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A R T I C L E I N F O A B S T R A C T

Editor: Clay Córdova We construct new exact solutions of the Georgi-Glashow model in 3 + 1 dimensions. These 
configurations are periodic in time but lead to a stationary energy density and no energy flux. 
Nevertheless, they possess a characteristic frequency which manifests itself through non-trivial 
resonances on test fields. This allows us to interpret them as non-Abelian self sustained coils. We 
show that for larger energies a transition to chaotic behavior takes place, which we characterize 
by Poincaré sections, Fourier spectra and exponential growth of the geodesic deviation in an 
effective Jacobi metric, the latter triggered by parametric resonances.
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1. Introduction

Time-periodic configurations arising in nonlinear hyperbolic problems are notoriously difficult to construct (see [1–3] and ref-

erences therein) and, at the same time, extremely interesting physically (see e.g. [4–6]). In Euclidean spaces, the relevance of 
topologically non-trivial configurations which are periodic in Euclidean time, representing instantons at finite temperature, is partic-

ularly relevant for the analysis of the phase diagram of gauge theories [7,8]. The interest in these configurations arises, in part, from 
the difficulty to study time dependent configurations in lattice gauge theories [22,23]. It also experienced a remarkable growth in 
the recent years, due to the intensive research in out-of-equilibrium physics (see e.g. [9–21] and references therein).

In the present paper we construct new exact, time dependent solutions to the Yang-Mills-Higgs system in 3 + 1 dimensions, with 
quite intriguing physical properties. These configurations are periodic in real time in such a way that the energy-density is stationary 
and their non-Abelian Poynting vector vanishes, so that there is no energy flux. In spite of this, as we will show below, they possess 
a characteristic frequency which manifests itself through non-trivial resonances of test fields, charged under the non-Abelian gauge 
symmetry, which propagate in these backgrounds. These new analytic solutions possess genuine non-Abelian features as they can be 
interpreted as non-Abelian self-sustained coils.

Besides the intrinsic interest to construct analytical time-dependent configurations, the technical tools allow to discuss very 
interesting open questions on the chaotic behavior of Yang-Mills theory. The analysis of chaos in non-Abelian gauge theories raised 
huge interest since the early years soon after the discovery of Yang-Mills theory (see [33–37] and references therein). In recent 
years, two references in particular [38,39] triggered a burst of activity on this topic due to the discovery of novel relations with 
holography and quantum chaos (see [40–43] and references therein). The usual starting point of these analyses is a homogeneous 
Ansatz for the Yang-Mills-Higgs fields with, very often, the Higgs field in the fundamental representation, which only depend on 
time, in such a manner that the corresponding field equations can be analyzed with the available tools of chaotic dynamics (see 
[44]). On the other hand, this starting point prevents, in many situations, to include non-trivial topological fluxes, that either need 
some non-trivial dependence on space-like coordinates, or the presence of the Higgs field in the adjoint representation, in order to 
get a gauge-invariant version of the magnetic flux. Therefore, if one is interested in the analysis of the interplay of topology and 
chaos, it is important to generalize a little bit the notion of homogeneous field and to construct an Ansatz in which the fields depend 
non-trivially on the spatial coordinates, keeping alive the topological fluxes, but in such a way that the field equations reduce to a 
dynamical system.

An important technical tool to succeed in the aforementioned construction turns out to be the non-spherical hedgehog Ansatz 
developed for the Skyrme model, originally introduced in [24–30], that allowed to discover the first analytic and topologically non-

trivial solutions in the Skyrme model which are periodic in time in such a way that the energy-momentum tensor is static [31,32]. As 
explained below, in a certain sense the results presented here represent an extension of those in [31] and [32] to the Yang-Mills-Higgs 
case, with the Higgs in the adjoint representation of the gauge group.

At a first glance, the analytic solutions representing non-Abelian self-sustained coils, to be described in the following sections, 
could suggest the appearance of some integrable sector of the theory. In fact, this is not the case: the chaotic behavior appears 
anyway. However, in the analysis of the chaotic regime, the analytic solutions manifest themselves through “integrability islands” 
in the corresponding Poincaré sections. One of the main tools that we will use in the analysis of chaotic dynamics was introduced in 
[51] and is based on the Jacobi metric [49]. Our analysis shows that such a tool, which to the best of our knowledge has not been 
employed so far in the analysis of chaos in Yang-Mills theory, is actually very effective when compared with different techniques.

The paper is organized as follows: in Section 2.1 the conventions and the Georgi-Glashow model are presented. In Section 2.2 we 
introduce the time dependent Ansatz for the Yang-Mills and Higgs fields in flat spacetime. Later, the new exact solutions of the system 
are derived, as well as some of their perturbations. The cases with and without vacuum expectation value are studied separately in 
sections 3.1 and 3.2 respectively. In Section 5 we study the resonance frequencies of the configurations with a quantum scalar field 
probe in the fundamental of 𝑆 𝑈 (2). Some remarks and conclusions are given in the last section.

2. Basic setup

In this section, the model and the time-dependent Ansatz are introduced, together with the corresponding equations of motion 
and the resulting energy momentum tensor and non-Abelian Poynting vector.

2.1. The model

Our starting point is the Georgi-Glashow model for 𝑆 𝑈 (2), with field content given by a Lie algebra valued 1-form gauge potential 
𝐴 and a Higgs field Φ which transforms in the adjoint representation. They are algebra valued objects

𝐴 = 𝐴𝑎
𝜇 𝑡𝑎 𝑑 𝑥𝜇 , Φ=Φ𝑎 𝑡𝑎 , (2.1)

where we consider anti-Hermitian matrices 𝑡𝑎 ≡ 𝑖𝜎𝑎, where 
{

𝜎𝑎 , 𝑎 = 1,2,3
}

are the Pauli matrices. These generators fulfill 𝑡𝑎 𝑡𝑏 =
−𝛿𝑎𝑏 − 𝜀𝑎𝑏𝑐 𝑡𝑐 .

The action for the model reads

4 √ (
1 𝑎𝜇𝜈 1 𝑎 𝜇 𝜆 (

𝑎 2)2)

2

𝐼 [𝐴,Φ] = ∫ 𝑑 𝑥 −𝑔 −
4𝑒2

𝐹 𝐹𝑎𝜇𝜈 − 2𝑒2
𝐷𝜇Φ 𝐷 Φ𝑎 − 4

Φ Φ𝑎 − 𝜈 , (2.2)
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where 𝑒 is a positive gauge coupling constant, 𝜆 is a positive scalar self coupling, and 𝜈 is the vacuum expectation value of the Higgs 
field. As usual, the field strength and the covariant derivative are defined by

𝐹𝜇𝜈 = 𝜕𝜇 𝐴𝜈 − 𝜕𝜈 𝐴𝜇 +
[

𝐴𝜇 , 𝐴𝜈

]
, (2.3)

𝐷𝜇⋅ =∇𝜇 ⋅+
[

𝐴𝜇 , ⋅
]

. (2.4)

The field equations are obtained by computing the stationary variation with respect to the fields 𝐴𝑎
𝜇 and Φ𝑎 which respectively 

give the following expressions

𝐷𝜇 𝐹 𝜇𝜈 −
[
Φ, 𝐷𝜈Φ

]
= 0 , (2.5)

𝐷𝜇 𝐷𝜇Φ− 𝑒2𝜆
(
Φ𝑎Φ𝑎 − 𝜈2)Φ= 0 . (2.6)

The energy momentum tensor of this model is computed by varying the action with respect to the metric, resulting in

𝑇𝜇𝜈 = 𝑇
𝖦𝖺𝗎𝗀𝖾

𝜇𝜈 + 𝑇
𝖧𝗂𝗀𝗀𝗌

𝜇𝜈 , (2.7)

with

𝑇
𝖦𝖺𝗎𝗀𝖾

𝜇𝜈 = 1
𝑒2

(
𝐹𝑎𝜇𝜆 𝐹 𝑎 𝜆

𝜈 − 1
4

𝑔𝜇𝜈 𝐹 𝑎𝜌𝜎 𝐹𝑎𝜌𝜎

)
, (2.8)

𝑇
𝖧𝗂𝗀𝗀𝗌

𝜇𝜈 = 1
𝑒2

(
𝐷𝜇Φ𝑎 𝐷𝜈Φ𝑎 −

1
2

𝑔𝜇𝜈 𝐷𝜎Φ𝑎 𝐷𝜎Φ𝑎 − 𝑔𝜇𝜈
𝜆𝑒2

4
(
Φ𝑎Φ𝑎 − 𝜈2)2) . (2.9)

From now on we set 𝑒 = 1 without loss of generality, since the only relevant combination is 𝜆𝑒2.

