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1 Introduction

By studying only the quotient structure of certain spacetimes, it is possible to learn much
about dynamics and quantum corrections on those backgrounds. A principal tool to ac-
complish this is the Selberg zeta function, a cousin of the Riemann zeta function in which
prime numbers are replaced by prime geodesics on a hyperbolic spacetime Hn/Γ, where Γ
is a discrete subgroup of SL(2,R) [1–3]. For example, for H2/Γ the Selberg zeta function
is of the form

ZΓ(s) =
∏
p

∞∏
n=0

(
1−N(p)−s−n

)
, (1.1)
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where the product p is over the conjugacy classes of prime geodesics, and N(p) is a function
of geodesic length [4]. The Selberg zeta function and trace formula are of significant physical
interest as a tool to compute spectra of kinetic operators (and thus quantum corrections)
on hyperbolic quotient manifolds. A brief list of applications includes quantum chaos [5,
6], quantum JT gravity [7], torsion and topological invariants [8–10], heat kernels and
regularized one-loop determinants [11–15], quantum corrections to black hole entropy [16,
17], quasinormal modes [15, 18], and even band theory [19].

So far, the Selberg zeta function formalism has been limited to hyperbolic quotient
spacetimes. A notable example is the Euclidean BTZ black hole [20], which is a quotient
of hyperbolic 3-space H3 by the discrete subgroup Γ ∼ Z [21]. Perry and Williams [3]
constructed a Selberg zeta function for the BTZ black hole from this quotient structure,
and proved a corresponding trace formula. In that work, the action of the quotienting group
Γ is studied through a set of “conformal coordinates” that transform the BTZ metric in
Boyer-Lindquist-like coordinates to the Poincaré patch. It was discussed in [3, 18] that the
zeroes of the Selberg zeta function {s∗|ZΓ(s∗) = 0} can be mapped to the BTZ quasinormal
modes. This was worked out explicitly in [15], where it was shown that tuning the Selberg
zeroes s∗ to the conformal dimension of the field in question was equivalent to equating
the field’s quasinormal modes to the thermal (Matsubara) frequencies:

s∗ = ∆ ↔ ωQN = ωn. (1.2)

This analysis was extended to fields of general spin in [22].
In this work, we construct a Selberg zeta function for warped AdS3 black holes, ex-

tending the work of [3] beyond hyperbolic quotients for the first time. Warped AdS3 black
holes are quotients of warped AdS3 [23], with quotienting group Γ ∼ Z realized by the dis-
crete identification φ→ φ+ 2πn, with n an integer. The isometry group is SL(2,R)×U(1).
Warped AdS3 geometries arise in many different contexts in theoretical physics, such as
topological massive gravity (see [23] and references therein), lower-spin gravity [24] (in the
context of warped black holes, see [25]), and in near-horizon extremal [26] and near-region
non-extremal [27] Kerr. Thus it is very desirable to calculate quantum corrections on these
backgrounds, and it is very likely that our formalism will help facilitate this calculation.
This is addressed further in the discussion section.

Like [3], we build the Selberg zeta function using the quotient structure of warped
AdS3 black holes. However, unlike [3], we do not have a straightforward way to analyze the
group action under φ→ φ+ 2πn, because we do not have a warped version of the Poincaré
patch as a target metric with which to construct conformal coordinates. We solve this
problem in section 3, where we use a trick from the hidden conformal symmetry program to
exploit the symmetries of the scalar Laplacian to construct a set of conformal coordinates.
Namely, we build conformal coordinates such that the SL(2,R)×U(1) quadratic Casimir
H2 + λH2

0 ∝ ∇2. Using the resulting conformal coordinate transformation, we are able to
derive a warped version of the upper half-space metric that to our knowledge is new. This
metric might have interesting applications of its own, such as the study of TT deformations
of warped conformal field theories. We give more details about this is the in the discussion
section.
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We also consider the self-dual solutions reported in [23] and further studied in [28–30].
These are the warped analogue of the self-dual solutions for AdS3 presented in [31], and
as explained there these solutions are interesting to study in their own right. They are
formed by a different quotient, θ̃ → θ̃ + 2πα̃n, which we describe.

This article is organised as follows. In section 2 we review previous results that will
be helpful for the reader. In 2.1 we largely follow [3] in demonstrating how to construct
the Selberg zeta function for the case of the BTZ black hole, ending with mapping the
Selberg zeroes to the BTZ quasinormal modes as done in [15]. In 2.2 we review the
quotient structure of warped AdS3 black holes, largely following [23]. In section 3 we exploit
the symmetries of the Klein-Gordon operator to build a set of conformal coordinates.
These allow us to create both a warped Poincaré patch metric as well as the warped
Selberg zeta function. In section 4 it is necessary to calculate several quantities on warped
quotient backgrounds (namely the conformal weight ∆, the thermal frequencies ωn and the
quasinormal mode frequencies ω∗) before constructing the map between the Selberg zeroes
and quasinormal mode frequencies in section 5. In section 6 we summarize our results and
discuss several future directions.

2 Review

Here we review material that we will need throughout the rest of this work. We begin
by reviewing how, in the case of the BTZ black hole, quotient structure can be used to
construct a Selberg zeta function whose zeroes are mapped to the quasinormal modes
on the BTZ background. We then review the warped AdS3 black hole geometry and its
quotient structure. In section 3 we put these two elements together and create a Selberg
zeta function for warped AdS3 black holes.

2.1 Constructing the Selberg zeta function for H3/Γ

We begin with the BTZ black hole metric in Boyer-Lindquist-like coordinates

ds2 = −(r2 − r2
+)(r2 − r2

−)
L2r2 dt2 + L2r2

(r2 − r2
+)(r2 − r2

−)dr
2 + r2

(
dφ− r+r−

Lr2 dt

)2
(2.1)

where L is the AdS radius, and the outer and inner horizons r+ and r− are related to the
black hole’s mass M and angular momentum J by r2

+ +r2
− = L2M and r+r− = JL/2. The

Euclidean1 BTZ black hole is obtained by t→ −iτ , J → −iJE and r− → −i|r−|.
It is well-known [21] that the BTZ black hole metric can be mapped to the Poincaré

patch metric through a set of discontinuous coordinate transformations, valid in regions
r > r+, r+ > r > r− and r− > r. For concreteness we will focus on the coordinate

1The authors of [3] work in Euclidean signature because the existence of well-defined Selberg zeta
functions has been shown specifically for hyperbolic quotients. When we adapt this formalism to warped
AdS3 black holes in section 3, we take the liberty of working in Lorentzian signature.
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transformation valid for r > r+:

x =
√
r2 − r2

+
r2 − r2

−
cos

(
r+τ

L2 + |r−|φ
L

)
exp

(
r+φ

L
− |r−|τ

L2

)

yE =
√
r2 − r2

+
r2 − r2

−
sin
(
r+τ

L2 + |r−|φ
L

)
exp

(
r+φ

L
− |r−|τ

L2

)

z =
√
r2

+ − r2
−

r2 − r2
−

exp
(
r+φ

L
− |r−|τ

L2

)
.

(2.2)

Under the coordinate transformation (2.2), the Euclidean version of the BTZ metric (2.1)
becomes

ds2 = L2

z2 (dx2 + dy2
E + dz2). (2.3)

We will refer to coordinates like (x, yE , z) in (2.2) as conformal coordinates, and we will
now see that they provide an avenue to analyze the quotient structure of H3/Γ through a
group theoretic lens.

The identification φ ∼ φ + 2π allows for the BTZ black hole to be understood as a
quotient of AdS3 by a discrete subgroup Γ ∼ Z of the isometry group SL(2,R)×SL(2,R).
We can study the group action of the single generator γ ∈ Γ by taking φ→ φ+2πn in (2.2).
This will map a point (x, yE , z) ∈ H3 to another point (x′, y′E , z′)

γn · (x, yE , z) = (x′, y′E , z′) (2.4)

through
x′ = e2πnr+/L

(
x cos (2πn|r−|/L)− yE sin (2πn|r−|/L)

)
y′E = e2πnr+/L

(
yE cos (2πn|r−|/L) + x sin (2πn|r−|/L)

)
z′ = e2πnr+/Lz.

