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With the standard model working well in describing the collider data, the focus is now on determining 
the standard model parameters as well as for any hint of deviation. In particular, the determination of 
the couplings of the Higgs boson with itself and with other particles of the model is important to better 
understand the electroweak symmetry breaking sector of the model. In this letter, we look at the process 
pp → W W H , in particular through the fusion of bottom quarks. Due to the non-negligible coupling of 
the Higgs boson with the bottom quarks, there is a dependence on the W W H H coupling in this process. 
This sub-process receives the largest contribution when the W bosons are longitudinally polarized. We 
compute one-loop QCD corrections to various final states with polarized W bosons. We find that the 
corrections to the final state with the longitudinally polarized W bosons are large. It is shown that the 
measurement of the polarization of the W bosons can be used as a tool to probe the W W H H coupling 
in this process. We also examine the effect of varying W W H H coupling in the κ-framework.
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1. Introduction

Standard Model (SM) has been very successful. It has been 
tested in a wide variety of low energy and high energy experi-
ments [1,2]. Although there is no firmly established conflict be-
tween the data and the standard model predictions, the model is 
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not yet fully validated. In particular, the Higgs sector of the model 
is not yet fully explored. The Higgs potential can still have many 
allowed shapes [3]. Self-couplings of the Higgs boson and its cou-
plings with some of the standard model particles are still loosely 
bound. The more precise measurement of the couplings can also 
lead to hints to beyond the standard model scenarios.

In this letter, we are interested in the coupling of the Higgs bo-
son with the W and Z bosons (collectively referred to as V ); in 
particular, we are interested in the quartic V V H H couplings. In 
the standard model, the V V H and V V H H couplings are related. 
The experimental verification of this relationship is important to 
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Fig. 1. A few LO Feynman diagrams for W +W − H production in bb̄ channel. Diagrams in the upper row are s-channel diagrams and in the lower row are t-channel diagrams.
put the standard model on a firm footing. There are scenarios be-
yond the SM, where these couplings are either not related or have 
different relationship [4]. The ATLAS collaboration has put a bound 
on this coupling at the Large Hadron Collider (LHC). Using the VBF 
mechanism of a pair of Higgs boson, and using 126 fb−1 of data 
at 13 TeV, there is a bound of −0.43 < κV 2 H2 < 2.56 at 95% con-
fidence level [5]. Here κV 2 H2 is the scaling factor for the V V H H
coupling. However, in this process, the bounds on W W H H and 
Z Z H H couplings cannot be separated. The process pp → H H V , 
where a pair of Higgs bosons are produced in association with a 
W or a Z boson, allows us to separately measure H H W W and 
H H Z Z couplings. Gluon-gluon fusion would contribute to H H Z
production. This mechanism is important at HE-LHC and FCC-hh. 
However, dependence on the scaling of H H V V coupling is weak. 
The expected bound from the W H H production at the HL-LHC is 
−10.6 < κV 2 H2 < 11 [6], which is quite loose.

Instead of these processes, we consider the process pp →
H W W at hadron colliders. This process can help us in measuring 
H H W W coupling, independent of H H Z Z coupling. This process
can take place by both quark-quark [7] and gluon-gluon scattering. 
At a 100 TeV collider, gluon-gluon scattering and bottom-bottom 
quark scattering give important contributions. These contributions 
depend on H H W W coupling. The gluon-gluon contribution is dis-
cussed in [8]. This contribution is smaller than the contribution 
of bottom-bottom scattering. The contribution of bottom-bottom 
scattering is only about 15–20% of the light quarks scattering con-
tribution at the 100 TeV center of mass energy (CME) and at 
the leading order (LO), light quarks contribution does not depend 
on W W H H coupling. The dependence on this quartic coupling, 
W W H H , can be enhanced if we measure the polarization of the 
final state W bosons. There is a significant enhancement of the 
fraction of the bottom-bottom scattering events when both W
bosons in the final states are longitudinally polarized. The ATLAS 
and CMS collaborations have measured the W polarization at the 
LHC [9–11]. We compute the one-loop QCD corrections to various 
combinations of final state W bosons polarization. The longitudi-
nally polarized W boson final states receive the largest corrections, 
leading to even larger fraction of events with bottom-bottom scat-
tering. We also scale the W W H H coupling and examine the effect 
of the NLO QCD corrections and the measurement of the polar-
ization of W bosons. It appears that an analysis of W W H events, 
when both the W bosons are longitudinally polarized, can help in 
determining the W W H H coupling.

