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The little Randall-Sundrum (little RS) model receives significantly stronger constraints from the flavor
observables in comparison to the Randall-Sundrum (RS) model. In this paper, we analyze the effect of the
electroweak sector in little RS on flavor-changing decays of charged leptons. We compare the predictions
of the model with the current limits on the flavor-violating branching ratios of μ → eee, τ → eee, τ → μμμ,
τ → μee, τ → eμμ, μ → eγ, and μTi → eTi, and we show that the dominant constraint arises from the
μTi → eTi process which strongly limits the KK-1 gauge boson mass (MKK) to be ≳30.7 TeV. We then
derive and show that generalizing the electroweak gauge sector to include the brane localized kinetic term
relaxes this constraint to ≳12 TeV. Toward the conclusion, we comment on the possibility that the large
flavor-violating currents can be mitigated by relaxing the assumption regarding the unnatural thinness and
rigidity of the UV brane and discuss the possibility of suppression of these currents in the presence of fat
fluctuating branes.
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I. INTRODUCTION

The charged lepton flavor violation (CLFV) has been in
focus ever since intermediate vector bosons were proposed
[1,2]. Even with the inclusion of the neutrino oscillation
phenomena in the Standard Model (SM) of particle physics,
the CLFV processes are predicted to be very small. Hence,
any evidence of CLFV inevitably points toward new physics.
As of now, these processes are strongly constrained at
90% C.L. by the branching ratios Bμ→eγ <4.2×10−13 [3],
Bμ→eee < 1.0 × 10−12 [4], BμTi→eTi < 4.3 × 10−12 [5],
Bτ→eee < 2.7 × 10−8 [6], Bτ→eγ < 3.3 × 10−8 [7], Bπ0→μe <
3.6 × 10−10 [8], and BZ→μe < 7.5 × 10−7 [9]. On the other
hand, various beyond-SM scenarios do predict such flavor-
violating processes.
One of the successful extensions of the SM in warped

extra dimensions has been the little Randall-Sundrum (little
RS) model [10,11] with a fundamental scale of ∼103 TeV.
Recently, the author studied [12] the correction to ϵK in
little RS arising from the contribution of tree-level KK-1
gluon exchange in K-K̄ oscillation. There, it was shown
that the strong bound on the imaginary part of the Csd

4

operator in the effective Hamiltonian [13] ruled out the

mass scale lower than ∼32 TeV. This constraint was shown
to soften significantly in the presence of brane localized
kinetic terms (BLKTs) and minimal flavor protection [14]
flavor symmetry.
In this paper, we discuss flavor violation in the charged

lepton sector of little RS. We choose to work in a basis that
does not mix the left-handed charged leptons. Rather, the
entire mixing is taken to be in the right-handed sector while
keeping the 5D Yukawa coupling anarchic. There can, in
principle, exist mixing in the left-handed charged sector
through the tribimaximal Cabibbo mechanism [15], but
such a choice will affect the neutrino mixing matrix as well.
For brevity, we do not consider such models here. Doing
this, we can study the flavor violations in the charged
lepton sector independent of the neutrino parameters.
We subject the lepton flavor-violating decay predictions

of the anarchic little RS model to observations from rare μ
decays such as μ → eγ, μ → 3e, and μ → e conversion in
the presence of Ti nuclei and the rare trilepton decays of τ.
Among these, we will show that μ → e conversion proves
to be the most constraining, and this constrains the lower
limit of the KK-1 gauge boson mass to be ≳30.7 TeV. For
comparison, the lower mass limit of the gauge boson in the
Randall-Sundrum model [16,17] that satisfies the μ → e
conversion is MKK ≳ 5.9 TeV [18]. In line with the
discussion on kaon oscillation in Ref. [12], here, we study
the effect of the BLKT in the electroweak sector of the
model and, in particular, on the Z boson wave function. We
show that this modification relaxes the strong bounds on
the KK-1 mass of the gauge boson to≳12 TeV, making the
Kaluza-Klein (KK) gauge boson available at the upcoming
high-energy colliders.
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For anarchic 5D Yukawa couplings, since the light
fermions are localized close to the ultraviolet (UV) brane,
it is possible that the unphysical assumption of rigid thin
branes in little RS might have a role to play in these
large flavor violations. If we replace this thin rigid UV
brane with a fat brane, along with its fluctuations, namely,
branons [19–21], then we show that the flavor-violating
couplings get suppressed, lowering the bound on the KK-1
gauge boson mass to ≳10 TeV.
The paper is organized as follows. In the next section, we

briefly review the little RSmodel, gauge and lepton field KK
decomposition, and their interactions. In Sec. III, we will
derive the trilepton decay branching ratios and μ → e con-
version rate in the model. Then, we will discuss the effect of
BLKT on the interactions and recompute the constraints in
Sec. IV. In Sec. V, we summarize the work and discuss the
effects of fat branes on lepton flavor violation.

II. THE LITTLE RS MODEL

In this section, we briefly recap the little RS model. Our
four-dimensional space-time is assumed to emerge from a
5D anti–de Sitter (AdS) space-time, with a fundamental
scale M ¼ 103 TeV [10,22], upon orbifolding on
M4 × S1=Z2. The line element of this 5D space-time is
given by

ds2 ¼ gMNdxMdxN ¼ e−2kyημνdxμdxν þ dy2; ð1Þ

where M and N are five-dimensional space-time indices,
ημν ¼ diagð−1;þ1;þ1;þ1Þ, and 0 ≤ y ≤ L. The warp
factor is taken to be kL ∼ 7 so that the warped down scale
at the infrared (IR) brane becomes M5e−kL ∼Oð1 TeVÞ.
The Higgs field, in order to stabilize its vacuum expect-

ation value from quantum fluctuations, is assumed to be
localized on this IR brane. To avoid large localized flavor
violating and proton decay operators on the brane, we
assume that the gauge fields and fermions propagate in
the bulk. Moreover, we consider these fields to transform
under the adjoint and fundamental representations of the
Standard Model gauge group SUð3ÞC × SUð2ÞW ×Uð1ÞY ,
respectively.
Below, we describe the five-dimensional gauge and

fermion fields, relevant to the process, and their KK
decompositions. We begin our discussion with a review
of the electroweak sector coupled with the Higgs boson in
five-dimensional space-time.

