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Abstract: Based on the effective Lagrangian in the heavy quark limit, we calculate the
one-boson-exchange interaction kernel of PNψ (4312)+ as the D̄Σc molecular state in isospin-
1
2 . We present the Bethe-Salpeter equation and wave function for the constituent particles
to be a (pseudo)scalar meson and a 1

2 baryon. By solving the Bethe-Salpeter equation, we
obtain PNψ (4312)+ as the D̄Σc molecular state with JP = (1

2)−. Combining the effective
Lagrangian and the obtained BS wave function, the partial decay widths of PNψ (4312)+

to J/ψp, ηcp, D̄∗0Λ+
c and D̄0Λ+

c are calculated to be 0.17, 0.085, 8.8, and 0.026MeV,
respectively, which are roughly consistent with the LHCb experimental measurements and
some other theoretical researches. The obtain results indicate the fraction of D̄∗0Λ+

c channel
amounts to ∼ 90% of PNψ (4312)+, and is a highly promising channel to be discovered in
the near future experiments. Our results favor the interpretation of PNψ (4312)+ as the D̄Σc

molecular state with JP = (1
2)− and isospin I = 1

2 .
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1 Introduction

In 2019, a narrow pentaquark state Pc(4312)+ is first observed in the J/ψp invariant mass
spectrum [1] by the LHCb collaboration, which indicates this state at least to contain five
valence quarks, namely, [cc̄uud] quark contents. This pentaquark state will be labeled as
PNψ (4312)+ in this work following the new naming scheme proposed by the LHCb collabora-
tion [2], where the superscriptN denotes the isotopic spin I = 1

2 and the subscript ψ denotes
the hidden charm flavor. The measured mass and total width are MPN

ψ
(4312)+ = 4312MeV

and ΓPN
ψ

(4312)+ = 9.8 ± 2.7+3.7
−4.5 MeV [1] respectively. The proximity to the D̄Σc threshold

of the observed narrow peak suggests that they play an important role in the dynamics of
PNψ (4312)+ state, and makes the D̄Σc molecular state picture a natural interpretation to
this exotic particle.

The hidden charm molecular pentaquark states have been proposed before the exper-
imental confirmation [3–9]. After the LHCb discoveries, lots of literature explored these
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newly observed pentaquark states from different aspects within different approaches, such
as refs. [10–27]. Although the properties of the PNψ (4312)+ are most likely to be the S-wave
combination of D̄Σc with I(JP ) = 1/2(1/2−) [10–16, 26, 27], the contrary view [28], or
the possibilities of the compact pentaquark state [29, 30] or kinematical effects [31, 32] still
exist. Though suggested by the LHCb to be labeled as PNψ (4312)+, the essence of this
pentaquark state is still an open question.

Besides the spectrum or electromagnetic properties [33–35], the strong decay proper-
ties play important roles in determining the nature of the pentaquark states. The decay
to J/ψp is the discovery channel and also the only detected decay mode of PNψ (4312)+ so
far, and hence this decay channel should be paid more attention to explore the property of
PNψ (4312)+. Several approaches are used to study the decay properties of these pentaquark
states [10, 15, 30, 36–41], including the effective Lagrangian methods [10, 15], the flavor-spin
and heavy quark spin symmetry [30, 36], the chiral constituent quark model [37], QCD sum
rules [40, 41], etc. Most of the previous studies are based on the nonrelativistic Schrodinger
or Lippmann-Schwenger equation and the results are dependent on several introduced free
parameters, especially the cutoff value in the form factors. These undetermined parameters
weaken the prediction power of the theories and bring ambiguity in interpreting the nature
of PNψ (4312)+. Some researches also suggest the ηcp channel can be an important decay
mode of PNψ (4312)+ [37, 38], especially, the methods by using the heavy quark symmetry
predict that the decay ratio of PNψ (4312)+ to ηcp over J/ψp can reach about three [20, 36].
However, no experimental evidence is reported in a recent search for pentaquark state
PNψ (4312)+ in Λ0

b → ηcpK
− decay channel [42]. Also some studies suggest the D̄∗0Λ+

c may
be the dominant decay channels of PNψ (4312)+ [15, 37]. Though there are already some cal-
culations on these decays, the relevant researches are still relatively scarce and the current
predictions are not well consistent with each other. More studies on the decay behaviors
of PNψ (4312)+ can be important and helpful to explore its inner structure and dynamics.

In this work, we will calculate the partial decay widths of PNψ (4312)+ to J/ψ(ηc)p and
D̄(∗)0Λ+

c by combing the Bethe-Salpeter (BS) framework with the effective Lagrangian. The
Bethe-Salpeter equation (BSE) is a relativistic two-body bound state equation. Another
advantage is that the constructed BS wave functions only depend on the good quantum
number spin-parity and Lorentz covariance. The BS methods have already been successfully
used to cope with mass spectra of the doubly heavy baryons [43, 44], producing the recently
observed molecular pentaquarks [26] and the fully heavy tetraquark TQQQ̄Q̄ states [45],
and also the hadronic transitions and decays [46–52]. The theoretical calculations from BS
methods achieve satisfactory consistences with the experimental measurements.

This paper is organized as follows. After the introduction, we start with the Bethe-
Salpeter equation for PNψ (4312)+ as the molecular state of a (pseudo)scalar meson and
a baryon, including the interaction kernel and the relevant Salpeter wave function (sec-
tion 2), then we calculate the strong decay widths of PNψ (4312)+ → J/ψ(ηc)p and D̄(∗)0Λ+

c

(section 3). We finally present the numerical results, discussion and summaries in section 4.
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Figure 1. Bethe-Salpeter equation of the molecular state consisting of the constituent
(pseudo)scalar meson and J = 1

2 baryon. The orange letters denote the Dirac indices. The blue
symbols P, p1(k1), p2(k2) denote the momenta of the pentaquark, constituent meson, and the
constituent baryon respectively.

2 PN
ψ (4312)+ as the D̄Σc molecular state

In this part, we will first briefly review Bethe-Salpeter equation of a scalar meson and
a baryon under the instantaneous approximation. Then we introduce the pentaquark
interaction kernel based on the one-boson exchange. The relativistic BS wave functions of
the JP = (1

2)− PNψ state will be introduced and solved numerically to prepare for the next
decay calculations.

2.1 Bethe-Salpeter equation of a JP = 0− meson and a 1
2

+ baryon

Figure 1 schematically depicts the Bethe-Salpeter equation for the bound state consisting
of a constituent meson and a constituent baryon, which can be expressed as

Γ(P, q, r) =
∫ d4k

(2π)4 (−i)K(k, q)[S(k2)Γ(P, k, r)D(k1)], (2.1)

where Γ(P, q, r) denotes the vertex of the pentaquark, constituent meson and baryon; we
used P , q, and r to represent the pentaquark total momentum, inner relative momentum,
and spin state respectively; the inner relative momentum q and k are defined as q ≡
α2p1 − α1p2, k ≡ α2k1 − α1k2, with α1(2) ≡

m1(2)
m1+m2

, k1(2) denoting the momentum of the
constituent meson (baryon), and m1(2) is the corresponding mass; S(k2) = i

/k2−m2
is the

free Dirac propagator of the baryon; D(k1) = i
k2

1−m
2
1
denotes the usual scalar propagator.

The iε should be implied in all the propagators. Since both the two constituent particles,
namely D̄ and Σc, contain a heavy charm quark, the relative velocity would be small. Then
the interaction kernel K(k, q) is assumed to be instantaneous and is not dependent on the
time component of the exchanged momentum (k − q), namely, K(k, q) ∼ K(k⊥ − q⊥),
where k⊥ = k − kP P̂ with kP ≡ k · P̂ and P̂ = P

M , and M is the pentaquark mass. The
spacelike momentum q⊥ is defined similarly. Throughout this work, this instantaneous
approximation is assumed for the pentaquark kernel.