2.2. The time dependent Ansatz

In the present section we define an appropriate Ansatz which allows us to solve the field equations analytically with a time 
dependent profile.

Let us first fix the geometry considering flat spacetime in cylindric coordinates

𝑑 𝑠2 = −𝑑 𝑡2 + 𝑑 𝑧2 + 𝑑 𝜌2 + 𝜌2𝑑 𝜑2 . (2.10)

The range of the coordinates is the usual, 𝜑 ∈ [0,2𝜋] with 𝜑 ∼ 𝜑 + 2𝜋 , 𝜌 ∈ [0, +∞[ and 𝑡, 𝑧 ∈ℝ . In this background we define our 
Ansatz for the gauge field and Higgs fields, as

𝐴 = −𝑊 (𝑡)√
2

(
𝑡1 𝜌𝑑 𝜑 − 𝑡2 𝑑 𝜌

)
− 1

2
𝑡3 𝑑 𝜑 , (2.11)

Φ= 𝐺(𝑡) 𝑡3 . (2.12)

Both the gauge 𝑊 (𝑡) and Higgs 𝐺(𝑡) profiles depend explicitly on time. The non-Abelian field strength defined in (2.3) for the Ansatz 
(2.11) reads

𝐹 = �̇�√
2

(
𝑑 𝑡 ∧ 𝑑 𝜌 𝑡2 − 𝜌 𝑑 𝑡 ∧ 𝑑 𝜑 𝑡1

)
− 𝑊 2𝜌 𝑑 𝜌 ∧ 𝑑 𝜑 𝑡3 . (2.13)

It has two electric components, one of them is along the second generator of the gauge group while pointing in the radial spatial 
direction, while the other is aligned with the first generator and it points around the cylinder. The magnetic field is aligned with the 
third generator and it goes along the axis of the cylinder.

With the above Ansatz, the energy momentum tensor has a natural cylindrical symmetry, and it can be written as

𝑇𝜇𝜈 𝑑 𝑥𝜇 ⊗ 𝑑 𝑥𝜈 = 1
𝑒2

( 𝑑 𝑡2 − 𝑝⟂(𝑑 𝜌2 + 𝜌2𝑑 𝜃2) − 𝑝𝑧 𝑑 𝑧2) , (2.14)

with

 = 1
2
(

�̇�2 + �̇� 2)+ 1
2

𝑊 2 (4𝐺2 + 𝑊 2)+ 𝜆

4
(

𝐺2 − 𝜈2)2 , (2.15)

𝑝⟂ = −1
2
(

�̇�2 + 𝑊 4)+ 𝜆

4
(

𝐺2 − 𝜈2)2 , (2.16)

𝑝𝑧 = 𝑝⟂ + 𝑊 2 (2𝐺2 + 𝑊 2)− 1
2

𝑊 ′ 2 . (2.17)

It is worth to emphasize that, in spite of considering a time dependent configuration, there are no energy fluxes. This feature can be 
interpreted as an interplay between the non-Abelian character of the solution and the time dependence of the gauge fields, in such a 
way that the trace in the definition of the energy momentum tensor cancels out the radiation of the gauge field. We will discuss this 
3

feature in more detail in section 5.
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To give some physical content to the above construction, let us first recall one of the most useful features of the Georgi-Glashow 
model: the presence of a scalar field in the adjoint representation allows us to construct a gauge invariant quantity representing the 
effective Abelian gauge field of the theory

𝐹𝖾𝖿𝖿 = tr (Φ𝐹 ) . (2.18)

For the configuration (2.11) and (2.12), the above projection gives

𝐹𝖾𝖿𝖿 = 𝜌 𝐺 𝑊 2𝑑 𝜌 ∧ 𝑑 𝜑 . (2.19)

In the present case, the 2-form (2.19) corresponds to an effective uniform Abelian magnetic flux along the 𝑧-axis. The exact config-

urations that will be discussed in the following are periodic in time, hence the effective Abelian magnetic field will be periodic as 
well.

Now let us consider a cylinder of radius 𝑅0 inside of which the fields are given by the Ansatz (2.11)-(2.12), while they vanish 
outside. In order to match the fields in the interior of the cylinder with those outside it, we require the usual Maxwell junction 
conditions for the corresponding Abelian part (2.19). These conditions tell us that the normal component to the interface of the 
effective Abelian magnetic field must be continuous, which is satisfied by 𝐵𝖾𝖿𝖿 = 𝐺 (𝑡)𝑊 (𝑡)2 𝜕𝑧. Also, since the Poynting vector is 
zero everywhere, there is no energy flux outside the cylinder. Consequently, if we are able to construct explicitly exact solutions for 
the gauge and Higgs profiles which are periodic in time, then such configurations can be interpreted as coils with a self-generated 
𝐴𝐶 current.

A very important property of the ansatz for the gauge and Higgs fields given in Eqs. (2.11) and (2.12) is that it reduces the full 
coupled system of non-linear partial differential equations to the following two coupled ordinary differential equations

𝑑2𝐺

𝑑 𝑡2
+ 4𝑊 2𝐺 + 𝜆𝐺

(
𝐺2 − 𝜈2) = 0 , (2.20)

𝑑2𝑊

𝑑 𝑡2
+ 4𝐺2𝑊 + 2𝑊 3 = 0 . (2.21)

It is conceptually useful to rewrite this system of second order differential equations as a Newtonian system for the time-dependent 
variables (𝐺, 𝑊 ) in the form

𝑑2𝐺

𝑑 𝑡2
= − 𝜕

𝜕𝐺
𝑉 (𝐺, 𝑊 ) ,

𝑑2𝑊

𝑑 𝑡2
= − 𝜕

𝜕𝑊
𝑉 (𝐺, 𝑊 ) , (2.22)

in terms of the effective potential

𝑉 (𝐺, 𝑊 ) = 2𝑊 2𝐺2 + 1
2

𝑊 4 + 𝜆

4
(

𝐺2 − 𝜈2)2 . (2.23)

The configuration with non-trivial expectation value has zero vacuum energy thanks to the additive constant 𝜆𝜈4∕4. This potential is 
bounded from below and has two global minimum at 𝐺 = ±𝜈 , 𝑊 = 0 and a saddle point at 𝐺 = 0, 𝑊 = 0. A plot of the level curves 
of this potential is shown in Fig. 1.

As a first interesting result notice that, integrating the system (2.22)-(2.23) once, we recover the conservation of the energy 
density  , in spite of the fact that the field configuration is time dependent. This is consistent with the absence of energy fluxes in 
our configuration.

Naively, one could conclude that this configuration is static and hence there is no a characteristic frequency of the system. 
Nevertheless, this is not the case as we will show in section 5 by computing the time-dependent transition amplitude of a scalar 
probe field in the adjoint representation propagating in the exact solutions of the above form. Such transition amplitude discloses 
a clear resonance effect when the frequency of the test field matches the characteristic frequency of the background solutions. The 
present situation is reminiscent of the spin-from-isospin effect for Skyrmions and non-Abelian monopoles [45–47] in which case the 
energy-momentum tensor is spherically symmetric and yet these configurations are not spherically symmetric in the obvious sense 
as the angular momentum operator is naturally supplemented by an extra term arising from the internal symmetry group. This fact 
is behind the commonly used statement “gauge field are invariant up to an internal transformation”.

Notice that the equations (2.20) and (2.21) have the shift symmetry

𝑡 → 𝑡 − 𝑡0 , (2.24)

which implies that one of the integration constants of the system sets the zero of the time variable. Moreover, they have the scaling 
invariance

(𝑡, 𝑊 , 𝐺, 𝜈, 𝜆)→
(

𝑡

𝑇
, 𝑇 𝑊 , 𝑇 𝐺, 𝑇 𝜈, 𝜆

)
, (2.25)

where 𝑇 is an arbitrary constant. For vanishing 𝜈 this implies that a second integration constant sets the time scale and the overall 
4

scale of the fields. For 𝜈 finite, these can be fixed by the value of 𝜈.
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Fig. 1. Level curves of the effective potential 𝑉 for the cases 𝜈 ≠ 0 (left) and 𝜈 = 0 (right).

It is worth emphasizing that in a vast majority of papers in the available literature on chaos in Yang-Mills theory, the non-Abelian 
gauge potential and the Higgs field are chosen to be homogeneous in space, so that they only show a non-trivial dependence on 
the time variable 𝐴𝜇 = 𝐴𝜇(𝑡), Φ = Φ(𝑡). We will refer to this type of configurations as “trivially homogeneous”, since for them both 
the field equations as well as the physical observables (such as the energy-density and the effective magnetic flux) only depend on 
time. Even if this dependence could appear to be too restrictive, it is actually justified in situations where the time gradients are 
much larger than the space ones (cf. [33–44]). This allows to use the well known techniques and ideas from the theory of chaos in 
dynamical systems, like for example those presented on [50] and [51]. For this reason, since the early days of chaos in Yang-Mills 
theory (cf. [52]) until the more recent references on this topic (cf. [53] and references therein), trivially homogeneous configurations 
are considered.