(2.5)

By inspecting (2.5), it is clear that the group action can be understood as a dilation and
a rotation in R2:

γ

 x

yE
z

 =

e
2a 0 0
0 e2a 0
0 0 e2a


cos 2bE − sin 2bE 0

sin 2bE cos 2bE 0
0 0 1


 x

yE
z

 , (2.6)

where a = πr+/L and bE = π|r−|/L.
We can recast this in the language of [21], in which they write the generator γ ∈ Γ as

the Killing vector
∂φ = r+

L
J12 + |r−|

L
J03. (2.7)

Here J12 and J03 are two of the six generators of the SL(2,R)×SL(2,R) isometry group,
and they are presented in terms of H3 embedding coordinates in appendix A. In Poincaré
coordinates (2.3), it is evident that these generate dilations J12 = −(x∂x + yE∂yE + z∂z)
and rotations J03 = −yE∂x + x∂yE . In terms of the parameters a and bE , this generator is

2π∂φ = 2aJ12 + 2bEJ03. (2.8)
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From the terms a and bE that parametrize the dilation and rotation, Perry and
Williams [3] constructed the Selberg zeta function for the BTZ black hole

ZΓ(s) =
∞∏

k1,k2=0

[
1− e2ibEk1e−2ibEk2e−2a(k1+k2+s)

]
. (2.9)

In later sections of this article, it will be convenient to consider a Lorentzian version of
the zeta function (2.9), which we develop now. To connect to the Lorentzian case we write
yE → iy, |r−| → ir− and bE → −ib. The group action now consists of a boost in R1,1 and
a dilation

γ

xy
z

 =

e
2a 0 0
0 e2a 0
0 0 e2a


 cosh 2b − sinh 2b 0
− sinh 2b cosh 2b 0

0 0 1


xy
z

 , (2.10)

and the Selberg zeta function is the same as (2.9) but with ibE = b

ZΓ(s) =
∞∏

k1,k2=0

[
1− e2bk1e−2bk2e−2a(k1+k2+s)

]
. (2.11)

The exponential part is real in the Lorentzian case because the “rotation” part of the
quotient is no longer compact.

The zeroes of the zeta function (2.11) occur when the exponent is equal to ±2πik for
k ∈ Z. The sign of k differs in the left and right quasinormal modes, hence we have + for
the right modes and − for the left modes.

s∗ = −(k1 + k2) + b

a
(k1 − k2)± iπk

a
. (2.12)

Performing a change of basis, the integers k1 and k2 are written in terms of the radial
quantum number j and the thermal integer n in the following way [3]

n ≥ 0 : k1 + k2 = 2j + n k1 − k2 = ∓n,
n < 0 : k1 + k2 = 2j − n k1 − k2 = ∓n.

(2.13)

For n ≥ 0 the zeroes are

s∗ = −(2j + n)− bn

a
− iπk

a
s∗ = −(2j + n) + bn

a
+ iπk

a
(2.14)

and for n < 0

s∗ = −(2j − n)− bn

a
− iπk

a
s∗ = −(2j − n) + bn

a
+ iπk

a
. (2.15)

2.2 Warped AdS3 quotients

In order to describe warped AdS3 black holes as quotients, we begin by reviewing the global
spacetime warped AdS3 itself. Non-warped AdS3 can be expressed as a Hopf fibration of
AdS2 like so:

ds2 = L2

4 (− cosh2 σdτ2 + dσ2 + (du+ sinh σdτ)2), (2.16)

– 5 –



J
H
E
P
0
1
(
2
0
2
3
)
0
4
9

where u is the fibered coordinate and we refer to (τ, u, σ) as global fibered coordinates.
Spacelike2 warped AdS3 is obtained by warping the fiber length [32]:

ds2 = L2

ν2 + 3

(
− cosh2 σdτ2 + dσ2 + 4ν2

ν2 + 3(du+ sinh σdτ)2
)
. (2.17)

When ν2 > 1 the spacetime is called stretched and for ν2 < 1 it is called squashed. The
Killing vectors for spacelike warped AdS3 are

J2 = 2∂u
J̃1 = 2 sin τ tanh σ∂τ − 2 cos τ∂σ + 2 sin τ sech σ∂u
J̃2 = −2 cos τ tanh σ∂τ − 2 sin τ∂σ − 2 cos τ sech σ∂u
J̃0 = 2∂τ .

(2.18)

The tilded vectors form an SL(2,R) algebra, while J2 is a U(1) generator.

2.2.1 Spacelike stretched warped AdS3 black holes

We first consider spacelike stretched warped AdS3 solutions, which are black holes [23]. In
direct analogy to the BTZ black hole, one can take a quotient of warped AdS3 to find such
black hole solutions. The metric for the spacelike warped AdS3 black hole is

ds2

L2 = dt̃2 + dρ2

(ν2 + 3)(ρ− ρ+)(ρ− ρ−) +
(

2νρ−
√
ρ+ρ−(ν2 + 3)

)
dt̃dφ̃

+ ρ

4

(
3(ν2 − 1)ρ+ (ν2 + 3)(ρ+ + ρ−)− 4ν

√
ρ+ρ−(ν2 + 3)

)
dφ̃2,

(2.19)

where ρ ∈ [0,∞), t̃ ∈ R, φ̃ ∈ [0, 2π), and φ̃ ∼ φ̃ + 2π. The coordinate transformation
from (2.17) to (2.19) is given in (A.6). For ν2 < 1 this spacetime has closed timelike
curves for large r, but not for ν2 > 1. It is important to note that this metric is not
asymptotically spacelike warped AdS3 [33]. This can be seen by taking the large ρ limit of
the metric (2.19):

ds2

L2 = dt̃2 + dρ2

(ν2 + 3)ρ2 + 2νρ dt̃dφ̃+ 3
4(ν2 − 1)ρ2dφ̃2. (2.20)

The angular coordinate φ̃ is compact in the asymptotic black hole spacetime (2.20), but it
is not in unquotiented spacelike warped AdS3 (see [33] for more details).

For the spacelike stretched warped AdS3 black hole, the quotient is along the vector:

∂φ̃ = πL(TLJ2 − TRJ̃2), (2.21)

where

TL = ν2 + 3
8πL

(
ρ+ + ρ− −

√
(ν2 + 3)ρ+ρ−

ν

)
, TR = ν2 + 3

8πL (ρ+ − ρ−). (2.22)

2For information on timelike and null analogues, see [23].
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For ν = 1, this reduces to the BTZ black hole in a rotated frame (t̃, ρ, φ̃). In order for
quantities like TL and TR to reduce to their more recognizable BTZ values, it will be
convenient to go to the non-rotated frame (t, r, φ):

t̃ = r+ − r−
L2 t, φ̃ = Lφ− t

L2 , ρ = r2

r+ − r−
, ρ± = r2

±
r+ − r−

. (2.23)

The metric in these coordinates is

ds2 = 1
4L2(r+−r−)2

(
3r4(ν2−1)+r2

(
(r2

++r2
−)(ν2−8ν+3)−4r+r−ν(

√
ν2+3−4)

)
+4(r+−r−)2

(
r2

++r2
−+r+r−(

√
ν2+3−2)

))
dt2+ 4L2r2

(r2−r2
+)(r2−r2

−)(ν2+3)dr
2 (2.24)

− 1
2L(r+−r−)2

(
3r4(ν2−1)+r2

(
(r2

++r2
−)(ν2−4ν+3)−4r+r−ν

(√
ν2+3−2

))
+2r+r−(r+−r−)2

√
ν2+3

)
dtdφ+

r2(3r2(ν2−1)−4r+r−ν
√
ν2+3+(r2

++r2
−)(ν2+3)

)
4(r+−r−)2 dφ2.

This reduces exactly to the BTZ metric (2.1) when ν = 1. The left and right temperatures
in these BTZ-like coordinates are

TL = ν2 + 3
8πL

(
ν(r2

+ + r2
−)− r+r−

√
ν2 + 3

ν(r+ − r−)

)
, TR = ν2 + 3

8πL (r+ + r−). (2.25)

These reduce to the BTZ left and right temperatures when ν = 1

TL = r+ − r−
2πL , TR = r+ + r−

2πL . (2.26)

2.2.2 Warped self-dual solutions

As previously mentioned, spacelike warped AdS3 for ν2 < 1 has closed timelike curves
(CTCs) for large r. Taking a different quotient from (2.21) by identifying along the J2
isometry results in no such curves [23] and we have the so-called self-dual solutions that
are a discrete quotient of warped AdS3 in analogous to the quotients studied in [31]. Self-
dual solutions are not black holes in the strictest sense but they can be regarded as such
because they have killing horizons in the (t̃, ρ, φ̃) coordinates and no CTCs. They also
have similar thermodynamic behaviours, like an entropy that obeys the Cardy formula, as
discussed in [23, 28]. Self-dual solutions for warped dS3 black holes are studied in [34].