The four-dimensional Bethe-Salpeter wave function is defined as

ψ(q) = S(p2)Γ(q)D(p1), (2.2)
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where the dependence on P and r omitted for simplicity. Since the interaction kernel
K(k⊥−q⊥) is instantaneous, the integral over the time component of q can be absorbed into
the wave function and it is useful to define the three-dimensional Salpeter wave function as

ϕ(q⊥) ≡ −i
∫ dqP

2π ψ(q). (2.3)

where the factor (−i) is just a convention for later convenience.
Performing the contour integral over qP on both sides of eq. (2.2), we can obtain the

Salpeter equation (SE) for meson-baryon bound state [26],

ϕ(q⊥) = 1
2w1

[
Λ+(p2⊥)

M − w1 − w2
+ Λ−(p2⊥)
M + w1 + w2

]
Γ(q⊥), (2.4)

where wi =
(
m2
i − p2

i⊥
)1/2 (i = 1, 2) denotes the kinetic energy of the constituent meson

and baryon respectively. The projector operators Λ±(p2⊥) are defined as

Λ±(p2⊥) = 1
2 [1±H2(p2⊥)] γ0, (2.5)

H2(p2⊥) = 1
w2

(
/p2⊥ +m2

)
γ0. (2.6)

Notice that H2(p2⊥) is just the corresponding Dirac Hamiltonian divided by the kinetic
energy w2. Using the projector operator, we can further define the positive and negative
energy wave functions as ϕ± ≡ Λ±γ0ϕ, and we also have ϕ = ϕ+ +ϕ−. The SE above can
be further rewritten as the following type

Mϕ = (w1 + w2)H2(p2⊥)ϕ+ 1
2w1

γ0Γ(q⊥). (2.7)

where the vertex Γ(q⊥) is now expressed as the integral of the Salpeter wave function,

Γ(q⊥) =
∫ d3k⊥

(2π)3K(k⊥ − q⊥)ϕ(k⊥). (2.8)

The Salpeter eq. (2.7) is in fact an eigenvalue equation about the Salpeter wave function
ϕα(q⊥), where the pentaquark mass M behaves as the eigenvalue. The three-dimensional
BSE, namely, eq. (2.7), indicates that the mass of the pentaquark state consists of two
parts, the kinetic energy and the potential energy.

The normalization condition of the BS wave function is generally expressed as,

−i
∫ ∫ d4q

(2π)4
d4k

(2π)4 ψ̄(P, q, r̄) ∂

∂P 0 I(P, k, q)ψ(P, k, r) = 2Mδrr̄,

where ψ̄ = ψ†γ0 and δrr̄ is the Kronecker symbol; the integral kernel I in the normalization
condition reads,

I(P, k, q) = (2π)2δ4(k − q)S−1(p2)D−1(p1) + iK(P, k, q).

Notice in this work, under the instantaneous approximation, the interaction kernel has no
dependence on P 0, which indicates the normalization would only involve the inverses of
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the two propagators. Performing the contour integral, the normalization condition can be
further expressed by the Salpeter wave function as∫ d3q⊥

(2π)3 (2w1)ϕ̄(q⊥, r̄)γ0ϕ(q⊥, r) = 2Mδrr̄, (2.9)

where ϕ̄ = ϕ†γ0 and the symbol r̄ just denotes the spin state; also notice both the BS wave
function ψ(q) and the Salpeter wave function ϕ(q⊥) are four-component spinor.

2.2 Interaction kernel from the one-boson exchange

The PNψ (4312)+ are consistent with the D̄Σc molecular state with isospin I = 1
2 and

I3 = +1
2 , which can be expressed in the uncoupled representation as

|12 ,
1
2〉 =

√
2√
3
|1,+1〉 |12 ,−

1
2〉 −

1√
3
|1, 0〉 |12 ,

1
2〉 =

√
2√
3
|Σ++
c 〉 |D−〉 −

1√
3
|Σ+
c 〉 |D̄0〉 . (2.10)

In the molecular state scenario of PNψ (4312)+, the interaction kernel between the two
constituents Σc and D̄ can be realized by the one-boson exchange. Notice the usual one-
pion exchange is not possible in the D̄Σc bound state for the parity. We only need to
consider the light scalar and vector meson exchange.

Considering the heavy quark spin-flavor symmetry, hidden local symmetry and the
light quark chiral symmetry, the involved Lagrangian describing the charmed anti-heavy-
light meson and a light scalar and vector meson reads [6, 53]

LHHV = −ρV1 〈H̄c̄vαV
αHc̄〉 − ρT1 〈H̄c̄σ

αβ(∂αVβ − ∂βVα)Hc̄〉+ σ1 〈H̄c̄σHc̄〉 . (2.11)

Here 〈 〉 denotes taking the Dirac trace, and σ denotes field of the light scalar meson. ρV 1,
ρT1, and σ1 denote the corresponding coupling constants. Hc̄ represents the field of the
(D̄, D̄∗) doublet in the heavy quark limit,

Hc̄ =
(
D̄∗µγµ + iD̄γ5

) 1− /v
2 , (2.12)

where D̄ = (D̄0, D−, D−s ) denotes anti-charmed heavy-light meson fields in flavor triplet,
and D̄∗µ is the corresponding vector state; H̄c̄ = γ0H†c̄γ0 is the usual conjunction in Dirac
space; and v denotes four-velocity of the heavy-light meson. The symbol V denotes the
3× 3 matrix consisting of the 9 light vector meson fields [6, 53]

V =


(ρ0+ω)√

2 ρ+ K∗+

ρ− − (ρ0−ω)√
2 K∗0

K∗− K̄∗0 φ

 . (2.13)

Considering the heavy quark symmetry, hidden local symmetry and chiral symmetry,
the effective Lagrangian of the heavy-light baryon and light mesons reads [6, 54–56]

LB6B6V = ρV2 〈S̄µvαV αSµ〉+ iρT2 〈S̄µ(∂µVν − ∂νVµ)Sν〉+ σ2 〈S̄µσSµ〉 . (2.14)
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Here 〈 〉 denotes taking trace in the 3 × 3 flavor space. The baryon spin doublet are
incorporated in field

Sµ = − 1√
3

(γµ + vµ)γ5B6 +B∗6µ, (2.15)

where the systematic baryon sextet B6 in 3× 3 matrix reads

B6 =


Σ++
c

1√
2Σ+

c
1√
2Ξ′+c

1√
2Σ+

c Σ0
c

1√
2Ξ′0c

1√
2Ξ′+c 1√

2Ξ′0c Ω0
c

 . (2.16)

The conjugation defines as usual for the spinor field S̄mnµ = (Smnµ )†γ0. An asterisk on the
symbol denotes the corresponding spin- 3

2 baryon, which is not involved in this work.
Using above relevant Lagrangian and based on the one-boson exchange, we calculate

the interaction kernel of D̄Σc in isospin-1
2 as

K(s⊥) = F 2(s2
⊥)
(
V1 + V2

/s⊥
|~s |

)
, (2.17)

where F (s2
⊥) denotes the regulator in the heavy hadron (D̄ or Σc here) vertex; and the

potential V1 and V2 is specifically expressed as,

V1 = −2σ1σ2MD
1
E2
σ

+ ρV1ρV2MD

(
1
E2
ρ

− 1
2E2

ω

)
,

V2 = −1
3ρV1ρT2MD|s|

(
2
E2
ρ

− 1
E2
ω

)
,

(2.18)

where Eρ = (s2 +m2
ρ)1/2 denotes the energy of the inter-mediator ρ meson, and similar for

Eσ and Eω. The influence of the potential strength on the decay widths will be discussed
later.

