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We propose a generalized version of the tribimaximal (TBM) ansatz for lepton mixing, leading to a
nonzero reactor angle θ13 and CP violation. The latter is characterized by two CP phases. The Dirac phase,
affecting neutrino oscillations, is nearly maximal (δCP ∼�π=2), while the Majorana phase implies narrow
allowed ranges for the neutrinoless double beta decay amplitude. The solar angle θ12 lies nearly at its TBM
value, while the atmospheric angle θ23 has the TBM value for a maximal δCP. Neutrino oscillation
predictions can be tested in present and upcoming experiments.
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I. INTRODUCTION

Ever since the discovery of neutrino oscillations, the
structure of the leptonic mixing matrix has been an active
topic of research. Over the last twenty years or so, there has
been a flood of both theoretical and experimental activity
aimed at determining and understanding the structure of the
leptonic mixing matrix. Solar and atmospheric data, con-
firmed by accelerator and reactor data, made it clear that
the structure of lepton mixing is quite at odds with that
of quarks, given the large values of θ12 and θ23. These
observations were soon encoded in the tribimaximal mix-
ing (TBM) ansatz proposed by Harrison, Perkins, and
Scott [1], described by
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Since it was first proposed, the TBM ansatz has been a
popular benchmark for describing the pattern of lepton

mixing, inspiring a flood of theory papers. It gives θ12 ¼
sin−1ð 1ffiffi

3
p Þ, θ23 ¼ π=4, whose status is rather good in view of

the latest neutrino oscillation global fit [2,3]. Unfortunately,
it predicts θ13 ¼ 0, and hence, CP-conservation in neutrino
oscillation. Indeed, data from reactors have indicated that
such a “bona fide” TBM ansatz cannot be the correct
description of nature, since the leptonic mixing angle
θ13 has been established to be nonzero to a very high
significance [4–6]. Moreover, there has been mounting
evidence for CP violation in neutrino oscillations, provid-
ing further indication that amendment is needed.
Motivated by the need for departing from the simplest

“first-order” form for the TBM ansatz, Eq. (1), here, we
propose a generalized version of the TBM ansatz (GTBM),
which correctly accounts for the nonzero value of θ13 and
introduces the CP violation as follows:
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This new ansatz is characterized by just one angle θ and
two phases ρ and σ. These are three parameters to be
compared with the three angles, plus three (physical)
phases characterizing the three-family (unitary) lepton
mixing matrix [7]. The latter can be written in the
symmetric form as U ¼ U23ðθ23;ϕ23Þ · U13ðθ13;ϕ13Þ ·
U12ðθ12;ϕ12Þ, where Uijðθ;ϕÞ are matrices corresponding
to complex rotations in the ij plane, each characterized by
an angle θij and an associated phase ϕij [7]. In addition to
the Dirac CP phase δCP ¼ ϕ13 − ϕ12 − ϕ23, one has two
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Majorana phases [8,9] that affect neutrinoless double beta
decay. Equation (2) gives all of these six parameters in
terms of one angle θ plus two phase parameters ρ, σ. The
parameters have ranges

0 ≤ θ < π; 0 ≤ ρ < π; 0 ≤ σ < 2π: ð3Þ

We now turn to the several interesting limiting cases of the
above GTBM matrix in Eq. (2).

II. TBM LIMIT

The first is the limit θ; ρ; σ → 0, in which case our
GTBM mixing matrix in Eq. (2) reduces to the simplest
celebrated TBM form, U0 in Eq. (1). This is unrealistic, as
it cannot describe reactor neutrino data.

III. COMPLEX TBM LIMIT

In the limit of θ → 0 and any arbitrary value of ρ, σ, the
matrix reduces to a “complex TBM” matrix, which is a
TBM matrix with additional CP phases. This matrix is
given by
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The phases ρ and σ are physical parameters only if
neutrinos are of the Majorana-type, and can be rotated
away otherwise. Indeed, for Dirac neutrinos, there is no
difference between TBM and complex TBM. For the
Majorana neutrino case, the phases in the symmetric
parametrization are given as ϕ12 ¼ ρ and ϕ23 ¼ σ, while
the Dirac phase δCP is unphysical, since θ13 ¼ 0.