The paper is organized as follows. The second and third sec-
tions describe the process and the details of the calculations. In 
the fourth section, we present the numerical results and the last 
section has the conclusions.
2

2. The process

We are interested in quark-quark scattering for the production 
of W W H . To study W W H H coupling, we consider this process 
in five-flavor scheme. We study the process b b̄ → W +W −H at 
hadron colliders. We take bottom quarks as massless but at the 
same time, we consider b b̄ H Yukawa coupling which is propor-
tional to the mass of the bottom quark. With this consideration, 
the diagrams with W W H H coupling would appear, with the Higgs 
boson coupling to the bottom quark. This coupling would not ap-
pear at the leading order (LO) for the other quarks in the initial 
state. This channel has been discussed only with t t̄ H Yukawa cou-
plings [12] but not with b b̄ H Yukawa couplings.

At the LO, there are 20 diagrams – 9 s-channel and 11 t-
channel. A representative set of diagrams is displayed in Fig. 1. 
Only one of the diagrams has W W H H coupling which is one of 
our main points of interest. We vary W W H H coupling in order to 
see its impact on the cross section for the different center of mass 
energies. There is no strong coupling dependency in the LO dia-
grams; they solely depend on electroweak couplings. Some of the 
t-channel diagrams depend on t t̄ H Yukawa couplings and give 
large contributions to the LO cross section, due to the top-quark 
mass dependency of t t̄ H Yukawa coupling.

To compute the one-loop QCD corrections to this process, 
we need to include one-loop diagrams and next-to-leading order 
(NLO) tree level diagrams. The one-loop diagrams can be catego-
rized as pentagon, box, triangle as well as bubble diagrams. There 
are 3 pentagon diagrams, 14 box diagrams, 34 triangle diagrams, 
and 14 bubble diagrams. A few representative NLO diagrams are 
displayed in Fig. 2. There is only one triangle diagram that has 
W W H H coupling. Bubble diagrams are UV divergent and a few 
triangle diagrams are also UV divergent. To remove UV divergence 
from the amplitude, counterterm (CT) diagrams need to be added 
to the virtual amplitudes. There are 15 vertex CT diagrams and 14
self energy CT diagrams. A set of CT diagrams are shown in Fig. 3. 
Also, most of the virtual diagrams are infrared (IR) singular. In or-
der to remove IR singularities from the virtual diagrams, one needs 
to include real emission diagrams. There are three such processes. 
These processes are a) bb̄ → W +W −H g , b) gb̄ → W +W −Hb̄ and 
c) bg → W +W −Hb. There are 54 Feynman diagrams for each of 
these processes. We have shown a few diagrams for the first sub-
process in Fig. 3. All these diagrams have been generated using a
Mathematica package, FeynArts [13].

3. Calculations and checks

We have to perform 2 → 3 and 2 → 4 tree level and 2 → 3
one loop calculations. For the calculation, we use helicity methods. 
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Fig. 2. A few sample one-loop Feynman diagrams for W +W − H production in bb̄ channel.