There is no general method to choose the regulator functions. In this work, we use the
following propagator-type form factor, namely,

F (s2) = m2
Λ

s2 +m2
Λ
, (2.19)

where mΛ is the introduced cutoff parameter to characterize the regulator function. Notice
mΛ is the only free parameter in this analysis and can be determined by fitting bound
state mass to the experimental data, which is found to be mΛ = 1.25 GeV for PNψ (4312)+

and close to the mass scale of the exchanged particle. In the limit s2 → 0, the heavy
hadron is seen by the inter-mediator mesons as a point-like particle, and hence the form
factor is normalized to 1. The cutoff value mΛ is usually believed to be much larger than
the typical energy scale

√
2µε ∼ 0.1 GeV for PNψ (4312)+ [15, 57], where µ = m1m2

m1+m2
is the

reduced mass of the two-hadron system and ε = (m1 +m2−M) denotes the bound energy.
Our determined cutoff value is consistent with this universal estimation. The obtained V1
and V2 for isospin-1

2 are displayed graphically in 3a.
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2.3 Salpeter wave function for the JP = 1
2
− pentaquark states

According to the spin-parity properties, and also considering the proper Lorentz structures,
the Salpeter wave function of JP = 1

2
− pentaquarks consisting of a 0− meson and 1

2
+ baryon

can be generally constructed as

ϕ(P, q⊥, r) =
(
f1 + f2

/q⊥
q

)
γ5u(P, r), (2.20)

where the radial wave function f1(2)(|~q |) only explicitly depend on |~q |; u(P, r) denotes
Dirac spinor with spin state r. In terms of the spherical harmonics Y m

l , the wave function
can be rewritten as

ϕ(P, q⊥, r) = 2
√
π

[
f1Y

0
0 + 1√

3
f2
(
Y 1

1 γ
− + Y −1

1 γ+ − Y 0
1 γ

3
)]
γ5u(P, r), (2.21)

where γ± = ∓ 1√
2(γ1 ± iγ2). Then it is obvious to see that f1 and f2 represent the S- and

P -wave components, respectively. Inserting the wave function into eq. (2.9), we obtain the
normalization satisfied by the radial wave functions as∫ d3q⊥

(2π)3 2w1
(
f2

1 + f2
2

)
= 1. (2.22)

Inserting the Salpeter wave function eq. (2.20) into the Salpeter equation (2.7), elim-
inating the spinor, calculating the trace, we can obtain two coupled eigenvalue equations
with the pentaquark mass M as the eigenvalue and f1(2) as the eigen wave functions (see
refs. [26, 43, 44] for details). Solving the eigenvalue equations numerically, we can obtain
the corresponding mass spectra and numerical wave functions, which are also graphically
displayed in 3b.

3 Strong decays of PN
ψ (4312)+ to J/ψ(ηc)p and D̄(∗)0Λ+

c within the BS
wave function

In this section, we first present the relevant effective Lagrangian; then we give the decay am-
plitude by using the BS wave function combining with the effective Lagrangian; finally, the
expressions of the partial decay widths are presented in terms of the relevant form factors.

For PNψ (4312)+ → J/ψ(ηc)p, the involved interactions are J/ψDD(∗), ηcDD∗, and
ΣcND

(∗), which involve the Lagrangian of the doubly heavy meson and the heavy-light
meson. The heavy-light charmed mesons in S-wave can be represented by [53, 58, 59]

Hc = 1 + /v

2 (D∗µγµ + iDγ5), (3.1)

where D∗µ and D denote the corresponding vector and pseudoscalar charmed D mesons
respectively. The anti-heavy-light meson doublet Hc̄ has been presented in eq. (2.12).

For doubly heavy mesons, the heavy quark flavor symmetry does not hold any longer,
while the heavy quark spin symmetry still holds. In the ground states, the charmonium

– 7 –
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forms a doublet consisting of a pseudoscalar ηc and a vector state J/ψ, which can be
represented by [60]

R = 1 + /v

2 (ψµγµ + iηcγ5)1− /v
2 , (3.2)

where ψµ and ηc denotes the fields of the corresponding mesons. Here all the hadron fields
in above equations contain a factor of

√
MH with MH the corresponding meson mass.

By assuming the invariance under independent rotations of the heavy quark spins, it
is possible to write down the effective coupling between the S-wave charmonia and the
heavy-light mesons as [61]

L2 = g2Tr (RH̄c̄

↔
/∂ H̄c) + H.c., (3.3)

which is invariant under independent heavy quark spin symmetry; and the notation A
↔
∂B ≡

A∂B−∂AB is used. Consequently, we obtain the following effective Lagrangian describing
J/ψ and ηc coupling to the DD∗,

L2 = +gψDDψ†µD̄∂µD

− igψDD∗
1
Mψ

εµναβ∂µψ
†
ν(D̄∂αD∗β + D̄∗α∂βD)

+ gψD∗D∗ψ†µ(D̄∗ν∂νD∗µ − ∂νD̄∗µD∗ν + 2∂µD̄∗νD∗ν)
+ gDD∗ηcη

†
c(∂µD̄D∗µ − D̄∗µ∂µD)

+ igD∗D∗ηc
1
Mηc

εµναβ∂µη
†
cD̄
∗
ν∂αD

∗
β + H.c.,

(3.4)

where we have divide a meson mass in the second and the last Lagrangians to keep all
the coupling constants dimensionless. The symbol εµναβ denotes the totally antisymmetric
Levi-Civita tensor with εµναβ = −εµναβ and convention ε0123 = 1. All these coupling
constants are related to a single coupling g2, which is determined to be g2 =

√
Mψ/(2MDfψ)

with fψ denoting the J/ψ decay constant [61]. Then all other coupling constants can also
be expressed in terms of the gψDD as

gψDD = 2Mψ

fψ
,

gψDD∗ =
(
MD∗

MD

)1/2
gψDD,

gψD∗D∗ = 1
2

(
MD∗

MD

)
gψDD,

gDD∗ηc = 1
2

(
MηcMD∗

MψMD

)1/2

gψDD,

gD∗D∗ηc =
(
Mηc

Mψ

)1/2
MD∗

MD
gψDD.

(3.5)

In next section, we will also discuss the effects of these coupling constants on the final
decay widths.
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Pc, P

D̄, k1

Σc, k2

J/ψ, p1

p, p2

D, k3

Pc, P

D̄, k1

Σc, k2

J/ψ, p1

p, p2

µ

ν

D∗, k3

Figure 2. Strong decay of PNψ (4312)+ to the J/ψp by exchanging a virtual mediator D (left panel)
and D∗ (right panel). P, k1, k2, P1, P2 denote the momenta of PNψ , constituent meson, constituent
baryon, the final J/ψ, and the final p respectively.

3.1 Amplitude for PN
ψ (4312)+ → J/ψp

PNψ (4312)+ as the D̄Σc molecular state can decay to J/ψp by exchanging either a D or a
D∗ virtual meson, and the total amplitude is the sum of the two.

3.1.1 Amplitude with D exchange

The left panel of Figure 2 shows the Feynman diagram of PNψ (4312)+ → J/ψp by ex-
changing the D meson. Besides the pentaquark vertex, we also need two other effective
Lagrangian to obtain the decay width. From above results, the effective Lagrangian de-
scribing the DDJ/ψ interaction read

LψDD = gψDD(ψµ)†D̄∂µD, (3.6)

where D = (D0, D+, D+
s )T represents the charmed meson fields in flavor triplet, and D̄ rep-

resents fields of the corresponding anti-charmed mesons. Whereas the effective Lagrangian
for NDΣc interaction behaves as [10, 62]

LNDΣc = (−i)gNDΣcN̄γ5ΣcD̄
† + H.c., (3.7)

where N stands for nucleon field doublet; Σc = σ ·Σc with σ denoting the Pauli matrix
and Σc denoting the Σc baryon isospin triplet.