A. Bulk gauge fields

1. Action of the 5D theory

Let us consider the bulk gauge fieldsWa
M and BM, where

M ¼ f0; 1; 2; 3; 5g, of SUð2ÞL ×Uð1ÞY , coupled to the
scalar localized on the IR brane. The 5D action for this
system is given by

Sgauge ¼
Z

d4x
Z

L

0

dyðLW;B þ LHiggsÞ: ð2Þ

The kinetic part of the 5D gauge theory (LW;B) and the
Higgs-sector Lagrangian (LHiggs) are given by, respectively,

LW;B ¼ ffiffiffi
g

p
gKMgLN

�
−
1

4
Wa

KLW
a
MN −

1

4
BKLBMN

�
ð3Þ

and

LHiggs ¼ δðjyj − LÞ½ðDMΦÞ†ðDMΦÞ − VðΦÞ�
VðΦÞ ¼ −μ2Φ†Φþ λðΦ†ΦÞ2: ð4Þ

The field strength tensor of the gauge field is denoted
by WMN, and the covariant derivative by

DM ¼ ∂M − ig5τaWa
M − ig05IBM; ð5Þ

where g5 and g05 are the 5D gauge couplings of W and B
bosons, respectively, and the Higgs doublet can be
decomposed as

ΦðxÞ ¼ 1ffiffiffi
2

p
�

−i
ffiffiffi
2

p
φþðxÞ

vþ hðxÞ þ iφ3ðxÞ

�
; ð6Þ

with the Higgs vacuum expectation value denoted by v,
and φ� ¼ ðφ1 ∓ iφ2Þ= ffiffiffi

2
p

.
The δ function in Eq. (4) ensures that the Higgs vacuum

expectation value is stabilized to ∼Oð1 TeVÞ. For simplic-
ity, we also perform the usual redefinitions of the gauge
fields:

W�
M ¼ 1ffiffiffi

2
p ðW1

M ∓ iW2
MÞ;

ZM ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g25 þ g025

q ðg5W3
M − g05BMÞ;

AM ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g25 þ g025

q ðg05W3
M þ g5BMÞ: ð7Þ

2. KK decomposition

After compactification, the Kaluza-Klein decomposition
of 5D gauge field becomes

Vμðx; yÞ ¼
X
n

VðnÞ
μ ðxÞfðnÞV ðyÞ; ð8Þ

where VðnÞ
μ ðxÞ ¼ fAðnÞ

μ ðxÞ; ZðnÞ
μ ðxÞ;W�ðnÞ

μ ðxÞg are the
four-dimensional KK modes of the photon, Z boson,

and the W� boson and fðnÞV ðyÞ their wave profiles in
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the bulk. The Euler-Lagrange equation of motion of these
bulk modes are given by

−∂5ðe−2ky∂5fðnÞV Þ ¼ m2
nf

ðnÞ
V : ð9Þ

In this equation, we have used ∂μ∂
μVðnÞ

μ ðxÞ ¼ m2
nV

ðnÞ
μ ðxÞ.

These fields are set to satisfy the boundary condition
ðδVμ

∂yVμÞj0;L ¼ 0 and the orthonormality condition

Z
L

0

dyfðnÞV fðmÞ
V ¼ δnm: ð10Þ

Solving Eq. (9), for mn ¼ 0, we find that the zero-mode
profile of the gauge boson is flat and is given by

fð0ÞV ðyÞ ¼ 1ffiffiffiffi
L

p ; ð11Þ

For the higher KK modes (mn ≠ 0), the solution to Eq. (9)
is given in terms of the Bessel J and Bessel Y functions and
is of the form

fðnÞV ðyÞ ¼ NðnÞ
V eky

�
J1

�
mneky

k

�
þ bðnÞV Y1

�
mneky

k

��
; ð12Þ

where NðnÞ
V and bðnÞV are the two constants of integration.

While NðnÞ
V is fixed by the orthonormality condition, bðnÞV is

determined using the boundary condition. Demanding
Neumann boundary condition at y ¼ 0 and y ¼ L, we get

bðnÞV ¼ −
J0ðmn

k Þ
Y0ðmn

k Þ
at y ¼ 0;

bðnÞV ¼ −
J0ðmn

k ekLÞ
Y0ðmn

k ekLÞ at y ¼ L: ð13Þ

The mass spectrum of the KK modes (mn ¼ xnke−kL)
can be computed from the solutions to the equation
J0ðxnÞY0ðxne−kLÞ − Y0ðxnÞJ0ðxne−kLÞ ¼ 0, obtained by
equating the relations given above. For future convenience
we denote the KK-1 gauge boson mass by MKK ¼ m1.

B. Bulk fermion fields

The Clifford algebra in five-dimensional space-time is
defined by gamma matrices, ΓA ¼ fγ0; γ1; γ2; γ3; γ5g, that
satisfy fΓA;ΓBg ¼ 2ηAB, where ηAB is the flat metric
defined on the 5D tangent space. Since the algebra is
irreducible, one cannot construct a chirality projection
operator in five dimensions. Thus, the fermion fields
constructed in this geometry have four complex degrees
of freedom, which on compactification leads to vectorlike

four-dimensional fermions. Moreover, due to the lack of
chiral symmetry, the geometry does not prohibit a mass
term in the bulk for the fermions. These mass terms will
become crucial for the geometric Froggatt-Nielsen mecha-
nism to generate four-dimensional fermion mass hierarchy.
Let us start our discussion by constructing the five-
dimensional fermionic action.