For the self-dual solutions mentioned in [23] the same analysis can be done as for the
warped solutions that we will study but with the identification in t̃ instead of φ̃. We instead
adopt a different coordinate system, and look at the self-dual solutions studied in [28] with
identification θ̃ ∼ θ̃ + 2πα̃. The metric is given by

ds2 = L2

ν2+3

(
−(ρ̃−ρ̃+)(ρ̃−ρ̃−)dτ̃2+ dρ̃2

(ρ̃−ρ̃+)(ρ̃−ρ̃−) + 4ν2

ν2+3

(
α̃dθ̃+ 2ρ̃−ρ̃+−ρ̃−

2 dτ̃

)2)
.

(2.27)
It will be convenient to redefine the radial coordinate to a BTZ-like radial coordinate r̃:

ρ̃ = r̃2

r̃+ − r̃−
, ρ̃± = r̃2

±
r̃+ − r̃−

. (2.28)
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In these coordinates, the line element of the self-dual warped solution is

ds2 = L2

ν2 + 3

(
−
(
r̃2 − r̃2

−
) (
r̃2 − r̃2

+
)
dτ̃2

(r̃− − r̃+)2 + 4r̃2dr̃2(
r̃2 − r̃2

−
) (
r̃2 − r̃2

+
)

+ ν2

ν2 + 3

(
2α̃dθ̃ + −2r̃2 + r̃2

− + r̃2
+

r̃− − r̃+
dτ̃

)2
 . (2.29)

The left and right temperatures in these coordinates are

TL = α̃

2πL, TR = r̃+ + r̃−
4πL . (2.30)

The authors of [28] comment that in the extremal limit the right temperature TR vanishes.
The reason that this is not apparent in (2.30) is that the coordinate transformation (2.28)
is singular in the extremal limit, and thus (2.30) holds only in the non-extremal case.

3 A Selberg zeta function for warped AdS3 black holes

Our first step in constructing the Selberg zeta function for warped AdS3 black holes is to
identify a suitable set of “conformal coordinates” (analogous to equation (2.2) for the BTZ
black hole) that will allow us to interpret the identification φ ∼ φ+ 2π group-theoretically.
It is difficult to find a suitable coordinate transformation from the perspective of the metric,
since in the warped case we do not have a target Poincaré-like metric in mind. That is,
for the case of the spacelike warped AdS3 black hole, we seek a coordinate transformation
between (2.24) and a warped version of (2.3) (the latter of which we do not have). However,
we will now see that we can make progress by borrowing a trick from the hidden conformal
symmetry program of [27] and others, by studying instead the symmetry structure of the
scalar wave equation. We outline our general approach below before moving on to the
specific examples of spacelike warped AdS3 black holes in section 3.1 and the self-dual
solutions in section 3.2.

Consider again the Poincaré patch metric of AdS3:

ds2 = L2

z2 (dw+dw− + dz2). (3.1)

The isometry group of (3.1), SL(2,R)× SL(2,R), is generated by six Killing vectors:

H1 = i∂+, H0 = i

(
w+∂+ + 1

2z∂z
)
, H−1 = i((w+)2∂+ + w+z∂z − z2∂−),

H̄1 = i∂−, H̄0 = i

(
w−∂− + 1

2z∂z
)
, H̄−1 = i((w−)2∂− + w−z∂z − z2∂+).

(3.2)

For the case of warped AdS3, the warp parameter ν 6= 1 in (2.17) breaks the unbarred
SL(2,R) symmetry down to a U(1), and thus the Killing vectors of warped AdS3 are
(H0, H̄0, H̄±1). Our goal in this section is to construct a locally spacelike warped AdS3
metric in terms of these coordinates, which will be our “warped Poincaré patch.”

– 8 –
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Consider for now a massless scalar field Φ on one of our backgrounds of interest (either
the spacelike warped AdS3 black hole or the self-dual solution). In either case, one can
show that the solutions of the Klein-Gordon equation are hypergeometric functions (as we
will see for the massive scalar case in section 4). Since hypergeometric functions transform
in representations of SL(2,R), we conclude that the Klein-Gordon operator is related to
the SL(2,R) quadratic Casimir:

H2 = −H̄2
0 + 1

2(H̄1H̄−1 + H̄−1H̄1)

= 1
4(z2∂2

z − z∂z) + z2∂+∂− .
(3.3)

In particular, we would like for the Klein-Gordon operator to be proportional to the entire
SL(2,R)×U(1) Casimir:

(H2 + λH2
0 )Φ ∝ ∇2Φ (3.4)

where the coefficient λ of the U(1) generator is yet to be determined.
Our job now is to find a coordinate transformation

w+ =

√√√√x− 1
2

x+ 1
2
eαφ+βt,

w− =

√√√√x− 1
2

x+ 1
2
eγφ+δt,

z =
√

1
x+ 1

2
e1/2((α+γ)φ+(β+δ)t),

(3.5)

such that (3.4) holds. In (3.5), x is related to the BTZ-like radial coordinate r in (2.24)
via x = r2−1/2(r2

++r2
−)

r2
+−r

2
−

. For the field ansatz

Φ = R(x)ei(kφ−ωt), (3.6)

we find that the quadratic Casimir constructed from the conformal coordinates (3.5) and
generators (3.2) is

(H2 +λH2
0 )Φ (3.7)

=

∂x(x2− 1
4

)
∂x+ (ω(α+γ)+k(β+δ))2

4
(
x− 1

2

)
(βγ−αδ)2

− (ω(α−γ)+k(β−δ))2

4
(
x+ 1

2

)
(βγ−αδ)2

+λ
(kδ+γω)2

(βγ−αδ)2

Φ.

Comparing this Casimir to the Klein-Gordon operator will allow us to solve for the confor-
mal coordinate parameters (α, β, γ, δ). With those in hand, we will be able to interpret the
identification φ → φ + 2π group-theoretically, in analogy to [3], and build a Selberg zeta
function for warped black holes. As a nice bonus, we find a warped version of the Poincaré
patch metric (3.1), which reduces to (3.1) when ν = 1.

Before we move on to specific examples in the next subsections, some comments
about (3.7) are in order. Hidden conformal symmetry was studied in warped AdS3 black
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holes in [35] and in self-dual warped solutions in [30]. In both cases, the authors throw
away a term in the Klein-Gordon operator, making a “near-region limit” or “soft hair”
argument, in analogy to [27]. We show below that the terms they throw away are nothing
more than the U(1) piece corresponding to our λ term in (3.7). We argue that there is no
need to take such a limit to discard such terms, as they too are built into the symmetry
structure of the Casimir.

3.1 Warped AdS3 black holes

The Klein-Gordon operator of the warped AdS3 black hole background (2.24) is propor-
tional to the quadratic Casimir (3.7) with proportionality constant:

H2 + λH2
0 = L2

ν2 + 3∇
2. (3.8)

This proportionality constant is determined by comparing the radial derivative pieces.
In x coordinates, the Klein-Gordon operator with the proportionality constant now

reads:
L2

3 + ν2∇
2Φ =

∂x (x2 − 1
4

)
∂x + P

4
(
x− 1

2

) + Q

4
(
x+ 1

2

) + S

Φ (3.9)

where

P =
4L2

(
k
(
2(ν − 1)r2

+ − 2r2
− − r+r−

(√
ν2 + 3− 4

))
− Lωr+

(
2νr+ − r−

√
ν2 + 3

))2

(r+ − r−)2(r+ + r−)2(ν2 + 3)2 ,

Q = −
4L2

(
k
(
−2r2

+ + 2(ν − 1)r2
− − r+r−(

√
ν2 + 3− 4)

)
− Lωr−

(
2νr− − r+

√
ν2 + 3

))2

(r+ − r−)2(r+ + r−)2(ν2 + 3)2 ,

S = 3L2(ν2 − 1)(k − Lω)2

(ν2 + 3)2(r2
+ − r2

−)2 . (3.10)

As mentioned previously, in [35] these coefficients are derived in the (t̃, ρ, φ̃) coordinates
of (2.19), but the U(1) term, S, is thrown away in the spirit of the hidden conformal
symmetry program in a certain limit of their eigenvalue ω. There is no need to throw
away this piece, as it is part of the symmetry group and does not cause any obstruction in
building the conformal coordinates. In fact, the U(1) piece will help us choose the proper
solution branch, as we will see.

Equating the coefficients of k and ω in P and Q to those in the x ± 1
2 poles in the

Casimir (3.7), one can solve for (α, β, γ, δ). Due to the squares, there are 4 branches of
solutions, and we pick the ones which reduce to those found for BTZ when ν is set to 1 as
reported in appendix B.3

3Had we not known what they reduce to, we can use the U(1) term to eliminate 2 of the four branches,
and then we pick the positive branch for α.
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They are:

α =
(
ν2 + 3

) (
ν(r2

+ + r2
−)− r+r−

√
ν2 + 3

)
4Lν(r+ − r−) ,

β = (r+ − r−)(ν2 + 3)
2L2ν

−

(
ν2 + 3

) (
ν(r2

+ + r2
−)− r+r−

√
ν2 + 3

)
4L2ν(r+ − r−) ,

γ = 1
4L

(
ν2 + 3

)
(r+ + r−) ,

δ = − 1
4L2

(
ν2 + 3

)
(r+ + r−) .

