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Inspired by the resonance Tþ
ccð3875Þ recently observed by the LHCb Collaboration, we systematically

explore the S- and P-wave ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ systems in a chiral SU(3) quark model. The Hamiltonian
contains the kinetic energy, the one-gluon-exchange (OGE) potential, the confinement potential, and the
one-boson-exchange (OBE) potential stemming from the coupling of quark and chiral fields. The
Schrödinger equation is solved by use of the variational method with the spacial trial wave functions chosen
as Gaussian functions. It is found that the lowest state has a mass 3879 MeV, isospin and spin-parity
IJP ¼ 01þ, and quark constituent ccū d̄, in agreement with the experimentally observed Tþ

ccð3875Þ. This
state is approximately at the calculatedDD� threshold and has a root-mean-square radius of about 0.48 fm.
These demonstrate that the Tþ

ccð3875Þ can be accommodated as a stable and compact tetraquark sate in the
chiral SU(3) quark model. All the other S- and P-wave ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ states lie about 100 to a few
hundreds MeV higher than the corresponding meson-meson thresholds and thus are not suggested to be
candidates of stable and compact tetraquark states due to their fall-apart decays to two mesons.

DOI: 10.1103/PhysRevD.109.074026

I. INTRODUCTION

For a long time, we believed that hadrons can be divided
into two categories; i.e., meson consists of a pair of quark
and antiquark (qq̄), and baryon consists of three quarks
(qqq). However, in principle, the underlying theory of
strong interactions—quantum chromodynamics (QCD)—
allows the existences of any color-singlet states like
tetraquarks, pentaquarks, and baryonium, etc. In experi-
ment, a large number of candidates of exotic states have
been reported in the last two decades after the observation
of the Xð3872Þ by the Belle Collaboration in 2003 [1].
Theoretically, these candidates have aroused significant
research interest, and plenty of works have been published
to study the structures and properties of these possible
exotic states. See Refs. [2–10] for recent reviews of the
experimental and theoretical status of the investigations of
exotic states.
Recently, a doubly charmed exotic meson Tþ

ccð3875Þ
was announced by the LHCb Collaboration [11,12]. This
state has spin-parity JP ¼ 1þ and quark constituent ccū d̄.

Its mass is reported to be M ¼ 3875.1 MeVþ δm with
δm ¼ −273� 61� 5þ11

−14 keV, very close to the meson-
meson threshold of DD�. It has a very small decay width,
Γ ¼ 410� 165� 43þ18

−38 keV, and is so far the longest
living exotic state.
The Tþ

ccð3875Þ particle is of particular interest as it is
really an exotic state, unlike most of the reported candidates
that have the same quantum numbers as the traditional
mesons or baryons and thus are not easy to be clearly
identified as exotic states. In literature, the Tþ

ccð3875Þ state
has been investigated by use of various methods, e.g.,
quark models [13–18], QCD sum rules [19–21], lattice
QCD [22,23], and one-boson-exchange (OBE) model [24],
et al. Unfortunately, the conclusions from different works
are not consistent, even they are done within the same
method. In the quark model studies of Refs. [13–15], no
stable doubly charmed tetraquark states were found
because the lowest ccū d̄ states were reported to be about
60–200 MeV higher than the thresholds of two open-
charmed mesons for rearrangement decays. On the con-
trary, in the quark model studies of Refs. [16–18], opposite
conclusions were drawn. In Ref. [16], the state ccū d̄ with
spin-parity JP ¼ 1þ was reported to be a compact tetra-
quark state with a mass 65 MeV below the DD� threshold.
In Ref. [17], the tetraquark state ccū d̄ with JP ¼ 1þ was
found to have a mass 23 MeV below the DD� threshold. In
Ref. [18], the lowest ccū d̄ state was claimed to be a loosely
boundDD� molecular state with 0.34 MeV binding energy.
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In the studies by QCD sum rule, Refs. [19,20] reported that
the calculated ccū d̄ state with JP ¼ 1þ are above the DD�
threshold, while Ref. [21] claimed that the calculated mass
M ¼ 3868� 124 MeV and width Γ ¼ 489� 92 keV for
ccū d̄ with JP ¼ 1þ agree well with the experiment. In the
lattice QCD study of Ref. [22], neither bound nor resonance
states were reported, while in Ref. [23], a bound state with
binding energy 23 MeV was found. In the OBE model
study of Ref. [24], the doubly charmed tetraquark state with
JP ¼ 1þ was suggested to be a DD� molecule.
The poor situation that diverging conclusions for the

ccū d̄ tetraquark were drawn resulted from different theo-
retical works, regardless of whether they were done with
the same or different theoretical methods, urges upon us the
importance and indispensable of further independent theo-
retical analysis with reliable model ingredients for a better
understanding of the nature of the ccū d̄ tetraquark state.
In our previous work of Ref. [25], we have successfully

described the energies of octet and decuplet baryon ground
states, the binding energy of deuteron, and the nucleon-
nucleon (NN) scattering phase shifts and mixing param-
eters for angular momentum up to J ¼ 6 within a chiral
SU(3) quark model. The Hamiltonian consists of the kinetic
energy, the one-gluon-exchange (OGE) potential, the con-
finement potential, and the one-boson-exchange (OBE)
potential stemming from the coupling of quark and chiral
fields. It should be mentioned that the work of Ref. [25]
was the first and so far the only one that reproduced the
energies of octet and decuplet baryon ground states and the
experimental data of NN scattering in a rather consistent
manner in a quark model. It solved the issue that the wave
functions chosen for single baryons are not the solutions of
the given Hamiltonian in the resonating-group-method
(RGM) study of the baryon-baryon systems in constituent
quark models.
In the present work, we further extend the chiral SU(3)

