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Abstract The weak cosmic censorship conjecture is a
hypothesis about the nature of event horizons and singulari-
ties during the formation of black holes. It posits that singu-
larities are always enveloped by the event horizons of black
holes, thereby preventing naked singularities from affecting
the causal structure of spacetime. In this paper, we study the
effect of rotating short haired black holes on the weak cos-
mic censorship conjecture. Discussion of whether the event
horizons of a rotating short haired black hole is disrupted by
studying incident neutral test particles and scalar fields. In the
context of short haired black holes, when incident neutral test
particles are considered for extreme and near extreme cases,
our research results indicate that neutral test particles can
destroy the event horizons of short haired black holes, vio-
lating the weak cosmic censorship conjecture. In the case of
scalar field incidence in short haired black holes, for extreme
situations, when the incident wave modes fall within the
range of 1

2κM+ β
Mκ

< ω
m < 1

2Mκ+ β
Mκ

− 1
2κ

, the results indi-

cate that the event horizons of rotating short haired black
holes is disrupted. For near extreme cases, the presence of
hair allows for the disruption of the event horizons of rotating
short haired black holes, as indicated by our results. There-
fore, these conclusions are intriguing and will provide new
insights for us to further understand the weak cosmic cen-
sorship conjecture and explore the properties of short haired
black holes.

1 Introduction

Black holes are celestial bodies predicted by the theory of
general relativity, and the concept of black holes was first
proposed by scientists such as Michell and Laplace in the
early eighteenth century [1,2]. The proposal of the black hole
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concept has been indirectly confirmed by physicists through
various observational means, such as gravitational lensing
effects, the motion of star orbits, the detection of X-rays,
and gravitational waves, all of which provide solid support
for the real existence of black holes [3–6]. Black holes are
composed of extremely dense matter, among which the most
notable feature is the singularity within a black hole. Regard-
ing the singularity of black holes, there are two scenarios:
one is the gravitational collapse leading to a naked singu-
larity, and the other is that the end product of gravitational
collapse is a black hole, meaning the singularity produced is
enveloped by the event horizon of the black hole, thereby
not producing a naked singularity. Naked and non naked
singularities represent the two possibilities of whether the
singularity can be covered by the event horizons. A naked
singularity means that the singularity is not covered by the
event horizons and can be directly exposed to external obser-
vation; whereas a non naked singularity means the singularity
is completely surrounded by the event horizons, not affecting
the completeness of spacetime causality. This issue actually
relates to the weak cosmic censorship conjecture, which is
a conjecture about the properties of black holes. The weak
cosmic censorship conjecture suggests that all singularities
in the universe should be enveloped by the event horizons of
black holes, preventing them from affecting the causal laws
of spacetime.

In the previous section, we discussed two important con-
cepts: singularities and the Weak Cosmic Censorship Con-
jecture. There are some connections between them. On one
hand, an important result of General Relativity is the Singu-
larity Theorems, proposed by physicists Penrose and Hawk-
ing [7,8], which suggest that matter collapse inevitably leads
to singularities, thus causing the breakdown of physical laws.
On the other hand, to ensure that physical laws remain unaf-
fected by singularities, Penrose proposed the Weak Cos-
mic Censorship Conjecture in 1979 [9,10]. Specifically, the
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idea behind the Weak Cosmic Censorship Conjecture is that
the appearance of singularities is always accompanied by
event horizons, thereby preventing singularities from being
exposed to the universe. To test this conjecture, physicists
have used various methods such as the collapse evolution of
matter fields [11–13], collisions of supermassive black holes
[14–17], and numerical evolutions of black holes [18,19].
Here, we will employ the thought experiment proposed by
Wald to test the weak cosmic censorship conjecture, by inci-
dent test particles into both extreme and near extreme black
holes [20], as well as the method proposed by Semiz and oth-
ers, which involves incident a scalar field into extreme and
near extreme black holes to test the weak cosmic censorship
conjecture [21]. Research on this conjecture has led to differ-
ent schools of thought [22–41], with some studies suggesting
that the Weak Cosmic Censorship Conjecture could be vio-
lated, exposing the singularities of black holes, while other
studies argue that it is not violated, thus ensuring that black
holes’ event horizons encompass them. Therefore, research
on the Weak Cosmic Censorship Conjecture is continuously
evolving and changing.

On the other hand, through the Einstein field equations,
exact solutions for black holes can be obtained, allowing
physicists to gain a deeper understanding of the nature of
black holes. Typically, the exact solutions for black holes are
divided into spherically symmetric and rotating cases. Physi-
cists know through research that gravitational collapse can
form black holes, and mass alone can describe the proper-
ties of spherically symmetric black holes. However, there is
another type of black hole, namely the rotating Kerr black
hole, which is described by its mass, angular momentum, and
charge, according to the no hair theorem [42–53]. Among
the many “hairs” of black holes, scalar hair, as the most
important one, affects the properties of black holes. Tang and
others have used the NJ (Newman–Janis) method to extend
the background metric of spherically symmetric short haired
black holes to the background metric of rotating short haired
black holes [54]. In this work, by injecting test particles and
scalar fields into the rotating short haired black holes calcu-
lated by Tang and others, the influence of short hair on the
Weak Cosmic Censorship Conjecture for Kerr black holes is
explored.