Fig. 3. A few sample real emission Feynman diagrams for the sub-process b ̄b → W +W − H g and vertex CT diagrams and self energy CT diagrams for the process b ̄b →
W +W − H .
As a starting point, we consider a few prototype diagrams in each 
case. With suitable crossing and coupling choices, we can com-
pute the rest of the diagrams. We compute helicity amplitudes at 
the matrix element level for the prototype diagrams. These helicity 
amplitudes can be used to probe the physical observables depen-
dent on the polarization of external particles. As mentioned before, 
the b-quarks are treated as massless quarks because of their small 
mass and we use massless spinors for b-quarks. The tree level he-
licity amplitudes can be written in terms of the spinor products 
〈pq〉 and [pq] [14]. For one-loop amplitudes, we use an extra ob-
ject - the vector current 〈pγ μq]. We take the functional form of 
the spinor products 〈pq〉 or [pq] from Ref. [15] and we extend 
their treatment to calculate the functional form of the vector cur-
rent 〈pγ μq]. We have checked that the calculated 〈pγ μq] satisfies 
various spinor identities. We adopt four-dimensional-helicity (FDH) 
scheme [16,17] to compute the amplitudes. In this scheme, all 
spinors, γ -matrices algebra are computed in 4-dimensions. We use 
package FORM [18] to implement the helicity formalism. In this 
calculation, we don’t have fermion loops; so there are no traces of 
matrices involving γ5. Therefore in our scheme, we have treated 
γ5 with properties same as that in four-dimension [19,20].

Using FORM, we write helicity amplitude in terms of spino-
rial objects, scalar products of momenta and polarizations. For the 
one-loop calculations, we also have tensor and scalar integrals. The 
one-loop scalar integrals are computed using the package OneLoop 
[21]. We use an in-house reduction code, OVReduce [22,23], to 
compute tensor integrals in dimensional regularization. Finally, the 
phase space integrals have been done with the advanced Monte-
Carlo integration (AMCI) package [24]. In AMCI, the VEGAS [25]
algorithm is implemented using parallel virtual machine (PVM) 
package [26].
3

Few checks have been performed to validate the amplitudes. 
The one-loop amplitudes have both ultraviolet (UV) and infrared 
(IR) singularities. UV singularities are removed by using counter-
term (CT) diagrams and the IR divergences are removed using 
Catani-Seymour (CS) dipole subtraction methods. The cancellation 
of these divergences are powerful checks on the calculation. All 
UV singularities are removed by fermionic mass and wave func-
tion renormalization. There are no UV singularities coming from 
pentagon and box diagrams as there are no 4-point box ten-
sors in those amplitudes. UV singularities are coming from the 
triangle as well as bubble diagrams. The appropriate vertex and 
self energy counterterms (CT) diagrams have been added in to-
tal amplitude which gives renormalized amplitude. A few sample 
CT diagrams are depicted in Fig. 4. We use the MS scheme for 
massless fermions and the on-shell subtraction scheme for mas-
sive fermions.

The next check is infrared (IR) singularity cancellation. We im-
plement the Catani-Seymour dipole subtraction method [27] for 
the cancellation of IR singularities. Except bubble diagrams, all 
other virtual diagrams are IR singular. Collectively all IR singu-
larities coming from virtual diagrams cancel with IR singularities 
coming from real emission diagrams.

Following the Catani-Seymour method, the NLO cross section 
can be written as

σ N L O =
∫

m+1

dσ R +
∫
m

dσ V

=
∫

(dσ R − dσ A) +
∫

(dσ V +
∫

dσ A) , (3.1)
m+1 m 1
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Fig. 4. The NLO differential cross section distribution with respect to transverse momentum (pT ) and invariant masses (Mij/i jk) for 14 and 100 TeV CMEs.
where dσ R , dσ V and dσ A are exclusive cross section, one-loop 
virtual correction and approximation term respectively. dσ A has 
the same pointwise singular behavior as dσ R and hence behaves 
as a local counterterm for dσ R and then first integration can be 
performed safely in ε → 0 limits. The second term of the second 
integral will give dipole I term which will remove all the infrared 
singularities from virtual correction and add a finite contribution. 
The dipole I factor comes from analytical integration of dσ A in 
d-dimensions over one-parton phase space. It can be written as∫
1

dσ A = dσ B ⊗ I , (3.2)

where dσ B is the born level cross section and the symbol ⊗ de-
scribes phase space convolution and sum over spin and color in-
dices. The term dσ B ⊗ I is evaluated over the rest of the m-parton 
phase space and cancels all singularities from renormalized virtual 
amplitudes. As discussed before, we use the FDH scheme, so we 
take I term in the FDH scheme. The term I given in Ref. [27] is in 
conventional dimensional regularization (CDR) scheme and in any 
other regularization scheme (RS), it is given as [28]