1. 5D fermionic action

The 5D action for doublet (l̂) and singlet (ê) leptons can
be written as

Sfermion ¼ Skin þ SYuk; ð14Þ

Skin¼
Z

d5x
ffiffiffiffiffiffi
−g

p ¯̂lðΓAEM
A DMþmlÞl̂

þ
Z

d5x
ffiffiffiffiffiffi
−g

p X
e¼e;μ;τ

¯̂eðΓAEM
A DMþmeÞê;

SYuk¼
Z

d5x
ffiffiffiffiffiffi
−g

p ¯̂liðỸ5DÞijêjHðxμÞδðy−LÞþH:c:; ð15Þ

where ml and me are the bulk masses for the doublet and
singlet lepton fields, respectively, and EM

A the inverse
fünfbeins. We denote the tangent space indices with A,
B and the five-dimensional space-time index with M, N.
Since the fünfbeins satisfy the condition eAMηABe

B
N ¼ gMN ,

for the geometry given in Eq. (1), they become
eAM ¼ ðe−kyδαμ; 1Þ. The five-dimensional anarchic Yukawa
matrix is denoted as ðỸ5DÞij, with i, j representing the
generational indices. In the above equation, DM represent
the covariant derivative in five dimensions given by
DM ¼ ∂M þ ωM, where ωM ¼ 1

8
ωMAB½ΓA;ΓB� and the spin

connection given by

ωMAB ¼ gRNEN
A ð∂MER

B þ Γ̃R
MTE

T
BÞ; ð16Þ

where EA
M are the inverse fünfbeins and Γ̃R

MS are the
Christoffel connections.
Upon compactification, the 5D Dirac fermions decom-

pose to two 4D Weyl spinors. To ensure that only the
correct chiral projections survive at the zero mode, we use
boundary conditions

l̂LðþþÞ; l̂Rð−−Þ; êLð−−Þ; êRðþþÞ; ð17Þ

at the orbifold fixed points ðy ¼ 0; y ¼ LÞ. Here, L and R
stand for the left and right chiral fields, respectively, under
the four-dimensional chiral projection operator, and þð−Þ
stands for the Neumann (Dirichlet) boundary conditions.
For example, l̂LðþþÞ means that we apply the Neumann
boundary conditions at both y ¼ 0 and y ¼ L.
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2. The Kaluza-Klein decompositions

After compactification, the KK expansion of a generic
fermion field (Ψ) becomes

Ψðx; yÞL;R ¼
X∞
n¼0

1ffiffiffiffi
L

p ψ ðnÞ
L;RðxÞfðnÞL;Rðy; cÞ; ð18Þ

where ψ ðnÞ
L;RðxÞ denotes the corresponding four-dimensional

KK modes and fL;RðyÞ their extra-dimensional profiles
in the bulk. These wave profiles are set to satisfy the
orthonormality condition

Z
L

0

dye−3kyfðnÞL;Rf
ðmÞ
L;R ¼ δn;m: ð19Þ

The normalized zero-mode profile for doublets and
singlets, with their respective bulk mass parameters
cli ¼ mli=k and cei ¼ −mei=k, can be derived as [12,13]

fð0ÞL ðy; cliÞ ¼
ffiffiffi
k

p
f0ðcliÞekyð2−cli Þeðcli−0.5ÞkL; ð20Þ

fð0ÞR ðy; ceiÞ ¼
ffiffiffi
k

p
f0ðceiÞekyð2−cei Þeðcei−0.5ÞkL; ð21Þ

where

f0ðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − 2cÞ
1 − e−ð1−2cÞkL

r
: ð22Þ

Using the boundary conditions given in Eq. (17), the
lightest and next-to-lightest modes of chiral leptons in
four dimensions become

ΨL ¼
�
l̂ið0Þ
L ; l̂ið1Þ

L ; êið1ÞL

�
;

ΨR ¼
�
êið0ÞR ; êið1ÞR ; l̂Ið1Þ

R

�
: ð23Þ

3. Yukawa interaction

Using the action in Eq. (15) and the wave function for the
zero-mode leptons given in Eq. (21), the four-dimensional
Yukawa matrix can be derived in terms of the 5D anarchic
Yukawa as

Yij
4D ¼ fð0ÞL ðL;cliÞYij

5Df
ð0Þ
R ðL;cejÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1− 2cliÞð1− 2cejÞ
ðeð1−2cli ÞkL− 1Þðeð1−2cej ÞkL− 1Þ

s
eð1−ðcliþcej ÞÞkLYij

5D:

ð24Þ

For the fermion KK modes given in Eq. (23), the above
mass matrix becomes

M ¼

0
B@

M0 M0FR 0

FLM0 FLM0FR MKK

0 MKK 0

1
CA; ð25Þ

where Fi
L;R ¼ fð1ÞL;RðL;cli ;ei Þ

fð0ÞL;RðL;cli ;ei Þ
and Mij

0 ¼ vffiffi
2

p Yij
4D. Since the

fermions are in the flavor basis, we need to rotate this
mass matrix to obtain the physical states. In order to do that,
it will be easier if we first diagonalize the SM partM0 with
a biunitary transformation ðUL;URÞ. Acting on the mass
matrix M with diag(UL; 1, 1) on the left and on the right
with diag(U†

R; 1, 1), we get

M ¼

0
BB@

MD
vffiffi
2

p ΔR 0

vffiffi
2

p ΔL Δ1 MKK

0 MKK 0

1
CCA; ð26Þ

where MD ¼ ULM0U
†
R,

vffiffi
2

p ΔR ¼ ULM0FR ¼ MDURFR,
vffiffi
2

p ΔL ¼ FLM0U
†
R ¼ FLU

†
LMD, and Δ1 ¼ FLM0FR ¼

FLU
†
LMDURFR.

Moreover, since the mixing of higher KK modes with
the zero mode is suppressed by v

MKK
, it is convenient and

informative to diagonalize the lower 2 × 2 part of the
mass matrix. With that, to the leading-order expansion in
x ¼ Δ1

MKK
, the diagonal mass matrix becomes [18]

MD ¼

0
BB@

MD xR 1
2
ð1þ x

4
Þ xR 1

2
ð1− x

4
Þ

xL
1
2
ð1þ x

4
Þ MKK þ Δ1

2
0

xL 1
2
ð1− x

4
Þ 0 −MKK þ Δ1

2

1
CCA; ð27Þ

where xL;R ¼ vffiffi
2

p ΔL;R. Note that the off-diagonal elements

in this matrix are very small compared to MKK . Now, the
degeneracy in the KK-1 mode is lifted to

Mð1Þ
KK ¼ MKK þ Δ1

2
;

Mð2Þ
KK ¼ −MKK þ Δ1

2
: ð28Þ

4. Couplings with Z boson

Before discussing the flavor-violating effects, we need
to identify the relevant couplings of the gauge boson. For
simplicity, we will consider the couplings of fermion
bilinear with an Abelian gauge field in the bulk of AdS.
Generalization to flavor-violating interactions of the
non-Abelian gauge field is then straightforward. A five-
dimensional action for the Uð1Þ gauge field can be
written as