The invariant amplitude for PNψ (4312)+ → J/ψp by exchanging a D can then be
expressed by the Bethe-Salpeter vertex as

A1 =
∫ d4k

(2π)4 ū2(−igNDΣc)γ5 [S(k2)Γ(P, k, r)D(k1)] (gψDD)D(k3)(i)e∗α1 k1α, (3.8)

where u2 is short for u(r2)(P2) with r2 representing the proton spin state; e1 is short for
e(r1)(P1) representing the polarization vector of the final J/ψ with P1 denoting the J/ψ
momentum and r1 = 0,±1 representing the 3 possible polarization states. The polarization
vector e1 fulfills the Lorentz condition

eα1P1α = 0. (3.9)
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The momentum of the exchanged virtual charmed meson is denoted as k3 = (k1−P1). We
will use M1 and M2 to denote the masses of the final J/ψ and proton respectively.

Also notice k1 = (α1P + k) and k3 are involved in the four-dimensional integration
over k. To simplify this amplitude, first we strip off the triangle amplitude involved the
integral over k as

T1αu(P, r) = γ5

∫ d4k

(2π)4 [S(k2)Γ(P, k, r)D(k1)]D(k3)k1α, (3.10)

where the Lorentz condition of the vector meson is utilized, and we also strip off the spinor
u(P, r) for later convenience. The decay amplitude A1 can then be simplified as

A1 = (gNDΣcgψDD)e∗α1 [ū2T1αu(P, r)]. (3.11)

Then we perform the contour integral over kP on eq. (3.10), and obtain

Tα1 u(P, r) = γ5

∫ dk3
⊥

(2π)3
1

2w3
(aα1ϕ+ + aα2ϕ

−), (3.12)

where we used the expression of the positive(negative) energy wave functions ϕ± = Λ±γ0ϕ;
the two coefficients a1 and a2 behaves as

aα1 = c1x
α
1 + c2x

α
2 + c3x

α
3 , (3.13)

aα2 = c4x
α
4 + c5x

α
5 + c6x

α
6 , (3.14)

where xi = k1(kP = kPi) with (i = 1, · · · 6), and kPis are defined as

kP1 = ζ+
1 , kP2 = ζ+

2 , kP3 = ζ+
3 , kP4 = ζ−1 , kP5 = ζ−2 , kP6 = ζ−3 , (3.15)

where the abbreviations ζ±1 ≡ −(α1M∓w1), ζ±2 ≡ (α2M∓w2), and ζ±3 ≡ (E1−α1M±w3)
are used. The coefficients cis (i = 1, · · · 6) are defined as

c1(4) = 1
w1 + w3 ∓ E1

,

c2(5) = (−1)
w2 + w3 ∓ E2

,

c3(6) = (w1 + w2 ∓M)
(w1 + w3 ± E1)(w2 + w3 ∓ E2) .

(3.16)

Now the amplitude A1T ;α has been expressed by the three-dimensional Salpeter wave func-
tion ϕ(k⊥), and can be further simplified as the two form factors

T1α = (s1Pγα + s2P P̂α), (3.17)

Inserting the obtained PNψ (4312)+ wave function, namely, eq. (2.20), into eq. (3.12) and
then calculating the three-dimensional integral numerically, we can obtain the amplitude
T1α in terms of s1P and s1P . In the appendix A we collect the specific expressions of the
two form factors in terms of the Salpeter wave functions f1 and f2. The amplitude A1 then
behaves as

A1 = (gNDΣcgψDD)e∗α1 ū2(s1Pγα + s2P P̂α)u(P, r). (3.18)
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3.1.2 Amplitude with D∗ exchange

For PNψ (4312)+ decaying by exchanging D∗ in the lowest level, the relevant Feynman
diagram is displayed in the right panel of Figure 2, and the two involved interaction vertexes
are DD∗J/ψ and ΣcD

∗p. The DD∗J/ψ interaction is represented by the following effective
Lagrangian

LψDD∗ = (−i)gψDD∗εµναβ
1
Mψ

∂µψ
†
ν∂αD

∗
βD̄, (3.19)

Notice here the coupling constant gψDD∗ is defined to have the same dimension with the
pseudoscalar coupling constant gψDD. The effective Lagrangian of ND∗Σc reads [62–64]

LND∗Σc = igND∗ΣcN̄γ
αΣcD

∗†
α + H.c.. (3.20)

All the coupling constants in these effective Lagrangian will be specified in next section.
The invariant amplitude for PNψ (4312)+ → J/ψp by exchanging a D∗ can be expressed

by the Bethe-Salpeter vertex as

A2 = (gND∗ΣcgψDD∗)ū2γ
ν
∫ d4k

(2π)4 [S(k2)Γ(P,k,r)D(k1)]Dµν(k3)−i3

M1
εP1αβµe∗1αk1β , (3.21)

where the propagator of the exchanged D∗ meson behaves as

Dµν(k3) = i−gµν + k3µk3ν/m
2
3

k2
3 −m2

3 + iε
, (3.22)

Here the propagator mass m3 isMD∗ . Notice the contraction with Levi-Civita tensor forces
the momentum part in numerator of Dµν(k3) to be zero. The amplitude can be further
simplified as

A2 = (gΣcND∗gψDD∗)e∗α1 ū2γ
µ(−i) 1

M1
εP1αβµT

β
2 u(P, r), (3.23)

where we have stripped off the amplitude involved the integral over k as before

T β2 u(P, r) =
∫ d4k

(2π)4 [S(k2)Γ(P, k, r)D(k1)]D(k3)kβ1 . (3.24)

In order to express the amplitude by the three-dimensional Salpeter wave function, we
perform the contour integration over kP on eq. (3.24) as usual and obtain

T β2 u(P, r) =
∫ d3k⊥

(2π)3
1

2w3

(
aβ1ϕ

+ + aβ2ϕ
−
)
. (3.25)

Combining T β2 u(P, r) with γµ (−i)
M1

εP1αβµ, and using the following identity of the Levi-Civita
symbol,

iγµεµαβν = γ5(γαγβγν − γαgβν + γβgαν − γνgαβ), (3.26)

we can express the decay amplitude A2 for D∗ exchange by the following form factors

A2 = (gψDD∗gΣcND∗)e∗α1 ū2(s1V γα + s2V P̂α)u(P, r). (3.27)

Namely, the amplitude A2 can be expressed by the same form as A1, which is just what it
should be. In above equations, the specific expressions of s1V and s2V can be obtained by
inserting the Salpeter wave functions into eq. (3.25) and performing the integral numeri-
cally. The specific expressions are presented in the appendix A.
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3.2 Amplitude for PN
ψ (4312)+ → ηcp

Since ηc with JP = 0−, the decay to ηcp can only happen by exchanging a D∗ while the
mode of exchanging a D is forbidden. From eq. (3.4), the effective Lagrangian responsible
for DD∗ηc interaction reads

LDD∗ηc = gDD∗ηcη
†
c∂µD̄D

∗µ. (3.28)

The effective Lagrangian describing ND∗Σc interaction has been presented in eq. (3.20).
The corresponding Feynman diagram is similar with that for the decay to J/ψp with D∗

exchange. The decay amplitude for PNψ (4312)+ → ηcp behaves as

A3 = ū2(igND∗Σc)γα
∫ d4k

(2π)4 [S(k2)Γ(k, r)D(k1)]Dαβ(k3)gD∗Dηc(−iP β1 ). (3.29)

As usual, it is convenient to strip off the part involved the integral over k as

T3u(P, r) =
∫ d4k

(2π)4 (γαP β1 )[S(k2)Γ(k, r)D(k1)]Dαβ(k3),

Performing the contour integral over kP , we can express T3 by the three-dimensional
Salpeter wave function