I RS({p}, ε) = I CDR({p}, ε) − αs

2π

∑
I

γ̃ RS
I +O(ε) . (3.3)

In the FDH scheme, γ̃ RS
I are

γ̃ FDH
q = γ̃ FDH

q̄ = 1
C F , γ̃ FDH

g = 1
C F . (3.4)
2 6

4

Now with this I term, we have checked that the integration in the 
second term of Eq. (3.1) is IR safe. Also, there are other terms in 
the dipole subtraction method, called P and K terms which will 
add finite contributions to σ N L O . These terms come from the fac-
torization of initial-state singularities into parton distribution func-
tions. The color operator algebra, explicit forms of Vi j,k , I, P and K
are given in Ref. [27].

There are three real emission sub-processes that can contribute 
to σ N L O . These processes are

a) b b̄ → W +W −H g b) g b̄ → W +W −H b̄

c) b g → W +W −H b, (3.5)

as these processes mimic the Born level process in soft and 
collinear regions. Due to large contributions, top resonance in the 
last two processes jeopardizes the perturbative calculation. The 
cross sections for these two processes are five to six times higher 
than the Born level cross section. One cannot remove those top 
resonant diagrams as it will affect the gauge invariance and we 
have checked that the interference between resonant and non-
resonant diagrams coming from the off-shell region is large which 
will again ruin the perturbative computations. There are several 
techniques to remove these on-shell contributions safely [29–32]. 
One can also restrict resonant top momenta out of the on-shell re-
gion and can have contribution only from the off-shell region. To 
implement the last technique with a standard jet veto, one needs a 
very large number of phase space points to get a stable cross sec-
tion. The implementation of these techniques is beyond the scope 
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Table 1
The LO and NLO cross sections for different collider 
CMEs with their respective scale uncertainties. RE is the 
relative enhancement of the total cross section from the 
Born level cross section.

CME (TeV) σ L O [ab] σ N L O
Q C D [ab] RE

14 217+16.1%
−18.9% 289+17.6%

−20.8% 33.2%

27 1086+19.2%
−20.5% 1559+18.0%

−20.8% 43.6%

100 15258+22.0%
−20.9% 23097+20.6%

−21.0% 51.4%

of this paper. Instead, we exclude the last two channels by assum-
ing b-quark tagging with 100% efficiency [12,33].

4. Numerical results

The sub-process b b̄ → W +W −H gives a significant contribu-
tion to the main process p p → W +W −H . We calculate the NLO 
QCD contribution to this process. In particular, we focus on the 
corrections to cross sections and distributions for various polariza-
tion configurations of the final state particles. We also probe varia-
tion of cross sections with W W H H anomalous coupling. Some of 
the Feynman diagrams, tree-level diagrams, as well as one-loop 
diagrams are heavy vector bosons, Higgs boson and top quark 
mediated. We use complex-mass scheme (CMS) [34] through-
out our calculation to handel the resonance instabilities coming 
from these massive unstable particles. We take Weinberg angle as 
cos2θ = (m2

W − i	W mW )/(m2
Z − i	Z mZ ). The input SM parameters 

are [35]: mW = 80.385 GeV, 	W = 2.0854 GeV, mZ = 91.1876 GeV, 
	Z = 2.4952 GeV, mH = 125 GeV, 	H = 0.00407 GeV, mt = 173.2
GeV, 	t = 1.44262 GeV. For the bottom-quark mass, we have used 
the running mass, as we have renormalized bottom quark mass in 
MS scheme. We have used mb = 2.8 GeV which can be obtained 
by running the mass mb = 4.92 GeV at bottom mass scale to the 
Higgs boson mass scale [36]. We have used this value for both LO 
and the NLO calculations. For the top quark, we have renormal-
ized in on-shell scheme. There are several pieces in the one-loop 
calculation which contribute to total σ N L O . As we have discussed 
above, virtual amplitudes, CT amplitudes, dipole I, P and K terms, 
dipole subtracted real emission amplitudes contribute to the finite 
part. We find that there are significant contributions from all these 
pieces except dipole subtracted real emission amplitudes which 
gives an almost vanishing contribution.