VI. THE μ − τ SYMMETRIC LIMIT

We now discuss the realistic limits of GTBM that lead to
θ13 ≠ 0, as required by current data [4–6]. One of the
properties of the TBM matrix was the so-called μ − τ
symmetry, i.e., jUμjj ¼ jUτjj; j ¼ 1, 2, 3 [1,10]. For σ → 0

and any arbitrary values of θ, ρ, the GTBM matrix also
retains this symmetry, reducing to
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Indeed, one sees that the matrix in Eq. (5) also has an
inherent μ − τ symmetry, leading to maximal atmospheric
angle θ23 ¼ π

4
and a maximal CP violating value of the CP

phase δCP ¼ � π
2
. The other two angles are also nonzero

and are correlated with each other, as follows:

cos2θ12cos2θ13 ¼
2

3
: ð6Þ

Using the 3σ range of the reactor mixing angle
1.96 × 10−2 ≤ sin2θ13 ≤ 2.41 × 10−2 [2,3], we obtain
0.346 ≤ sin2θ12 ≤ 0.349 for the solar mixing angle. This
is illustrated in Fig. 1, in which the shaded boxes highlight
the 1 and 3σ regions indicated by the current neutrino
oscillation global fit. This correlation is rather different
from the one predicted in [11]. The additional CP phases
are physical, both Majorana and Dirac, since θ13 ≠ 0 also
makes ϕ13 well-defined. This μ − τ symmetric case has
implications for mee, shown in the Fig. 5.
In the μ − τ symmetric matrix of Eq. (5), one can further

take the ρ → 0 limit, in which case we get an even simpler
matrix given by
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Notice that this matrix shares many properties of matrix
in Eq. (5), e.g., the maximal atmospheric angle, maximal
CP violation, and the correlation given in Eq. (6). In
addition, the Majorana phase is fixed, since now ρ ¼ 0,
leading to very sharp predictions formee as shown in Fig. 2.
For example, for the case of inverse ordering (IO), the
neutrinoless double beta decay amplitude is nearly maxi-
mal, while for the normal ordering (NO) case, there is a

FIG. 1. Correlation between sin2 θ13 and sin2 θ12 given in
Eq. (6). Notice that in the whole experimentally allowed range
[2], the value of sin2 θ12 remains very close to 1=3.
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lower bound for this amplitude, since destructive interfer-
ence is prevented.

V. THE ρ → 0 LIMIT

So far, the limits we have discussed all lead to the
maximal atmospheric mixing angle, i.e., they all predict
θ23 ¼ π=4. While this is consistent with current data, there
is a slight preference for the second octant [2,3]. Our
proposed GTBM matrix is flexible enough to allow for
deviations from the maximal θ23. The possibility of a
nonmaximal θ23 can be seen in the limiting case where
ρ → 0, where the mixing matrix is given by
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This matrix still shares some of the properties of the μ − τ
symmetric matrix of Eq. (5). For example, the correlation in
Eq. (6) still holds, relating solar and reactor angles as
shown in Fig. 1. However, in contrast to the μ − τ
symmetric limit, we can now have deviations from the
maximal atmospheric mixing, as well as deviations from
maximal CP violation. In fact, these departures are corre-
lated with each other, as shown in Fig. 3, which also
highlights the 1 and 3σ regions indicated by the current
neutrino oscillation global fit [2,3].

The mixing matrix of Eq. (8) also leads to the fixed
Majorana phase values given by ϕ12 ¼ 0;ϕ13 ¼ π

2
, imply-

ing sharp predictions for mee, as shown in Fig. 2.