T3u(P, r) =
∫ d3k⊥

(2π)3
1

2w3
(γαP β1 )

3∑
i=1

[
cidαβ(yi)ϕ+ + ci+3dαβ(yi+3)ϕ−

]
, (3.30)

where the positive (negative) energy wave function is related to the Salpeter wave function
by ϕ± = Λ±γ0ϕ; and we define dαβ and yi as

dαβ(yi) = −gαβ + yiαyiβ
m2

3
,

yi = k3(kP = kPi) = xiP P̂ + k⊥ − P1.
(3.31)

Notice that contribution of the momentum part in dαβ will be suppressed when the ex-
changed particle is heavy. Inserting the Salpeter wave function eq. (2.20) of PNψ (4312)+,
we obtain T3 expressed by one form factor,

T3 = s3V γ5. (3.32)

Finally, we obtain the amplitude for decay to ηcp by form factor s3V with a simple form

A3 = (gND∗ΣcgηcDD∗) ū2 (s3V γ5)u(P, r). (3.33)

The expression of s3V is also listed in appendix A as the integral over Salpeter wave
functions.
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3.3 PN
ψ (4312)+ → D̄∗0Λ+

c

The strong decay of PNψ (4312)→ D̄∗0Λ+
c is similar with the decay to J/ψp, just the vector

meson J/ψ replaced by D̄∗0, the proton replaced by the Λ+
c baryon, and the propagator

D(∗) replaced by the π(ρ) respectively. The effective Lagrangian describing the interaction
of D̄∗D̄φ and ΛcΣcφ are [65–68]

LD̄D̄∗φ = gD̄D̄∗φ(D̄∗µ)†∂µφD̄, (3.34)

LΣcΛcφ = (−i)gΛcΣcφΛ̄cγ5Σcφ, (3.35)

where φ is the 3 × 3 traceless hermitian matrix consisting of eight pseudo-scalar meson
fields,

φ =


π0
√

2 + η√
6 π+ K+

π− − π0
√

2 + η√
6 K0

K− K̄0 − 2√
6η

 . (3.36)

The coupling constants can be obtained under the heavy quark spin-flavor symmetry. Here
we use the coupling constant gD̄D̄∗φ = 2g

fπ

√
MDMD∗ with the π decay constant fπ =

0.132 GeV and the coupling constant g = 0.59 [66], and the coupling constant gΛcΣcφ =
19.3 [68].

Combining above effective Lagrangian and the BS vertex, we can express the decay
amplitude of PNψ (4312)+ → D̄∗0Λ+

c by exchanging a π as

A4 =
∫ d4k

(2π)4 (−igΛcΣcφ)ū2γ5[S(k2)Γ(k, r)D(k1)]D(k3)(gD∗Dφ)(ik1α)(eα1 )∗. (3.37)

By taking a similar calculation procedure with that in decay to J/ψp, we can further
express this amplitude by two form factors,

A4 = (gΛcΣcφgD∗Dφ)(eα1 )∗ū2
(
s4Pγα + s5P P̂α

)
u(P, r), (3.38)

where the form factor s4P and s5P has exactly the same expressions with s1P and s2P ,
respectively, just the masses of m3, M1, and M2 changed from MD, MJ/ψ, and Mp to Mπ,
MD̄∗0 , and MΛc , respectively.

The decay to D̄∗0Λ+
c by exchanging a ρ is similar with the decay to J/ψp by exchanging

a D∗, and the relevant effective Lagrangian are

LD̄D̄∗V = −gD̄D̄∗V

i
MD̄∗

εµναβ∂µ(D̄∗ν)†∂αVβD̄, (3.39)

LΣcΛcV = igΣcΛcV Λ̄cγαΣcV
α, (3.40)

where the coupling constants gD̄D̄∗V = 4ρT1 = 9.3 GeV−1, and gΣcΛcV = 0.56 [68]. Then
we can express the corresponding amplitude as

A5 = (gΛcΣcV gD̄D̄∗V )ū2γ
α
∫ d4k

(2π)4 [S(k2)Γ(P, k, r)D(k1)]Dαβ(k3)(−i3)
M1

εP1µνβe∗1µ(ik3ν).

(3.41)
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Here the propagator mass m3 is Mρ. Again by taking a similar calculation procedure as in
subsection 3.1.2, the invariant amplitude is finally expressed by the form factors

A5 = (gD∗DρgΛcΣcρ)e∗α1 ū2(s4V γα + s5V P̂α)u(P, r), (3.42)

where the form factor s4(5)V = s1(2)V (m3 = Mρ,M1 = MD̄∗0 ,M2 = MΛc).
Finally, we can express the total amplitude for decay to D̄∗0Λ+

c as

A[PNψ (4312)+D̄∗Λc] = A4 +A5 (3.43)

3.4 PN
ψ (4312)+ → D̄0Λ+

c by exchanging a ρ

The decay of PNψ (4312)+ → D̄0Λ+
c is quite similar with the decay to ηcp. The involved

interaction Lagrangian is
LD̄D̄V = gD̄D̄V ∂µ(D̄†)V µD̄, (3.44)

where the coupling constant gD̄D̄V = 2ρV1 = 7.51. The corresponding decay amplitude
behaves as

A6 = gΛcΣcV ū2γ
α
∫ d4k

(2π)4 [S(k2)Γ(k, r)D(k1)]Dαβ(k3)gD̄D̄V (iP β1 ). (3.45)

As usual, it is convenient to strip off the part involved the integral over k as

T6u(P, r) =
∫ d4k

(2π)4 (γαP β1 )[S(k2)Γ(k, r)D(k1)]Dαβ(k3),

which can be further simplified by finishing the integral involved the Salpeter vertex as

T6 = s6V γ5, (3.46)

where the only form factor s6V has the same expression with s3V , just the taking the
parameter values m3 = Mρ,M1 = MD̄0 ,M2 = MΛc in the form factor expressed by the
Salptere wave functions. Finally, the decay amplitude of PNψ (4312)+ → D̄0Λ+

c can be
expressed as

A6 = i(gΛcΣcV gD̄D̄V )ū2 (s6V γ5)u(P, r). (3.47)

3.5 Partial decay widths

Combing the two amplitudes from D and D∗ mediators together, we obtain the full invari-
ant amplitude for PNψ (4312)+ → J/ψp decay by two form factors,

A[PNψ (4312)+ → J/ψp] = A1 +A2 = e∗α1 ū2
(
s1γα + s2P̂α

)
u(P, r). (3.48)

where s1 and s2 are related to the coupling constants and are expressed as

s1 = gψDDgNDΣcs1P + gψDD∗gND∗Σcs1V ,

s2 = gψDDgNDΣcs2P + gψDD∗gND∗Σcs2V .
(3.49)
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Similarly, the total invariant amplitude for PNψ (4312)+ → D̄∗0Λ+
c can also be obtained as

A[PNψ (4312)+ → D̄∗0Λ+
c ] = A4 +A5 = e∗α1 ū2

(
s4γα + s5P̂α

)
u(P, r). (3.50)

where s4 and s5 are related to the coupling constants and are expressed as

s4 = gD̄φD̄∗gΣcφΛcs4P + gD̄V D̄∗gΣcV Λcs4V ,

s5 = gD̄φD̄∗gΣcφΛcs5P + gD̄V D̄∗gΣcV Λcs5V .
(3.51)

For the decays with final vector meson J/ψ or D̄∗0, squaring the amplitude and sum-
ming all the polarization states, we obtain

∑
r1,r2,r

|A|2 =
(
−gαβ + Pα1 P

β
1

M2
1

)
Tr
(
/P2 +M2

)
Tα[J/ψ(D̄∗0)]

(
/P +M

)
T̄β , (3.52)

where
Tα[J/ψ(D̄∗0)] =

(
s1(4)γα + s2(5)P̂α

)
, (3.53)

and T̄β = γ0T †βγ0 is defined as the usual conjugation variable; we also used the relationship
of the summation over the vector polarization states r1,

∑
r1

eα(r1)e
∗β
(r1) = −gαβ + Pα1 P

β
1

M2
1

; (3.54)

and the summation over the polarization states of the spinors∑
r2

u(r2)(P2)ū(r2)(P2) = (/P 2 +M2), (3.55)∑
r

u(P, r)ū(P, r) = (/P +M). (3.56)

For PNψ (4312)+ → ηcp(D̄0Λ+
c ) decay, the squared amplitude behaves as∑

r2,r

|A3(6)|2 = Tr
(
/P2 +M2

)
A3(6)

(
/P +M

)
Ā3(6) = 4M(E2 −M2)s2

3(6), (3.57)

where s3 = gND∗ΣcgηcD∗Ds3V and s6 = gΛcΣcV gD̄D̄V s6V . The squared amplitude is propor-
tional to the kinetic energy of the final baryon.