quark model employed in Ref. [25] to explore the mass
spectra of theS- andP-wave ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ systems.
The interactions between the light antiquarks q̄ and q̄0 are
taken fromRef. [25]. The interactions associatedwith charm
quark consist of the OGE potential and the confinement
potential, and the corresponding parameters are fixed by a fit
to the masses of known charmed baryons and mesons. The
total wave functions of ccq̄q̄0 tetraquark systems are con-
structed as combinations of the individual wave functions
in the color, spin, flavor, and coordinate spaces, where the
spacial trial wave functions are chosen as Gaussian func-
tions. The masses and eigenvectors for the S- and P-wave
ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ states are obtained by solving the
Schrödinger equation via the variational method.
This paper is organized as follows. In Sec. II, we

introduce the Hamiltonian employed in the chiral SU(3)
quark model and the determination of the model param-
eters. In Sec. III, we construct the spin, flavor, color, and
spacial wave functions and present the relevant matrix

elements of interaction operators for the doubly charmed
tetraquark states. The numeric results of the mass spectra of
the S- and P-wave ccq̄q̄0 tetraquark states are shown in
Sec. IV, where some discussions are presented as well.
Finally, in Sec. V, we give a brief summary.

II. HAMILTONIAN

The Hamiltonian of the ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ system
consists of the masses of constituent quarks, the kinetic
energy of the system, and the potential between each pair of
the constituent quarks, e.g.,

H¼
X4
i¼1

ðmiþTiÞ−TGþ
X4
1¼i<j

ðVconf
ij þVOGE

ij þVOBE
ij Þ;

ð1Þ

where mi and Ti represent the mass and kinetic energy of
the ith constituent quark, respectively, and TG denotes the
kinetic energy of the center-of-mass motion of the ccq̄q̄0
system,

Ti ¼
p2i
2mi

; TG ¼ ðP4
i¼1 piÞ2

2
P

4
i¼1mi

; ð2Þ

with pi being the three-momentum of the ith constituent
quark. The potential between each pair of constituent quarks
is composed of three parts: the phenomenological confine-
ment potential Vconf

ij , the OGE potential VOGE
ij , and the OBE

potential VOBE
ij stemming from the coupling of quark and

chiral fields. The last one exists only between a pair of light
quarks (antiquarks) in a chiral SU(3) quark model [25].
The confinement potential Vconf

ij describes the long-range
nonperturbative QCD effects. In the present work, the
linear type confinement potential is adopted,

Vconf
ij ¼ −λci · λcjðaijrij þ a0ijÞ; ð3Þ

where λci is the usual Gell-Mann matrix of the color SU(3)
group, and aij and a0ij are parameters of the confinement
strength and zero-point energy, respectively.
The OGE potential VOGE

ij describes the short-range
perturbative QCD effects. As usual, it can be written as

VOGE
ij ¼ gigj

4
λci · λ

c
j

�
1

rij
−
μ3ij
2

e−μ
2
ijr

2
ij

μijrij

�
1

m2
i
þ 1

m2
j

þ 4

3

σi · σj
mimj

��
þ VOGE

ls ðrijÞ þ VOGE
ten ðrijÞ; ð4Þ

with
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VOGE
ls ðrijÞ ¼ −

gigj
4

λci · λ
c
j

m2
i þm2

j þ 4mimj

8m2
i m

2
j

1

r3ij

× ½L · ðσi þ σjÞ�; ð5Þ

VOGE
ten ðrijÞ ¼ −

gigj
4

λci · λ
c
j

1

4mimj

1

r3ij

× ½3ðσi · r̂ijÞðσj · r̂ijÞ − σi · σj�; ð6Þ
where giðjÞ is the OGE coupling constant for the iðjÞ-th
constituent quark, and μij is defined as μij ≡ β

mimj

miþmj
with β

being a model parameter.
Note that in both confinement potential and OGE

potential [cf. Eqs. (3)–(6)], the Gell-Mann matrix λc for
a quark should be replaced by −λc� for an antiquark.
In the chiral SU(3) quark model, the OBE potential is

introduced in such a way that the Lagrangian of the quark
and chiral fields is invariant under the chiral SU(3) transi-
tion [25–28], which gives a natural explanation of the
relatively large constituent quark masses via the mechanism
of spontaneous chiral symmetry breaking. Meanwhile, the
Goldstone bosons obtain their physical masses via the
obvious chiral symmetry breaking caused by the tiny current
quark masses. The OBE potential provides the necessary
medium- and long-range attraction in light quark systems. In
the NN systems, it has been shown that such attraction is
rather important for describing the experimental data [25].
The OBE potential between a pair of light quarks

(antiquarks) reads

VOBE
ij ¼

X8
a¼0

Vσa
ij þ

X8
a¼0

Vπa
ij ; ð7Þ

where the first and second terms represent the potential
stemming from the exchanges of the scalar nonet mesons
and pseudoscalar nonet mesons, respectively. The explicit
expressions of Vσa