We use CT14lo and CT14nlo PDF sets [37] for LO (σ L O ) 
and NLO (σ N L O ) cross sections calculation. We use these PDF sets 
through LHAPDF [38] libraries. As mentioned before, we calcu-
late the cross sections in three different CMEs corresponding to 
current and proposed future colliders. We choose renormalization 
(μR ) and factorization (μF ) scales dynamically as

μR =μF = μ0

=1

3

(√
p2

T ,W + + M2
W +

√
p2

T ,W − + M2
W +

√
p2

T ,H + M2
H

)
,

(4.1)

where pT ,W , pT ,H are the transverse momenta and MW , MH are 
the masses of W and Higgs bosons. We measure the scale uncer-
tainties by varying both μR and μF independently by a factor of 
two around the μ0 given in Eq. (4.1).

4.1. Results for the SM

We have listed the cross sections for different CMEs with their 
respective scale uncertainties in Table 1. As we see in Table 1
the LO cross sections are 217, 1086 and 15258 ab, whereas NLO 
cross sections are 289, 1559 and 23097 ab at 14, 27 and 100 TeV 
5

CMEs respectively. The cross section rapidly increases with CME as 
PDFs for b-quarks are small for lower energies. The relative en-

hancements 
(

R E = σ NLO
QCD −σ LO

σ LO

)
due to NLO QCD correction are also 

presented in that table. The RE also increases with CME and it is 
33.2%, 43.6% and 51.4% for 14, 27 and 100 TeV CMEs respectively. 
We have calculated scale uncertainty as the relative change in 
the cross sections for the different choices of scales within bound 
0.5μ0 ≤ μR/μF ≤ 2μ0. We see that the NLO uncertainties are a 
little bit higher than the LO. As there is no strong coupling (αs) 
at the Born level, the LO uncertainties come from the factoriza-
tion scale whereas at the NLO the uncertainties come from both, 
factorization as well as renormalization scales. To see the different 
scale uncertainties separately, we vary μR and μF independently. 
We see the renormalization scale uncertainty varies from ∼ −11%
to ∼ 0.7% and the factorization scale varies from ∼ −15.7% to 
∼ 17.3% at NLO depending on CMEs from 14 to 100 TeV.

To get a better understanding, let us consider the diagrams in 
Fig. 1, which make contributions at the LO. These diagrams can be 
classified into four categories – 1) The diagrams with one bottom-
Yukawa coupling, 2) the diagrams with one top-Yukawa coupling, 
3) the diagrams without these Yukawa couplings, 4) The diagrams 
with two bottom-Yukawa couplings. At the tree level, because of 
a change of helicity at the Yukawa vertex, the diagrams of the 
first category do not interfere with the other three categories. The 
second and fourth categories of diagrams are t-channel diagrams. 
They have the same helicity structure as the third category of di-
agrams. The diagrams with two bottom-Yukawa couplings make 
a very small contribution. The main contribution comes from the 
individual square of the matrix elements of the first three cate-
gories. In particular, the square of matrix elements of the second 
and third categories are individually quite large, but there is also 
a sizable destructive interference between these two categories of 
diagrams. At the NLO level, in addition, we need to include con-
tributions of the interference between the LO order diagrams and 
one-loop diagrams. The relative contribution of these terms is dis-
cussed below.

As discussed before, we probe the contributions from different 
polarization configurations of the final state W bosons to the LO 
and NLO cross sections. The right-handed, left-handed and longi-
tudinal polarization of a W boson are denoted as ‘+’, ‘-’, and ‘0’. 
The contributions of different nine polarization combinations of fi-
nal state W bosons are given in Table 2 for 14, 27 and 100 TeV 
CMEs. We see that the large contributions are coming from the 
longitudinal polarization states and among them, the ‘00’ combi-
nation gives the largest contribution to the total cross sections. 
Relative enhancement (RE) for the ‘00’ combination increases with 
the CME and it becomes ∼ 117% at 100 TeV. In the Rξ gauge, 
the pseudo Goldstone bosons couple to massive fermions with a 
coupling proportional to the mass of the fermion. These pseudo 
Goldstone bosons represent the longitudinal polarization state of 
a W boson. This leads to larger values of the cross section in 
longitudinal polarization combinations due to heavy fermion medi-
ated diagrams. These longitudinal polarization modes are useful for 
background suppression to this process. The background may come 
from the processes with gauge bosons or gluons or photons cou-
plings with light quarks. The negligible masses of the light quarks 
(u, d, s and c) lead to the suppression of backgrounds in polariza-
tion combinations that include longitudinal polarization.