S ¼ −
1

4g25

Z
d5x

ffiffiffiffiffiffi
−g

p ðgCMgDNFCDFMNÞ; ð29Þ
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where FMN ¼ ∂MAN − ∂NAM is the field strength tensor
and g5 the 5D gauge coupling.
In the unitary gauge (A5 ¼ 0), the vector field can be

Fourier expanded as

Aμðx; yÞ ¼
X
n

AðnÞ
μ ðxÞfðnÞA ðyÞ; ð30Þ

and the coupling of the zero-mode lepton bilinear with
the gauge KK modes can be computed from the overlap
integral:

gðnÞL;Rðcl;eÞ ¼
g5
L

Z
L

0

dye−3kyfðnÞA ðyÞfð0ÞL;Rðy;cl;eÞfð0ÞL;Rðy;cl;eÞ:

ð31Þ

In the above equation, fðnÞA and fð0ÞL;R are as given in
Eqs. (12) and (22), respectively. Since the geometric
Froggatt-Nielsen mechanism requires distinct bulk mass

values “cl;e” for the leptons, the couplings g
ðnÞ
L;R are different

depending on the localization of the fermion zero mode.
Replacing the Abelian gauge field with the Z boson, we can
explicitly write these interactions as

L ¼ gðnÞL ðcliÞ ¯̂l
ið0Þ
L γμZμðnÞl̂ið0Þ

L þ gðnÞR ðceiÞ ¯̂eið0ÞR γμZμðnÞêið0ÞR :

ð32Þ

These couplings, being dependent on the bulk mass
parameter cl;e, generate flavor violations in the interactions
of the gauge boson KK modes on rotating the fermions to
their mass basis. With this understanding, we can now
address the consequences of such terms in little RS.

III. FLAVOR-VIOLATING DECAYS IN LITTLE RS

In this section, we focus on the charged lepton flavor-
violating decay processes such as μ → eγ, μ− → eþe−e−,
μTi → eTi, τ− → e−e−eþ, τ− → μ−e−eþ, and
τ− → e−μ−μþ, in the little RS framework. Among these,
the only loop process is μ → eγ. Though this decay is
divergent in the Randall-Sundrum model with brane
localized Higgs, since little RS is an effective theory with
much lower cutoff ∼103 TeV, we expect a need to

reanalyze this decay. The dominant contribution to the
process μ → eγ proceeds through a one-loop Feynman
diagram with brane localized Higgs and KK-fermion fields
as shown in Fig. 1. The amplitude of the process, assuming

MðiÞ
KK to be much greater than the energy scales involved,

thus becomes

Aμ→eγ ¼ ūðp0Þ
	
eAμ

X
i

1

MðiÞ4
KK

Yei

×
Z

d4k
ð2πÞ4

ð=p0 þ =kþMðiÞ
KKÞγμð=p0 þ =kþMðiÞ

KKÞ
k2 −m2

H

× Yiμ



uðpÞ

¼ 1

2mμ
ūLðp0ÞσμνFμνuRðpÞCLðq2Þ

þ 1

2mμ
ūRðp0ÞσμνFμνuLðpÞCRðq2Þ: ð33Þ

The divergence in this amplitude come through the large
number of fermion KK modes that contribute to this loop
CL;R

m2
μ
∼ 1

16π2
logðNKKÞ. Their contributions worsen at two

loops. Thus, the cutoff-dependent part of the Wilson
coefficient has the form [18]

CL;R

m2
μ
∼

1

16π2

�
Y5D

MKK

�
2
	
log

�
Λ5D

k

�
þ 1

16π2
Y5D

Λ2
5D

k2
þ���



;

ð34Þ

where the first and second terms are the one-loop and
two-loop contributions, respectively.
The Randall-Sundrum model, being UV complete,

requires Λ5D ¼ Mpl ¼ 1016 TeV to avoid hierarchy.
Moreover, to avoid quantum gravity effects, the curvature
should satisfy the condition k=Mpl ≪ 0.1. Hence, assum-
ing k≲ 1015 TeV, the number of KK modes that contribute
to the process becomesNKK ≳ 10. At two loops, dimension
analysis suggests that the amplitude becomes ∼N2

KK ¼
ðΛ5D

k Þ2 ≳ 100 [18], which means that the one-loop and
two-loop contributions in Eq. (34) are of the same order

[LogðΛ5D
k Þ ∼ Y5D

16π2
Λ2
5D
k2 ∼ 1]. And the higher loops contribute

strongly and the result is not convergent. This feature
threatens any reliable calculations of the μ → eγ process in
the Randall-Sundrum model.
In comparison, the little Randall-Sundrum model is

an effective theory with a scale 103 TeV, such that
quantum gravity effects are insignificant. It is straightfor-
ward to find a parameter space, for example, Λ5D ∼
103 TeV and k ∼ 800 TeV, in which the number of KK
fermions contributing to the loop can be much smallerFIG. 1. The diagram that generates the process μ → eγ.
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[NKK ∼ 1000
800

∼Oð1Þ], and the cutoff-dependent part of the
Wilson coefficient becomes

CL;R

m2
μ
∼

1

16π2

�
Y5D

MKK

�
2

f0.2þ 0.008þ � � �g; ð35Þ

where the two-loop term is much smaller than the one-loop
with the higher-loop terms further suppressed. Though the
amplitude is calculable now, still, the result is sensitive to
the cutoff scale of the model, but this can be cured if we can
dynamically stabilize this scale. Being phenomenological
in nature, little RS requires new physics to do this. One way
this could be achieved is by embedding the model in a
six-dimensional S1=Z2 × S1=Z2 scenario, for which all the
radii are stabilized [23,24].
The cutoff-independent part of the Wilson coefficient,

CL;Rðq2 ¼ 0Þ, can be derived from Eq. (33) as

CL;Rðq2 ¼ 0Þ ¼ emμ

32π2
X
i

Yei
m2

H

MðiÞ3
KK

Yiμ; ð36Þ

where Y ¼ MD=ðv=
ffiffiffi
2

p Þ is the rotated Yukawa coupling

and MðiÞ
KK are the masses of the first KK mode given in

Eqs. (27) and (28), respectively. The branching ratio for this
process now becomes [25,26]

Bðμ → eγÞ ¼ 12π2

ðGFm2
μÞ2

½jCLð0Þj2 þ jCRð0Þj2�; ð37Þ

where CLð0Þ and CRð0Þ can be derived by using Eqs. (27)
and (28) in Eq. (36):