ij and Vπa
ij are

Vσa
ij ¼−Cðgch;m0

σa ;ΛÞY1ðm0
σa ;Λ;rijÞðλai λaj ÞþVσa

ls ðrijÞ; ð8Þ

Vπa
ij ¼ Cðgch; m0

πa ;ΛÞ
m02

πap
a
ij

48
Y3ðm0

πa ;Λ; rijÞðλai λaj Þ
× ðσi · σjÞ þ Vπa

tenðrijÞ; ð9Þ

with

Vσa
ls ðrijÞ ¼ −Cðgch; m0

σa ;ΛÞ
m02

σas
a
ij

8
Z3ðm0

σa ;Λ; rijÞ
× ½L · ðσi þ σjÞ�ðλai λaj Þ; ð10Þ

Vπa
tenðrijÞ ¼ Cðgch; m0

πa ;ΛÞ
m02

πap
a
ij

48
H3ðm0

πa ;Λ; rijÞ
× ½3ðσi · r̂ijÞðσj · r̂ijÞ − σi · σj�ðλai λaj Þ; ð11Þ

where

Cðgch; m;ΛÞ ¼ g2ch
4π

Λ2

Λ2 −m2
m; ð12Þ

Y1ðm;Λ; rÞ ¼ YðmrÞ − Λ
m
YðΛrÞ; ð13Þ

Y3ðm;Λ; rÞ ¼ YðmrÞ −
�
Λ
m

�
3

YðΛrÞ; ð14Þ

Z3ðm;Λ; rÞ ¼ ZðmrÞ −
�
Λ
m

�
3

ZðΛrÞ; ð15Þ

H3ðm;Λ; rÞ ¼ HðmrÞ −
�
Λ
m

�
3

HðΛrÞ; ð16Þ

YðxÞ ¼ 1

x
e−x; ð17Þ

ZðxÞ ¼
�
1

x
þ 1

x2

�
YðxÞ; ð18Þ

HðxÞ ¼
�
1þ 3

x
þ 3

x2

�
YðxÞ; ð19Þ

and

saij ¼
8<
:

1
m2

i
þ 1

m2
j
; ða ¼ 0; 1; 2; 3; 8Þ

2
mimj

; ða ¼ 4; 5; 6; 7Þ
ð20Þ

pa
ij ¼

8<
:

4
mimj

; ða ¼ 0; 1; 2; 3; 8Þ
ðmiþmjÞ2
m2

i m
2
j

; ða ¼ 4; 5; 6; 7Þ
ð21Þ

m0
σa ¼

8<
:
mσa ; ða¼ 0;1;2;3;8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

σa − ðmi−mjÞ2
q

; ða¼ 4;5;6;7Þ ð22Þ

m0
πa ¼

8<
:
mπa ; ða¼ 0;1;2;3;8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

πa − ðmi−mjÞ2
q

: ða¼ 4;5;6;7Þ : ð23Þ

Here, gch is the quark and chiral field coupling constant, Λ
is the cutoff parameter indicating the chiral symmetry
breaking scale, and mπa and mσa ða ¼ 0; 1; 2;…; 8Þ re-
present the masses of nonet pseudoscalar and nonet scalar
mesons, respectively.
For pseudoscalar meson exchanges, the couplings of η0

and η8 are considered to give the physical η and η0 states:

�
η ¼ η8 cos θ − η0 sin θ;

η0 ¼ η8 sin θ þ η0 cos θ;
ð24Þ
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with the mixing angle θ taken to be the empirical
value θ ¼ −23°.
Wemention that the OBE potential between a pair of light

quark and antiquark is related to that between a pair of light
quarks by aG parity of the exchanged meson [28,30,31]. In
the present work, the OBE potential only exists between a
pair of light antiquarks, which is the same as that between a
pair of light quarks.
The model parameters for light quarks (antiquarks) are

taken from our previous work of Ref. [25], which for the first
time gave a rather consistent description in the quark model
of the masses of octet and decuplet baryon ground states,
the binding energy of deuteron, and the NN scattering
phase shifts and mixing parameters for partial waves up
to total angular momentum J ¼ 6. These parameters are
mu ¼ md ¼ 313 MeV,ms ¼ 470 MeV,mσ0 ¼ mκ ¼ mϵ ¼
980 MeV,mσ ¼569MeV,mπ¼138MeV,mK ¼ 495MeV,
mη ¼ 549 MeV, mη0 ¼ 957 MeV, Λ ¼ 1100 MeV, auu¼
58.39MeV=fm, aus¼69.77MeV=fm, ass¼95.23MeV=
fm, a0uu ¼ −24.53 MeV, a0us ¼ −22.86 MeV, a0ss ¼
−26.10 MeV, guðsÞ ¼ 1.079, and β ¼ 1.606. Note that the
values of some of these parameters are a little bit different
from those of Ref. [25], because the δ function in OGE
potential in Ref. [25] has now been replaced by

δðrijÞ →
μ3ij
π

e−μ
2
ijr

2
ij

μrij
ð25Þ

with

μij ¼ β
mimj

mi þmj
ð26Þ

in the presentwork to avoid the problemof collapsingground
state caused by the fact that the δ potential is more attractive
than 1=r2 and so overpowers the kinetic energy p2=ð2mÞ for
a pair of scalar quarks (antiquarks). After this replacement,
the energies of octet and decuplet baryon ground states, the
binding energy of deuteron, and the NN scattering phase
shifts and mixing parameters up to total angular momentum
J ¼ 6 are refitted. The resulted fitting quality is almost the
same as that in Ref. [25] by use of the above-mentioned
parameter values.
The other model parameters are those associated with

heavy charm quarks. Apart from the charm quark mass mc,
they are gc, acu, acs, acc, a0cu, a0cs, and a0cc from OGE and
confinement potentials. All these parameters are deter-
mined by fitting the masses of known charmed mesons and
baryons. The fitted values of these parameters are listed in
Table I, and the masses of charmed mesons and baryons
calculated by use of these parameters are presented in
Table II, where the experimental values [29] are also listed
for comparison. One sees that the calculated masses of
charmed mesons and baryons are rather close to their
experimental values.

We mention that although the chiral SU(3) quark model
offers a natural explanation for the relatively large con-
stituent quark masses and reasonably reproduces the
energies of individual baryons as well as the NN and
YN (Y ¼ Λ;Σ) scattering data, its success remains incom-
pletely understood within the QCD framework.