(3.11)

Note that α = 2πTL and γ = 2πTR as defined in (2.25). This also allows us to determine
λ to be 3(ν2 − 1)/4ν2.

The conformal coordinates that we have built yield a warped version of the AdS3
Poincaré patch. In these conformal coordinates, the previously slightly terrible met-
ric (2.24) turns out to be quite simple:

ds2 = 4L2

(ν2 + 3)2z2

(
(ν2 + 3)dw+dw− + 4ν2dz2 + 3(ν2 − 1)w+

z2 (dw−2 + 2zdw−dz)
)
.

(3.12)
This reduces to the Poincaré patch (3.1) for ν = 1, unlike the Poincaré coordinates pre-
sented in [23]. The Killing vectors of this metric are:

H̄1 = i∂−, H̄0 = i

(
w−∂− + 1

2z∂z
)
, H̄−1 = i(−z2∂+ + w−

2
∂− + w−z∂z),

H0 = i

(
w+∂+ + 1

2z∂z
)
,

(3.13)

which are a subset of (3.2), as expected. The killing vectors corresponding to rotation in
the w± plane and dilation are

H0 − H̄0 = i(w+∂+ − w−∂−),
H0 + H̄0 = i(w+∂+ + w−∂− + z∂z)

(3.14)

respectively. Using the inverse transformation of (3.5), we can also see that the quotient
is generated by the group element

e−i4π
2(TRH̄0+TLH0) = e2π∂φ , (3.15)

as discussed in [27]. Comparing this with [23] and (2.21), we see

H0 = i

2J2, H̄0 = − i2 J̃2. (3.16)

Now that we have the warped black hole quotient structure and a set of suitable confor-
mal coordinates in hand, we can repeat the analysis of Perry and Williams (outlined in
section 2.1) to build our Selberg zeta function for warped AdS3 black holes.
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We begin by switching to the coordinates x = (w+ + w−)/2 and y = (w+ − w−)/2.
Under the transformation φ → φ + 2π, we see that the coordinates once again transform
in the same way as (2.10):x

′

y′

z′

 =

e
2a 0 0
0 e2a 0
0 0 e2a


 cosh 2b − sinh 2b 0
− sinh 2b cosh 2b 0

0 0 1


xy
z

 (3.17)

where we have
a = πr+(ν2 + 3)(2νr+ − r−

√
ν2 + 3)

8Lν(r+ − r−)

b = πr−(ν2 + 3)(−2νr− + r+
√
ν2 + 3)

8Lν(r+ − r−) .

(3.18)

The prime geodesic on the quotient spacetime is the curve which remains invariant under
the rotation, which is the x = y = 0 line. The length of this prime geodesic ` is related to
the dilation parameter by ` = 2a.

Finally, the Selberg zeta function for warped quotients that we propose is (2.11), where
in the case of warped AdS3 black holes the parameters a and b are (3.18). We will see in
section 5 that the zeroes of this zeta function are successfully mapped to the quasinormal
modes on the warped AdS3 black hole backgrounds. It should be noted that, in principle,
the structure of the Selberg zeta function for warped quotients could have been more
complicated (cf. the function N(p) in equation (1.1)) than in the BTZ case, or indeed it
need not have existed at all. We suspect that for more complicated orbifolds N(p) may
need to be constructed with greater care.

3.2 Warped self-dual solutions

Following the same procedure as in section 3.1 we construct conformal coordinates for the
self-dual solutions (2.29), using the coordinate transformation

w+ =

√√√√x− 1
2

x+ 1
2
eαθ̃+βτ̃ ,

w− =

√√√√x− 1
2

x+ 1
2
eγθ̃+δτ̃ ,

z =
√

1
x+ 1

2
e1/2((α+γ)θ̃+(β+δ)τ̃).

(3.19)

The Klein-Gordon operator for this background is proportional to the quadratic
Casimir (3.7) and has the same proportionality constant as the warped AdS3 black hole

H2 + λH2
0 = L2

ν2 + 3∇
2. (3.20)

Explicitly, in x coordinates and using the ansatz Φ = ei(kθ̃−ωτ̃)R(r̃), we have:

L2

3 + ν2∇
2Φ =

∂x (x2 − 1
4

)
∂x + P

4
(
x− 1

2

) + Q

4
(
x+ 1

2

) + S

Φ (3.21)
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where
P =

(
k

α̃
+ 2ω

(r̃+ + r̃−)

)2
,

Q = −
(
k

α̃
− 2ω

(r̃+ + r̃−)

)2
,

S = 3k2 (ν2 − 1
)

4α̃2ν2 .

(3.22)

Again we equate the coefficients k and ω in (3.22) to the ones in (3.7) and solve for
(α, β, γ, δ). The U(1) term eliminates two of the four branches and we choose the positive
remaining one

α = α̃, β = γ = 0, δ = 1
2(r̃+ + r̃−). (3.23)

Note that the coefficient of the U(1) term is the same as for the warped AdS3 black
hole: λ = 3

(
ν2 − 1

)
/4ν2. The parameters (3.23) are related to the temperatures (2.30)

via α = 2πLTL and δ = 2πLTR. The conformal coordinates (3.19) with these values of
(α, β, γ, δ) yield the same warped Poincaré patch as (3.12). From the conformal coordinates
we calculate the coefficients a and b that appear in the quotient. Again we switch to
x = (w+ +w−)/2 and y = (w+−w−)/2 and under θ̃ → θ̃+ 2πα̃ the coordinates transform
in the same way as (2.10), and we obtain

a = πα̃

2 , b = −πα̃2 . (3.24)

The quotient is generated by the Killing vector

∂θ̃ = πLTLJ2 = α̃

2 J2, (3.25)

which now can be expressed in terms of the warped Poincaré patch generators:

∂θ̃ = −iα̃H0. (3.26)

4 Scalar fields on WAdS3 black hole backgrounds

In order to map the zeroes of our Selberg zeta function to the quasinormal modes of the
warped AdS3 black holes in section 5, we need to first study several aspects of a massive
scalar field propagating on these backgrounds. We begin with the conformal weight ∆ in
section 4.1, followed by the thermal (Matsubara) frequencies ωn in section 4.2 and finally
quasinormal modes ω∗ in section 4.3.

4.1 Conformal weights of the scalar field

Here we compute the conformal weight of highest weight representations of the symmetry
algebra of the black hole spacetime. We use the relationship between the quadratic Casimir
and the Laplacian of the massive scalar [36]

(H2 + λH2
0 )Φ = L2

ν2 + 3m
2Φ. (4.1)
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We can express the SL(2,R) Casimir in terms of the SL(2,R) conformal weight

H2Φ = h(h− 1)Φ, (4.2)

and we know from (3.9) that the U(1) generator acting on the scalar field is

λH2
0 Φ = S(k, ω)Φ. (4.3)

Combining the two we have

h(h− 1) = L2

ν2 + 3m
2 − S. (4.4)

Solving for ∆ = 2h and choosing the positive branch, we obtain the conformal weight of
the scalar field:

∆ = 1 +
√

1 + 4
(
m2L2

ν2 + 3 − S
)
. (4.5)

Note that S depends on the choice of coordinates. In the (t̃, ρ, φ̃) coordinates of (2.19), we
have

S = 3L2(ν2 − 1)
ν2 + 3 ω2 (4.6)

which reproduces the result in [37]. In the coordinates of (t, r, φ) (2.24), we have

S = 3L2(ν2 − 1)
ν2 + 3

(
k − Lω
r2

+ − r2
−

)2

(4.7)

and in the (τ̃ , r̃, θ̃) coordinates of (2.29) for the self-dual solution, we have

S = 3k2 (ν2 − 1
)

4α̃2ν2 . (4.8)

Equation (4.8) is the same as the one computed for spacelike stretched warped AdS3 with
α̃ = 1, which reproduces the result in [23].

