∫ +∞

0
dx′−

∫ 0

−∞
dy′−

×〈iλ̄(x+, x⊥)γ−[x+nµ + x⊥, y
+nµ + y⊥]λ(y+, y⊥)〉δ(x+ − y+ − L)

×〈iλ̄(x′−, x′⊥)γ+[x′−n′µ + x′⊥, y
′−n′µ + y′⊥]λ(y′−, y′⊥)〉δ(x′− − y′− − L′)

= −8N2
c (N2

c − 1)
N2
c π

2ω ω
[(X −X ′)2

⊥]2−2 ᾱs
ω

(
1

|∆⊥||∆′⊥|

)ω+2 ᾱs
ω

δ(ς ′ − ς) (C.42)

where we used
(1− 2γ)2γ2Γ8(γ)Γ(1− 2γ)
(1− γ)Γ3(2γ)ω(γ − 1 + ᾱs

ω )
γ=1− ᾱs

ω' − ω2

2ᾱ2
s

+O(α−1
s ) . (C.43)

We rewrite result (C.42) in terms of the operator Λjp1 , and λ
j′
p2 , and we have

〈Λjp1(x⊥, y⊥)Λj′p2(x′⊥, y′⊥)〉 ' −8N2
c

π

ω sω (|∆⊥||∆′⊥|)
−ω−2 ᾱs

ω

[(X −X ′)2
⊥]2−2 ᾱs

ω

δ(ς ′ − ς) (C.44)

where we used N2 − 1 ' N2
c at large Nc.

From eq. (C.44) we obtain that the anomalous dimension in the BFKL limit is γan '
ᾱs
ω .

From eq. (C.36), we notice that besides the moving (dynamical) poles, like the one
we just calculated, there ia also residue at γ = 1. To calculate its contribution, we start
indeed from eq. (C.36), and expand near γ = 1 obtaining∫ +∞

0
dLL−j

∫ +∞

0
dL′ L′−j

′
∫ +∞

0
dx+

∫ 0

−∞
dy+δ(x+ − y+ − L)

×
∫ +∞

0
dx′−

∫ 0

−∞
dy′−δ(x′− − y′− − L′)〈 iλ̄(x+, x⊥)γ−[x+nµ + x⊥, y

+nµ + y⊥]λ(y+, y⊥)〉

×〈 iλ̄(x′−, x′⊥)γ+[x′−n′µ + x′⊥, y
′−n′µ + y′⊥]λ(y′−, y′⊥)〉θ(2LL′ − (X −X ′)2

⊥)

= iα2
sN

2
c (N2

c − 1) 8
π4

∫ 1
2 +i∞

1
2−i∞

dγ
2ω

[(X −X ′)2
⊥]2+ω

(
[(X −X ′)2

⊥]2

∆2
⊥∆′2⊥

)1−γ

× 1
ω

(1− 2γ)2γ2Γ8(γ)Γ(1− 2γ)
(1− γ)Γ3(2γ)(γ − 1 + ᾱs

ω )

(
(X −X ′)2

⊥
|∆⊥||∆′⊥|

) ᾱs
1−γ

δ(ς ′ − ς) (C.45)
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Notice that we now have a simple pole and an essential pole both at γ = 1. Calculating
the residue, keeping in mind that we are in the αs � ω limit, we have

〈Λjp1(x⊥, y⊥)Λj′p2(x′⊥, y′⊥)〉 ' 8N2
c

π

ω sω

[(X −X ′)2
⊥]2+ω

×
[
1 + 2 ᾱs

ω
ln
(

(X −X ′)2
⊥

|∆⊥||∆′⊥|

)]
δ(ς ′ − ς) (C.46)

where we used N2 − 1 ' N2
c at large Nc.

The occurrence of such spurious poles would compromise the anticipated result from
conformal symmetry, as presented in eq. (C.11). In my previous work [17] and in ref. [31],
it was illustrated that this contribution is offset by the diagrams not encompassed in the
HE-OPE formalism, thus validating the expected conformal result (C.11). In a similar
manner, here, these spurious poles will also be counteracted by contributions from other
diagrams not accounted for within the HE-OPE formalism. At present, the mechanism
enabling the cancellation of such spurious poles has yet to be discovered.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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