CLð0Þ ¼ e
mμm2

H

32π2

�
Ye1Y1μ

1

Mð1Þ3
KK

þ Ye2Y2μ
1

Mð2Þ3
KK

�

¼ e
mμm2

H

32π2M4
KK

½ΔRΔ1ΔL�eμ;

CRð0Þ ¼ e
mμm2

H

32π2

�
Ye1Y1μ

1

Mð1Þ3
KK

þ Ye2Y2μ
1

Mð2Þ3
KK

�†

¼ e
mμm2

H

32π2M4
KK

½ΔRΔ1ΔL�†eμ: ð38Þ

ΔL and ΔR are the off-diagonal terms in the fermion mass
matrix, and Δ1 is the Yukawa mass of the KK-1 leptons
given in Eq. (26).
This finite part can be computed, and, on comparing

it with the experimental bound on the branching ratio
Bexptðμ → eγÞ≲ 0.042 × 10−11 [27], we obtain the lower
limit on the mass scale MKK ≳ 1.4 TeV.

A. Trilepton decays and μ− e conversions

Before we discuss the trilepton decays in the little RS
model, to study the flavor-violating effects, it is important
and insightful if we identify the model-independent four-
fermion interactions that contribute to the processes.
Adopting the parametrization in Refs. [25,28], the most
general low-energy effective, dimension-6, Lagrangian
responsible for these processes can be written as

−Leff ¼
4GFffiffiffi

2
p ½gij3 ðēiRγμejRÞðēkRγμekRÞ

þ gij4 ðl̄iLγ
μljLÞðl̄kLγμlkLÞ

þ gij5 ðēiRγμejRÞðl̄kLγμlkLÞ
þ gij6 ðl̄iLγ

μljLÞðēkRγμekRÞ� þ H:c:; ð39Þ

where g3;4;5;6 are dimensionless Wilson coefficients. Note
that we have considered only vector operators and not
scalar or pseudoscalar ones. This is because the Higgs
contribution to the flavor-violating process is suppressed
by small masses of the fermions involved. Moreover, the
next-to-leading-order effects from KK fermions mixing are
further suppressed.
Like fermions, the electroweak symmetry breaking with

brane localized Higgs boson also mixes the KK levels
of the Z boson. Details of the symmetry breaking and the
mass matrices of electroweak gauge bosons are given in
Appendix A. To diagonalize this mass matrix, we need to
rotate the gauge basis ðZð0Þ; Zð1ÞÞ to the physical basis
ðZð0Þ; Zð1ÞÞ, wherein the admixture enters as

Zð0Þ ¼ Zð0Þ þ f
m2

Z

M2
KK

Zð1Þ; Zð1Þ ¼ Zð1Þ − f
m2

Z

M2
KK

Zð0Þ;

ð40Þ

where fð∼ ffiffiffiffiffiffiffiffi
2kL

p Þ parametrizes the mixing between the
zero and first KK level. From Eq. (31) it is clear that,
since the extra-dimensional wave profile of Zð0Þ is flat, it
couples democratically to all the lepton generations,
whereas couplings of the fermion zero mode bilinear with
the Zð1Þ are determined by the appropriate overlap integral
and are dependent on the bulk mass parameter cli;ei :

αi ¼ 2
ffiffiffiffiffiffi
2π

p Z
L

0

dye−3kyfð1ÞZ ðyÞ½fð0ÞL;Rðy; cli;eiÞ�2: ð41Þ

In the above equation, αe, αμ, and ατ denote the ratios of
couplings given in Eq. (32) to the SM ones. On rotating to
the mass basis of leptons, the matrix which describes the

Zð1Þ
μ couplings takes the form

Lint ¼ gL;RΨU
†
L;RαUL;Rγ

μΨZð1Þ
μ ; ð42Þ
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where gL;R are the SM gauge couplings, UL;R are the
unitary mixing matrices for charged SM leptons,
α ¼ diagðαe; αμ; ατÞ, and

Ψ ¼

0
B@

eL;R
μL;R

τL;R

1
CA: ð43Þ

It can easily be seen that the generational dependence of
the Zð1Þ boson couplings, in Eq. (41), conspire to create
off-diagonal elements that generate flavor violations.
Moreover, this property of the KK-1 mode of the Z boson
is inherited by the physical Zð0Þ boson due to the admixture.
Thus, the dominant flavor violation in the electroweak
sector is mediated by the zero mode of the physical Z
boson, and integrating them out from low-energy processes
results in the Wilson coefficients shown in Eq. (39). A
detailed discussion is given in Appendix B.
Now, using the operators in Eq. (39) in Eq. (B4), the

branching ratio for the process μ → 3e can be written as

BRðμ → 3eÞ ¼ 2ðjgμe3 j2 þ jgμe4 j2Þ þ jgμe5 j2 þ jgμe6 j2; ð44Þ

where we have assumed BRðμ → eννÞ ¼ 1.
The μ − e conversion rate [28] becomes

Bconv ¼
2peEeG2

Fm
3
μα

3
QEDZ

4
effQ

2
N

π2ZΓcapt
½jgμeR j2 þ jgμeL j2�; ð45Þ

where the couplings g3;4;5;6 and gL;R are given in
Appendix B, αQED is the QED coupling strength, and the
remaining atomic physics constants are given in Ref. [28].
In order to constraint the little RS model, we impose the

following current PDG limits: BRðμ → 3eÞ < 10−12 [4,29]
and BμTi→eTi < 4.3 × 10−12 [5,29]. And for the rare tau
decays, we employ the constraints BRðτ → eþe−eþÞ <
2.7 × 10−8, BRðτ → μþμ−μþÞ < 2.1 × 10−8, and BRðτ →
μ−e−eþÞ < 1.8 × 10−8 [29]. For computing the μ → e
conversion, we use the numerical values for titanium from
Ref. [30].
Comparing these limits with Eqs. (44) and (45), we can

derive the lower bound on the mass scale in the model. We
present the constraints onMKK for little RS and compare it
with the bounds obtained in the Randall-Sundrum model in
Table I. The details regarding our numerical analysis is
given in Appendix C.