The structure of this article is as follows: Sect. 1 is the
introduction. Section 2 introduces the exact solutions of rotat-
ing short haired black holes. Section 3 discusses the incident
of test particles into rotating short haired black holes. Sec-
tion 4 covers the incident of scalar fields into rotating short
haired black holes. Section 5 provides a summary of the arti-
cle. This article adopts natural units where c = G = 1.

2 Short haired black holes under rotation

2.1 Precise solution of short haired black holes in the case
of rotation

The no hair theorem is a key feature of classical black
holes, and the quantum effects of black hole event horizons
become particularly significant due to the extreme proper-
ties of trapped ergospheric horizons [55–61]. However, the
non trivial matter fields in black hole spacetimes may lead to
violations of the no hair theorem. Among them, scalar hair
acts as the most significant hair of black holes, affecting the
spacetime structure of black holes.

Contreras et al. have utilized the gravitational decoupling
method to extend these spherically symmetric black holes
with scalar hair to the rotating case, discussing the funda-
mental physical properties of such spacetimes [62]. This is
based on the spherically symmetric hairy background met-
rics obtained by Ovalle et al. [63]. Using the Newman–Janis
(NJ) algorithm, solutions for rotating short haired black holes
were obtained, meaning that the NJ method can extend spher-
ically symmetric spacetimes to rotating spacetimes through
complex transformations. Therefore, within the NJ algorithm
[64–66], Tang and Xu [54] obtained the exact solutions for
short haired black holes in the rotating case, as follows

ds2 = −
[

1 − 2Mr − Q2k
m

r2k−2

ρ2

]
dt2 + ρ2

�
dr2

−2a sin2 θ(2Mr − Q2k
m

r2k−2 )

ρ2 dtdφ + ρ2dθ2

+	 sin2 θ

ρ2 dφ2, (1)

here

ρ2 = r2 + a2 cos2 θ, (2)

� = r2 − 2Mr + Q2k
m

r2k−2 + a2, (3)

	 = (r2 + a2)2 − a2�(r) sin2 θ. (4)

The mass of the black hole is denoted by the variable M
in the given equation, Qm denotes the strength parameter of
the hair, where for Qm �= 0 and k > 1, it represents a short
haired black hole under rotation. Here, a represents the spin
parameter of the short haired black hole, namely a = J/M,

where J denotes the angular momentum of the black hole.
When Qm = 0, the metric (1) representing the short haired
black hole degenerates to a Kerr black hole.
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2.2 Event horizon and angular velocity of a short haired
black hole

The event horizons of this short haired black hole can be
expressed in a coupled manner, given by grr = � = 0. This
can be obtained through Eq. (3):

� = r2 − 2Mr + Q2k
m

r2k−2 + a2 = 0. (5)

By rearranging Eq. (5), we obtain a coupled equation for
the event horizons

rh = M ± M

√√√√
1 −

Q2k
m

r2k−2
h

+ a2

M2 . (6)

For convenience of analysis, let the coupling term be β =
Q2k
m

r2k−2
h

. Then Eq. (6) can be rewritten as follows

rh = M ± M

√
1 − β + a2

M2 , (7)

where rh represents the event horizons of the rotating short
haired black hole. From Eq. (7), we know that when β+a2 <

M2 is satisfied, it indicates the existence of a black hole
spacetime. However, in the other case when β + a2 > M2

is satisfied, the background metric (1) no longer describes
a black hole. This is the point of interest for us because if,
after scattering test particles or scalar fields, the metric (1)
transitions from describing a black hole to a non black hole
spacetime, then it can be said that the metric (1) has under-
gone super spinning. In other words, at this point, there is a
possibility of violating The Weak Cosmic Censorship Con-
jecture under our conditions.

The formula provided below expresses the area of the
event horizons for this particular black hole:

A =
∫ ∫ √

gθθgφφdθdφ = 4π(r2
h + a2). (8)

At the event horizons of this black hole, the angular veloc-
ity can be determined using the following formula:

�h = −g03

g33
= a

r2
h + a2

. (9)

3 Incident test particles on rotating short haired black
holes

This chapter, our main focus is on incident test particles in
rotating short haired black holes, aiming to discuss the possi-
bility of disrupting the black hole event horizons in extreme
and near extreme black hole scenarios. Through Eq. (7), we
can calculate the event horizons of rotating short haired black
holes. In this equation, when β + a2 ≤ M2 satisfies certain

conditions, the black hole event horizons exists. However,
when it exceeds a certain threshold denoted by β+a2 > M2,

it implies the absence of an event horizons in this space-
time, which is precisely the issue we are primarily discussing.
Therefore, in this article, we primarily delve into this prob-
lem.