III. WAVE FUNCTIONS

In this section, we briefly present the process of con-
structing the wave functions for the S- and P-wave ccq̄q̄0

ðq̄; q̄0 ¼ ū; d̄; s̄Þ systems. The total wave function of a
tetraquark state consists of four parts, i.e., the color, flavor,
spin, and space parts.
In the color space, the exact symmetry is SUð3Þc. As a

quark belongs to a 3c representation and an antiquark
belongs to a 3̄c representation, two quarks couple into
either 6c or 3̄c representations, i.e., 3c ⊗ 3c ¼ 6c ⊕ 3̄c, and
two antiquarks couple into either 3c or 6̄c representations,
i.e., 3̄c ⊗ 3̄c ¼ 3c ⊕ 6̄c. Then the color wave function for a
tetraquark state can be constructed as either ½ð3c ⊗ 3cÞ6c ⊗
ð3̄c ⊗ 3̄cÞ6̄c �1c or ½ð3c ⊗ 3cÞ3̄c ⊗ ð3̄c ⊗ 3̄cÞ3c �1c, which can
be illustrated by

and

respectively. In the following parts of the paper, these two
types of color wave functions are denoted as

j66̄i≡ ½ðccÞ6cðq̄q̄0Þ6̄c �1c ; ð27Þ

j3̄3i≡ ½ðccÞ3̄cðq̄q̄0Þ3c �1c : ð28Þ

TABLE I. Model parameters associated with heavy quarks. The
charm quark mass mc and the parameters of zero point energies
a0cc, a0cu, and a0cs are in MeV. The strengths of confinement acc,
acu, and acs are in MeV=fm.

mc gc acc acu acs a0cc a0cu a0cs

1500 0.635 183.8 160.9 130.6 −61.9 −95.3 −53.6
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By using the color wave functions j66̄i and j3̄3i, one can
evaluate the matrix elements of λci · λ

c
j straightforwardly.

The results are presented in Table III.
In the flavor space, one only needs to consider the

symmetry of two light antiquarks for the ccq̄q̄0 ðq̄; q̄0 ¼
ū; d̄; s̄Þ systems. In this paper, we use the curly brace fg and
square bracket ½ � to represent the symmetric and antisym-
metric flavor wave functions of two light antiquarks, i.e.,
fq̄q̄0g ¼ ðq̄q̄0 þ q̄0q̄Þ= ffiffiffi

2
p

and ½q̄q̄0� ¼ ðq̄q̄0 − q̄0q̄Þ= ffiffiffi
2

p
. As

the chiral fields couple only to the light quarks (antiquarks),
one needs to calculate the matrix elements of the operators
1,

P
3
a¼1 λ

a
q̄λ

a
q̄0 ,

P
7
a¼4 λ

a
q̄λ

a
q̄0 , and λ8q̄λ

8
q̄0 in the flavor space.

The evaluated values are listed in Table IV, where n and s
represent the nonstrange and strange quarks, respectively.
In the spin space, the wave function for a ccq̄q̄0 ðq̄; q̄0 ¼

ū; d̄; s̄Þ system is constructed as

χS12S34S ≡ jðccÞS12ðq̄q̄0ÞS34iS; ð29Þ

where S12 and S34 represent the spin of two charm quarks
and two light antiquarks, respectively, and S represents the

spin of the total tetraquark system. The matrix elements of
the operator σi · σj evaluated based on this spin wave
function are listed in Table V.
In the coordinate space, we define the following Jacobi

coordinates for the ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ systems:

ξ1 ¼ r1 − r2; ð30Þ

ξ2 ¼ r3 − r4; ð31Þ

ξ3 ¼
r1 þ r2

2
−
m3r3 þm4r4
m3 þm4

; ð32Þ

where r1 and r2 are coordinates of two charm quarks, and r3
and r4 are coordinates of two light antiquarks with m3 and
m4 being their masses, respectively. Then, the spacial wave
function of the considered tetraquark systems can be
written as

ΨL ¼
X
α

Aαf½ψ l1ðξ1Þψ l2ðξ2Þ�l12ψ l3ðξ3ÞgL; ð33Þ

with

ψ laðξaÞ ¼
�
2laþ2ð2νaÞlaþ3

2ffiffiffi
π

p ð2la þ 1Þ!!
�1=2

ξlaa e−νaξ
2
a ; ð34Þ

where α ¼ fl1; l2; l12; l3g. The expansion coefficient Aα

and the Gaussian width parameter νa will be determined by

TABLE II. Masses (in MeV) of charmed mesons and baryons
calculated by use of the parameters listed in Table I. The
corresponding masses from PDG [29] are listed in the last
column.

Particles IJP Masses PDG values

D0 1
2
0− 1866.9 1864.84� 0.05

D�þ 1
2
1− 2011.6 2010.26� 0.05

D�
s 00− 1968.4 1968.35� 0.07

D��
s 01− 2133.3 2112.2� 0.4

ηcð1SÞ 00− 2975.9 2983.9� 0.4
J=ψð1SÞ 01− 3096.8 3096.9� 0.006
ηcð2SÞ 00− 3613.4 3638� 1
J=ψð2SÞ 01− 3686.1 3686� 0.01
Λþ
c 01

2
þ 2245.4 2286.46� 0.14

Σcð2455Þ 11
2
þ 2445.4 2453.97� 0.14

Σcð2520Þ 13
2
þ 2517.6 2518.41þ0.22

−0.18
Ξþ
c

1
2
1
2
þ 2456.0 2467.71� 0.23

Ξ0þ
c

1
2
1
2
þ 2566.7 2578.2� 0.5

Ξcð2645Þþ 1
2
3
2
þ 2642.6 2645.10� 0.30

Ω0
c 01

2
þ 2680.8 2695.2� 1.7

Ωcð2770Þ0 03
2
þ 2764.3 2765.9� 2.0

TABLE III. Color matrix elements of λci · λ
c
j .

λc1 · λ
c
2 λc3 · λ

c
4 λc1 · λ

c
3 λc2 · λ

c
4 λc1 · λ

c
4 λc2 · λ

c
3

h66̄jÔj66̄i 4=3 4=3 −10=3 −10=3 −10=3 −10=3
h66̄jÔj3̄3i 0 0 −2

ffiffiffi
2

p
−2

ffiffiffi
2

p
2

ffiffiffi
2

p
2

ffiffiffi
2

p
h3̄3jÔj3̄3i −8=3 −8=3 −4=3 −4=3 −4=3 −4=3

TABLE IV. Flavor matrix elements of 1,
P

3
a¼1 λ

a
q̄λ

a
q̄0 ,P

7
a¼4 λ

a
q̄λ

a
q̄0 , and λ8q̄λ

8
q̄0 .