Notice that for large values of ω or k in (4.6), (4.7) and (4.8) the conformal weight
becomes complex. The asymptotic behaviour of the solutions (∼ r−∆/2) implies that these
solutions are travelling waves. The fact that these becomes complex indicate that these
spacetimes have superradiant behaviour [36]. Since Re(∆) > 0 the outgoing wave solutions
are always normalizable [38]. Note that for the negative branch of (4.4) for small enough
values of S we have Re(∆−) < 0 which renders the solutions non-normalizable. We only
consider the positive branch since the Selberg zeta function can be expressed a sum over
eigenvalues of normalizable functions via the Selberg trace formula.4

4We thank the referee for bringing this fact to our notice.
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4.2 Thermal frequencies

A procedure for calculating thermal frequencies in rotating spacetimes was outlined in [39].
Due to translation symmetry in both t and φ, we can use the following ansatz for Φ:

Φ(t, r, φ) = e−iωt+ikφf(r). (4.9)

Using this ansatz in the equation of motion, we obtain a second order differential equation
in r, which we examine around the outer horizon r+:

A(r)f(r) +B(r)(r − r+)f ′(r) + (r − r+)2f ′′(r) = 0. (4.10)

For the spacelike warped AdS3 black hole, we have

A = 16r2L2

((r + r+)(r2 − r2
−))2

(
k2gtt + kωgtφ + ω2gφφ

)
B = 3r4 − r2

+r
2
− − r2(r2

+ + r2
−)

r(r2 − r2
−)(r + r+) .

(4.11)

To construct the indicial equation, we must input a power series solution around r+
for A,B and f , like so:

A =
∞∑
n=0

an(r − r+)n, B =
∞∑
n=0

bn(r − r+)n, f = (r − r+)α
∞∑
n=0

fn(r − r+)n. (4.12)

We only need the leading terms of A and B for the indicial equation, which after some
algebra turn out to be:

a0 =

L(2r2
− − 2r2

+(ν − 1) + r+r−(
√
ν2 + 3− 4))k + Lr+

(
2νr+ − r−

√
ν2 + 3

)
ω

(r+ − r−)2(r+ + r−)(ν2 + 3)

2

,

b0 = 1. (4.13)

If we set α = in/2 with n an integer, we can solve the indicial equation for ω in terms of
n, obtaining the thermal frequencies:

ωn = in(r+ − r−)2(r+ + r−)(ν2 + 3)− 2Lk(2r2
− + 2r2

+(1− ν) + r+r−(
√
ν2 + 3− 4))

2L2r+
(
2νr+ − r−

√
ν2 + 3

) .

(4.14)
If we set ν to 1, we recover the thermal frequencies for the BTZ black hole [39]:

ωn = Lkr− + in(r2
+ − r2

−)
L2r+

, (4.15)

which are also known as the Matsubara frequencies. In the (t̃, ρ, φ̃) coordinates of (2.19),
this result becomes

ωn = −4k − in(ρ+ − ρ−)(ν2 + 3)
4ρ+ν − 2

√
ρ+ρ−(ν2 + 3)

. (4.16)

Repeating the analysis in the self-dual solution (2.29) we get

ωn = −(r̃− + r̃+)(k − iα̃n)
2α̃ . (4.17)
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4.3 Quasinormal modes

To compute quasinormal modes, we must study the equation of motion of the massive
scalar field in the black hole background

(∇2 −m2)Φ(t, r, φ) = 0. (4.18)

These have been computed in the “rotated coordinates” ((t̃, ρ, φ̃) as in (2.19)) before [37, 40],
but here we present the calculation and results in the BTZ-like coordinates ((t, r, φ) as
in (2.24)), in which the quasinormal modes reduce to those of the BTZ black hole [41]
when the warping parameter ν is set to 1.

4.3.1 Warped AdS3 black holes

Here we follow the procedure described in [41]. The structure of the equation of motion is
clear when we make this coordinate change:

ζ = r2 − r2
+

r2 − r2
−
, (4.19)

and we will use the same ansatz as (4.9): Φ(t, ζ, φ) = e−iωt+ikφf(ζ). In these coordinates
we have

ζ(1− ζ)f ′′(ζ) + (1− ζ)f ′(ζ) +
(
A

ζ
+B + C

1− ζ

)
f(ζ) = 0, (4.20)

where

A =
L2
(
k
(
2(ν − 1)r2

+ − 2r2
− −

(√
ν2 + 3− 4

)
r+r−

)
− Lr+ω

(
2νr+ − r−

√
ν2 + 3

))2

(r− − r+)4 (r− + r+)2 (ν2 + 3)2
,

B = −A(r+ ↔ r−), (4.21)

C = 3L2 (ν2 − 1
)

(k − Lω)2

(ν2 + 3)2 (r− − r+)2 − L2m2

ν2 + 3 .

The solution to (4.20) is

f(ζ) = ζα(1− ζ)β 2F1(a, b, c; ζ),
a = α+ β + i

√
−B, b = α+ β − i

√
−B, c = 2α+ 1.

(4.22)

The exponents α and β describe the behaviour of the scalar field near the outer horizon
and at infinity respectively:

α2 = −A, β = 1
2
(
1−
√

1− 4C
)
. (4.23)

Notice that β can be expressed in terms of the conformal weight of the scalar field (4.5)
and (4.7) as

β = 1− ∆
2 . (4.24)
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We require that the solution is ingoing at the horizon5 and vanishes at infinity, so we set
the following boundary conditions:6

c− a = −j, c− b = −j, j ∈ Z≥0. (4.25)

Here we can solve these boundary conditions for ω in terms of k and ∆. We note that ∆
does depend on ω, but we keep it implicit since the matching of the Selberg zeta function
zeroes s∗ to the quasinormal modes does not depend upon the intrinsic structure of ∆, as
we will see. Thus we obtain

ω∗L = k

L
− i(∆ + 2j)

(
ν2 + 3

)
(r+ − r−)

4L2ν
, (4.26)

and

ω∗R = − k
L

(
2 (r+ − r−)2

ν(r2
+ + r2

−)− r+r−
√
ν2 + 3

− 1
)
− i

(
ν2 + 3

)
(r+ + r−) (r+ − r−)2 (∆ + 2j)

4L2
(
ν(r2

+ + r2
−)− r+r−

√
ν2 + 3

) .

(4.27)
We recover the BTZ quasinormal modes as calculated in [41] upon setting ν to 1.

4.3.2 Warped self-dual solutions

We compute the quasinormal modes for the self-dual solutions and reproduce previous
results [29, 30] in (τ̃ , ρ̃, θ̃) coordinates. Using the same ansatz: Φ(τ̃ , ζ, θ̃) = e−iωτ̃+ikθ̃f(ζ)
and change of coordinates

ζ = r̃2 − r̃2
+

r̃2 − r̃2
−
, (4.28)

we reach the same radial equation as before (4.20), where

A =
(
k

2α̃ + ω

r̃+ + r̃−

)2
,

B = −
(
k

2α̃ −
ω

r̃+ + r̃−

)2
,

C = 3k2 (ν2 − 1
)

4α̃2ν2 − L2m2

ν2 + 3 .

(4.29)

Following the procedure done in section 4.3.1, with the corresponding ∆ for the self-dual
solution, we obtain the quasinormal modes. The boundary conditions only permit one
solution, the right ingoing mode:

ω∗R = −1
4 i(r̃+ + r̃−)(∆ + 2j). (4.30)

5Modes that are outgoing at the horizon are sometimes called antiquasinormal. These can be treated
similarly, but here we just stick to the ingoing modes for simplicity.

6To see how to derive these conditions look at equation (15) in [41].
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5 Mapping the Selberg zeroes to quasinormal modes

Now we take all the results from the previous sections and show that tuning the zeroes of the
Lorentzian Selberg zeta function s∗ to the conformal weights ∆, we recover the condition
that the corresponding quasinormal modes must be tuned to the thermal frequencies, in
the spirit of [15].

For simplicity, we only consider the ingoing (quasinormal) modes, and so we only need
to consider the case with n ≥ 0 in the change of bases listed in (2.13). It should be noted
that the change of basis (2.13) did not (to our knowledge) necessarily have to be the same
in the warped case. Nevertheless, this change of basis turns out to be consistent in mapping
the Selberg zeroes to the warped quasinormal modes. Since the basis change (2.13) is a
result from scattering theory on the Euclidean BTZ background [3], the fact that (2.13)
still works in the warped case probably tells us that warping the fiber length does not
significantly change the poles of the scattering matrix.