One of the contributions of the present work is to extend the notion of homogeneous fields in order to apply chaos theory 
to more general Yang-Mills-Higgs configurations. In particular, we define a configuration as “homogeneous” if and only if the 
Ansatz describing it reduces the complete set of Yang-Mills-Higgs field equations to a consistent dynamical system of second order 
autonomous ordinary differential equations, for purely time dependent unknown functions. Obviously, a “trivially homogeneous” 
configuration is also homogeneous in our sense, but the converse is not true. Indeed, the explicit example above is not homogeneous 
in space, as both the gauge potential and the energy-momentum tensor depend on space-like coordinates. However, such dependence 
has been chosen in such a way that the field equations realize a dynamical system of two second order autonomous ODE’s in two 
unknown time dependent functions.

This technical result allows to extend considerably the range of applicability of chaos tools to gauge theory, keeping alive both 
the genuine non-Abelian character of the configurations as well as the non-Abelian magnetic flux.

3. Exact solutions

In this section we present our exact solutions and analyze their properties, studying separately the cases with a without vacuum 
expectation value. In each case, we explore the vacuum and perturbative solutions, the pure Yang-Mills and pure Higgs cases, and 
the solutions with both fields turned on.

3.1. Configurations with non-vanishing vacuum expectation value

In this section we will consider configurations with non-vanishing vacuum expectation value 𝜈 ≠ 0.

Perturbative solution: The first trivial observation in this case is that there is a vacuum static solution in which 𝑊 (𝑡) = 0 and 
𝐺(𝑡) = ±𝜈. Such solution can be perturbed as

𝑊 (𝑡) = 𝜖𝑤(𝑡) , (3.1)

𝐺(𝑡) = ±𝜈 + 𝜖𝑔(𝑡) , (3.2)

where 𝜖 is a small parameter and 𝑤(𝑡) and 𝑔(𝑡) are new unknown functions. Plugging this back into the equations of motion and 
5

expanding to first order in 𝜖, we get a perturbative solution
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𝑊 (𝑡) = 𝜖 sin(2𝜈(𝑡 − 𝑡0) + 𝛿) , (3.3)

𝐺(𝑡) = ±𝜈 + 𝜖𝑎 cos(
√
2𝜆𝜈(𝑡 − 𝑡0)) , (3.4)

where 𝜖 now becomes a small integration constant, and 𝑎, 𝑡0 and 𝛿 are integration constants of order one. Notice that these solutions 
are periodic only when 

√
𝜆∕2 = 𝑝∕𝑞 with 𝑝, 𝑞 ∈ℕ. The period then reads

𝑡 ∼ 𝑡 + 𝜋

𝜈

√
2
𝜆

𝑝 = 𝑡 + 𝜋

𝜈
𝑞 (3.5)

Pure Yang-Mills solution: There is a pure Yang-Mills sector of the theory, which is obtained setting 𝐺(𝑡) = 0. In this case, the field 
equations (2.20)-(2.21) reduce to the equations of a quartic oscillator, namely

𝑑2𝑊

𝑑 𝑡2
+ 2𝑊 3 = 0 , (3.6)

that can be solved in the form

𝑊 (𝑡) = ±𝑎 sn
(

𝑎
(

𝑡 − 𝑡0
)

,−1
)

, (3.7)

where sn(𝑥, 𝑚) is the Jacobi elliptic sine function, and 𝑎 is a constant of integration. Notice that the same constant sets both the time 
scale and the amplitude of the oscillation. This can be traced back to the scaling symmetry (2.25), taking into account that the value 
of 𝜈 does not enter into the present pure Yang-Mills solution.

We can calculate the energy density of the configuration according to the expression (2.15), obtaining

 = 1
4
(
2𝑎4 + 𝜆𝜈4) , (3.8)

where we see that the energy density is conserved.

Solutions (3.7) are periodic, their period can be obtained from the periodicity properties of the Jacobi elliptic sine, resulting in 
the expression

𝑡 ∼ 𝑡 + 2
𝑎

𝐾20(−1) , (3.9)

where the function 𝐾𝑝𝑞(𝑚) has been defined according to

𝐾𝑝𝑞(𝑚) = 𝑝 𝐾(𝑚) + 𝑖 𝑞 𝐾(1 − 𝑚) . (3.10)

In this expression, 𝐾 is the complete elliptic integral of the first kind, and 𝑝, 𝑞 ∈ ℕ. Here and in what follows, we are choosing the 
values of 𝑝 and 𝑞 as the smallest integers that make the resulting period real.

Pure Higgs solution: There is also a pure Higgs configuration, which is obtained by setting 𝑊 (𝑡) = 0 and solving the remaining 
equation for 𝐺(𝑡), resulting in

𝐺(𝑡) = ±𝜈

√
2𝑞

1 + 𝑞
sn
(√

−𝜆

1 + 𝑞
𝜈 (𝑡 − 𝑡0), 𝑞

)
, (3.11)

where 𝑞 is a constant of integration.

As for the pure Yang-Mills case, this is a periodic solution whose period is given by that of the Jacobi sine, in the form

𝑡 ∼ 𝑡 + 2
𝜈

√
1 + 𝑞

−𝜆
𝐾20(𝑞) , (3.12)

where 𝐾𝑝𝑞 defined as in equation (3.10).

Solution (3.11) is explicitly real for 𝑞 < −1. However, using the definition of and properties of the Jacobi elliptic functions, it can 
be analytically continued to 𝑞 ∈ (−1, 0] in the form

𝐺(𝑡) = ±𝜈

√
−2𝑞

1 + 𝑞
sc
(
−
√

𝜆

1 + 𝑞
𝜈 (𝑡 − 𝑡0),1 − 𝑞

)
, (3.13)

where sc(𝑥, 𝑚) = 𝑖 sn(−𝑖𝑥, 1 − 𝑚) is another Jacobi function.

Expression (3.13) is again periodic, but in this case the period is written in the form

𝑡 ∼ +2
𝜈

√
1 + 𝑞

𝜆
𝐾22(1 − 𝑞) , (3.14)
6

which connects smoothly to (3.12) as 𝑞 → −1.
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This configuration has an energy density given by

 = 𝜆

4

(
1 − 𝑞

1 + 𝑞

)2
𝜈4 , (3.15)

which is again conserved.

Solution with both fields: For the generic case with non-vanishing Higgs, the solution reads

𝐺(𝑡) = ±1

√
2 𝜈 dn

(√
8 − 𝜆 𝜈

(
𝑡 − 𝑡0

)
,

𝜆

8 − 𝜆

)
, (3.16)

𝑊 (𝑡) = ±2

√
𝜆(𝜆 − 4)
8 − 𝜆

𝜈 sn
(√

8 − 𝜆 𝜈
(

𝑡 − 𝑡0
)

,
𝜆

8 − 𝜆

)
, (3.17)

where dn2(𝑥, 𝑚) = 1 −𝑚 sn2(𝑥, 𝑚) is another Jacobi elliptic function. This solution is explicitly real for 𝜆 ∈ [4, 8). There is no integration 
constant controlling the frequency of the oscillation, nor its amplitude. However, the vacuum expectation value parameter 𝜈 changes 
the amplitude and the frequency of the configuration in the same amount, due to the scaling symmetry discussed in the previous 
section (2.25). The period is given by

𝑡 ∼ 𝑡 + 2
𝜈
√
8 − 𝜆

𝐾22

(
𝜆

8 − 𝜆

)
. (3.18)

Using the identities and the relations between the Jacobi elliptic functions one can write (3.16)-(3.17) in an alternative form 
which is manifestly real for 𝜆 > 8. In such case we have

𝐺 (𝑡) = ±1

√
2 𝜈 dc

(√
𝜆 − 8 𝜈

(
𝑡 − 𝑡0

)
,1 − 𝜆

8 − 𝜆

)
, (3.19)

𝑊 (𝑡) = ±2

√
𝜆 (𝜆 − 4)

𝜆 − 8
𝜈 sc

(√
𝜆 − 8 𝜈

(
𝑡 − 𝑡0

)
,1 − 𝜆

8 − 𝜆

)
. (3.20)

Where dc(𝑥, 𝑚) = dn(−𝑖𝑥, 1 − 𝑚) is a further elliptic function. The period now reads

𝑡 ∼ 𝑡 + 2
𝜈
√

𝜆 − 8
𝐾22

(
1 − 𝜆

8 − 𝜆

)
. (3.21)

The 𝜆 = 8 can be integrated from the equations (2.20)-(2.21) and it reads

𝐺 (𝑡) =
√
2 𝜈 sin

(
2
√
2𝜈

(
𝑡 − 𝑡0

))
, (3.22)

𝑊 (𝑡) = 2 𝜈 cos
(
2
√
2𝜈

(
𝑡 − 𝑡0

))
. (3.23)

Here, 𝑡0 is the only integration constant of the solution. The period of this solution can be written as

𝑡 ∼ 𝑡 + 𝜋√
2𝜈

. (3.24)

For any value of the coupling 𝜆, the energy density of this exact configuration is given by the expression

 = 1
4
(2𝜆 − 7)𝜆𝜈4 , (3.25)

which behaves smoothly in the 𝜆 → 8 limit.