The movement of particles in the spacetime of rotating
short haired black holes can be described using the geodesic
equation

d2xμ

dτ 2 + 

μ
αβ

dxα

dτ

dxβ

dτ
= 0. (10)

The Lagrangian is given by:

L = 1

2
mgμν

dxμ

dτ

dxν

dτ
= 1

2
mgμν ẋ

μ ẋν . (11)

If a test particle moves at a slow pace along the equatorial
plane with θ = π

2 , it does not exhibit any motion in the
θdirection, resulting in dθ/dτ = 0, which implies that the
momentum Pθ is zero:

Pθ = ∂L

∂θ̇
= mg22θ̇ = 0. (12)

From the equations of motion of the test particle, the angu-
lar momentum δ J and energy δE can be expressed as the
components of the test particle in the φ and t directions,
respectively. Their expressions are as follows

δ J = Pφ = ∂L

∂φ
= mg3ν ẋ

ν, (13)

δE = −Pt = −∂L

∂ ṫ
= −mg0ν ẋ

ν . (14)

When a test particle enters the interior of the event hori-
zons of a rotating short haired black hole, the energy and
angular momentum of the short haired black hole change. At
this point, the changed energy and angular momentum are as
follows

M → M ′ = M + δE, (15)

J → J ′ = J + δ J. (16)

When the test particle moves outside the event horizons
of the short haired black hole, its four velocity is given as
follows

UμUμ=dxμ

dτ

dxμ

dτ
=gμν

dxμ

dτ

dxν

dτ
= 1

m2 g
μνPμPν= − 1.

(17)

Substituting the expressions for angular momentum and
energy into the above equation and rearranging, we obtain
the following expression

g00δE2 − 2g03δEδ J + g11P2
r + g33δ J 2 = −m2. (18)
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The equation δE above can be calculated as

δE = g03

g00 δ J

± 1

g00

√
(g03)2δ J 2 − g00(g33δ J 2 + g11P2

r + m2).

(19)

As the test particle travels from infinity towards the event
horizons, its trajectory must be timelike and oriented towards
the future. Therefore, in this case, we need to satisfy the
following conditions

dt

dτ
> 0. (20)

For the two equations of δ J and δE, rearranging yields

ṫ = dt

dτ
= −g33δE + g03δ J

g00g33 − g2
03

. (21)

The energy is obtained from Eqs. (20) and (21)

δE > −g03

g33
δ J. (22)

At this point, we need to satisfy the condition of Eq. (22),
which means the energy of the test particle takes a negative
sign, that is

δE = g03

g00 δ J

− 1

g00

√
(g03)2δ J 2 − g00(g33δ J 2 + g11P2

r + m2).

(23)

In studying the constraints on energy and angular momen-
tum, we conclude that to ensure the test particle can accu-
rately enter the event horizons, its energy and angular
momentum must meet specific requirements, that is

δ J < − lim
r→rh

g33

g03
δE . (24)

By combining Eqs. (9) and (24), the solution obtained is

δ J < − lim
r→rh

g33

g03
δE = δE

�h
= r2 + a2

a
δE . (25)

When the angular momentum is too large, it is impossible
for the test particle to fall into the black hole. Therefore, for
a test particle to be captured by a rotating short haired black
hole, there must be an upper limit to the test particle’s angular
momentum, denoted as δ Jmax . Thus, the upper limit of the
test particle’s angular momentum δ J, given by Eq. (25), is

δ Jmax <
δE

�h
= r2

h + a2

a
δE . (26)

From Eq. (7), we know that the event horizons of the rotat-
ing short haired black hole disappears only when β + a2 >

M2. Therefore, we can arrange this condition as follows

a > M

√
1 − β

M2 = Mκ, (27)

that is

J > M2κ. (28)

Here, the parameter κ =
√

1 − β

M2 is a function of the hair

strength κ(Q2k
m ), where β = Q2k

m

r2k−2
h

.

Therefore, for test particles entering a rotating short haired
black hole to damage the event horizons of the black hole,
the following conditions are necessary

J ′ > κ ′M ′2. (29)

Here, the parameter κ ′ is a physical quantity related to
β and the mass M, and β contains information about the
event horizon.Therefore, when neutral test particles enter the
interior of the event horizon of a short haired black hole, the
corresponding mass M and β in the composite system formed
by the short haired black hole will also change.At this point,
the mass M ′ of the composite system becomes M + δE (see
Eq. (15)).Analyzing the event horizon (Eq. (5)) of the short
haired black hole, when the corresponding mass changes, the
coupling term β, which contains information about the event
horizon, also undergoes a slight change, and the change in β

is an increasing trend (β = −r2+2Mr−a2, when the system
is formed, the corresponding β increases). Therefore, the β ′
of the composite system formed can also be represented as
β ′ = β + δE, without loss of generality.