VI. GENERAL TRIBIMAXIMAL MIXING

Having discussed the various limits of our proposed
GTBM matrix, (2), we now briefly discuss its general
properties. The full set of mixing angles and phases is
given as
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cos2θ
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The parameter σ measures the deviation of θ23 from
maximal mixing, as shown in Fig. 4. We can read off
that σ can only vary within the region ½0; 0.172π� ∪
½0.828π; 1.172π� ∪ ½1.828π; 2πÞ.
The expression for the parameter mee describing the

neutrinoless double beta decay amplitude also takes a rather
simple form given by

FIG. 2. jmeej prediction for NO and IO when ρ ¼ 0. Here, θ is
taken as a free parameter, and we require the three mixing angles
to lie in their allowed 3σ regions [2,3]. Note that mee does not
depend on σ.

FIG. 3. The correlation between the atmospheric angle θ23 and
the CP phase δCP predicted by our generalized TBM matrix in
Eq. (2) is given by the hatched band, while the 1, 2, and 3σ
regions allowed by the current neutrino oscillation global fit are
indicated by the shaded areas [2,3].
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jmeej ¼
1

3
j2e2iρm1 þm2cos2θ −m3sin2θj: ð12Þ

From these mixing angles and phases in Eq. (9), one can
further obtain two nontrivial relations given by

cos2θ12cos2θ13 ¼
2

3
; ð13Þ

tan 2θ23 cos δCP ¼ 5sin2θ13 − 1

4 tan θ12 sin θ13
: ð14Þ

The first is a correlation between θ12 and θ13, shown in
Fig. 1, while the second is a correlation between θ23 and
δCP, depicted in Fig. 3. Owing to the constrained nature of
the mixing angles and phases of our ansatz, one also gets
predictions for mee, shown in Fig. 5.
The predictions made by the GTBM ansatz can also be

tested in currently running and upcoming neutrino oscil-
lation experiments. The predictions made by GTBM to
oscillation experiments is illustrated in Fig. 6. This estimate
is for the T2K setup, neglecting matter effects, as an
approximation. Clearly, the allowed range of electron
neutrino appearance probability at T2K is substantially
restricted with respect to the generic expectation.
In conclusion, we have proposed a realistic generaliza-

tion of the TBM ansatz, which not only accounts for
nonzero measured value of θ13 but also makes definite and
testable predictions for the other parameters of the lepton
mixing matrix, including CP phases. Our GTBM matrix is
characterized in terms of three independent parameters,
which determine all six mixing parameters, leading to
several testable predictions as we discussed at length. Apart
from correcting for θ13, the GTBM matrix retains many of
the features of the original TBM matrix from the point of
basic underlying symmetries, as we showed by discussing
various limits of the GTBM matrix.

VII. CP SYMMETRY AS THE ORIGIN
OF THE GTBM ANSATZ

Before closing, we comment on the theoretical origin of
our GTBM matrix. We note that this ansatz may be derived
systematically by the method of generalized CP sym-
metries [12–14]. For example, the mixing matrix in Eq. (7)
can be derived from the S4 flavor symmetry and general-
ized CP [15,16]. In order to derive the GTBM matrix in
Eq. (2), one starts from the complex TBM matrix (CTBM)

FIG. 4. The predicted dependence of j sin2 θ23 − 1
2
j on the

parameter σ is indicated by the curved band. Its width comes
from varying θ13 within its 3σ range, while the horizontal band
gives the current determination of θ23 [2,3].

FIG. 5. jmeej prediction for NO and IO in the most general
GTBM ansatz. Here, the parameters ρ and θ are varied within
their allowed 3σ ranges [2,3]. Note thatmee does not depend on σ.
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FIG. 6. The allowed range of electron neutrino appearance
probability at T2K covers a more restricted region, thanks to the
GTBM predictions. Here, the black line corresponds to the best
fit, the cyan region is the general three-neutrino result, while the
yellow region is the GTBM prediction.
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of Eq. (4) and extracts its CP symmetries and flavor
symmetries. In the charged lepton diagonal mass basis,
the four CP symmetries Xi and the four flavor symmetries
Gi are given by