5.1 Warped AdS3 black holes

The procedure outlined in [15] was to express s∗ −∆ in terms of the corresponding quasi-
normal mode and BTZ thermal frequencies. Here we will go in the opposite direction and
construct s∗ from the quasinormal modes, the warped black hole’s thermal frequencies and
the conformal weight. We will then solve for a and b used in the quotient, and show that
they coincide with (3.18) in the warped black hole case and (3.24) in the self-dual case.
That is, we write

s∗L = Λ−1
L (ω∗L − ωn) + ∆, s∗R = Λ−1

R (ω∗R − ωn) + ∆, (5.1)

where ΛL and ΛR are proportionality constants, which can be determined by eliminating
∆ on the right hand side of the equations (since the quasinormal modes depend upon ∆
but the zeroes s∗ should not explicitly depend upon ∆). Plugging everything that we
calculated in previous sections into the right hand side of the equations, we get:

ω∗L − ωn
ΛL

+ ∆ = −2j −
(

8iLν(r+ − r−)
r+(ν2 + 3)(2r+ν −

√
ν2 + 3)

)
k −

(
2ν(r2

+ − r2
−)

r+(2νr+ − r−
√
ν2 + 3)

)
n,

(5.2)
and

ω∗R−ωn
ΛR

+∆ =−2j+
(

8iLν(r+−r−)
r+(ν2 +3)(2r+ν−

√
ν2 +3)

)
k−

(
2((r2

+−r2
−)ν−r+r−

√
ν2 +3)

r+(2νr+−r−
√
ν2 +3)

)
n,

(5.3)
where

ΛL = i(r+ − r−)(ν2 + 3)
4L2ν

, ΛR = i(r+ − r−)2(r+ + r−)(ν2 + 3)
4l2((r2

+ + r2
−)ν − r+r−

√
ν2 + 3)

. (5.4)

Equating (5.2) and (5.3) to (2.14) (reproduced here for convenience)

s∗L = −2j −
(

1 + b

a

)
n− iπk

a
, s∗R = −2j −

(
1− b

a

)
n+ iπk

a
, (5.5)

– 18 –



J
H
E
P
0
1
(
2
0
2
3
)
0
4
9

and solving for a and b, we obtain

a = πr+(ν2 + 3)(2νr+ − r−
√
ν2 + 3)

8Lν(r+ − r−) ,

b = πr−(ν2 + 3)(−2νr− + r+
√
ν2 + 3)

8Lν(r+ − r−) ,

(5.6)

which reproduces the values obtained from the quotient (3.18). This shows that the pro-
posed Selberg zeta function zeroes for warped AdS3 black holes are successfully mapped
to the quasinormal modes.

5.2 Warped self-dual solutions

For the self-dual solutions the left quasinormal mode vanishes, and thus we only match one
of the zeroes, s∗R, to the remaining quasinormal mode. Along the lines of (5.1), we write

s∗R = Λ−1
R (ω∗R − ωn) + ∆, (5.7)

and we find that the proportionality constant is

ΛR = − i4(r̃+ + r̃−). (5.8)

Plugging everything into the right hand side of (5.7) (using (4.5), (4.8), (4.17), (4.30)
and (5.8)), we find

s∗R = −2(j + n)− 2ik
α̃
. (5.9)

Comparing (5.9) and (5.5) allows us to solve for a and b:

a = πα̃

2 , b = −πα̃2 . (5.10)

This matches our previous result from the quotient (3.24). Thus, just as in the warped
black hole case in the previous section, the zeroes of our proposed Selberg zeta function
for the self-dual solutions are successfully mapped to the quasinormal modes.

6 Discussion

Using the quotient structure of warped AdS3 black holes [23], we have constructed a Selberg
zeta function for this spacetime in the spirit of [3], providing an example that extends the
work of [3] beyond hyperbolic quotients. We have shown that the zeroes of this zeta
function are mapped to the scalar quasinormal modes on the warped AdS3 black hole
background [37, 40], in exactly the same way as in the non-warped (BTZ) case [15, 18].
We repeat this analysis for the warped self-dual solutions reported in [23, 28], which are
obtained from different quotients than the spacelike warped AdS3 black holes and are
interesting in their own right.

Along the way, we develop a method of constructing a warped version of the AdS3
Poincaré patch metric, using the symmetry structure of the Klein-Gordon equation and
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a familiar ansatz for conformal coordinates [27, 42]. To the best of our knowledge, our
metric (3.12) does not appear in the literature. This metric could be of interest in the
context of the warped AdS/warped CFT correspondence [24]. The conformal boundary
of the metric (3.12) seems to have the correct properties (such as a degenerate metric)
required by the geometry on which a boundary warped CFT lives, which is not manifest
in other coordinate systems.

Perhaps the most immediate and intriguing direction for future work is to connect the
Selberg zeta function to 1-loop determinants on the warped AdS3 black hole background,
in a similar fashion as in [15]. With this connection in hand, it might be possible to
study quantum corrections on the near-horizon extremal Kerr (NHEK) geometry (which
is warped AdS3) [26], as well as in other contexts where warped AdS3 appears (see the
Introduction for more details).

Furthermore, it is extremely tantalyzing to explore whether this Selberg quotient for-
malism can be related to the recent and very interesting connection between black hole
quasinormal modes and quantum Seiberg-Witten curves [43, 44]. Both this work and [43]
fix a geometric lens on the problem of computing spectral data, and a connection between
them seems both likely and fruitful to persue. Indeed, such a connection was already hinted
at in [45].

Hyperbolic quotient spacetimes occur in several other interesting physical systems
in which quantum corrections are of interest. One notable example is AdS wormholes
(see for example [46]). In fact, it was recently shown in [47] that certain k-boundary
wormholes were constructed by quotienting AdS by the discrete group Zk. Since the
quotient group that we consider is isomorphic to Z, these wormholes provide a physically
interesting and tractable arena to study more complicated quotienting groups. A second
notable example in which hyperbolic quotient geometries arise is in the calculation of
holographic entanglement Rényi entropies [48]. In that work, one difficulty was calculating
the generators of the quotienting Schottky group Γ, and most of the time the authors
relied on an expansion in small cross-ration. Perhaps now that we have more experience
in calculating generators of quotient groups from the bulk perspective, this problem can
be revisited with more success. The main challenge in that endeavor would be making a
meaningful connection to the boundary CFT data.

There is strong evidence that the Selberg trace formula also has a different and interest-
ing physical interpretation: it is likely the formal like between two well-known methods for
computing functional determinants, namely the heat kernel method (see for example [12])
and the quasinormal mode method [49]. This can be seen from how the Selberg trace for-
mula is generally derived from the Selberg zeta function. As explained in [3], one considers
two different representations of the Selberg zeta function: the Euler product (2.9) and the
Hadamard product

ZΓ(s) = eQ(s)∏
s∗

(1− s/s∗)es/s∗+1/2(s/s∗)2+1/3(s/s∗)3
, (6.1)

where ZΓ is meromorphic and Q(s) is an entire function. The Selberg trace formula is
obtained by taking the logarithmic derivative of (2.9) and (6.1) and equating them. To
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extend this to warped AdS3 quotients, the non-trivial interplay between the asymptotics
of ∆, ω and k may be important to interpret through the lens of [49], since this is used
to determine the UV counterterms of the partition function, like for example in [50]. We
leave this interesting and potentially insightful direction for future work.
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A Coordinate transformations

Here we list some useful coordinate transformations between some of the metrics used in
this work.

• Embedding coordinates. The hyperbolic 3-space can be written in terms of its
embedding

ds2 = −dU2 + dV 2 + dX2 + dY 2 (A.1)

with the constraint
− U2 + V 2 +X2 + Y 2 = −L2. (A.2)

The following transformation

x = Y

U +X
, yE = V

U +X
, z = L

U +X
, (A.3)

is used to write the H3 line element in the Poincaré patch coordinates (2.3). The
isometry generators of (A.1) are

JAB = XB∂A −XA∂B. (A.4)

We can write these explicitly in embedding coordinates and Poincaré coordinates:

J01 = V ∂U + U∂V = −xyE∂x + 1
2(x2 − y2

E + z2 + 1)∂yE − yEz∂z,

J02 = X∂V − V ∂X = xyE∂x −
1
2(x2 − y2

E + z2 − 1)∂yE + yEz∂z,

J03 = Y ∂V − V ∂Y = −yE∂x + x∂yE ,

J12 = X∂U + U∂X = −x∂x − yE∂yE − z∂z,

J13 = Y ∂U + U∂Y = −1
2(x2 − y2

E − z2 − 1)∂x − xyE∂yE − xz∂z,

J23 = Y ∂X −X∂Y = 1
2(1− x2 + y2

E + z2)∂x − xyE∂yE − xz∂z.