½n̄n̄0� fn̄n̄0g ½n̄ s̄� fn̄ s̄g fs̄ s̄g
h1i 1 1 1 1 1
hP3

a¼1 λ
a
q̄λ

a
q̄0 i −3 1 0 0 0

hP7
a¼4 λ

a
q̄λ

a
q̄0 i 0 0 −2 2 0

hλ8q̄λ8q̄0 i 1=3 1=3 −2=3 −2=3 4=3

TABLE V. Spin matrix elements of σi · σj.

σ1 · σ2 σ3 · σ4 σ1 · σ3 σ2 · σ4 σ1 · σ4 σ2 · σ3

hχ000 jÔjχ000 i −3 −3 0 0 0 0

hχ110 jÔjχ110 i 1 1 −2 −2 −2 −2
hχ000 jÔjχ110 i 0 0 −

ffiffiffi
3

p
−

ffiffiffi
3

p ffiffiffi
3

p ffiffiffi
3

p
hχ011 jÔjχ011 i −3 1 0 0 0 0

hχ101 jÔjχ101 i 1 −3 0 0 0 0

hχ111 jÔjχ111 i 1 1 −1 −1 −1 −1
hχ011 jÔjχ101 i 0 0 1 1 −1 −1
hχ011 jÔjχ111 i 0 0 −

ffiffiffi
2

p ffiffiffi
2

p
−

ffiffiffi
2

p ffiffiffi
2

p
hχ101 jÔjχ111 i 0 0

ffiffiffi
2

p
−

ffiffiffi
2

p
−

ffiffiffi
2

p ffiffiffi
2

p
hχ112 jÔjχ112 i 1 1 1 1 1 1
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the variational method. For S-wave tetraquark systems, one
has l1 ¼ l2 ¼ l12 ¼ l3 ¼ L ¼ 0. For P-wave tetraquark
systems, the lowest energy states will have one of the l1,
l2 and l3 being 1 while the other two are being 0. When
l1 ¼ 1 or l2 ¼ 1, the spacial wave function will be denoted
as ρ-mode excitation where cc or q̄q̄0 is antisymmetric in
spacial space, and when l3 ¼ 1, the spacial wave function
will be denoted as λ-mode excitation where both cc and q̄q̄0
are symmetric in spacial space.
With the individual wave functions in color, flavor, spin,

and spacial spaces given above, one can construct the total

wave functions of the ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ systems
straightforwardly. All configurations considered in the
present work are listed in Table VI. There, the superscript
and subscript represent the color SU(3) representation and
the spin, respectively. The curly brace fg and square
bracket ½ � outside cc and q̄q̄0 represent the two quarks
or antiquarks are symmetric or antisymmetric in flavor
space, respectively.

IV. RESULTS AND DISCUSSION

The reliability of the employed (anti)quark-(anti)quark
interactions is crucial for a credible understanding of the
multiquark states in a quark model. In the present work, we
study the S- and P-wave ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ tetraquark
states in a chiral SU(3) quark model, where the
Hamiltonian incorporates the kinetic energies, the OGE
potential, the phenomenological confinement potential, and
the OBE potential stemming from the couplings of light
quarks and chiral fields. The interactions between light
antiquarks q̄ and q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ are taken from our
previous work of Ref. [25], which has been shown to be
quite successful in reproducing the energies of octet and
decuplet baryon ground states, the binding energy of
deuteron, and the NN scattering phase shifts and mixing
parameters up to total angular momentum J ¼ 6 in a rather

TABLE VI. Wave functions of the S- and P-wave tetraquark
states ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ. The superscript and subscript
represent the color SU(3) representation and the spin,
respectively.