Xi ¼ UCTBMd̂iUT
CTBM; ð15Þ

where

d̂1 ¼ diagð1;−1;−1Þ; d̂2 ¼ diagð−1; 1;−1Þ;
d̂3 ¼ diagð−1;−1; 1Þ; d̂4 ¼ diagð1; 1; 1Þ: ð16Þ

Also, the flavor symmetries Gi; i ¼ 1, 2, 3, 4 are given by

G1 ¼ X2X�
3 ¼ X3X�
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1 ¼ X1X�
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G4 ¼ X1X�
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2 ¼ X3X�
3 ¼ X4X�

4: ð17Þ

The CP and flavor symmetries corresponding to the real
TBMmatrix of (1) can be obtained from Eqs. (15) and (17),
respectively, by simply taking the limit ρ; σ → 0. It is
instructive to display explicitly the matrix form of the CP
symmetries associated to the real TBM ansatz, which are
given by
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Notice that the CP symmetry X3 of (18) is nothing but
the famous μ − τ reflection symmetry, which the real
TBM matrix is known to possess [1,10]. Moreover, the
CP symmetry X4 of (18) is simply the diagonal CP
symmetry of phases.
Imposing any three of the CP symmetries in (15) on the

neutrino mass matrix,1 one recovers the complex TBM
matrix of Eq. (4). This is clearly ruled out by current
neutrino oscillation data. In order to obtain realistic mass
matrices, we assume that at the leading order, the neutrino

mass matrix Mð0Þ
ν preserves all four CP symmetries given

in Eq. (15). The leading order neutrino mass matrix Mð0Þ
ν

satisfies

XT
i M
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ν ; ð19Þ

where Xi; i ¼ 1, 2, 3, 4 are the four CP symmetries of (15).

This in turn implies that UT
CTBMM

ð0Þ
ν UCTBM is a real

diagonal matrix [12], which can be written as

UT
CTBMM

ð0Þ
ν UCTBM ¼ diagðm1; m2; m3Þ; ð20Þ

and leads to

Mð0Þ
ν ¼ U�

CTBMdiagðm1; m2; m3ÞU†
CTBM: ð21Þ

Thus, as mentioned before, if all four CP symmetries (in
fact any subset of three independent ones is sufficient) are
imposed simultaneously, we recover back a neutrino mass
matrix diagonalized by the complex TBM matrix.
In order to generate realistic mass and mixing patterns,

we add perturbation terms, preserving only the X2, X3 CP
symmetries of (15). This implies that the leptonic mixing
matrix is no longer the complex TBM matrix, but a closely
related variant of it. After adding the perturbation, the full

mass term Mν ¼ Mð0Þ
ν þ δMν satisfies

UT
CTBMðMð0Þ

ν þδMνÞUCTBM¼

0
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m1 0 0

0 m2 iδm

0 iδm m3

1
CA: ð22Þ

The above matrix can be easily diagonalized by the matrix
diagð1;−i; 1ÞO23, where

O23 ¼

0
B@

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

1
CA; ð23Þ

with

tan 2θ ¼ 2δm
m3 þm2

: ð24Þ

Thus, the mixing matrix diagonalizing the full mass
matrix Mν is given by

UGTBM ¼ UCTBMdiagð1;−i; 1ÞO23Qν: ð25Þ

where Qν is a diagonal matrix with entries �1 and �i,
which encode the CP parity of the neutrino states, and in
our case, we take it to be

Qν ¼ diagð1; i; 1Þ: ð26Þ

The mixing matrix obtained in Eq. (25) is nothing but the
matrix describing our GTBM ansatz in Eq. (2). Having

1For simplicity, we work in the basis of diagonal charged
lepton mass matrix. In this basis, the whole leptonic mixing is
solely due to the neutrino sector.
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been obtained from the TBM matrix, the GTBM matrix
naturally shares many of the properties, symmetries, and
predictions associated with the TBM ansatz. A more
detailed discussion of the generalized CP methodology
and its power to produce other potentially realistic ansatz
forms for the lepton mixing matrix will be presented
elsewhere.
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