At the 100 TeV CME, the NLO corrections are largest for ‘00’ 
combination of W boson polarization. In this case, the largest 
positive contribution comes from the interference of the second 
category LO diagrams and one-loop diagrams corresponding to the 
third category and vice-versa. But the interference of second cat-
egory LO diagrams and corresponding one-loop diagrams is neg-
ative; the same is true for the interference of the third category 
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Table 2
The LO and NLO cross sections and their relative enhancements (RE) for different polarization 
combinations of final state W bosons and their sum at 14, 27 and 100 TeV CMEs. The results 
are in ab unit.

Pol. 
com.

14 TeV 27 TeV 100 TeV

σ L O σ N L O
Q C D RE (%) σ L O σ N L O

Q C D RE (%) σ L O σ N L O
Q C D RE (%)

++ 13 18 38.5 60 88 46.7 702 1056 50.4
+− 18 25 38.9 82 127 54.9 965 1499 55.3
+0 37 49 32.4 187 266 42.2 2568 3336 29.9
−+ 4 6 50.0 19 28 47.4 229 334 45.9
−− 13 18 38.5 61 89 45.9 707 1044 47.7
−0 22 28 27.3 108 144 33.3 1454 1346 −7.4
0+ 22 28 27.3 109 145 33.0 1470 1216 −17.3
0− 37 49 32.4 186 268 44.1 2583 3151 22.0
00 51 67 31.4 274 404 47.4 4490 9748 117.1∑

217 289 32.2 1086 1559 43.6 15258 23097 51.4
Table 3
The LO and NLO cross sections in 4FNS and the bb̄ channel 
at 14 and 100 TeV CMEs. The results for 4FNS have been ob-
tained using MagGraph5_aMC5@NLO. The bb̄ channel results 
are from our code.

channel 14 TeV 100 TeV

σ L O [ab] σ N L O
Q C D [ab] σ L O [ab] σ N L O

Q C D [ab]

4FNS 9460 13250 108100 185100
bb̄ 217 289 15258 23097

LO diagrams and corresponding one-loop diagrams. A small posi-
tive contribution is also obtained from the interference of the first 
category LO diagrams and corresponding one-loop diagrams. These 
diagrams are responsible for the W W H H coupling dependence of 
the process.

To find the relative contribution of the bottom-bottom scatter-
ing to the pp → W +W −H process, we compute the cross sections 
in other qq̄ channels along with the bb̄ channel. The results are 
presented in Table 3. The cross sections in qq̄ channels (4FNS) 
have been calculated using MagGraph5_aMC5@NLO [39]. Mag-
Graph5_aMC5@NLO cannot compute the one-loop QCD correc-
tions to the bb̄ channel due to the presence of the resonances 
in the diagrams. As we see in Table 3, the bb̄ channel gives sig-
nificant contributions to the full process pp → W +W −H . The bb̄
channel contributes ∼ 2.3% to the LO and ∼ 2.1% to the NLO cross 
sections at 14 TeV and ∼ 14.1% to the LO and ∼ 12.5% to the 
NLO cross sections at 100 TeV of process pp → W +W −H . These 
numbers are calculated without the channels gg → W +W −H , 
which can also add a significant contribution to the process pp →
W +W −H [8,12]. If one adds gg channel, these numbers will 
be changed accordingly. As we see in Table 3, the corrections 
are pretty high in qq̄ channels (4FNS). In those channels, Mad-
Graph5_aMC@NLO includes all real emission diagrams and the 
results are complete but we impose a jet veto on b-quarks with 
100% efficiency for real emission diagrams to overcome certain 
difficulties discussed in Sec. 3. The proper inclusion of all real 
emission diagrams may increase the QCD correction significantly 
in the bb̄ channel.