IV. BRANE LOCALIZEDGAUGEKINETIC TERMS

Going beyond the simplest possible extension of SM in
little RS, the action of the gauge field in five dimensions,
given in Eq. (29), can be generalized [12,31–33] as

S ¼ −
1

4g25

Z
d5x

ffiffiffiffiffiffi
−g

p fðgAMgBNFABFMNÞ

þ ðlUVδðyÞ þ lIRδðy − LÞÞgαμgβνFαβFμνg; ð46Þ

where lUV and lIR are the localized kinetic term strengths at
the UV and the IR branes, respectively. The origin of these
terms is for the time being unknown, but it is understood
that for correct renormalization of the model such terms are
necessary [34,35]. These terms can be hypothesized to have
their origin in the unperturbative effects of brane localized
matter coupled to the gauge field.
Varying the action in Eq. (46) with respect to the field,

the equation of motion becomes

−∂5ðe−2ky∂5fðnÞA Þ ¼ ð1þ lIRδðy − LÞ þ lUVδðyÞÞm2
nf

ðnÞ
A ;

ð47Þ

where fðnÞA ðyÞ are the wave functions that satisfy the
orthonormality condition:

Z
L

0

dy½1þ lIRδðyÞ þ lUVδðy − LÞ�fðnÞA fðmÞ
A ¼ δnm: ð48Þ

The solution to Eq. (47) is given by

fðnÞA ðyÞ ¼ NðnÞ
A eky

�
J1

�
mn

ke−ky

�
þ bðnÞA Y1

�
mn

ke−ky

��
; ð49Þ

where NðnÞ
A is the normalization constant and bðnÞA the

integration constant fixed by the modified boundary
conditions

∂yf
ðnÞ
A

���
y¼0

¼ −lUVm2
nf

ðnÞ
A ð0Þ;

∂yf
ðnÞ
A

���
y¼L

¼ þe2kLlIRm2
nf

ðnÞ
A ðLÞ: ð50Þ

TABLE I. Constraints on the first KK-mode mass, MKK ,
coming from various measurements for a brane Higgs field in
both the RS and the little RS, except for the BRðμ → eγÞ in the
RS model where we have used bulk Higgs, since the brane Higgs
is not computable in the RS.

Model BRðμ → 3eÞ Bconv BRðμ → eγÞ
RS 2.5 TeV 5.9 TeV �8 TeV
Little RS 20.8 TeV 30.7 TeV 1.4 TeV

Model BRðτ → 3eÞ BRðτ → 3μÞ BRðτ → μeeÞ
RS 0.1 TeV 0.4 TeV 0.36 TeV
Little RS 2.48 TeV 2.43 TeV 2.50 TeV
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Using the above relations, bðnÞA becomes

bðnÞA ¼−
J0ðmn

k ÞþmnlUVJ1ðmn
k Þ

Y0ðmn
k ÞþmnlUVY1ðmn

k Þ
at y¼ 0;

bðnÞA ¼−
J0ðmn

k e
kLÞ−mnlIRekLJ1ðmn

k e
kLÞ

Y0ðmn
k e

kLÞ−mnlIRekLY1ðmn
k e

kLÞ at y¼ 0; ð51Þ

where mn ¼ xnke−kL and xn are the roots of the
master equation obtained by equating the two relations
in Eq. (51).
From Eqs. (47) and (48), the zero-mode wave function

can be derived as

fð0ÞA ðyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ lIR þ lUV

p : ð52Þ

Since the BLKT modifies the bulk gauge field wave
profile, their overlap with the lepton bilinear becomes

gðnÞL;Rðcl;eÞ ¼
g5
L

Z
L

0

dye−3kyfðnÞA ðyÞfð0ÞL;Rðy;cl;eÞfð0ÞL;Rðy;cl;eÞ;

ð53Þ

where g5 ¼ g0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ lIR þ lUV

p
, with g0 denoting the cou-

pling of the Zð0Þ boson with the fermion. This generaliza-
tion of the gauge field does not affect the gauge zero-mode
couplings. On the other hand, the higher KK-mode cou-
plings are modified significantly. Since the CLFV is

mediated by the Zð1Þ
μ , to capture the effect of BLKT, it

is instructive to define the quantity

����Δg1g0

���� ¼
����� g

ð1Þ
L;Rðc2Þ − gð1ÞL;Rðc1Þ

g0

�����; ð54Þ

where gð1ÞL;RðcÞ is given in Eq. (53).
For illustration, in Fig. 2 we display the coupling

strengths of the KK-1 partner of the Z boson, j g1g0 j [we
denote gð1ÞL;RðcÞ ¼ g1], and lepton bilinears, with the bulk
mass parameters c1 ¼ 0.8 and c2 ¼ 0.7, as a function of the
BLKT strengths. The values of j Δg1g0

j for different BLKTs
are given in Table II.
The numerical analysis is similar to the scenario with-

out BLKT but using the modified couplings in Eq. (53).
The probability distribution function of simulated data, for
the processes μ → eee and μTi → eTi, is presented in
Fig. 3. For comparison, we have also shown the scenario
without BLKT. These plots clearly show that the branch-
ing ratio and conversion rate constraints relax on imposing
BLKT, bringing down the lower limit on the KK-1 gauge
boson mass scale to ∼12 TeV, thus making the model

relevant at upcoming hadronic collider searches. The
bounds on these processes in the presence of BLKT are
summarized in Table III.

V. SUMMARY

As an effective theory below 103 TeV, the little
Randall-Sundrum model has been quite successful in
relaxing the strong constraints from the electroweak
precision observables without introducing custodial

(a)

(b)

FIG. 2. (a) The coupling of KK-1Z boson, jg1=g0j, with leptons
having bulk mass parameters c ¼ 0.8 (red solid line) and c ¼ 0.7
(black dotted line) as a function of klIR (assuming klUV ¼ 0).
(b) The coupling of KK-1Z boson, jg1=g0j,with fermions having
bulk mass parameters c ¼ 0.8 (red solid line) and c ¼ 0.7 (black
dotted line) as a function of klUV (assuming klIR ¼ 0).

TABLE II. j Δg1g0
j values for the three cases of BLKTs computed

with c1 ¼ 0.8 and c2 ¼ 0.7.