At this point, after the neutral particle enters the event
horizons and forms a composite system, the parameter κ ′
can be represented as

κ ′ =
√

1 − β ′
M ′2 =

√
1 − β + δE

(M + δE)2 . (30)

Here, since δE � M, the expansion of the coupling term
κ ′ yields

κ ′ ≈ κ +
(

β

κM3 − 1

2κM2

)
δE

+ 8β2 − 4βM − M2 − 12βM2 + 8M3

8M6κ3 δE2. (31)

Substituting Eqs. (15), (16), and (31) into Eq. (29) yields

J + δ J >

(
κ +

(
β

κM3 − 1

2κM2

)
δE

+ 8β2 − 4βM − M2 − 12βM2 + 8M3

8M6κ3 δE2
)

× (M2 + 2MδE + δE2). (32)
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After rearranging, we obtain

δ J > (M2κ − J )+
(

2κM+ β

κM
− 1

2κ

)
δE+

(
κ + 2β

κM2

− 1

κM
+8β2 − 4βM − M2 − 12βM2+8M3

8M4κ3

)
δE2. (33)

In Eq. (33) we obtain a lower bound on the event hori-
zons for which the test particle can destroy the short haired
black hole in the rotating case. When we do not consider
the effects of higher order perturbations, the lower limit of
angular momentum at this point can be expressed as

δ Jmin > (M2κ − J ) +
(

2κM + β

κM
− 1

2κ

)
δE . (34)

According to the above derivation, only when the selected
test particles satisfy both conditions of Eqs. (26) and (34) at
the same time, the event horizons of the short hair black hole
can be destroyed.

To explore whether neutral test particles can disrupt the
event horizons of short hair black holes, we will discuss two
cases next, one extreme case and the other near extreme case.

1� In the extreme case, where β+a2

M2 = 1, the event hori-
zons of the rotating short haired black hole is as follows

rh = M. (35)

In the case of first order approximation, to disrupt the event
horizons of the rotating short haired black hole, the following
two conditions need to be satisfied

δ Jmax <
δE

�h
= r2

h + a2

a
δE, (36)

δ Jmin >

(
2κM + β

κM
− 1

2κ

)
δE . (37)

By combining Eqs. (27), (35), and (36), it can be calculated
that

δ Jmax <
r2
h + a2

a
δE = M2κ2 + M2κ2 + β

Mκ
δE

= 2M2κ2 + β

Mκ
δE =

(
2Mκ + β

Mκ

)
δE . (38)

Analyzing Eqs. (37) and (38), in the case of a first order
approximation, it can be intuitively obtained that

δ Jmax − δ Jmin =
(

2Mκ + β

Mκ

)
δE

−
(

2Mκ + β

Mκ
− 1

2κ

)
δE = 1

2κ
δE .

(39)

In the case of first order approximation, we get the result
of Eq. (39). This result shows that the event horizons of the

black hole can be destroyed under the condition of first order
approximation (δ Jmax − δ Jmin > 0). Next, we will explore
the second order approximation. When considering second
order small quantities, according to Eqs. (33) and (38), it can
be obtained.

δ Jmax − δ Jmin = 1

2κ
δE −

(
κ + 2β

κM2 − 1

κM

+ 8β2 − 4βM − M2 − 12βM2 + 8M3

8M4κ3

)
δE2

= 1

2κ
δE − (higher -order terms). (40)

In Eq. (40), the result we calculated is a first order small
quantity minus higher order small quantities, and at this point,
the final result presented is still a positive value.This also
means that even when taking higher order quantities into
account, our result remains positive (δ Jmax − δ Jmin > 0),

i.e., under extreme conditions, the event horizons of a short
haired black hole can be destroyed. At this time, the weak
cosmic censorship conjecture is violated.

2� In the near extreme case, that is, when a = κM, the
condition for the event horizons of a rotating short haired
black hole is

δ Jmax <
r2
h + a2

a
δE, (41)

δ Jmin >

(
2κM + β

κM
− 1

2κ

)
δE + (κM2 − J ). (42)

For a ∼ κM, a dimensionless small quantity ε can be
used to describe the degree of approximation

β + a2

M2 = 1 − ε2. (43)

Parameter ε → 0, that is ε � 1, when ε = 0, Eq. (43)
degenerates into the extreme case. From Eqs. (41) and (42),
it can be concluded that to destroy the event horizons of the
spacetime of a short haired black hole in the near extreme
case, the following expression must hold.