Finally, the partial decay width of PNψ (4312)+ to J/ψ(ηc)p or D̄(∗)0Λ+
c is expressed as

Γ[PNψ (4312)+→MP (V )B] = |P1|
8πM2CI

1
2
∑
r,r1,r2

|A|2, (3.58)

where CI denotes the isospin factor, and the three momentum of the final meson, J/ψ(ηc)
or D̄(∗)0, is given by

|P1| =
1

2M
[(
M2 − (M1 +M2)2

)(
M2 − (M1 −M2)2

)] 1
2
. (3.59)
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4 Numerical results and discussions

4.1 Numerical parameters

Before giving the decay widths, we first summarize the effective interaction coefficients we
used in above effective Lagrangian. The interaction coefficients between the heavy hadron
and the light bosons are obtained under the heavy quark symmetry, which read [6, 9, 12,
14, 26]: ρV1 = βgV√

2 = 3.75, ρT1 = λgV√
2 = 2.34 GeV−1, and σ1 = 0.76; ρV2 = βSgV√

2 = 7.26,
ρT2 = λSgV√

2 = 13.81 GeV−1, and σ2 = 6.2. In the heavy quark limit, the coupling constants
between the heavy hadrons read [61] gDDψ = 2Mψ

fψ
and gDD∗ψ = (MD∗

MD
)1/2gDDψ with the J/ψ

decay constant fψ = 0.416 GeV estimated from the dilepton decay width [69]; the DD∗ηc
coupling constant reads gDD∗ηc = 1

2(MηcMD∗
MψMD

)1/2gDDψ. Combined with the total amplitude
eq. (3.48), it can be found that the partial decay width is proportional to 1

f2
ψ
. The coupling

constants related to the baryons used are gNDΣc = 2.69 and gND∗Σc = 3.0 [10, 62]. These
values are the standard parameters used in this work, and we will also vary the standard
parameters to explore their influence on the wave functions and the final decay widths.

The hadron masses used are MPN
ψ

(4312)+ = 4.312 GeV, Mψ = 3.097 GeV, Mηc =
2.983 GeV, Mp = 0.938 GeV, MD̄∗0 = 2.007 GeV, MΛ+

c
= 2.286 GeV [70].

4.2 Numerical results and theoretical uncertainties

The only free parameter in this work is the regulator mΛ in the form factor F (s2) in
eq. (2.19). All the other parameters have been determined by the previous experimental
data. By solving the relevant BS eigenvalue equation, we find proper cutoff values of mΛ can
produce bound state of D̄Σc based on the one-boson exchange kernel in isospin- 1

2 . Then by
fitting the bound state massM to the experimental measurementMPN

ψ
(4312)+ = 4.312 GeV,

we fix mΛ in eq. (2.19) to be 0.87 GeV. Then the obtained V1 and V2 in the interaction
kernel are graphically shown in 3a.

In 3b we show the obtained BS wave functions f1 and f2 for PNψ (4312)+. On the other
hand, the obtained radial wave functions depend on the obtained potential V1(2), which is
directly related to the coupling constants σ1(2), ρV1(2) and ρT2. To reflect the influence of
these parameters on the wave functions and decay widths, we vary the numerical values of
V1(2) under standard parameters by ∓50%. Under these variations, the obtained regulator
values are then mΛ = 1.288 GeV and 0.73GeV respectively, and the corresponding wave
functions obtained are displayed in 3c and 3d. As V1(2) decreases, the fitted regulator
parameter mΛ increases, and also the role of wave function f1 becomes more important.

Our results of the mass spectra for I(JP ) = 1/2(1/2)− D̄Σc molecule indicate that
there only exists one bound state, namely, PNψ (4312)+ as the ground state of D̄Σc molecule.
Our results do not support any radially excited states. This conclusion is robust even under
the ±50% change of the interaction kernel V1(2).
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Figure 3. The figure (a) shows the isospin- 1
2 potentials VnF 2 (n = 1, 2). Figure (b) is the Bethe-

Salpeter radial wave function f1 and f2 for PNψ (4312)+ as the D̄Σc molecular state based on the
one-boson exchange; while (c) and (d) are the radial wave functions when the interaction potential
Vn in eq. (2.18) is reduced and increased by 50% based, respectively, where the corresponding
regulator values are mΛ = 1.288 GeV and 0.73GeV respectively.

The obtained numerical values of the form factors for decays to J/ψp and D̄∗0Λ+
c

channels in eq. (3.48) are

s1P = 1.1× 10−3, s2P = 1.9× 10−3, s1V = −4.1× 10−3, s2V = 7.6× 10−3;
s4P = 7.5× 10−3, s5P = 6.0× 10−3, s4V = −8.7× 10−3, s5V = 1.2× 10−2.

For decays to ηcp and D̄0Λ+
c , the obtained form factors s3V in eq. (3.33) and s6V in eq. (3.47)

are
s3V = 5.1× 10−3, s6V = 3.6× 10−2.

Inserting above form factors into the decay width expressions, we obtain the partial
decay widths as Γ[PNψ (4312)+→J/ψp] = 0.11 MeV and Γ[PNψ (4312)+→ηcp] = 0.085 MeV.
The obtained partial width for decay to J/ψp is ∼ 1% of the total width ΓTot = 9.8 ±
2.7+3.7
−4.5 MeV [1] reported by the LHCb collaboration. The J/ψp channel is also the only
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Channel This [38] [40] [15] [37] [10] [24]
J/ψp 0.17−0.04

+0.04 0.32±0.08 1.67+0.92
−0.56 10−3∼ 0.1 0.033 (3∼ 8) 9.3+19.5

−9.3

ηcp 0.085−0.016
+0.018 0.98±0.25 5.54+0.75

−0.50 10−2∼ 0.4 0.066 — 0.26−0.24
+0.55

D̄∗0Λ+
c 8.8−1.6

+1.9 — — 10.7 6.16 — —
D̄0Λ+

c 0.026−0.05
+0.06 — — 0.3 0 — —

Table 1. Comparison of partial decay widths of PNψ (4312)+ to J/ψ(ηc)p and D̄(∗)0Λ+
c with other

works in units of MeV, where our theoretical uncertainties are induced by varying the relevant
coupling constants by ±5% in the effective Lagrangian.

observed decay mode of PNψ (4312)+ currently. While the decay fraction of PNψ (4312)+ to
ηcp is about 50% smaller than the J/ψp channel. There is still no evident signal in recent
experimental search of PNψ (4312)+ in ηcp channel [42]. Notice the obtained results are
totally predictive and there are no any free adjustable parameters since the regulator mΛ
has been fixed by the mass of PNψ (4312)+.