In Fig. 2 we overlap the solutions we found in this section with the level curves of the effective potential (2.23) for 𝜈 = 1, 𝜆 =
6, 8, 12.

3.2. Configurations with vanishing vacuum expectation value

Perturbative solution: With 𝜈 = 0 we still have a static solution, now at 𝑊 (𝑡) = 𝐺(𝑡) = 0, that can be perturbed to obtain

𝑊 (𝑡) = 𝜖(𝑡 − 𝑡0) , (3.26)

𝐺(𝑡) = 𝜖𝑎(𝑡 − 𝑡0) . (3.27)

Higher order perturbations result in further corrections to the overall coefficient of the linear term, up to order 𝜖3 at which there is 
an additional correction which goes as (𝑡 − 𝑡0)5.

Pure Yang-Mills solution: The pure Yang-Mills configuration is the same as in the case with non-vanishing vacuum expectation value, 
7

which is to be expected since the Higgs field plays no role in it.
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Fig. 2. Solutions with non-vanishing vacuum expectation value 𝜈 ≠ 0, for the particular cases 𝜆 = 6, 8, 12 from left to right. The continuous gray line is the perturbative 
solution, while the dotted line is the exact one. The vertical and horizontal dashed lines represent the pure Yang-Mills and pure Higgs solutions respectively, the last 
corresponding to the smallest amplitude 𝑞 → −∞.

Pure Higgs solution: Regarding the pure Higgs configuration, it satisfies the equation of motion

𝑑2𝐺

𝑑 𝑡2
+ 𝜆𝐺3 = 0 . (3.28)

This is again a quartic oscillator, with solution

𝐺(𝑡) = ±
√
2𝑎 sn

(
𝑎
√

𝜆(𝑡 − 𝑡0),−1
)

, (3.29)

where 𝑎 is an integration constant. The period takes the form

𝑡 ∼ 𝑡 + 2
𝑎
√

𝜆
𝐾20(−1) . (3.30)

The energy density on the other hand, reads

 = 𝑎4𝜆 . (3.31)

It is interesting to notice that formulas (3.29) to (3.31) can be obtained from the corresponding equations for the finite vacuum 
expectation value case, by taking the limit 𝜈 → 0 and 𝑞 → −1 with the constraint 𝜈∕

√
1 + 𝑞 = 𝑖 𝑎.

Solution with both fields: The fact that for the linearly perturbed solution we have a Higgs profile 𝐺 that is proportional to the Yang-

Mills profile 𝑊 , suggests that in the non-perturbative case we can try to reduce the equations (2.20)-(2.21) into a unique equation, 
by considering the ansatz

𝐺(𝑡) = ±
√

2
4 − 𝜆

𝑊 (𝑡) . (3.32)

Here the proportionality factor has been chosen so that the resulting equations for 𝐺(𝑡) and 𝑊 (𝑡) coincide. Notice that the shape of 
the potential provides that 𝜆 must be positive and the equation (3.32) implies that 𝜆 < 4. The resulting master equation is given by

𝑑2𝑊

𝑑 𝑡2
+ 2

(8 − 𝜆

4 − 𝜆

)
𝑊 3 = 0 , (3.33)

which can be solved by

𝑊 (𝑡) = ±𝑎 sn

(
𝑎

√
8 − 𝜆

4 − 𝜆

(
𝑡 − 𝑡0

)
,−1

)
. (3.34)

Notice that as before the amplitude 𝑎 is tied to the frequency due to the scaling symmetry, but now it is an integration constant. 
Consequently, the profile for the Higgs field reads

𝐺(𝑡) = ±
√

2
4 − 𝜆

𝑎 sn

(
𝑎

√
8 − 𝜆

4 − 𝜆

(
𝑡 − 𝑡0

)
,−1

)
. (3.35)
8

These solutions are explicitly real for 𝜆 < 4 and cannot be extended to 𝜆 > 4.



Nuclear Physics, Section B 1004 (2024) 116553F. Canfora, N. Grandi, M. Oyarzo et al.

Fig. 3. Solutions with non-vanishing vacuum expectation value 𝜈 = 0, for the particular cases 𝜆 = 1, 2, 3 from left to right. In orange is the exact solution. The vertical 
and horizontal lines represent the pure Yang-Mills and pure Higgs solutions respectively.

The energy density of this configuration is

 = 𝑎4 (𝜆 − 8) (𝜆 − 6)
2 (𝜆 − 4)2

, (3.36)

while the period can be obtained in terms of the complete elliptic integral of the first kind

𝑡 ∼ 𝑡 + 2
𝑎

√
𝜆 − 4
𝜆 − 8

𝐾20(−1) . (3.37)

In Fig. 3 the solutions are shown, together with a level plot of the effective potential (2.23).

4. Chaotic behavior

At a first glance, one could think that the appearance of the nice analytic solutions described in the previous sections may hint 
at the integrability of the Yang-Mills-Higgs sector described by the Ansatz in Eqs. (2.11) and (2.12). This possibility becomes quite 
clear taking into account that using the homogeneous Ansatz which is usually employed in the analysis of chaos in Yang-Mills theory 
(see [40–43] and references therein) it has not been possible to find analytic solutions, to the best of our knowledge. In the following 
sections we will show that this is not the case: the chaotic behavior appears nevertheless, if one increases the energy of the system.

To characterize the chaotic regime, we will use three different and somewhat complementary techniques:

1. Poincaré sections: The phase space of the system is 4-dimensional and can be parameterized by the coordinates (𝐺, 𝑊 ) and 
the canonical momenta (𝑝𝐺 = �̇�, 𝑝𝑊 = �̇� ). The conservation of the energy (2.15) reduces in one the dimensionality of the 
space where the trajectories develop. Poincaré sections are then constructed by performing one further projection onto the plane 
(𝑊 , 𝑝𝑊 ).
Regular trajectories appear in the Poincaré section as sets of points that can be connected with smooth curves. Chaotic behavior 
on the other hand, corresponds to sparse sets that fill the section.

The presence of analytic solutions manifests itself through “integrability islands”.

2. Fourier analysis: Chaos can often be confused with a quasiperiodic behavior, a combination of linear oscillators with non-

commensurable frequencies. In order to exclude the latter possibility of our analysis, we consider the discrete Fourier spectrum 
of one of the canonical variables.

A non-smooth Fourier spectrum is a clear signature of a chaotic regime.

3. Geodesic divergence: In classical mechanics, the time evolution of a Newtonian system of the kind defined by (2.22)-(2.23)

can be described as a non-affine parametrization of the geodesic curves on a manifold endowed with the so-called Jacobi metric 
[48,49], defined according to

𝑑 𝑠2 = 𝑔𝑖𝑗 𝑑 𝑞𝑖 𝑑 𝑞𝑗 = 2( − 𝑉 )
(

𝑑 𝑊 2 + 𝑑 𝐺2) ,

= 4( − 𝑉 )2 𝑑 𝑡2 , (4.1)

where 𝑖, 𝑗 run on the independent generalized coordinates 𝑞𝑖 = (𝐺, 𝑊 ) and  is the energy of the system (2.15).