1

�h
− 2κM − β

κM
+ 1

2κ
> 0. (44)

This indicates that the event horizons of a rotating short
haired black hole in the near extreme case can only be
destroyed if the test particle makes the composite system
satisfy the above condition.

Considering ε � 1, some series expansions can be per-
formed to obtain

rh = M(1 + ε), (45)

a = M

(
κ − ε2

2κ
+ o(ε4)

)
, (46)

a2 = M2 − M2ε2 − β. (47)
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Combining Eqs. (43), (44), (45), and (46), the calculation is
obtained

1

�h
− 2Mκ − β

κM
+ 1

2κ

= 1

2κ
+

2M2ε +
(
M2 + β

2κ2

)
ε2 − o(ε4)

a

= 1

2κ
+ 2M2ε

a
+ (higher -order terms). (48)

Since ε can be characterized as a first order small quantity,
the analysis of the above equation yields

1

�h
− 2Mκ − β

κM
+ 1

2κ
> 0. (49)

At this point, it represents that in the near extreme case, the
event horizons of the short haired black hole can be destroyed
(Expressions (49) and (44) are simultaneously satisfied.)

When higher order terms are taken into account, from the
spin parameter a = J/M, it can be obtained that

M2κ − J = M2ε2

2κ
− o(ε4). (50)

It is obtained from Eqs. (33) and (48)

δ Jmax − δ Jmin

=

⎛
⎜⎜⎝ 1

2κ
+

2M2ε +
(
M2 + β

2κ2

)
ε2 − o(ε4)

a

⎞
⎟⎟⎠ δE

− (M2κ − J ) −
(

κ + 2β

κM2 − 1

κM

+8β2 − 4βM − M2 − 12βM2 + 8M3

8M4κ3

)
δE2

= 1

2κ
δE + (higher -order terms)). (51)

Utilizing Eq. (50), Eq. (51) can be transformed into

δ Jmax − δ Jmin

=
⎛
⎝ 1

2κ
+

2M2ε +
(
M2 + β

2κ2

)
ε2 − o(ε4)

a

⎞
⎠ δE

− M2ε2

2κ
−

(
κ + 2β

κM2 − 1

κM

+ 8β2 − 4βM − M2 − 12βM2 + 8M3

8M4κ3

)
δE2

= 1

2κ
δE + (higher -order terms). (52)

In Eq. (52), the result we calculate is a first order small
quantity plus higher order small quantities, and the final result
presented is still a positive value.This also means that even
when considering higher order terms, our result is still posi-
tive (δ Jmax − δ Jmin > 0), i.e., in the near extreme case, the
event horizons of short haired black holes can be destroyed.

Overall, when a neutral test particle enters the event hori-
zons of a short haired black hole, considering the inclusion of
higher order terms in both extreme and near extreme cases
(fully consider the back-reaction and the spacetime back-
ground), at this time, in the extreme case, Eq. (40) can be
approximately obtained.

δ Jmax − δ Jmin = 1

2κ
δE − (higher -order terms). (53)

In extreme cases, an approximation can be obtained from
formula (52)

δ Jmax − δ Jmin = 1

2κ
δE + (higher -order terms). (54)

In both Eqs. (53) and (54), the results are dominated by a
first order term. When the spacetime background and back-
reaction effects are fully considered,then these backgrounds
will influence our analysis of higher order terms. However,
because the actual theory behind spacetime is very complex,
the specific expressions for these higher-order terms can-
not be accurately calculated. These issues are discussed in
the literature [67,68], where their analysis indicates that the
influence of back-reaction effects is negligible if the test body
is uncharged. The underlying reason is that the electromag-
netic self-force back-reaction effects, which contribute most
to the back-reaction, can be ignored. In our case, since our
test particles carry no charge, the impact of the back-reaction
effects is extremely weak (affecting only the higher-order
terms in our analysis, not the lower-order terms). This means
that even with full consideration of these effects, our conclu-
sions would not change.

4 Incident scalar field in a rotating short haired black
hole

In the third section, the weak cosmic censorship conjecture
was tested using the method of test particles. This section
primarily utilizes the method proposed by Semiz and others
[21], introducing a massive scalar field into the spacetime
of a rotating short haired black hole to discuss whether the
event horizons of the black hole can be disrupted in the cases
of extreme and near extreme black holes.
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4.1 Scattering of a massive scalar field

In the scalar field, the Klein Gordon equation under curved
spacetime is as follows

1√−g
∂μ(

√−ggμν∂νψ) − μ2ψ = 0. (55)

Based on the metric given by Eq. (1), its determinant can
be calculated

g = −ρ4 sin2 θ, (56)

the inverse metric tensor of the metric (1) is given by the
following equation

gμν = �μν

g
. (57)

Let η = 2Mr − Q2k
m

r2k−2 , substituting the metric (1) into the
above expression yields the following equation:

− (r2 + a2)2 − a2� sin2 θ

�ρ2

∂2ψ

∂t2 − 2aη

�ρ2

∂2ψ

∂t∂φ

+ 1

ρ2

∂

∂r

(
�

∂ψ

∂r

)
+ 1

ρ2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)

+ � − a2 sin2 θ

�ρ2 sin2 θ

∂2ψ

∂φ2 − μ2ψ = 0. (58)

The form of the solution for the scalar field ψ in the above
equation is as follows:

ψ(t, r, θ, φ) = e−iωt R(r)Slm(θ)eimφ, (59)

where Slm(θ) are the angular spherical functions, and l,m are
constants of the angular separation variables, whose values
are positive integers. Substituting Eq. (59) into the scalar
field equation (58) yields the angular and radial equations,
respectively.

1

sin θ

d

dθ

(
sin θ

dSlm(θ)

dθ

)
−

(
a2ω2 sin2 θ + m2

sin2 θ

+ μ2a2 cos2 θ − λlm

)
Slm = 0, (60)

and

d

dr

(
�
dR(r)

dr

)
+

(
(r2 + a2)2

�
ω2 − 2aη

�
mω

+ m2a2

�
− μ2r2 − λlm

)
Slm = 0. (61)

The solution to Eq. (60) is a spherical function, which
has an integral of 1 when calculating the energy flux. There-
fore, we will solve the radial equation, introducing tortoise

coordinates in this calculation process

dr∗ = r2 + a2

�
dr. (62)

By substituting the turtle coordinates into the radial equa-
tion (61), we get

�

(r2 + a2)2

d

dr
(r2)

dR(r)

dr∗
+ d2R(r)

dr2∗

+
[(

ω − ma

r2 + a2

)2

+ �2amω

(r2 + a2)2

− �

(r2 + a2)2 (μ2r2 + λlm)

]
R(r) = 0. (63)

Near the event horizons (r ∼= rh), namely

� ∼= 0. (64)

Substituting Eq. (64) into (63) yields

d2R(r)

dr2∗
+

(
ω − ma

r2 + a2

)2

R(r) = 0. (65)

Substituting Eq. (9) into (65) yields

d2R(r)

dr2∗
+ (ω − m�h)

2R(r) = 0. (66)

Expressed in exponential form

R(r) ∼ e[±i(ω−m�h)r∗]. (67)

Here, the positive and negative signs correspond to the out-
going and incoming waves, respectively. When we incident a
scalar field into a rotating short haired black hole, the space-
time of this black hole will absorb the energy of the pertur-
bation field. Therefore, it is more in line with physical reality
to take the negative sign in Eq. (67). At this time, the solution
to Eq. (66) is

R(r) = e[−i(ω−m�h)r∗]. (68)

By substituting Eq. (68) into Eq. (59), we can obtain the
approximate solution to the field equation as

ψ(t, r, θ, φ) = e[−i(ω−m�h)r∗]e−iωt Slm(θ)eimφ. (69)

Once this solution is acquired, it enables the calculation
of the energy and angular momentum that the spacetime of
a short haired black hole absorbs when the scalar field is
scattered onto it.

The following equation represents the energy momentum
tensor of a scalar field ψ with mass μ

Tμν = ∂μψ∂νψ
∗ − 1

2
gμν(∂μψ∂νψ∗ + μ2ψψ∗). (70)

By substituting the background metric of the short haired
black hole from Eq. (1) into Eq. (70), the following tensor is
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obtained

T r
t = r2

h + a2

ρ2 ω(ω − m�h)Slm(θ)eimφS∗
l ′m′(θ)e−imφ,

(71)

T r
φ = r2

h + a2

ρ2 m(ω − m�h)Slm(θ)eimφS∗
l ′m′(θ)e−imφ.

(72)

The energy flux of the event horizons in the spacetime of
a short haired black hole

dE

dt
=

∫ ∫
T r
t
√−gdθdφ = ω(ω − m�h)[r2

h + a2]. (73)

The angular momentum flux through the event horizons in
the spacetime of a short haired black hole

d J

dt
=

∫ ∫
T r

φ

√−gdθdφ = m(ω − m�h)[r2
h + a2]. (74)

Between Eqs. (73) and (74), one scenario, as we learn
from equation ω − m�h, occurs when ω > m�h, leading
to ω − m�h being positive. This indicates that both angular
momentum and energy flux are positive, suggesting that the
energy dE and angular momentum d J can be extracted from
the scalar field by the rotating short haired black hole. In
another scenario, when ω < m�h, both angular momentum
and energy are negative, indicating that the energy extracted
by the rotating short haired black hole in the scalar field is due
to black hole superradiance [69]. During the time interval dt,
the equations δE and δ J for the rotating short haired black
hole are as follows:

dE = ω(ω − m�h)[r2
h + a2]dt, (75)

d J = m(ω − m�h)[r2
h + a2]dt. (76)

From these two equations, the energy and angular momentum
extracted by the short haired black hole from the scalar field
are derived. Using these equations, one can discuss the impact
on the event horizons of the black hole due to the scattering
of the scalar field onto the rotating short haired black hole in
extreme and near extreme conditions.