Our result of PNψ (4312)+ → D̄∗0Λ+
c is 8.8 MeV, which can amount to ∼ 90% of the

total width. This prediction is consistent with the calculations in refs. [15, 37]. The partial
decay width Γ[PNψ (4312)+→ D̄0Λ+

c ] is about 0.026 MeV, which is comparable with decay
to ηcp but negligible with D̄∗0Λ+

c . The huge difference between D̄∗0 and D̄0 channel mainly
stems from the difference of the involved coupling constants. Our results support D̄∗0Λ+

c to
be the dominant channels for PNψ (4312)+, which would be a most promising decay channel
to be detected in experiments. The sum of these four decay widths are ∼ 9.1 MeV, which
amounts to ∼ 93% of the total width Γ = 9.8 MeV reported by the LHCb.

A comparison of our results with other works is listed in Table 1. Our obtained partial
decay widths are roughly consistent with those in refs. [15, 37, 38]. Notice the theoretical
results for decay widths of PNψ (4312)→J/ψ(ηc)p are quite different from each other for the
complication of this problem. Also besides the result in ref. [24], the partial decay width
to ηcp is great than J/ψp in refs. [15, 37, 38, 40], which is roughly consist with a simple
analysis in the heavy quark limit in ref. [20]. However, our result of the partial decay width
to ηcp is about the half of that to J/ψp. The reason for this difference are analyzed as
follows. First, the phase space of J/ψp channel is almost the same with that of ηcp channel.
While after summing over all polarization states, we obtain the squared amplitudes as∑

r,r1,r2

|A(J/ψp)|2 = 17.5s2
1 + 8.2s1s2 + 1.6s2

2, (4.1)
∑
r,r1,r2

|A(ηcp)|2 = 5.0s2
3, (4.2)

where the form factor s1 part dominates in J/ψp channel, which corresponds to the J/ψp
channel amplitude obtained in ref. [20] in the nonrelativistic format. It is easy to see the
coefficient in front of s2

1 in J/ψp channel is ∼ 3 times of that in ηcp channel, which steps
from the vector polarization states of J/ψ. On the other hand, the coupling constants
gψDD(∗) is about 2 times of gηcDD∗ ; and the obtained form factor s3V for ηcp decay channel
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is roughly near with the dominant item s1V for J/ψp, which finally makes our partial
decay width for ηcp channel is smaller than that for J/ψp channel. Notice in the D̄(∗)Λc
decay channels, the obtained form factor s6V in pseudoscalar mode is about 3 times of that
in the vector mode, which is consistent with the nonrelativistic estimation in the heavy
quark limit in ref. [20]. The main difference between J/ψ(ηc)p and D̄(∗)Λc channels stems
from the much heavier exchanged particle D∗ in the former one, which would suppress the
contribution of the momentum part in the numerator of the propagator Dαβ(k3) and then
make s3V ∼ s1V . However, more researches are still needed.

Since the obtained partial decay widths are also directly dependent on the coupling
constants gψDD, gψDD∗ , gNDΣc , gND∗Σc , and gDD∗ηc in the relevant effective Lagrangian.
To see the sensitivity of the our partial decay widths on these parameters, we calculate the
theoretical uncertainties by varying the every coupling constant by ±5%, and then searching
the parameter space to find the maximum deviation. The obtained theoretical errors are
also listed in above Table 1, where the relative uncertainties induced from the coupling
constants amount to about ∼ 20% for the four channels we calculated here. Another
theoretical uncertainties come from the interaction strength in the BS kernel, which can be
collected into the kernel potential V1(2). When the interaction kernel V1(2) varies by ±50%
based on the standard parameters, the obtained decay widths are 4.3MeV and 0.04 MeV for
J/ψp channel, respectively; while for D̄∗0Λ+

c channel, the results are 1.1 MeV and 9.1 MeV,
respectively; while for D̄0Λ+

c channel, the results are 2.5 MeV and 0.005 MeV, respectively.
Also it is worthy to notice that the obtained partial decay widths for J/ψ(ηc)p channels

are both proportional to 1
f2
ψ
, while the values of fψ used in ref. [10] and ref. [40] are 0.426

and 0.481 GeV respectively, under which our result for J/ψ(ηc)p channel would be 5% and
25% smaller respectively.

4.3 Summary

We give a brief summary. In this work, firstly, based on the effective Lagrangian in the
heavy quark limit, we calculate the one-boson-exchange interaction kernel of D̄Σc in the
isospin-1

2 state. Then by using the Bethe-Salpeter equation, we obtain the mass spec-
trum and wave functions of the experimental PNψ (4312)+ as the D̄Σc molecular state with
JP = (1

2)−. Then combining the effective Lagrangian and the obtained BS wave function,
we calculate the partial decay width to be 0.17 MeV, 0.085 MeV, 8.8 MeV, and 0.026 MeV
for PNψ (4312)+→ J/ψ, ηcp, D̄∗0Λ+

c and D̄0Λ+
c , respectively. The obtained numerical re-

sults indicate that the fraction of D̄∗0Λ+
c channel can amount to ∼ 90% of PNψ (4312)+,

which makes D̄∗0Λ+
c to be a much more promising decay channel to be discovered in ex-

periments. This result can also serve as an important test for the molecular interpretation
of PNψ (4312)+. Our results are roughly consistent with some other calculations and also
the LHCb experimental measurements. However, more theoretical analysis and experi-
mental measurements are necessary to determine the properties of the pentaquark state
PNψ (4312)+. The interpretation of PNψ (4312)+ as the D̄Σc molecular state with JP = (1

2)−

and isospin I = 1
2 is favored by this work.
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A Expressions of the decay form factors

For completeness, we list the specific expressions of the relevant form factors here, which
are all represented by the integral over the radial Salpeter wave functions f1 and f2. Parts
of following expressions are calculated with the help of the FeynCalc package [71–73]. The
four form factors for decay PNψ (4312)+→J/ψp in eq. (3.49) are

s1P = −
∫ d3k⊥

(2π)3
1

2w2
c22k [kv0f1 + (w2u0 +m2v0) f2] ,

s2P =
∫ d3k⊥

(2π)3
1

2w2P 2
1

(Y1f1 + Y2f2) ,

s1V = −
∫ d3k⊥

(2π)3
1

2w2P 2
1

(Z1f1 + Z2f2) ,

s2V = −
∫ d3k⊥

(2π)3
1

2w2P 2
1

(Z3f1 + Z4f2) ,

(A.1)

where Y1, Y2, and Z1 ∼ Z4 read

Y1 = P 2
1w2u1 + c1E1kP1v1 + c1kM2P1v1 − c1kMP1v1 −m2P

2
1 v1 − c1E1kP1w2u0

− c21E
2
1k

2v0 − c21E1k
2M2v0 + c21E1k

2Mv0 + c1E1km2P1v0 + c22k
2P 2

1 v0, (A.2)
Y2 = c1E1P1w2u1 − c1MP1w2u1 + c1M2P1w2u1 − c1E1m2P1v1 − 2c1E2m2P1v1

+ c1m2M2P1v1 + c1m2MP1v1 + kP 2
1 v1 − c21E

2
1kw2u0 + c21E1kMw2u0

− c21E1kM2w2u0 + c22kP
2
1w2u0 + c21E

2
1km2v0 + 2c21E1E2km2v0

− c1E1k
2P1v0 − c21E1km2M2v0 − c21E1km2Mv0 + c22km2P

2
1 v0, (A.3)

Z1 = −E1P
2
1w2u1 +MP 2

1w2u1 +M2P
2
1w2u1 − c1E

2
1kP1v1 + c1kM

2
1P1v1 + E1m2P

2
1 v1

−m2MP 2
1 v1 −m2M2P

2
1 v1 + c1E

2
1kP1w2u0 − c1E1kMP1w2u0 − c1E1kM2P1w2u0

+ c21E
3
1k

2v0 − c1E
2
1km2P1v0 − c22E1k

2P 2
1 v0 − c21E1k

2M2
1 v0

+ c1E1km2MP1v0 + c1E1km2M2P1v0 − c22k
2MP 2

1 v0 − c22k
2M2P

2
1 v0, (A.4)