The relation between the curvature of the manifold and the stability of the geodesics is expressed in terms of the Jacobi-Levi-

Civita equation for the Jacobi field 𝜂𝑖, measuring the deviation between two infinitesimally close geodesics

𝑑 𝑞𝑗 𝑑 𝑞𝑘
9

∇2
𝑠 𝜂𝑖 −𝑖

𝑗 𝑘𝑙 𝑑 𝑠 𝑑 𝑠
𝜂𝑙 = 0 , (4.2)
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where ∇𝑠 is the covariant derivative. In a two dimensional manifold the Riemann tensor can be written in terms of the scalar 
curvature  in the form 𝑖

𝑗 𝑘𝑙 =(𝛿𝑖
𝑘 𝑔𝑗 𝑙 − 𝛿𝑖

𝑙 𝑔𝑗 𝑘)∕2. This implies that

∇2
𝑠 𝜂𝑖 + 

2

(
𝜂𝑖 − 𝑑 𝑞𝑖

𝑑 𝑠

𝑑 𝑞𝑗

𝑑 𝑠
𝜂𝑗

)
= 0 . (4.3)

Where in the second term we used the fact that 𝑠 is an affine parameter and the tangent vector is normalized to one. Contracting 
with 𝑑 𝑞𝑖∕𝑑 𝑠 and 𝜀𝑖𝑗 𝑑 𝑞𝑗∕𝑑 𝑠 (with 𝜀𝑖𝑗 the Levi-Civita tensor) and taking into account the geodesic equation ∇𝑠(𝑑 𝑞𝑖∕𝑑 𝑠) = 0, we 
can write

𝑑2𝜂⟂

𝑑 𝑠2
+ 

2
𝜂⟂ = 0 , ∇2

𝑠 𝜂∥ = 0 . (4.4)

Here we have defined 𝜂∥ = 𝜂𝑖(𝑑 𝑞𝑖∕𝑑 𝑠) and 𝜂⟂ = 𝜖𝑖𝑗 𝜂𝑖(𝑑 𝑞𝑗∕𝑑 𝑠).
It is clear that a negative scalar curvature  < 0 would lead to solutions with an exponential grow in time for 𝜂⟂. However, for 
our Newtonian system the Ricci scalar  is given by

 = 1
2 ( − 𝑉 )3

[
4𝑊 2 (2𝐺2 + 𝑊 2)2 + 𝐺2 (4𝑊 2 + 𝜆

(
𝐺2 − 𝜈2))2]+

+ 1
2 ( − 𝑉 )2

[
(4 + 3𝜆)𝐺2 + 10𝑊 2 − 𝜆𝜈2] . (4.5)

Recalling that  − 𝑉 > 0, the curvature scalar has a chance to be negative only when 𝐺 and 𝑊 are small enough, so that the 
last term in the second line supersedes the rest. In most configurations this is not the case, thus the instabilities we eventually 
find should come from parametric resonance, as the scalar  is time dependent (for a similar situation, see [51]).

The equation for the nearby geodesic deviation can be rewritten as

𝑑2𝑌

𝑑 𝑡2
+ Σ𝑌 = 0 , (4.6)

where 𝑌 = 𝜂⟂∕
√ − 𝑉 and Σ is a function of time defined as

Σ = 2( − 𝑉 )2 − 1
2( − 𝑉 )

𝑑2𝑉

𝑑 𝑡2
− 3

4( − 𝑉 )2
(

𝑑 𝑉

𝑑 𝑡

)2
(4.7)

The form of the solution 𝑌 as a function of time gives us insight about the behavior of the perturbation of the configuration, 
varying the initial conditions. If 𝑌 is constant, it gives a signal of stability, while if 𝑌 grows exponentially in time, the system 
could develop a chaotic behavior in that region.

4.1. Chaos with vanishing vacuum expectation value

The solution in (3.34)-(3.35) provides a uni-parametric family of analytic solutions with parameter 𝑎, in terms of which the 
energy is fixed through (3.36). By evaluating the solution at the initial time 𝑡0, we obtain a set of initial conditions with periodic 
evolution.

To depart from the analytic solution, we write one of the canonical variables in terms of the energy, say �̇�2(𝑡0) = 2(−𝑉 ) −�̇� (𝑡0), 
and then move the value of the energy  away from (3.36). An insightful way to parameterize the remaining freedom in terms of 
the initial magnetic flux, which according to (2.19) is proportional to 𝐺(0)𝑊 (0)2, and the initial deviation of the configuration from 
a purely Abelian one, that in terms of (2.13) can be identified as proportional to �̇� (0).

As we increase the energy with a fixed value of the coupling 𝜆, we find chaotic behavior above a critical value, which can be 
identified in the Poincaré sections, in the spectrum, and in the geodesic deviation, see the Fig. 4.

The critical energy for the transition to chaos is minimal for an intermediate value of the coupling 𝜆, at which the chaotic behavior

also shows up at small energies, see Fig. 5. This sets a narrow “bridge” between two “islands” of regular behavior, which is crossed 
by the locus of the exact solutions, as depicted by the blue regions of Fig. 5.

Finally, the regularity islands at large and small coupling get wider as the initial deviation from a purely Abelian configuration 
grows, see Fig. 6. On the other hand, as the initial flux gets larger, the exact solutions disappear, but the structure of two regularity 
islands joined by a bridge persists for a while before dissipating into chaos, see Fig. 7.

4.2. Chaos with non-vanishing vacuum expectation value

The solution (3.16)-(3.17) is devoid of integration constants. We will proceed as before in order to explore the phase space, 
evaluating the initial conditions using the solution and deforming one of the fields away from the analytic regime by varying the 
energy  , and characterizing the remaining freedom in terms of the initial magnetic flux 𝐺(0)𝑊 (0)2 and the initial deviation from a 
purely Abelian configuration �̇� (0).

The results for the Poincaré sections, the spectrum, and the geodesic deviation, are presented in Fig. 8. Again, as the energy 
10

grows, the system transitions to a chaotic regime.
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Fig. 4. Transition to chaos with vanishing vacuum expectation value. From left to right: Poincaré section, frequency spectrum and the logarithm of the geodesic 
deviation log |𝑌 |. We evolved up to 𝑡𝑓 = 15000 with 𝑎 = 0.5. Notice that between  = 0.127 and  = 0.128 there is a transition to chaos.

In Fig. 9 we can see the phase diagram, together with some Poincaré sections in the �̇� versus 𝑊 plane. In this case, since the 
exact solution (3.16)-(3.17) has no constants of integration, its locus intersects the  versus 𝜆 plane is a single point. Thus there is 
no stable “bridge” identifiable in the plot.

Even if, due to the absence of the stability bridge of the vanishing vacuum expectation value case, the diagrams are more fuzzy, 
the general trends persist. Indeed, as the initial non-Abelian component of the configuration �̇� (0) grows, the phase diagram is more 
regular, see Fig. 10. Conversely, as the initial magnetic flux 𝐺(0)𝑊 (0)2 gets larger, the chaotic region gets wider Fig. 11.

5. Probe scalar field

As the energy  of our mechanical system is conserved, we know that there is no radiation. Therefore, we may conclude that the 
configuration has no physical effects outside the coil, and thus the transition to chaos could be “undetectable from the outside”. For 
that reason, in this section we studied its resonance effects on a probe scalar field presenting a possible mechanism to detect such 
transition.

In order to explore the features of these configurations let us consider a probe scalar field 𝜓 which transforms in the fundamental 
11

representation of 𝑆 𝑈 (2). The covariant derivative is defined as
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Fig. 5. Phase diagram in the energy  versus coupling 𝜆 plane, with vanishing vacuum expectation value. The initial magnetic flux vanishes 𝐺(0)𝑊 (0)2 = 0 and the 
initial deviation from a purely Abelian configuration is �̇� (0) = 0.3818. At each point, the chaotic nature of the solution is quantified by the mean quadratic dispersion 
of the points on the Poincaré section corresponding to the �̇� versus 𝑊 plane. Some of such sections are depicted in the in-plots. The diagonal line that crosses the 
diagram corresponds to the locus of the exact solution (3.34)-(3.35).

𝐷𝜇 𝜓 = 𝜕𝜇 𝜓 + 𝐴𝜇 𝜓 , (5.1)

in such a way that its commutator gives the field strength (2.3) i.e.
[

𝐷𝜇 , 𝐷𝜈

]
𝜓 = 𝐹𝜇𝜈 𝜓 . The action principle for the scalar field is 

given by

𝐼[𝜓 , 𝜓†] = −∫ 𝑑4𝑥
√
−𝑔

(
𝐷𝜇 𝜓

)†
𝐷𝜇 𝜓 . (5.2)
12

The equation coming from the variation of this action (5.2) in the background (2.11) expands as
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Fig. 6. Phase diagrams in the energy  versus coupling 𝜆 plane, with vanishing vacuum expectation value, for different values of the initial deviation from a 
purely Abelian configuration �̇� (0). The top row corresponds to �̇� (0) = 0.3823 and �̇� (0) = 0.3828 from left to right, while the bottom row has �̇� (0) = 0.3833 and 
�̇� (0) = 0.3838 respectively. The initial magnetic flux vanishes 𝐺(0)𝑊 (0)2 = 0. The loci of the exact solutions are depicted by the solid line.