We have plotted a few different kinematical distributions at the 
NLO level in Fig. 4 and Fig. 5. In Fig. 4, the upper-panel histograms 
are for the transverse momentum (pT ) of final state particles at 
14 and 100 TeV CMEs. As expected pT distributions of W bosons 
almost coincide with each other. The pT distribution of the Higgs 
boson is a bit harder. The differential cross sections are maximum 
around pT = 100 TeV for the Higgs boson and near pT = 80 TeV 
for the W bosons. In the lower panel of Fig. 4, we have plotted 
the histograms for the different invariant masses (Mij,i jk) at 14
and 100 TeV CMEs. Invariant mass thresholds are around ∼ 210, 
∼ 170, ∼ 290 TeV and distributions are peaked around 250, 230, 
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490 TeV for MH W , MW W and MH W W respectively. In Fig. 5, we 
have plotted differential cross sections with respect to the rapid-
ity (η) of final state particles and cosine angle (cos θ ) between the 
two final state particles for 100 TeV CME. The distributions have 
maxima around η = 0, −0.4 and 0.4 for the Higgs boson, W + and 
W − boson respectively. From the cos θ plot in Fig. 5, it is clear 
that maximum contributions come when two final state particles 
are near to collinear region i.e., θ ∼ 0 or π . In Fig. 6, we have plot-
ted the LO and the NLO distributions to show the effect of the 
one-loop QCD corrections. The distributions are for only 100 TeV 
CME. The behavior for the 14 TeV CME is similar. In the upper 
half of Fig. 6, pT distributions are plotted and in the lower half of 
Fig. 6, invariant masses have been plotted at 100 TeV CME. We see 
an increase for the smaller values of the kinematic variables in all 
the plotted distributions.

4.2. Anomalous coupling effect

As we discussed in the introduction, V V H H coupling in SM is 
only loosely bound so far. We allow W W H H coupling to deviate 
from the SM value in the search for new physics in the context of 
κ-framework [40,41]. In the κ framework, only SM couplings de-
viate by a scale factor. κ is defined as the deviation from the SM 
coupling. It is a scale factor. Although W W H and W W H H cou-
plings in the SM are related but in many Effective Field Theory 
frameworks, these couplings can vary independently [4]. As there 
is no QCD correction to W W H H-vertex, the anomalous coupling 
will not affect the renormalization. We have checked that the UV 
and IR poles cancel with the same CTs and dipole terms as in the 
SM. We denote deviation of V V H H coupling from the SM as κV 2 H2

and κV 2 H2 = 1 in the SM. In this framework, we vary κV 2 H2 from 
−2.0 to 2.0 and calculate the relative increment 

(
RI = σκ−σSM

σSM

)
in 

the total cross section, whereas the κ for other SM couplings are 
set to 1. We choose κV 2 H2 = −2.0, −1.0, 1.5, 2.0 and tabulate the 
results for the LO and NLO cross sections at 14 and 100 TeV CMEs 
in Table 4. It is clear from Table 4 that cross sections are lower 
than SM prediction when κV 2 H2 is positive and higher than the SM 
predictions when κV 2 H2 is negative. (We note that this is due to 
the interference pattern within the diagrams of the first category.) 
There is not a significant relative increment (−0.3 to + 2.1%) at 14
TeV. At 100 TeV, relative increment varies from −2.2% to +11.4%
for the LO cross section and from −2.1% to +10.3% for the NLO 
cross section. There is also H H H coupling involved in this pro-
cess. We also observe the H H H anomalous coupling effect on the 
total cross sections. We vary corresponding κH3 from 0.5 to 2.0. 
We see that there is no significant change in the LO as well as 
the NLO cross sections and relative increase are smaller than 1%
for 14 and 100 TeV CMEs. We see something very interesting in 
Table 5. The cross sections for the two longitudinally polarized W
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Fig. 5. The NLO differential cross section distribution with respect to rapidity (η) and cosine angle (cosθ ) between the two final state particles at 100 TeV CME. Plots for 14 
TeV are similar.