4.2 Incident scalar field in a short haired black hole

This section primarily investigates the impact of a scalar field
encountering a rotating short haired black hole, exploring
whether the scalar field with significant angular momentum
can disturb the event horizons of this spacetime. The process
of scalar field scattering is discussed using the concept of
differentiation, focusing on the time interval dt.

During this process, after the rotating short haired black
hole absorbs the energy and angular momentum from the
incident scalar field, its mass M and angular momentum J
become M ′ and J ′, respectively. After obtaining the changed
mass and angular momentum, we discuss based on equation

κ ′M ′2 − J ′. If κ ′M ′2 ≥ J ′, then κ ′M ′2 − J ′ is positive,
meaning the event horizons of the rotating short haired black
hole exists. Conversely, the event horizons of this black hole
spacetime is disrupted.

Therefore, for the system formed by equation κ ′M ′2 −
J ′, after absorbing energy and angular momentum from the
scalar field, its state can become

κ ′M ′2 − J ′ = (M2κ − J )

+
(

2Mκ + β

Mκ
− 1

2κ

)
δE

+
(

κ + 2β

κM2 − 1

κM

+ 8β2 − 4βM − M2 − 12βM2 + M3

8M4κ3

)
δE2 − δ J.

(77)

When we consider lower-order perturbations, equation
(77) becomes

κ ′M ′2 − J ′ = (M2κ − J ) +
(

2Mκ + β

Mκ
− 1

2κ

)
δE

−δ J. (78)

Substituting Eqs. (75) and (76) into Eq. (78) yields

κ ′M ′2 − J ′ = (M2κ − J ) +
(

2Mκ + β

Mκ
− 1

2κ

)

× m2
(

ω

m
− 1

2κM + β
Mκ

− 1
2κ

)(
ω

m
− �h

)

× [r2
h + a2]dt. (79)

Here, just as we analyze test particles, we will analyze two
types of situations, namely extreme cases and near extreme
cases.

1� In the extreme case, that is, when M2κ = J, Eq. (79)
then becomes

κ ′M ′2 − J ′ =
(

2Mκ + β

Mκ
− 1

2κ

)
m2

×
(

ω

m
− 1

2κM + β
Mκ

− 1
2κ

)(
ω

m
− �h

)

× [r2
h + a2]dt. (80)

Then, the angular velocity �h can be expressed as

�h = a

r2
h + a2

= Mκ

2M2κ2 + β

= 1

2Mκ + β
Mκ

≤ 1

2κM + β
Mκ

− 1
2κ

. (81)
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Analyzing Eq. (80), if the incident wave mode is consid-
ered to be

ω

m
= 1

2

(
1

2κM + β
Mκ

− 1
2κ

+ �h

)
. (82)

Then (80) can be rewritten as

κ ′M ′2 − J ′ = −1

4

(
2Mκ + β

Mκ
− 1

2κ

)
m2

×
(

1

2κM + β
Mκ

− 1
2κ

− �h

)2

(r2
h + a2)dt.

(83)

Evaluating the above equation, it is intuitively obtained that,
in the extreme case, the incident scalar quantity field is capa-
ble of destroying the event horizons of a short haired black
hole (κ ′M ′2 − J ′ < 0). Moreover, due to the deviation in
angular velocity at the event horizons of a short haired black
hole from that at the event horizons of a Kerr black hole, it
becomes possible to disrupt the event horizons of the short
haired black hole.Therefore, by reanalyzing Eqs. (81) and
(83), it can be determined that the scalar field modes capable
of disrupting the event horizon of a short haired black hole
constitute a range, i.e.

1

2Mκ + β
Mκ

<
ω

m
<

1

2κM + β
Mκ

− 1
2κ

. (84)

In other words, when the modes of the incident wave are con-
fined within the range of expression (84), the event horizons
of the short haired black hole will be disrupted. Furthermore,
the larger the hair parameter, the wider the wave modes that
can disrupt the event horizons of the short haired black hole.
It is worth mentioning that since the energy carried by the
incident wave that can penetrate into the interior of the event
horizons is minimal, the corrections from higher order parts
are nearly zero. Therefore, in this section, we will only ana-
lyze the lower order correction terms, that is, without con-
sidering the higher order terms. In summary, under extreme
conditions, the scalar field can disrupt the event horizon of
the short haired black hole, and there exists a range of modes
for the scalar field within which the weak cosmic censorship
conjecture will be violated.