−𝜕2
𝑡 𝜓 + 𝜕2

𝑧 𝜓 + 1
𝜌

𝜕𝜌 𝜓 + 𝜕2
𝜌 𝜓 + 1

𝜌2 𝜕2
𝜑 𝜓 − 𝑊 2𝜓 − 1

4𝜌2 𝜓 + (5.3)

+ 2
𝜌2

(
− 𝑊√

2
𝜌𝑡1 −

1
2

𝑡3

)
𝜕𝜑 𝜓 + 1

𝜌

𝑊√
2

𝑡2𝜓 + 2𝑊√
2

𝑡2𝜕𝜌 𝜓 = 0 .

In order to apply time-dependent perturbation theory, to evaluate transitions amplitudes of the state of the scalar triggered by the 
interaction with the background field, it is convenient to separate the above equations into two terms. The first term corresponds to

𝐻0𝜓 = −𝜕2
𝑡 𝜓 + 𝜕2

𝑧 𝜓 + 1
𝜌

𝜕𝜌 𝜓 + 𝜕2
𝜌 𝜓 + 1

𝜌2 𝜕2
𝜑 𝜓 − 1

4𝜌2 𝜓 −
𝑡3

𝜌2 𝜕𝜑 𝜓

which defines the action of 𝐻0 on the scalar, while the second term defines 𝐻𝗂𝗇𝗍 by

𝐻𝗂𝗇𝗍𝜓 = −𝑊 2𝜓 −
√
2𝑊

𝜌2 𝑡1𝜕𝜑 𝜓 + 1
𝜌

𝑊√
2

𝑡2𝜓 + 2𝑊√
2

𝑡2𝜕𝜌 𝜓 . (5.4)

This splitting allows to analyze the time-dependent part of the gauge field with time-dependent perturbation theory taking advantage 
of the fact that the “unperturbed Hamiltonian” 𝐻0𝜓 = 0 can be solved exactly. Hereafter we proceed in a canonical fashion, and 
details can be found in the Appendix.

Using the symbols ↑, ↓ to denote the up and down components of the field 𝜓 , and the indices 𝑛, 𝓁, 𝑚 to identify the longitudinal, 
radial and angular modes respectively, we obtain the eigenstates of the free hamitonian 𝐻0 as | ↑ 𝑛𝓁𝑚±⟩ and | ↓ 𝑛𝓁𝑚±⟩ where ±
denote left and right movers in the angular direction. The referred transition amplitude turns out to be given by

⟨↓ 𝓁′𝑚′𝑛′ + |𝐻𝗂𝗇𝗍| ↑ 𝓁𝑚𝑛−⟩ = −
𝜋𝐿𝓁′𝑚′𝑛′̄𝓁𝑚𝑛

𝑅0
√
2𝜔𝓁′𝑚′𝑛′ �̄�𝓁𝑚𝑛

𝛿𝑚′
𝑚 𝛿𝓁′

𝓁 𝛼
𝑚− 1

2
𝑛 ∫ 𝑑 𝑡 𝑊 (𝑡)𝑒𝑖

(
𝜔𝓁′𝑚′𝑛′ −�̄�𝓁𝑚𝑛

)
𝑡 ×

×

𝑅0

∫
0

𝑑 𝜌 𝜌 𝐽
𝑚′+ 1

2

(
𝛼

𝑚′+ 1
2

𝑛′
𝜌

𝑅0

)
𝐽

𝑚+ 1
2

(
𝛼

𝑚− 1
2

𝑛
𝜌

𝑅0

)
, (5.5)

where 𝐽𝜂 are Bessel functions and their zeros are labeled by 𝛼
𝜂
𝑛 with 𝑛 = 1, 2, … , the constants 𝓁𝑚𝑛 are for normalization in a 
13

cylinder of length 𝐿 and radius 𝑅0, and 𝜔𝓁𝑚𝑛 denote the eigenfrequencies of the unperturbed Hamiltonian 𝐻0.
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Fig. 7. Phase diagrams in the energy  versus coupling 𝜆 plane, with vanishing expectation value, for different values of the initial magnetic flux 𝐺(0)𝑊 (0)2 . The 
top row corresponds to 𝐺(0)𝑊 (0)2 = (0.05)3 and 𝐺(0)𝑊 (0)2 = 1 from left to right, while the middle row has 𝐺(0)𝑊 (0)2 = (1.5)3 and 𝐺(0)𝑊 (0)2 = 23 respectively. 
The initial deviation from a purely Abelian configuration is �̇� (0) = 0.3818. The last row shows two Poincaré sections in the 𝑊 versus �̇� plane, corresponding to the 
non-chaotic and chaotic regimes of the last phase diagram. Even if there are no exact solutions for these values of the parameters, for small flux there is a “regularity 
bridge” joining the two regular regions of the phase diagram, which dissipates as the flux grows.

The above formula for the transition amplitude corresponds to a probe scalar field, coupled to the time-dependent topologically 
non-trivial Yang-Mills-Higgs background, and it is the main technical result of the present section. In particular, Eq. (5.5) shows 
that if the classical background is in its integrable phase, then as it has been discussed in the analysis of the Poincaré sections, the 
Fourier spectrum of the gauge field 𝑊 (𝑡) has few relevant peaks. In these cases, the transition amplitude will be different from zero 
in such few cases, corresponding to the resonances between 𝜔𝓁′𝑚′𝑛′ − �̄�𝓁𝑚𝑛 and the Fourier components of 𝑊 . On the other hand, in 
the chaotic regime, the amplitude will be different from zero in a broad band of values for 𝜔𝓁′𝑚′𝑛′ − �̄�𝓁𝑚𝑛. Therefore, the transition 
amplitudes of the probe scalar field can detect whether the non-Abelian coil is in the chaotic or integrable regime.

6. Conclusions

In the present paper we have discussed how the chaotic behavior of time-dependent configurations in the 𝑆 𝑈 (2) Georgi-Glashow 
model is affected by the Higgs coupling constant, by the vacuum expectation value as well as by the presence of topologically 
14

non-trivial fluxes, which in the present case correspond to the flux of the non-Abelian magnetic field projected along the Higgs field.
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Fig. 8. Transition to chaos with non-vanishing vacuum expectation value. From left to right: Poincaré section, frequency spectrum and the logarithm of the geodesic 
deviation log |𝑌 |. We evolved up to 𝑡𝑓 = 15000 with 𝜆 = 4.2. Notice that between  = 1.195 and  = 0.179 there is a transition to chaos.

There are many intriguing questions which have not been analyzed in detail so far in the literature. For instance: does the presence 
of the Higgs potential and of the vacuum expectation value increase or decrease the chaotic behavior of the theory? What is the effect 
of non-trivial topological fluxes? The main problem to solve in order to answer them is related to the construction of a suitable Ansatz 
for the gauge and Higgs fields. Indeed, one can easily write down explicit expressions both for the gauge and for the Higgs fields 
where all the components depend on time only, as it is usually done in the literature on the chaotic behavior of Yang-Mills-Higgs 
theory: see [33–44] and references therein. In this way the field equations reduce consistently to a dynamical system which can be 
analyzed using the known tools of chaotic dynamics. However, if all the fields only depend on time, then the topological fluxes may 
vanish. This is the reason why it is useful to design an Ansatz in such a way that the fields depend in a non-trivial way also on the 
spatial coordinates, keeping alive the topological fluxes, but with the field equations reducing to an autonomous dynamical system. 
In the present work we have constructed such an Ansatz.

As a general result, the transition to chaos occurs as the energy gets larger at fixed coupling. Moreover, as the initial magnetic 
flux is increased, the chaotic region of the phase diagram gets larger. Finally, the deviation of the solution from a purely Abelian 
configuration contributes to stability. These two last behaviors are somewhat intriguing, since on the one hand one would expect 
that topological fluxes stabilize the system, and on the other the non-linear character of the equations which is responsible of their 
15

chaotic nature, is inherited from the non-Abelianity of the theory.
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Fig. 9. Phase diagram in the energy  versus coupling 𝜆 plane, with non-vanishing vacuum expectation value. The initial magnetic flux vanishes 𝐺(0)𝑊 (0)2 = 0
and the initial deviation from a purely Abelian configuration is �̇� (0) = 0.3818. At each point, the chaotic nature of the solution is quantified by the mean quadratic 
dispersion of the points on the Poincaré section corresponding to the �̇� versus 𝑊 plane. Some of such sections are depicted in the in-plots. The exact solution 
(3.17)-(3.16) is now a single point in the phase diagram.