JP Configuration

0þ ðfccg3̄c1 fq̄q̄0g3c1 Þ1cS¼0 ðfccg6c0 fq̄q̄0g6̄c0 Þ1cS¼0

1þ ðfccg3̄c1 ½q̄q̄0�3c0 Þ1cS¼1 ðfccg6c0 ½q̄q̄0�6̄c1 Þ1cS¼1

ðfccg3̄c1 fq̄q̄0g3c1 Þ1cS¼1

2þ ðfccg3̄c1 fq̄q̄0g3c1 Þ1cS¼2

0− ðfccg3̄c1 ½q̄q̄0; ρ�3c1 Þ1cS¼1 ðfcc; ρg6c1 ½q̄q̄0�6̄c1 Þ1cS¼1

ðfccg3̄c1 ½q̄q̄0�3c0 ; λÞ1cS¼1 ðfccg6c0 ½q̄q̄0�6̄c1 ; λÞ1cS¼1

ðfcc; ρg3̄c0 fq̄q̄0g3c1 Þ1cS¼1 ðfcc; ρg6c1 fq̄q̄0g6̄c0 Þ1cS¼1

ðfccg3̄c1 fq̄q̄0; ρg3c0 Þ1cS¼1 ðfccg6c0 fq̄q̄0; ρg6̄c1 Þ1cS¼1

ðfccg3̄c1 fq̄q̄0g3c1 ; λÞ1cS¼1

1− ðfcc; ρg3̄c0 ½q̄q̄0�3c0 Þ1cS¼0 ðfcc; ρg6c1 ½q̄q̄0�6̄c1 Þ1cS¼0

ðfccg3̄c1 ½q̄q̄0; ρ�3c1 Þ1cS¼0 ðfcc; ρg6c1 ½q̄q̄0�6̄c1 Þ1cS¼1

ðfccg3̄c1 ½q̄q̄0; ρ�3c1 Þ1cS¼1 ðfcc; ρg6c1 ½q̄q̄0�6̄c1 Þ1cS¼2

ðfccg3̄c1 ½q̄q̄0; ρ�3c1 Þ1cS¼2 ðfccg6c0 ½q̄q̄0; ρ�6̄c0 Þ1cS¼0

ðfccg3̄c1 ½q̄q̄0�3c0 ; λÞ1cS¼1 ðfccg6c0 ½q̄q̄0�6̄c1 ; λÞ1cS¼1

ðfcc; ρg3̄c0 fq̄q̄0g3c1 Þ1cS¼1 ðfcc; ρg6c1 fq̄q̄0g6̄c0 Þ1cS¼1

ðfccg3̄c1 fq̄q̄0; ρg3c0 Þ1cS¼1 ðfccg6c0 fq̄q̄0; ρg6̄c1 Þ1cS¼1

ðfccg3̄c1 fq̄q̄0g3c1 ; λÞ1cS¼0 ðfccg6c0 fq̄q̄0g6̄c0 ; λÞ1cS¼0

ðfccg3̄c1 fq̄q̄0g3c1 ; λÞ1cS¼1

ðfccg3̄c1 fq̄q̄0g3c1 ; λÞ1cS¼2

2− ðfccg3̄c1 ½q̄q̄0; ρ�3c1 Þ1cS¼1 ðfcc; ρg6c1 ½q̄q̄0�6̄c1 Þ1cS¼1

ðfccg3̄c1 ½q̄q̄0; ρ�3c1 Þ1cS¼2 ðfcc; ρg6c1 ½q̄q̄0�6̄c1 Þ1cS¼2

ðfccg3̄c1 ½q̄q̄0�3c0 ; λÞ1cS¼1 ðfccg6c0 ½q̄q̄0�6̄c1 ; λÞ1cS¼1

ðfcc; ρg3̄c0 fq̄q̄0g3c1 Þ1cS¼1 ðfcc; ρg6c1 fq̄q̄0g6̄c0 Þ1cS¼1

ðfccg3̄c1 fq̄q̄0; ρg3c0 Þ1cS¼1 ðfccg6c0 fq̄q̄0; ρg6̄c1 Þ1cS¼1

ðfccg3̄c1 fq̄q̄0g3c1 ; λÞ1cS¼1

ðfccg3̄c1 fq̄q̄0g3c1 ; λÞ1cS¼2

3− ðfccg3̄c1 ½q̄q̄0; ρ�3c1 Þ1cS¼2 ðfcc; ρg6c1 ½q̄q̄0�6̄c1 Þ1cS¼2

ðfccg3̄c1 fq̄q̄0g3c1 ; λÞ1cS¼2

TABLE VII. Masses and eigenvectors for S-wave ccn̄n̄0, ccn̄ s̄,
and ccs̄ s̄ ðn̄; n̄0 ¼ ū; d̄Þ systems.

IJP Configuration hHi Mass (MeV) Eigenvector

10þ ðfccg6c0 fn̄n̄0g6̄c0 Þ1c0 �
4194
−81

−81
4107

	 �
4242
4059

	 �−0.86
0.51

−0.51
−0.86

	
ðfccg3̄c1 fn̄n̄0g3c1 Þ1c0

01þ ðfccg6c0 ½n̄n̄0�6̄c1 Þ1c1 �
4135
51

51
3889

	 �
4145
3879

	 �−0.98
−0.20

0.20
−0.98

	
ðfccg3̄c1 ½n̄n̄0�3c0 Þ1c1

11þ ðfccg3̄c1 fn̄n̄0g3c1 Þ1c1 4131 4131 1.00

12þ ðfccg3̄c1 fn̄n̄0g3c1 Þ1c2 4176 4176 1.00

1
2
0þ ðfccg6c0 fn̄ s̄g6̄c0 Þ1c0 �

4285
−84

−84
4230

	 �
4346
4169

	 �−0.81
0.59

−0.59
−0.81

	
ðfccg3̄c1 fn̄ s̄g3c1 Þ1c0

1
2
1þ ðfccg6c0 ½n̄ s̄�6̄c1 Þ1c1 �

4245
52

52
4110

	 �
4263
4092

	 �−0.95
−0.32

0.32
−0.95

	
ðfccg3̄c1 ½n̄ s̄�3c0 Þ1c1

1
2
1þ ðfccg3̄c1 fn̄ s̄g3c1 Þ1c1 4255 4255 1.00

1
2
2þ ðfccg3̄c1 fn̄ s̄g3c1 Þ1c2 4301 4301 1.00

00þ ðfccg3̄c1 fs̄ s̄g3c1 Þ1c0 �
4370
−86

−86
4347

	 �
4445
4272

	 �−0.75
0.66

−0.66
−0.75

	
ðfccg6c0 fs̄ s̄g6̄c0 Þ1c0

01þ ðfccg3̄c1 fs̄ s̄g3c1 Þ1c1 4374 4374 1.00

02þ ðfccg3̄c1 fs̄ s̄g3c1 Þ1c2 4423 4423 1.00
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consistent manner. The interactions associated with charm
quark, consisting of the OGE potential and the confinement
potential, are determined by a good fit to the masses of
known charmed mesons and baryons, which are listed in
Table II. We choose the Gaussian functions as the trial wave
functions in coordinate space and combine them with the
color, flavor, and spin wave functions to get the total wave
functions of the S- and P-wave ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ
systems that satisfy the Pauli principle.
Equipped with the Hamiltonian and the trial wave

functions, we solve the Schrödinger equation by use of
the variational method to get the masses and the corre-
sponding eigenvectors for the S- and P-wave ccq̄q̄0