(A.5)
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• The stretched warped AdS3 black hole. The coordinate transformation between
warped AdS3 in global fibred coordinates (2.17) and the warped black hole in rotated
coordinates (2.19) is:

τ = tan−1
[2
√

(ρ− ρ+)(ρ− ρ−)
2ρ− ρ+ − ρ−

sinh
(1

4(ρ+ − ρ−)(ν2 + 3)φ̃
)]
,

σ = sinh−1
[2
√

(ρ− ρ+)(ρ− ρ−)
ρ+ − ρ−

cosh
(1

4(ρ+ − ρ−)(ν2 + 3)φ̃
)]
,

u = ν2 + 3
4ν

[
2t̃+

(
ν(ρ+ + ρ−)−

√
ρ+ρ−(ν2 + 3)

)
φ̃

]
+ coth−1

[2ρ− ρ+ − ρ−
ρ+ − ρ−

coth
(1

4(ρ+ − ρ−)(ν2 + 3)φ̃
)]
.

(A.6)

This transformation is valid for ρ > ρ+ [51]. For ρ < ρ+ we instead have [23]:

u = ν2 + 3
4ν

[
2t̃+

(
ν(ρ+ + ρ−)−

√
ρ+ρ−(ν2 + 3)

)
φ̃

]
− tanh−1

[
− 2ρ− ρ+ − ρ−

ρ+ − ρ−
coth

(1
4(ρ+ − ρ−)(ν2 + 3)φ̃

)]
.

(A.7)

• The warped self-dual solution. The coordinate transformation between warped
AdS3 in global fibred coordinates (2.17) and the self-dual solution (2.27) is [28]:

τ = tan−1
[

2
√

(ρ̃− ρ̃+)(ρ̃− ρ̃−)
2ρ̃− ρ̃+ − ρ̃−

sinh
(
ρ̃+ − ρ̃−

2 τ̃

)]
,

σ = sinh−1
[

2
√

(ρ̃− ρ̃+)(ρ̃− ρ̃−)
2ρ̃− ρ̃+ − ρ̃−

cosh
(
ρ̃+ − ρ̃−

2 τ̃

)]
,

u = α̃θ̃ + tanh−1
[2ρ̃− ρ̃+ − ρ̃−

ρ̃+ − ρ̃−
coth

(
ρ̃+ − ρ̃−

2 τ̃

)]
.

(A.8)

B BTZ conformal coordinates

In this appendix we illustrate how our method for obtaining conformal coordinates works in
the case of the BTZ black hole. We reproduce the Lorentzian version of (2.2), as expected.

The BTZ metric is given by

ds2 = −r
2 − r2

+ − r2
−

L2 dt2 + L2r2

(r2 − r2
+)(r2 − r2

−)dr
2 + r2dφ2 − 2r+r−

L
dtdφ. (B.1)

For the BTZ black hole, we find the Klein-Gordon operator is proportional to the quadratic
Casimir as:

H2 = L2

4 ∇
2. (B.2)

The Klein-Gordon equation with field ansatz (3.6) takes the form∂x (x2 − 1
4

)
∂x + PBTZ

4
(
x− 1

2

) + QBTZ

4
(
x+ 1

2

)
Φ = 0, (B.3)
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where x = r2−1/2(r2
++r2

−)
r2

+−r
2
−

and

PBTZ = L2(kr− − ωLr+)
(r2

+ − r2
−)2 , QBTZ = −L

2(kr+ − ωLr−)
(r2

+ − r2
−)2 . (B.4)

When equating the coefficients k and ω of (3.7) to those in (B.4), one has 4 branches to
chose from. The branch which yields the correct transformation to the Poincaré patch (3.1)
is the following:

α+ γ

βγ − αδ
= L2r+
r2

+ − r2
−
,

β + δ

βγ − αδ
= − Lr−

r2
+ − r2

−
,

α− γ
βγ − αδ

= − L2r−
r2

+ − r2
−
,

β − δ
βγ − αδ

= Lr+
r2

+ − r2
−
.

(B.5)

On solving these set of equations, we have

α = Lβ = r+ − r−
L

, γ = −Lδ = r+ + r−
L

. (B.6)

Again, we see that these are related to the left and right temperatures α = 2πTL and
γ = 2πTR. Plugging these values into (3.5), one obtains the coordinate transformation
from the Boyer-Lindquist coordinates of the BTZ black hole to the Poincaré patch

w+ =
√
r2 − r2

+
r2 − r2

−
e

1
L2 (r+−r−)(t+Lφ),

w− =
√
r2 − r2

+
r2 − r2

−
e

1
L2 (r++r−)(Lφ−t),

z =
√
r2

+ − r2
−

r2 − r2
−
e

1
L2 (Lr+φ−r−t).

(B.7)

These are nothing more than the Lorentzian version of (2.2).
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any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian
spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956) 47.

[2] P.A. Perry, A Poisson summation formula and lower bounds for resonances in hyperbolic
manifolds, Int. Math. Res. Not. 2003 (2003) 1837.

[3] P.A. Perry and F.L. Williams, Selberg zeta function and trace formula for the BTZ black
hole, Int. J. Pure Appl. Math. 9 (2003) 1.

[4] D. Hejhal, The Selberg trace formula for psl(2, R), Lect. Notes Math. 548 (1983) 1.

[5] N.L. Balazs and A. Voros, Chaos on the pseudosphere, Phys. Rept. 143 (1986) 109 [INSPIRE].

– 23 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/S1073792803212241
https://doi.org/10.1007/BFb0061302
https://doi.org/10.1016/0370-1573(86)90159-6
https://inspirehep.net/literature/226843


J
H
E
P
0
1
(
2
0
2
3
)
0
4
9

[6] J. Marklof, Selberg’s trace formula: an introduction, math/0407288.

[7] A.M. García-García and S. Zacarías, Quantum Jackiw-Teitelboim gravity, Selberg trace
formula, and random matrix theory, Phys. Rev. Res. 2 (2020) 043310 [arXiv:1911.10493]
[INSPIRE].

[8] A.A. Bytsenko, L. Vanzo and S. Zerbini, Ray-Singer torsion for a hyperbolic three manifold
and asymptotics of Chern-Simons Witten invariant, Nucl. Phys. B 505 (1997) 641
[hep-th/9704035] [INSPIRE].

[9] A.A. Bytsenko, A.E. Goncalves and W. da Cruz, Analytic torsion on hyperbolic manifolds
and the semiclassical approximation for Chern-Simons theory, Mod. Phys. Lett. A 13 (1998)
2453 [hep-th/9805187] [INSPIRE].

[10] A.A. Bytsenko, Heat kernel asymptotics of locally symmetric spaces of rank one and
Chern-Simons invariants, Nucl. Phys. B Proc. Suppl. 104 (2002) 127 [hep-th/0108032]
[INSPIRE].

[11] A.A. Bytsenko, G. Cognola, L. Vanzo and S. Zerbini, Quantum fields and extended objects in
space-times with constant curvature spatial section, Phys. Rept. 266 (1996) 1
[hep-th/9505061] [INSPIRE].

[12] S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08
(2008) 007 [arXiv:0804.1773] [INSPIRE].

[13] A.A. Bytsenko and M.E.X. Guimaraes, Truncated heat kernel and one-loop determinants for
the BTZ geometry, Eur. Phys. J. C 58 (2008) 511 [arXiv:0809.1416] [INSPIRE].

[14] J.R. David, M.R. Gaberdiel and R. Gopakumar, The heat kernel on AdS3 and its
applications, JHEP 04 (2010) 125 [arXiv:0911.5085] [INSPIRE].

[15] C. Keeler, V.L. Martin and A. Svesko, Connecting quasinormal modes and heat kernels in
1-loop determinants, SciPost Phys. 8 (2020) 017 [arXiv:1811.08433] [INSPIRE].

[16] A.A. Bytsenko, L. Vanzo and S. Zerbini, Quantum correction to the entropy of the
(2 + 1)-dimensional black hole, Phys. Rev. D 57 (1998) 4917 [gr-qc/9710106] [INSPIRE].

[17] A.A. Bytsenko and A. Tureanu, Quantum corrections to Bekenstein-Hawking black hole
entropy and gravity partition functions, Nucl. Phys. B 873 (2013) 534 [arXiv:1304.7021]
[INSPIRE].

[18] R. Aros and D.E. Diaz, Functional determinants, generalized BTZ geometries and Selberg
zeta function, J. Phys. A 43 (2010) 205402 [arXiv:0910.0029] [INSPIRE].

[19] A. Attar and I. Boettcher, Selberg trace formula in hyperbolic band theory, Phys. Rev. E 106
(2022) 034114 [arXiv:2201.06587] [INSPIRE].

[20] M. Banados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time,
Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

[21] M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole,
Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

[22] C. Keeler, V.L. Martin and A. Svesko, BTZ one-loop determinants via the Selberg zeta
function for general spin, JHEP 10 (2020) 138 [arXiv:1910.07607] [INSPIRE].