A byproduct of the analysis is that we also have identified an integrable sector where the field equations can be integrated 
analytically and the corresponding exact solutions represent the non-Abelian version of self-sustained alternating current generator. 
Moreover, the Ansatz has been constructed in such a way that one can, for instance, increase (or decrease) the control parameters, 
such as the Higgs coupling and the vacuum expectation value, and analyze how this change affects the chaotic properties. This 
situation is especially suitable to be studied using the tools introduced by Casetti, Pettini and Cohen (see [50] and references therein) 
in their geometric approach to the search for the stochasticity threshold in Hamiltonian dynamics. Using these tools we have shown 
that as one increases the energy, integrability is lost. Moreover, we proved that the chaotic behavior and sensitive dependence on 
16

the initial condition shown by the exponential growth of the geodesic deviation in Jacobi metric, are triggered by a parametric 
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Fig. 10. Phase diagrams in the energy  versus coupling 𝜆 plane, with non-vanishing vacuum expectation value, for different values of the initial deviation from a 
purely Abelian configuration �̇� (0). The top row corresponds to �̇� (0) = 0.926515 and �̇� (0) = 0.966515 from left to right, while the bottom row has �̇� (0) = 1.01652. 
The initial magnetic flux vanishes 𝐺(0)𝑊 (0)2 = 0.

Fig. 11. Phase diagrams in the energy  versus coupling 𝜆 plane, with non-vanishing expectation value, for different values of the initial magnetic flux 𝐺(0)𝑊 (0)2 . 
The top row corresponds to 𝐺(0)𝑊 (0)2 = 0.028684 and 𝐺(0)𝑊 (0)2 = 0.057368 from left to right, while the middle row has 𝐺(0)𝑊 (0)2 = 0.14342 and 𝐺(0)𝑊 (0)2 = 23
17

respectively. The initial deviation from a purely Abelian configuration is �̇� (0) = 0.916515.
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resonance. Finally, we checked the transition to chaos can be observed also on the effective 𝑈 (1) field (2.18). This is interesting 
since such a non-linear phenomenon is not expected in the standard linear 𝑈 (1) gauge dynamics, representing a genuine non-Abelian 
effect.
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Appendix A. Perturbation theory

The free Hamiltonian 𝐻0, can be diagonalized by the following field configuration that fulfills the equation (5.3) with 𝑊 = 0

Φ
(

𝑡, �⃗�
)
= �̄�

(
𝑡, �⃗�

)
+ 𝜙

(
𝑡, �⃗�

)
, (A.1)

�̄�𝑎
(

𝑡, �⃗�
) ≡ _∑

𝓁𝑚𝑛

̄𝓁𝑚𝑛√
2�̄�𝓁𝑚𝑛

sin
(

𝜋𝓁𝑧

𝐿

)
𝐽

𝑚− 1
2

⎛⎜⎜⎝
𝛼

𝑚− 1
2

𝑛 𝜌

𝑅0

⎞⎟⎟⎠
(

𝒍↑𝓁𝑚𝑛 𝑒𝑖
(

𝑚𝜑−�̄�𝓁𝑚𝑛 𝑡
)
+ �̃�

†
↑𝓁𝑚𝑛 𝑒𝑖

(
𝑚𝜑+�̄�𝓁𝑚𝑛 𝑡

)
𝒍↓𝓁𝑚𝑛 𝑒−𝑖

(
𝑚𝜑+�̄�𝓁𝑚𝑛 𝑡

)
+ �̃�

†
↓𝓁𝑚𝑛 𝑒−𝑖

(
𝑚𝜑−�̄�𝓁𝑚𝑛 𝑡

)
)𝑎

𝜙𝑎
(

𝑡, �⃗�
) ≡∑

𝓁𝑚𝑛

𝓁𝑚𝑛√
2𝜔𝓁𝑚𝑛

sin
(

𝜋𝓁𝑧

𝐿

)
𝐽

𝑚+ 1
2

⎛⎜⎜⎝
𝛼

𝑚+ 1
2

𝑛 𝜌

𝑅0

⎞⎟⎟⎠
⎛⎜⎜⎝
𝒓↑𝓁𝑚𝑛 𝑒−𝑖

(
𝑚𝜑+𝜔𝓁𝑚𝑛 𝑡

)
+ �̃�

†
↑𝓁𝑚𝑛

𝑒−𝑖
(

𝑚𝜑−𝜔𝓁𝑚𝑛 𝑡
)

𝒓↓𝓁𝑚𝑛 𝑒𝑖
(

𝑚𝜑−𝜔𝓁𝑚𝑛 𝑡
)
+ �̃�

†
↓𝓁𝑚𝑛

𝑒
𝑖
(

𝑚𝜑+𝜔′
𝓁𝑚𝑛

𝑡
) ⎞⎟⎟⎠

𝑎

Where 𝐽𝜂 are the Bessel functions and 𝛼
𝜂
𝑛 is the 𝑛th zero of the Bessel function 𝐽𝜂 . In this expansion we have eight types of creation 

and annihilation operators (𝒍↑, ̃𝒍↑, 𝒍↓, ̃𝒍↓, 𝒓↑, �̃�↑, 𝒓↓, ̃𝒓↓). The states that we used in (5.5) are

| ↑ 𝓁𝑚𝑛−⟩ = 𝒍
†
↑𝓁𝑚𝑛

|0⟩ , | ↓ 𝓁′𝑚′𝑛′+⟩ = 𝒓
†
↓𝓁′𝑚′𝑛′

|0⟩ , (A.2)

where |0⟩ stands for the vacuum state of the theory. This solution satisfies the boundary conditions Φ|𝜕𝑀 = 0 where 𝑀 is the solid 
cylinder of radius 𝑅0 and length 𝐿. The range of the integer numbers 𝓁, 𝑚, 𝑛, as well as the definition of the summations in (A.1) is

_∑
𝓁𝑚𝑛

≡
∞∑
𝓁=1

∞∑
𝑚=1

∞∑
𝑛=1

,
∑
𝓁𝑚𝑛

≡
∞∑
𝓁=1

∞∑
𝑚=0

∞∑
𝑛=1

. (A.3)

The normalization constants are

̄𝓁𝑚𝑛 =
√

2
𝜋𝐿

1

𝑅0𝐽
𝑚+ 1

2

(
𝛼

𝑚− 1
2

𝑛

) , 𝓁𝑚𝑛 =
√

2
𝜋𝐿

1

𝑅0𝐽
𝑚+ 3

2

(
𝛼

𝑚+ 1
2

𝑛

) , (A.4)

and the frequencies that are fixed by the boundary conditions are given by

(
�̄�𝓁𝑚𝑛

)2 = ⎛⎜⎜⎝
𝛼

𝑚− 1
2

𝑛

𝑅0

⎞⎟⎟⎠
2

+
(

𝜋𝓁
𝐿

)2
,

(
𝜔𝓁𝑚𝑛

)2 = ⎛⎜⎜⎝
𝛼

𝑚+ 1
2

𝑛

𝑅0

⎞⎟⎟⎠
2

+
(

𝜋𝓁
𝐿

)2
. (A.5)

The state with smallest energy in the system is given by �̄�011 = 𝜔001 = (𝛼
1
2
1 ∕𝑅0)2.

The conjugate momenta for the Lagrangian defined in (5.2), following the standard definitions are

𝑃𝑎 =
√

𝛾
(

𝜕𝑡 𝜓† − 𝜓†𝐴𝑡

)
𝑎

, (A.6)

𝑃 ′𝑎 =
√

𝛾
(

𝜕𝑡 𝜓 + 𝐴𝑡 𝜓
)𝑎

, (A.7)

here 𝛾 is the determinant of the induced metric 𝛾𝜇𝜈 = 𝑔𝜇𝜈 + 𝛿𝑡
𝜇 𝛿𝑡

𝜈 , which is the spatial section of the metric (2.10), then 
√

𝛾 = 𝜌. The 
18

canonical momenta given in terms of (A.1) through the above definition, forms a representation of the canonical algebra
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Φ𝑎 (𝑡,𝐱) , 𝑃𝑏 (𝑡,𝐲)

]
= 𝑖𝛿𝑎

𝑏
𝛿 (𝐱 − 𝐲) ,

[
Φ†

𝑎 (𝑡,𝐱) , 𝑃 ′𝑏 (𝑡,𝐲)
]
= 𝑖𝛿𝑏

𝑎 𝛿 (𝐱 − 𝐲) , (A.8)

with the following commutation relation for the creation/annihilation operators[
𝒍↑𝓁𝑚𝑛 , 𝒍†

↑𝓁′𝑚′𝑛′

]
=
[
�̃�↑𝓁𝑚𝑛 , �̃�

†
↑𝓁′𝑚′𝑛′

]
=
[
𝒓↑𝓁𝑚𝑛 , 𝒓†

↑𝓁′𝑚′𝑛′

]
=
[
�̃�↑𝓁𝑚𝑛 , �̃�†

↑𝓁′𝑚′𝑛′

]
= 𝛿𝓁′

𝓁 𝛿𝑚′
𝑚 𝛿𝑛′

𝑛 ,[
𝒍↓𝓁𝑚𝑛 , 𝒍†

↓𝓁′𝑚′𝑛′

]
=
[
�̃�↓𝓁𝑚𝑛 , �̃�

†
↓𝓁′𝑚′𝑛′

]
=
[
𝒓↓𝓁𝑚𝑛 , 𝒓†

↓𝓁′𝑚′𝑛′

]
=
[
�̃�↓𝓁𝑚𝑛 , �̃�†

↓𝓁′𝑚′𝑛′

]
= 𝛿𝓁′

𝓁 𝛿𝑚′
𝑚 𝛿𝑛′

𝑛 .