ðq̄; q̄0 ¼ ū; d̄; s̄Þ states. The results for S-wave ccn̄n̄0,
ccn̄ s̄, and ccs̄ s̄ ðn̄; n̄0 ¼ ū; d̄Þ systems are listed in
Table VII. One sees from this table that the lowest S-wave
states for ccn̄n̄0, ccn̄ s̄, and ccs̄ s̄ configurations have
masses of 3879 MeV, 4092 MeV, and 4272 MeV, respec-
tively, and have quantum numbers of isospin and spin-
parity IJP ¼ 01þ, 1

2
1þ, and 00þ, respectively. The effects

of channel couplings of the states with the same quantum
numbers are considerable in reducing the energies of these
states. Note that there are three IJP ¼ 1

2
1þ states for ccn̄ s̄

as listed in Table VI. Two of them have symmetric flavor
wave functions for n̄ s̄, and they do not couple to the other
state that has antisymmetric flavor wave functions for n̄ s̄.
In Table VIII, we show the individual contributions of

the Hamiltonian to the ccn̄n̄0 ðn̄; n̄0 ¼ ū; d̄Þ systems with
quantum numbers IJP ¼ 01þ, 10þ, 00−, and 10− (only the
lowest two states are listed for negative parity). One
sees that for all these states, apart from the kinetic energies,

the dominant contributions are coming from the confine-
ment potential and the color coulomb interaction of the
OGE potential, followed by the color magnetic interaction
of the OGE potential. Significant contributions are also
seen from the OBE potential, which reduces the energies
of the ccn̄n̄0 states with IJP ¼ 01þ, 10þ, and 00− by
163 MeV, 56 MeV, and 179 MeV, respectively. Note that
the contributions of π exchange are proportional to the
matrix elements of the operator hσi ·σjτi · τji where

τa ¼ λa (a ¼ 1, 2, 3). For the states ðfccg3̄c1 ½n̄n̄0�3c0 Þ1cS¼1

with IJP ¼ 01þ and ðfccg3̄c1 ½n̄n̄0�3c0 ;λÞ1cS¼1 with IJP ¼ 00−,
one has hσi · σjτi · τji ¼ 9, much bigger than 1 or −3 in
other states, as here both isospin and spin of n̄n̄0 are zero,
which results in the maximum attractions of π exchange,
reducing the energies of these two states by 194 MeV and
196 MeV, respectively. The kinetic energies of these two
states are observed to be bigger than the other states. This
is because the strong attractions offered by π exchange in
these two states compress the spacial sizes of the light
quarks in these two states while the kinetic energies are in
inverse proportion to the distances of quarks. The con-
tributions from the tensor force and spin orbit force,
marked as hV teni and hVlsi in the last two columns, are
seen to be rather small. This means that the mixing
between states with the same quantum numbers IJP but
different excitation modes in orbit space (excitations of the
relative motion between cc, the relative motion between
q̄q̄0, and the relative motion between cc and q̄q̄0) are not
considerable, and the physical states may be approximated
to have pure excitation modes.

TABLE VIII. Individual contributions of the Hamiltonian to the ccn̄n̄0 ðn̄; n̄0 ¼ ū; d̄Þ systems.

IJP Configuration hHi hTi hVconfi hVcouli hVCMi hVσi hVπi hV teni hV lsi
01þ ðfccg6c0 ½n̄n̄0�6̄c1 Þ1cS¼1

4135 713 193 −618 190 17 25 0 0

ðfccg3̄c1 ½n̄n̄0�3c0 Þ1cS¼1
3889 1015 197 −774 1 31 −194 0 0

10þ ðfccg6c0 fn̄n̄0g6̄c0 Þ1cS¼0
4194 675 234 −602 256 −34 39 0 0

ðfccg3̄c1 fn̄n̄0g3c1 Þ1cS¼0
4107 723 295 −653 173 −40 −16 0 0

00− ðfcc; ρg6c1 ½n̄n̄0�6̄c1 Þ1cS¼1
4167 854 192 −605 106 6 28 −13 −27

ðfccg3̄c1 ½n̄n̄0�3c0 ; λÞ1cS¼1
4150 1159 338 −699 −59 17 −196 0 −35

10− ðfccg3̄c1 fn̄n̄0g3c1 ; λÞ1cS¼1
4393 817 456 −581 158 −39 −15 −9 −20

ðfcc; ρg6c1 fn̄n̄0g6̄c0 Þ1cS¼1
4299 749 287 −569 220 −35 39 1 −20

TABLE IX. Root mean square radius (in fm) of the ccū d̄ state with IJP ¼ 01þ and mass 3879 MeV.

IJP Mass
ffiffiffiffiffiffiffiffiffiffi
hr212i

p ffiffiffiffiffiffiffiffiffiffi
hr234i

p ffiffiffiffiffiffiffiffiffiffi
hr213i

p ffiffiffiffiffiffiffiffiffiffi
hr224i

p ffiffiffiffiffiffiffiffiffiffi
hr214i

p ffiffiffiffiffiffiffiffiffiffi
hr223i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
4
i¼1hðr⃗i − R⃗cmÞ2i=4

q

01þ 3879 0.54 0.70 0.76 0.76 0.76 0.76 0.48
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In Fig. 1, we present the calculated mass spectra of
S-wave and P-wave ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ states. For
P-wave states, only those with lower masses are shown
for the sake of simplicity. The meson-meson thresholds of
the possible fall-apart decay channels are marked with
dashed lines. One sees from Fig. 1(a) that the ccn̄n̄0