2� In the near extreme case, i.e., J �= M2κ, we have the
following equation

κ ′M ′2 − J ′ = (κM2 − J ) +
(

2Mκ + β

Mκ
− 1

2κ

)

× m2
(

ω

m
− 1

2κM + β
Mκ

− 1
2κ

)(
ω

m
− �h

)

× (r2
h + a2)dt. (85)

Similarly, in the near extreme case, the pattern of the inci-
dent scalar field can be written as

ω

m
= 1

2

(
1

2κM + β
Mκ

− 1
2κ

+ �h

)
. (86)

Then formula (85) can be sorted out

κ ′M ′2 − J ′ = (κM2 − J ) − 1

4

1(
2Mκ + β

Mκ
− 1

2κ

)

× m2�2
h

(
1

�h
−

(
2κM + β

Mκ
− 1

2κ

))2

× (r2
h + a2)dt. (87)

Here we use the same method as the analysis in Sect. 3, that
is, we use a dimensionless decimal to describe the degree of
approximation, which can therefore be written according to
the expression (43)

a2 + β

M2 = 1 − ε2, (88)

where ε is a small quantity approaching 0. Using Taylor
expansion, we can obtain

a = J

M
= Mκ

(
1 − ε2

2κ2 + o(ε4)

)
, (89)

tidy up

J = M2κ

(
1 − ε2

2κ2 + o(ε4)

)
, (90)

M2κ − J is calculated as

M2κ − J = M2ε2

2κ
− o(ε4). (91)

Bring formula (88) and (90) into formula (87)

1

�h
− 2Mκ − β

κM
+ 1

2κ

= 1

2κ
+

(
2M2ε +

(
M2 + β

2κ2

)
ε2 − o(ε4)

)

a
. (92)

Combined with formula (91) and (92), formula (87) can
be rewritten as
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κ ′M ′2 − J ′ =
(
M2ε2

2κ
− o(ε4)

)

− 1

4

1

(2κM + β
Mκ

− 1
2κ

)
m2�2

h

×

⎛
⎜⎜⎝ 1

2κ
+

(
2M2ε +

(
M2 + β

2κ2

)
ε2 − o(ε4)

)

a

⎞
⎟⎟⎠

2

× (r2
h + a2)dt ≈ M2ε2

2κ
−

(
1

2κ

)2

dt. (93)

Since our analysis occurs over an extremely short time inter-
val dt, at this time, dt can be regarded as a first order small
quantity. Analyzing Eq. (93), we know that the largest part of
the first term is a second order small quantity (M

2ε2

2κ
), and the

largest part of the second term is a first order small quantity((
1

2κ

)2

dt

)
. Subtracting a first order small quantity from a

second order small quantity, the entire expression will exhibit
the effect of a negative value, which is to say

κ ′M ′2 − J ′ < 0. (94)

This means that, when a scalar field is incident upon a
rotating short haired black hole in the near extreme case, the
event horizons of this spacetime can be disrupted, violating
the weak cosmic censorship conjecture.

5 Summary

In this paper, we utilize the exact solution of rotating short
hair black holes to explore the weak cosmic censorship con-
jecture.

The results are as follows:
• Incident test particles into a rotating short haired black

hole, discuss whether the spacetime in the case of extreme
black holes and near extreme black holes can disrupt the
event horizon of the rotating short haired black hole. For
the extreme case, when considering first-order and higher-
order approximations, the results indicate that neutral test
particles can destroy the event horizon of short haired black
holes, violating the weak cosmic censorship conjecture. In
the near extreme case, considering first-order and higher-
order situations, our results are similar to the extreme case,
where the event horizon of short haired black holes can be
destroyed.

• Incident a scalar field into a rotating short haired black
hole, explore whether the event horizons of the rotating short
haired black hole can be disrupted in the case of extreme and
near extreme black holes. We find that, in the extreme case,
the rotating short haired black hole will be overspun by the
incident scalar field, and there exists a range for the incident

wave modes, that is 1
2Mκ+ β

Mκ

< ω
m < 1

2κM+ β
Mκ

− 1
2κ

. This

means that within this range, the event horizon of the rotating
short haired black hole is disrupted. In the near extreme case,
the event horizon of the rotating short haired black hole, due
to the presence of hair, allows the black hole to be overspun.

In summary, our analysis indicates that the presence of hair
has a significant impact on whether a rotating short haired
black hole can be overspun. The presence of hair not only
makes the applicability of the weak cosmic censorship con-
jecture in rotating short haired black holes unstable but also
holds key significance for the direction of our future research.
In the future, we will employ numerical simulation methods,
fully considering the impact of spacetime background and
back-reaction effects, to obtain precise conditions for over-
spinning short haired black holes through numerical simula-
tions. This method not only provides us with a new perspec-
tive for understanding the weak cosmic censorship conjecture
and the no hair theorem of black holes but also lays a solid
foundation for the in depth study of the properties of rotating
short haired black holes.
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