To see how this works, we compute one commutator between Φ𝑎 and 𝑃𝑏. The following representations of the Dirac delta will be 
useful

𝛿
(

𝜑 − 𝜑′) = ∞∑
𝑚=−∞

1
2𝜋

𝑒𝑖𝑚
(

𝜑−𝜑′)
,

𝛿
(

𝜌 − 𝜌′) = ∞∑
𝑛=1

2𝜌

𝑅2
0𝐽𝜂+1

(
𝛼

𝜂
𝑛

)2 𝐽𝜂

(
𝛼

𝜂
𝑛 𝜌

𝑅0

)
𝐽𝜂

(
𝛼

𝜂
𝑛 𝜌′

𝑅0

)
, (A.9)

𝛿
(

𝑧 − 𝑧′) = ∞∑
𝓁=1

2
𝐿
sin

(
𝜋𝓁𝑧′

𝐿

)
sin

(
𝜋𝓁𝑧

𝐿

)
.

The expression of 𝑃𝑏 following the definition for our magnetic background is

𝑃𝑎 ≡ 𝜌𝜕𝑡Φ† ≡ �̄�𝑎 + 𝑝𝑎 , (A.10)

where

�̄�𝑎 =
_∑

𝓁𝑚𝑛

𝜌𝑖̄𝓁𝑚𝑛

√
�̄�𝓁𝑚𝑛

2
sin

(
𝜋𝓁𝑧

𝐿

)
𝐽

𝑚− 1
2

(
�̄� 𝑚

𝑛 𝜌

𝑅0

)(
𝒍
†
↑𝓁𝑚𝑛

𝑒−𝑖
(

𝑚𝜑−�̄�𝓁𝑚𝑛 𝑡
)
− �̃�↑𝓁𝑚𝑛 𝑒−𝑖

(
𝑚𝜑+�̄�𝓁𝑚𝑛 𝑡

)
𝒍
†
↓𝓁𝑚𝑛

𝑒𝑖
(

𝑚𝜑+�̄�𝓁𝑚𝑛 𝑡
)
− �̃�↓𝓁𝑚𝑛 𝑒𝑖

(
𝑚𝜑−�̄�𝓁𝑚𝑛 𝑡

)
)𝑇

,

𝑝𝑎 =
∑
𝓁𝑚𝑛

𝜌𝑖𝓁𝑚𝑛

√
𝜔𝓁𝑚𝑛

2
sin

(
𝜋𝓁𝑧

𝐿

)
𝐽

𝑚+ 1
2

(
𝜒 𝑚

𝑛 𝜌

𝑅0

)(
𝒓
†
↑𝓁𝑚𝑛

𝑒𝑖
(

𝑚𝜑+𝜔𝓁𝑚𝑛 𝑡
)
− �̃�↑𝓁𝑚𝑛 𝑒𝑖

(
𝑚𝜑−𝜔𝓁𝑚𝑛 𝑡

)
𝒓
†
↓𝓁𝑚𝑛

𝑒−𝑖
(

𝑚𝜑−𝜔𝓁𝑚𝑛 𝑡
)
− �̃�↓𝓁𝑚𝑛 𝑒−𝑖

(
𝑚𝜑+𝜔𝓁𝑚𝑛 𝑡

)
)𝑇

,

�̄� 𝑚
𝑛 ≡ 𝛼𝑚−1

𝑛 , 𝜒 𝑚
𝑛 ≡ 𝛼𝑚+1

𝑛 .

The commutator can be written as[
Φ𝑎

(
𝑡, �⃗�

)
, 𝑃𝑏

(
𝑡, �⃗�′)] = ([

�̄�1, �̄�1
]
+
[

𝜙1, 𝑝1
])

𝛿𝑎
1𝛿1

𝑏
+
([

�̄�2, �̄�2
]
+
[

𝜙2, 𝑝2
])

𝛿𝑎
2𝛿2

𝑏
. (A.11)

Let us compute explicitly the first parenthesis of (A.11). The first commutator is[
�̄�1, �̄�1

]
=

_∑
𝓁𝑚𝑛

𝑖𝜌̄ 2
𝓁𝑚𝑛

sin
(

𝜋𝓁𝑧

𝐿

)
sin

(
𝜋𝓁𝑧′

𝐿

)
𝐽

𝑚− 1
2

(
�̄� 𝑚

𝑛 𝜌

𝑅0

)
𝐽

𝑚− 1
2

(
�̄� 𝑚

𝑛 𝜌′

𝑅0

)
𝑒𝑖𝑚

(
𝜑−𝜑′)

,

= 𝛿
(

𝑧 − 𝑧′) _∑
𝓁𝑚𝑛

𝑖
1
2𝜋

2
𝑅2
0𝐽

𝑚+ 1
2

(
�̄� 𝑚

𝑛

)2 𝜌𝐽
𝑚− 1

2

(
�̄� 𝑚

𝑛 𝜌

𝑅0

)
𝐽

𝑚− 1
2

(
�̄� 𝑚

𝑛 𝜌′

𝑅0

)
𝑒𝑖𝑚

(
𝜑−𝜑′)

,

= 𝑖
1
2𝜋

𝛿
(

𝑧 − 𝑧′) 𝛿
(

𝜌 − 𝜌′) ∞∑
𝑚=1

𝑒𝑖𝑚
(

𝜑−𝜑′)
, (A.12)

while the second term is[
𝜙1, 𝑝1

]
=
∑
𝓁𝑚𝑛

2𝑖

𝜋𝐿

𝜌

𝑅2
0𝐽

𝑚+ 3
2

(
𝜒 𝑚

𝑛

)2 sin(𝜋𝓁𝑧

𝐿

)
sin

(
𝜋𝓁𝑧′

𝐿

)
𝐽

𝑚+ 1
2

(
𝜒 𝑚

𝑛 𝜌

𝑅0

)
𝐽

𝑚+ 1
2

(
𝜒 𝑚

𝑛 𝜌′

𝑅0

)
𝑒−𝑖𝑚

(
𝜑−𝜑′)

,

=
∞∑

𝑚=0
𝑖
1
2𝜋

𝛿
(

𝑧 − 𝑧′) 𝛿
(

𝜌 − 𝜌′) 𝑒−𝑖𝑚
(

𝜑−𝜑′)
. (A.13)

Replacing in the first parenthesis in (A.11)

[
�̄�1, �̄�1

]
+
[

𝜙1, 𝑝1
]
= 𝑖𝛿

(
𝑧 − 𝑧′)𝛿

(
𝜌 − 𝜌′) 1

2𝜋

(+∞∑
𝑚=1

𝑒𝑖𝑚
(

𝜑−𝜑′) + ∞∑
𝑚=0

𝑒−𝑖𝑚
(

𝜑−𝜑′))
, (A.14)

changing the sign in the second summation and using the fact that we get the representation of the delta function, thus[
�̄�1, �̄�1

]
+
[

𝜙1, 𝑝1
]
= 𝑖𝛿

(
𝑧 − 𝑧′)𝛿

(
𝜌 − 𝜌′) 𝛿

(
𝜑 − 𝜑′) . (A.15)
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One can show that the same mechanism works for the second parenthesis in (A.11),
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�̄�2, �̄�2

]
+
[

𝜙2, 𝑝2
]
= 𝑖𝛿

(
𝑧 − 𝑧′)𝛿

(
𝜌 − 𝜌′) 𝛿

(
𝜑 − 𝜑′) . (A.16)

Replacing back into (A.11) we find[
Φ𝑎

(
𝑡, �⃗�

)
, 𝑃𝑏

(
𝑡, �⃗�′)] = 𝑖𝛿𝑎

𝑏
𝛿
(

𝑧 − 𝑧′) 𝛿
(

𝜌 − 𝜌′) 𝛿
(

𝜑 − 𝜑′) , (A.17)

as promised.

References

[1] W. Craig, C.E. Wayne, Commun. Pure Appl. Math. 46 (1993) 1409.

[2] C.E. Wayne, Commun. Math. Phys. 127 (1990) 479.
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