ðn̄; n̄0 ¼ ū; d̄Þ state with IJP ¼ 01þ just locates at
3879 MeV, very close to the calculated DD� threshold.
This state cannot decay to DD and thus is expected to have
a rather small decay width. Experimentally, a narrow state
Tþ
ccð3875Þ with quantum numbers IJP ¼ 01þ and quark

constituent ccū d̄ has been reported by the LHCb
Collaboration [11,12]. The state with mass 3879 MeV
predicted in our model has the same quantum numbers and
quark constituent with the experimentally observed
Tþ
ccð3875Þ. In Table IX, we present the root mean square

radius of this state calculated in our chiral SU(3) quark
model. One sees that the root mean square radius of this

state,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

4
i¼1hðr⃗i − R⃗cmÞ2i=4

q
, is only 0.48 fm, and more-

over, the distances of any pairs of quarks (antiquarks) are
less than or equal to 0.76 fm. This indicates that this
state has a rather compact structure. All of this demon-
strates that the experimentally observed Tþ

ccð3875Þ state
can be accommodated as a stable and compact ccū d̄
tetraquark sate in the chiral SU(3) quark model. This state

has 4% of the ðfccg6c0 ½ū d̄�6̄c1 Þ1c1 configuration and 96% of

the ðfccg3̄c1 ½ū d̄�3c0 Þ1c1 configuration, as can be seen from the
eigenvectors listed in Table VII.
One also sees from Figs. 1(a)–1(c) that all the other

S- and P-wave ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ states have masses
about 100 to a few hundreds MeV higher than the
corresponding meson-meson thresholds. For the state

ðfccg3̄c1 ½n̄n̄0�3c0 ; λÞ1cS¼1 with IJP ¼ 00−, although the π
exchange offers strong attractions with similar strength

to the lowest state ðfccg3̄c1 ½n̄n̄0�3c0 Þ1cS¼1 with IJP ¼ 01þ, the
color-coulomb force offers much less attraction, and the
confinement potential offers much bigger repulsion. Finally
this state has a mass more than 200 MeV higher than the
lowest state and the threshold of DD�. As these states
locate much higher than the corresponding meson-meson
thresholds, they are expected to decay easily into two
mesons via fall-apart mechanism. Thus, these states are not
suggested to be candidates of stable and compact tetraquark
states in the chiral SU(3) quark model.
In order to see to which extent do our calculated masses

of the ccq̄q̄0 (q̄; q̄0 ¼ ū; d̄) tetraquark states depend on the
values of the model parameters, in Fig. 2, we illustrate the
dependence of the mass for the lowest ccū d̄ state with
IJP ¼ 01þ on the parameter values. Here the vertical and

(a)

(b)

(c)

FIG. 1. The mass spectra of S- and P-wave ccq̄q̄0 ðq̄; q̄0 ¼
ū; d̄; s̄Þ tetraquark states. Subfigures (a)–(c) correspond to the
mass spectra of ccn̄n̄0, ccn̄ s̄, and ccs̄ s̄ ðn̄; n̄0 ¼ ū; d̄Þ states,
respectively. For P-wave states, only those with lower masses are
shown for the sake of simplicity.

WANG, SONG, WANG, and HUANG PHYS. REV. D 109, 074026 (2024)

074026-8



horizontal axes indicate the multiples of the mass and
parameter values, respectively, compared to their original
values. It is observed that when the value of each of the
parameter of gc, acu, acc, a0cu, and a0cc varies by 10%, the
mass of the lowest ccū d̄ state with IJP ¼ 01þ changes less
than 2%. This demonstrates that our calculated results are
relatively stable against the values of these parameters.
Nevertheless, when the charm quark mass, mc, varies by
10%, the mass of the lowest ccū d̄ state with IJP ¼ 01þ
fluctuates by about 7%. This can be understood if we notice
that 2mc makes up the bulk of themass of the ccū d̄ states. In
practical calculation, one needs to refit the other parameters
when a different value of mc is chosen. By doing so, the
resulting mass of the ccū d̄ state with IJP ¼ 01þ keeps
nearly unchanged as depicted in Fig. 2 with a dashed line.

V. SUMMARY

In this work, we systematically explore the mass spectra
of the S- and P-wave ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ systems in a
chiral SU(3) quark model. The Hamiltonian consists of the
kinetic energy, the confinement potential, the OGE poten-
tial, and the OBE potential stemming from the coupling of
light quarks (antiquarks) and chiral fields. The interactions

between the light antiquarks q̄ and q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ are
taken from our previous work of Ref. [25], which repro-
duced the energies of octet and decuplet baryon ground
states, the binding energy of deuteron, and theNN scattering
phase shifts and mixing parameters for total angular
momentum up to J ¼ 6 quite well in a rather consistent
manner. The interactions associated with charm quarks are
fixed by fitting the masses of known charmed baryons and
mesons. The energies and eigenvectors of the S- andP-wave
ccq̄q̄0 ðq̄; q̄0 ¼ ū; d̄; s̄Þ states are obtained by solving the
Schrödinger equation via the variational method.
The results show that the lowest S-wave ccū d̄ state

with quantum numbers IJP ¼ 01þ has a mass 3879 MeV,
approximately at the calculated threshold of DD�.
This state has 4% of the ðfccg6c0 ½ū d̄�6̄c1 Þ1c1 configuration

and 96% of the ðfccg3̄c1 ½ū d̄�3c0 Þ1c1 configuration. It cannot
decay to the DD channel due to its quantum numbers and
thus is expected to have a rather small decay width. All the
mass, width, and quantum numbers of this state are
consistent with those of the narrow state Tþ

ccð3875Þ
reported by the LHCb Collaboration [11,12]. Moreover,
the calculated root mean square radius of this state isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

4
i¼1hðr⃗i − R⃗cmÞ2i=4

q
¼ 0.48 fm, and the distances of

any pair of quarks (antiquarks) are less than or equal to
0.76 fm. All these demonstrate that the experimentally
observed Tþ

ccð3875Þ state can be accommodated as a
compact ccū d̄ tetraquark state in the chiral SU(3)
quark model.
The energies of all other S- and P-wave ccq̄q̄0 ðq̄; q̄0 ¼

ū; d̄; s̄Þ states are about 100 to several hundreds MeV
higher than the thresholds of the corresponding meson-
meson channels that can be decayed into via the fall-apart
mechanism. Thus, they are expected to have large decay
widths and not suggested as candidates of compact tetra-
quark states in the chiral SU(3) quark model.
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