BLKT klIR ¼ klUV ¼ 0
klIR ¼ −5,
klUV ¼ 0

klIR ¼ 0,
klUV ¼ −5

j Δg1g0
j 0.013 0.015 0.008

BLKT
klIR ¼ 5,
klUV ¼ 0

klIR ¼ 0,
klUV ¼ 5

klIR ¼ 5,
klUV ¼ −5

j Δg1g0
j 0.003 0.0123 0.002
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symmetry. As an added advantage, it also predicts an
enhanced signal at LHC [12] compared to its UV
complete counterpart. On the other hand, the flavor
predictions turn for the worse. In a previous article by
the author [12], the effects of little RS on kaon oscillation
were discussed, where they observed that the contribution
to the ϵK parameter was enhanced by a tree-level KK-1
gluon exchange diagram. The lower limit on the com-
pactification scale was computed to be ∼32 TeV. On the

other hand, these limits were relaxed on including the
BLKT for gluons and the scale was lowered to ∼5 TeV.
The relaxation of the constraints was also achieved by
imposing minimal flavor protection, Uð3Þ flavor sym-
metry. This brings us to believe that the simplistic
structure of gauge kinetic terms, considered so far in
the literature, may not be the correct nature of the
Universe. Instead, we need to introduce BLKT. These
generalized gauge kinetic terms are also necessary to
correctly renormalize the gauge sector [34–38].
In this paper, we extend the study of flavor violation to

the charged lepton sector. The anarchic little RS model
was subjected to a set of experimental constraints from
the rare decays of μ → eee, τ → eee, τ → μμμ, τ → μee,
τ → eμμ, μ → eγ, and μTi → eTi. Unlike the case for
hadrons, here, the flavor violations are mediated by the
SM Z boson through mixing with the KK-1 partners in
gauge basis. We note that the little RS suffers stronger
bounds from the lepton flavor-violating sector, which
constrains the lower limit on the KK-1 gauge boson mass
to MKK ∼ 30.7 TeV. To mitigate such large constraints
and make the model viable at colliders, in this article, we
proposed brane localized kinetic terms for electroweak
gauge bosons. Here, we considered nonminimal kinetic
terms in both UV and IR branes and found that positive
values of BLKT on IR brane and negative BLKT on UV
brane relax the bounds, effectively reducing the lower
limit to MKK ≥ 12 TeV. The electroweak sector in little
RS exhibits a very rich flavor phenomenology. These
interactions, discussed in our paper, can also contribute
significantly to processes involving lepton universality
violation.
Before concluding, we note that the flavor violations

discussed here are generated due to the difference in the
localizing wave profiles of fermion zero modes at the UV
brane. If the wave profiles were degenerate, the KK
modes of the Z boson would have coupled democratically
to all the leptons. It is interesting to investigate whether
these large corrections can be mitigated by relaxing our
assumption on the unnatural thinness and rigidity of the
brane. Though beyond the scope of this paper, if we
consider fat branes, we can show that the lower limit on
MKK softens significantly. For demonstration, we choose
two scenarios with the ratio of brane width to compacti-
fication radius 0.1 and 0.2, and we have plotted the
probability distribution function satisfying the constraints
on the branching ratio of μ → eee and μ → e conversion
in Fig. 4. For ratio 0.2, it can be seen that the constraints
from μ → eee limits MKK ≳ 8 TeV, while μTi → eTi
limits MKK ≳ 12 TeV. Moreover, for flavor violations
arising on the brane, the pseudo-Nambu-Goldstone
bosons of the spontaneously broken translational sym-
metry (branons) are understood [19,39] to suppress the
coupling of gauge boson KK modes with the fermion
bilinear. Hence, a major part of the flavor violation

TABLE III. Bounds on the MKK for the different BLKTs
considered.

klIR ¼ klUV ¼ 0 klIR ¼ 5, klUV ¼ −5

Bðμ→3eÞ 20.8 TeV 7.49 TeV
BμTi→eTi 30.7 TeV 12.03 TeV
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FIG. 3. Probability distribution function satisfying (a) the
experimental branching ratio for the process μ → eee with
klIR ¼ 5; klUV ¼ −5 (black solid line) and klUV ¼ 0; klIR ¼ 0
(red dashed line) and (b) the experimental μTi → eTi conversion
rate klIR ¼ 5; klUV ¼ −5 (black solid line) and klUV ¼ 0;
klIR ¼ 0 (red dashed line).
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appears outside the brane. This interesting feature dis-
appears as the brane gets thinner and more rigid.
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APPENDIX A: MASS MATRIX
OF GAUGE FIELDS

After spontaneous symmetry breaking of the Higgs, the
mass terms from the Lagrangian given in Eqs. (3) and (4)
become

Lm ¼
X
n

mðnÞ2
w WþðnÞ

μ W−μðnÞ þmðnÞ2
A AðnÞ

μ AμðnÞ

þmðnÞ2
z ZðnÞ

μ ZμðnÞ þ v2

2

Z
dyδðy−LÞg25e−2ky

×

�X
m;n

WþðmÞ
μ W−μðnÞfðmÞ

w ðyÞfðnÞw ðyÞ
�
þ v2

2
ðg25 þ g502Þ

×
Z

e−2ky
X
m;n

ZðmÞ
μ ZμðnÞfðmÞ

z ðyÞfðnÞz ðyÞδðy−LÞdy;

ðA1Þ

where mðnÞ
w , mðnÞ

A , and mðnÞ
z are the nth KK masses of theW

boson, photon, and Z boson, respectively.
Mass matrix of these gauge fields computed from the

Lagrangian Eq. (A1): The mass term of Aμ is

h
Að0Þ
μ Að1Þ

μ

i� 0 0

0 mð1Þ2
A

�h
Að0Þ
μ Að1Þ

μ

i
: ðA2Þ

The zero mode of the photon does not couple with the
Higgs, and, hence, it is massless.
The mass term of W�

μ is

Mw ¼ mð0Þ2
w Wþð0Þ

μ W−μð0Þ þmð1Þ2
w Wþμð1Þ

μ W−μð1Þ

þ v2

2

Z
g25e

−2ky
X
m;n

WþðmÞ
μ W−μðnÞfðmÞ

w ðyÞ

× fðnÞw ðyÞδðy − LÞdy: ðA3Þ
This can be represented by the matrix form

MW ¼
h
Wþð0Þ

μ Wþð1Þ
μ

i� a00 a01

a10 a11 þmð1Þ2
w

�"
W−ð0Þ

μ

W−ð1Þ
μ

#
;

ðA4Þ

where am;n ¼ g25
v2
2
e−2kLfðmÞ

w ðLÞfðnÞw ðLÞ.
Similarly, the mass term of the Z boson is

MZ ¼ mð0Þ2
z Zð0Þ

μ Zμð0Þ þmð1Þ2
z Zð1Þ

μ Zμð1Þ þ v2

2
ðg25 þ g502Þ

×
Z

e−2ky
X
m;n

ZðmÞ
μ ZμðnÞfzðmÞðyÞfðnÞz ðyÞδðy − LÞdy;