Z2 = c1M
2
1P1w2u1 + c1E

2
1m2P1v1 + 2c1E1E2m2P1v1 − 2c1E1m2MP1v1

+ c1m2M
2
1P1v1 + kMP 2

1 v1 + kM2P
2
1 v1 + c21E

3
1kw2u0 + c1E

2
1k

2P1v0

− c21E1kM
2
1w2u0 − c22E1kP

2
1w2u0 − c22kMP 2

1w2u0 − c22kM2P
2
1w2u0

+ 2c21E
2
1km2Mv0 − c1E1k

2MP1v0 − c1E1k
2M2P1v0 + c22E1km2P

2
1 v0
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− c21E1km2M
2
1 v0 + 2c22E2km2P

2
1 v0 − 3c22km2MP 2

1 v0 − c22km2M2P
2
1 v0

− 2c21E
2
1E2km2v0 − c21E

3
1km2v0 − E1kP

2
1 v1 − c1E

2
1P1w2u1, (A.5)

Z3 = −MP 2
1w2u1 −M2P

2
1w2u1 + c1E1kMP1v1 − c1E1kM2P1v1 − c1kM

2
1P1v1

+m2M2P
2
1 v1 + c1E1kMP1w2u0 + c1E1kM2P1w2u0 − c21E

2
1k

2Mv0

+ c21E
2
1k

2M2v0 + c21E1k
2M2

1 v0 − c1E1km2MP1v0 − c1E1km2M2P1v0

+m2MP 2
1 v1 − c22k

2M2P
2
1 v0 + 3c22k

2MP 2
1 v0, (A.6)

Z4 = c1E1MP1w2u1 − c1E1M2P1w2u1 − c1M
2
1P1w2u1 + c1E1m2MP1v1

− c1m2M
2
1P1v1 − kMP 2

1 v1 − kM2P
2
1 v1 − c21E

2
1kMw2u0 + c21E

2
1kM2w2u0

+ c21E1kM
2
1w2u0 + 3c22kMP 2

1w2u0 − c22kM2P
2
1w2u0 − c21E

2
1km2Mv0

+ c21E
2
1km2M2v0 + c1E1k

2MP1v0 + c1E1k
2M2P1v0 + c21E1km2M

2
1 v0

+ 3c22km2MP 2
1 v0 − c22km2M2P

2
1 v0 − c1E1m2M2P1v1. (A.7)

In above expressions, P1 = |P1|, and

c = cos θ, c21 = 1
2(3 cos2 θ − 1), c22 = 1

2(cos2 θ − 1), (A.8)

where θ denotes the angle between k and P1. We also define un and vn (n = 0, 1, 2) for
later convenience

un = (c1x
n
1P + c2x

n
2P + c3x

n
3P ) + (c4x

n
4P + c5x

n
5P + c6x

n
6P ),

vn = (c1x
n
1P + c2x

n
2P + c3x

n
3P )− (c4x

n
4P + c5x

n
5P + c6x

n
6P ).

(A.9)

The expressions of ci are listed in eq. (3.16).
The form factor s3V in eq. (3.33) for PNψ (4312)+→ ηcp decay behaves

s3V =
∫ d3k⊥

(2π)3
1

4m2
3w2w3P 2

1

[
(P 2

1X1 + kc1X3)f1 + (kP 2
1X2 + c1X4)f2

]
, (A.10)

where X1 ∼ X4 read

X1 =−ckMP1w2u0−ckM2P1w2u0 +m2
3Mw2u0 +m2

3M2w2u0−MM2
1w2u0

−M2
1M2w2u0 +ckm3P1w2u1 +E1m3Mw2u1 +E1m3M2w2u1 +m3M

2
1w2u1

−E1m
2
3w2u2 +ck3P1v0 +k2M2

1 v0 +ckm2MP1v0 +ckm2M2P1v0

−ckm2m3P1v1−m2m
2
3Mv0 +m2MM2

1 v0−m2m
2
3M2v0 +m2M

2
1M2v0

−E1k
2m3v1−E1m2m3Mv1−E1m2m3M2v1 +E1m2m

2
3v2−m2m3M

2
1 v1, (A.11)

X2 = ckP1w2u0 +M2
1w2u0−E1m3w2u1 +ckm2P1v0 +ckm3P1v1 +m3M

2
1 v1

−ckMP1v0−ckM2P1v0 +m2
3Mv0 +m2

3M2v0 +m2M
2
1 v0−MM2

1 v0

−M2
1M2v0 +E1m3Mv1 +E1m3M2v1−E1m2m3v1−E1m

2
3v2, (A.12)

X3 =−cE1kP1w2u0−E1M
2
1w2u0 +ckMP1w2u0 +ckM2P1w2u0 +MM2

1w2u0

+M2M
2
1w2u0 +E2

1m3w2u1−E1m3Mw2u1−E1m3M2w2u1 +cE1km2P1v0

−cE1km3P1v1−cE1kMP1v0−cE1kM2P1v0 +E1m2M
2
1 v0 +E1m

2
3Mv0
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+E1m
2
3M2v0−E1MM2

1 v0−E1M2M
2
1 v0 +ckm3MP1v1 +ckm3M2P1v1

−ckm2MP1v0−ckm2M2P1v0 +ckM2
1P1v0−m2

3M
2
1 v0−m2MM2

1 v0

−m2M2M
2
1 v0 +M4

1 v0 +E2
1m3Mv1 +E2

1m3M2v1−E2
1m2m3v1 +E2

1m
2
3v2

−2E1m3M
2
1 v1 +E1m2m3Mv1 +E1m2m3M2v1−E1m

2
3Mv2−E1m

2
3M2v2

+m3MM2
1 v1 +m3M2M

2
1 v1, (A.13)

X4 = v0m2M
4
1 +u0w2M

4
1 −v0m2m

2
3M

2
1 +E1k

2v0M
2
1 +2E2k

2v0M
2
1 +m2m3M2v1M

2
1

−k2Mv0M
2
1 −E1Mv0m2M

2
1 +k2v0M2M

2
1 −E1v0m2M2M

2
1 +ckv0m2P1M

2
1

−u0m
2
3w2M

2
1 −E1Mu0w2M

2
1 −E1u0M2w2M

2
1 +cku0P1w2M

2
1 +2E2m3w2u1M

2
1

−Mm3w2u1M
2
1 +m3M2w2u1M

2
1 −2E1m2m3v1M

2
1 +Mm2m3v1M

2
1

+E1Mv0m2m
2
3 +E1v0m2m

2
3M2 +cE1k

3v0P1 +2cE2k
3v0P1−ck3Mv0P1

−cE1kMv0m2P1 +ck3v0M2P1−cE1kv0m2M2P1 +E1Mu0m
2
3w2 +E1u0m

2
3M2w2

−cE1kMu0P1w2−cE1ku0M2P1w2 +E2
1Mm3w2u1 +E2

1m3M2w2u1 +cE1km3P1w2u1

+2cE2km3P1w2u1−ckMm3P1w2u1 +ckm3M2P1w2u1−E2
1m

2
3w2u2−2E1E2m

2
3w2u2

+E1Mm2
3w2u2−E1m

2
3M2w2u2−E2

1k
2m3v1−2E1E2k

2m3v1 +E1k
2Mm3v1

+E2
1Mm2m3v1−E1k

2m3M2v1 +E2
1m2m3M2v1−cE1km2m3P1v1 +ckMm2m3P1v1

+ckm2m3M2P1v1 +E2
1m2m

2
3v2−E1Mm2m

2
3v2−E1m2m

2
3M2v2. (A.14)
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