Fig. 6. The LO and NLO differential cross section distribution with respect to transverse momentums (pT ) and invariant masses (Mij/i jk) for 100 TeV CME.
bosons configuration have a stronger dependence on the κV 2 H2 . For 
the NLO cross sections, the dependence is almost twice as strong 
as in the total cross sections. This again demonstrates the impor-
tance of measuring the polarization of the W bosons. However, this 
dependence is weaker as compared to the LO cross sections. The 
difference in this dependence underlines the importance of con-
sidering the NLO corrections.

In Fig. 7, we have plotted the NLO differential cross section 
distributions for the Higgs boson and W + boson transverse mo-
menta and different invariant masses. The maxima of the differen-
tial cross sections are about at the same value as for the SM. As 
there is not that much increase for κV 2 H2 = 2, the corresponding 
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distributions nearly overlap with the SM. On the other hand, we 
see a sharp deviation in distributions from the SM for κV 2 H2 = −2. 
An interesting fact about the negative κV 2 H2 is that the distri-
butions are harder. This difference in the shape can be used in 
putting a strong bound on the coupling. One could put a cut on 
pW

T , or one of the plotted invariant masses to select events with a 
larger component of anomalous events.

5. Conclusion

In this letter, we have focused on the NLO QCD corrections to 
bb̄ → W W H . This process has significant dependence on W W H H
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Fig. 7. Effect of anomalous V V H H coupling on differential cross section distribution at 100 TeV CME. Upper panel plots are for the transverse momentum of Higgs boson (pH
T ) 

and W + boson (pW +
T ). Lower panel plots are for the H − W + (MH W + ) and H − W + − W − (MH W + W − ) invariant masses.
Table 4
Effect of anomalous W W H H coupling on the LO and NLO cross sections at 
the 14 and 100 TeV CMEs.

CME (TeV) κV 2 H2 σ L O [ab] RI σ N L O [ab] RI

14

1.0 (SM) 217 289

2.0 216 [−0.5%] 288 [−0.3%]
1.5 216 [−0.5%] 289 [0.0%]

−1 220 [+1.4%] 293 [+1.4%]
−2.0 222 [+2.3%] 295 [+2.1%]

100

1.0 (SM) 15258 23097

2.0 14925 [−2.2%] 22607 [−2.1%]
1.5 15048 [−1.4%] 22810 [−1.2%]

−1.0 16296 [+6.8%] 24760 [+7.2%]
−2.0 16997 [+11.4%] 25465 [+10.3%]

Table 5
Effect of anomalous V V H H coupling on ‘00’ mode at 100 TeV 
CME.

κV 2 H2 σ L O [ab] RI σ N L O [ab] RI

1.0 (SM) 4490 9748
2.0 4159 [−7.4%] 9544 [−2.1%]
1.5 4333 [−3.5%] 9654 [−1.0%]

−1.0 5493 [+22.3%] 11117 [+14.0%]
−2.0 6164 [+37.2%] 11993 [+23.0%]

coupling. But, the contribution of this process to pp → W W H is 
only about 15–20% of that of light quark scattering. This is where 
the consideration of the polarization of the W bosons helps. When 
both the W bosons are longitudinally polarized, then this fraction 
can increase to about 50%. It turns out that the NLO QCD correc-
8

tions are also largest for this polarization configuration, making the 
dependence on the W W H H coupling even stronger. For example, 
at the 100 TeV CME, the NLO corrections are about 51%, but the 
corrections are about 117%, when both final state W bosons are 
longitudinally polarized. Our study suggests that the measurement 
of the polarization of the final state W /Z bosons can be a useful 
tool to measure the couplings of the vector bosons and Higgs bo-
son. We have also examined the effect of the variation of κV 2 H2 . 
The variation in the cross section can be twice as large when we 
consider longitudinally polarized W bosons. In addition, we find 
that the invariant mass and the pW

T distributions are considerably 
harder for the negative values of κV 2 H2 . This can also be useful to 
put a stronger bound on the coupling. However, to find the bound, 
one would need to do a detailed background analysis which we 
leave for the future.
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