ðA5Þ

MZ ¼
h
Zð0Þ
μ Zð1Þ

μ

i� b00 b01

b10 b11 þmð1Þ2
z

�"
Zð0Þ
μ

Zð1Þ
μ

#
; ðA6Þ

where bm;n ¼ g25
v2
2
e−2kLfðmÞ

z ðLÞfðnÞz ðLÞ and Zμð0Þ and Zμð1Þ

are in the gauge basis of the Z boson. This is a feature of
IR-brane localized electroweak symmetry breaking.
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FIG. 4. Probability distribution function satisfying (a) con-
straints on the branching ratio of μ → eee with a fat brane of size
ratio 0.2 (black solid line) and 0.1 (blue dot-dashed line) and a
thin brane (red dashed line) and (b) constraints on the μ − e
conversion with a fat brane of size ratio 0.2 (black solid line) and
0.1 (blue dot-dashed line) and a thin brane (red dashed line).
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APPENDIX B: COUPLINGS AND li → 3lj
BRANCHING RATIO

On going to mass basis, the flavor-basis coupling
matrices CF

L;R ¼ gL;Rdiagðαe; αμ; ατÞ get rotated to

CL;R ¼ UL;RCF
L;RU

†
L;R. Since αe ≠ αμ ≠ ατ, in the rotated

basis CL;R generate off-diagonal entries that lead to flavor
violation. Using the unitarity of UL;R, we get

gð1ÞμeL;R ¼ gL;RðUL;R
1;2 U

L;R�
2;2 ðαμ − αeÞ þ UL;R

1;3 U
L;R�
2;3 ðατ − αeÞÞ;

gð1ÞτμL;R ¼ gL;RðUL;R
2;1 U

L;R�
3;1 ðαe − αμÞ þ UL;R

2;3 U
L;R�
3;3 ðατ − αeÞÞ;

gð1ÞτeL;R ¼ gL;RðUL;R
1;2 U

L;R�
3;2 ðαμ − αeÞ þ UL;R

1;3 U
L;R�
3;3 ðατ − αeÞÞ;

ðB1Þ

where gL;R are the usual SM couplings. Using Eq. (40), the

couplings to Z0 are obtained via multiplication by f m2
Z

M2
KK
;

that is,

g
lilj
L;R ¼ −fm2

z

M2
KK

g
ð1Þlilj
L;R : ðB2Þ

With the above equations, it is now relatively simple to
derive the effective Lagrangian given in Eq. (39). The
Wilson coefficients g3;4;5;6 given in the effective Lagrangian
arise from the processes with the exchange of Zð0Þ and Zð1Þ
bosons. These can be derived as

g
lilj
3 ¼ 2gR½f − αj�

m2
Z

M2
KK

g
ð1Þlilj
R ;

g
lilj
4 ¼ 2gL½f − αj�

m2
Z

M2
KK

g
ð1Þlilj
L ;

g
lilj
5 ¼ 2gL½f − αj�

m2
Z

M2
KK

g
ð1Þlilj
R ;

g
lilj
6 ¼ 2gR½f − αj�

m2
Z

M2
KK

g
ð1Þlilj
L ; ðB3Þ

where i and j are ðe; μ; τÞ. The first term in the above
equation is computed from the Z0 exchange, while the
second is from Z1 exchange.
The relevant branching fractions for the process li → 3lj

now become [18,25]

BRðli → 3ljÞ ¼ 2ðjglilj3 j2 þ jglilj4 j2Þ þ jglilj5 j2 þ jglilj6 j2:
ðB4Þ

APPENDIX C: NUMERICAL ANALYSIS

Here, we present the numerical analysis of the little RS
parameter space, to determine how accurately the little RS

geometric origin of flavor can be tested in current and
future experiments. We will discuss the full parameter scan
of the bulk mass parameters, namely, “c” values, that fit
the lepton mass within the experimental error. We have
assumed anarchic Yukawa in the lepton sector. We choose
the basis in which the left-handed mixing matrix UL ¼ I
and UR, the right-handed mixing matrix, contains the
mixing elements. This means that the flavor violation is
generated in the right-handed sector, and, hence, the model
is independent from fitting theUPMNS matrix, which should
happen once neutrino phenomenology is modeled in
little RS.
The 3 × 3 complex matrices of five-dimensional Yukawa

couplings Ye contain nine real and nine complex elements.
Since we have assumed the left-handed sector to be aligned
with SM, the five-dimensional Yukawa should also be
assumed to have some symmetry, which reduces the total
free parameters to six real and three complex phases. For
simplicity, we also choose the basis in which the bulk mass
parameters are diagonal and real.
We restrict the five-dimensional Yukawa couplings to the

range 0.1 ≤ jYi;jj ≤ 3 so that the values do not introduce
unnatural hierarchies and remain below the perturbative
limit in the model. Ignoring the mixing of fermionic KK
modes, for the time being, we can write

ζ ¼ U†
LY4DUR; ðC1Þ

where Y4D are the 4DYukawa coupling defined in Eq. (25)
and ζ is defined as

ζ ¼
ffiffiffi
2

p

v
diagðme;mμ; mτÞ: ðC2Þ

Using this, we compute the five-dimensional Yukawa
coupling as

ðY5DÞi;j ¼ fð0Þ−1ðcliÞðULζU
†
RÞfð0Þ−1ðcejÞ; ðC3Þ

where UL and UR are the lepton mixing matrices. We have
run the scan over 106 iterations and collected 5000 points in
the little RS parametric space satisfying the anarchic
Yukawa conditions. The range of c values satisfying the
above condition is given in Table IV. Using these points, we
calculated the bounds on MKK for all decays mentioned in
Sec. III.

TABLE IV. The bulk mass parameter c used in our scan.

cl1 cl2 cl3 ce1 ce2 ce3

2.15–2.25 1.1–1.2 1–1.05 0.8–0.95 0.65–0.8 0.55–0.70
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