[23] D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS3 black holes, JHEP
03 (2009) 130 [arXiv:0807.3040] [INSPIRE].

– 24 –

https://arxiv.org/abs/math/0407288
https://doi.org/10.1103/PhysRevResearch.2.043310
https://arxiv.org/abs/1911.10493
https://inspirehep.net/literature/1766884
https://doi.org/10.1016/S0550-3213(97)00566-X
https://arxiv.org/abs/hep-th/9704035
https://inspirehep.net/literature/441860
https://doi.org/10.1142/S0217732398002618
https://doi.org/10.1142/S0217732398002618
https://arxiv.org/abs/hep-th/9805187
https://inspirehep.net/literature/471035
https://doi.org/10.1016/S0920-5632(01)01599-7
https://arxiv.org/abs/hep-th/0108032
https://inspirehep.net/literature/561206
https://doi.org/10.1016/0370-1573(95)00053-4
https://arxiv.org/abs/hep-th/9505061
https://inspirehep.net/literature/373071
https://doi.org/10.1088/1126-6708/2008/08/007
https://doi.org/10.1088/1126-6708/2008/08/007
https://arxiv.org/abs/0804.1773
https://inspirehep.net/literature/783201
https://doi.org/10.1140/epjc/s10052-008-0743-y
https://arxiv.org/abs/0809.1416
https://inspirehep.net/literature/795883
https://doi.org/10.1007/JHEP04(2010)125
https://arxiv.org/abs/0911.5085
https://inspirehep.net/literature/838200
https://doi.org/10.21468/SciPostPhys.8.2.017
https://arxiv.org/abs/1811.08433
https://inspirehep.net/literature/1704515
https://doi.org/10.1103/PhysRevD.57.4917
https://arxiv.org/abs/gr-qc/9710106
https://inspirehep.net/literature/450082
https://doi.org/10.1016/j.nuclphysb.2013.05.001
https://arxiv.org/abs/1304.7021
https://inspirehep.net/literature/1230803
https://doi.org/10.1088/1751-8113/43/20/205402
https://arxiv.org/abs/0910.0029
https://inspirehep.net/literature/832701
https://doi.org/10.1103/PhysRevE.106.034114
https://doi.org/10.1103/PhysRevE.106.034114
https://arxiv.org/abs/2201.06587
https://inspirehep.net/literature/2012005
https://doi.org/10.1103/PhysRevLett.69.1849
https://arxiv.org/abs/hep-th/9204099
https://inspirehep.net/literature/32290
https://doi.org/10.1103/PhysRevD.48.1506
https://arxiv.org/abs/gr-qc/9302012
https://inspirehep.net/literature/343161
https://doi.org/10.1007/JHEP10(2020)138
https://arxiv.org/abs/1910.07607
https://inspirehep.net/literature/1759532
https://doi.org/10.1088/1126-6708/2009/03/130
https://doi.org/10.1088/1126-6708/2009/03/130
https://arxiv.org/abs/0807.3040
https://inspirehep.net/literature/791098


J
H
E
P
0
1
(
2
0
2
3
)
0
4
9

[24] D.M. Hofman and B. Rollier, Warped conformal field theory as lower spin gravity, Nucl.
Phys. B 897 (2015) 1 [arXiv:1411.0672] [INSPIRE].

[25] T. Azeyanagi, S. Detournay and M. Riegler, Warped black holes in lower-spin gravity, Phys.
Rev. D 99 (2019) 026013 [arXiv:1801.07263] [INSPIRE].

[26] M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys.
Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

[27] A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black
hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

[28] B. Chen and B. Ning, Self-dual warped AdS3 black holes, Phys. Rev. D 82 (2010) 124027
[arXiv:1005.4175] [INSPIRE].

[29] R. Li and J.-R. Ren, Quasinormal modes of self-dual warped AdS3 black hole in topological
massive gravity, Phys. Rev. D 83 (2011) 064024 [arXiv:1008.3239] [INSPIRE].

[30] R. Li, M.-F. Li and J.-R. Ren, Hidden conformal symmetry of self-dual warped AdS3 black
holes in topological massive gravity, Eur. Phys. J. C 71 (2011) 1566 [arXiv:1007.1357]
[INSPIRE].

[31] O. Coussaert and M. Henneaux, Selfdual solutions of (2 + 1) Einstein gravity with a negative
cosmological constant, in The black hole 25 years after, (1994), p. 25 [hep-th/9407181]
[INSPIRE].

[32] I. Bengtsson and P. Sandin, Anti de Sitter space, squashed and stretched, Class. Quant. Grav.
23 (2006) 971 [gr-qc/0509076] [INSPIRE].

[33] D. Anninos, M. Esole and M. Guica, Stability of warped AdS3 vacua of topologically massive
gravity, JHEP 10 (2009) 083 [arXiv:0905.2612] [INSPIRE].

[34] D. Anninos, Hopfing and puffing warped anti-de Sitter space, JHEP 09 (2009) 075
[arXiv:0809.2433] [INSPIRE].

[35] R. Fareghbal, Hidden conformal symmetry of the warped AdS3 black holes, Phys. Lett. B 694
(2011) 138 [arXiv:1006.4034] [INSPIRE].

[36] D. Anninos, Sailing from warped AdS3 to warped dS3 in topologically massive gravity, JHEP
02 (2010) 046 [arXiv:0906.1819] [INSPIRE].

[37] B. Chen and Z.-B. Xu, Quasi-normal modes of warped black holes and warped AdS/CFT
correspondence, JHEP 11 (2009) 091 [arXiv:0908.0057] [INSPIRE].

[38] J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of
AdS2 × S2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].

[39] A. Castro, C. Keeler and P. Szepietowski, Tweaking one-loop determinants in AdS3, JHEP
10 (2017) 070 [arXiv:1707.06245] [INSPIRE].

[40] H.R.C. Ferreira, Stability of warped AdS3 black holes in topologically massive gravity under
scalar perturbations, Phys. Rev. D 87 (2013) 124013 [arXiv:1304.6131] [INSPIRE].

[41] D. Birmingham, Choptuik scaling and quasinormal modes in the AdS/CFT correspondence,
Phys. Rev. D 64 (2001) 064024 [hep-th/0101194] [INSPIRE].

[42] M. Perry and M.J. Rodriguez, Central charges for AdS black holes, Class. Quant. Grav. 39
(2022) 045009 [arXiv:2007.03709] [INSPIRE].

– 25 –

https://doi.org/10.1016/j.nuclphysb.2015.05.011
https://doi.org/10.1016/j.nuclphysb.2015.05.011
https://arxiv.org/abs/1411.0672
https://inspirehep.net/literature/1326011
https://doi.org/10.1103/PhysRevD.99.026013
https://doi.org/10.1103/PhysRevD.99.026013
https://arxiv.org/abs/1801.07263
https://inspirehep.net/literature/1649973
https://doi.org/10.1103/PhysRevD.80.124008
https://doi.org/10.1103/PhysRevD.80.124008
https://arxiv.org/abs/0809.4266
https://inspirehep.net/literature/797589
https://doi.org/10.1103/PhysRevD.82.024008
https://arxiv.org/abs/1004.0996
https://inspirehep.net/literature/851125
https://doi.org/10.1103/PhysRevD.82.124027
https://arxiv.org/abs/1005.4175
https://inspirehep.net/literature/856094
https://doi.org/10.1103/PhysRevD.83.064024
https://arxiv.org/abs/1008.3239
https://inspirehep.net/literature/865716
https://doi.org/10.1140/epjc/s10052-011-1566-9
https://arxiv.org/abs/1007.1357
https://inspirehep.net/literature/860784
https://arxiv.org/abs/hep-th/9407181
https://inspirehep.net/literature/375141
https://doi.org/10.1088/0264-9381/23/3/022
https://doi.org/10.1088/0264-9381/23/3/022
https://arxiv.org/abs/gr-qc/0509076
https://inspirehep.net/literature/692713
https://doi.org/10.1088/1126-6708/2009/10/083
https://arxiv.org/abs/0905.2612
https://inspirehep.net/literature/820650
https://doi.org/10.1088/1126-6708/2009/09/075
https://arxiv.org/abs/0809.2433
https://inspirehep.net/literature/796605
https://doi.org/10.1016/j.physletb.2010.09.043
https://doi.org/10.1016/j.physletb.2010.09.043
https://arxiv.org/abs/1006.4034
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB694%2C138%22
https://doi.org/10.1007/JHEP02(2010)046
https://doi.org/10.1007/JHEP02(2010)046
https://arxiv.org/abs/0906.1819
https://inspirehep.net/literature/822639
https://doi.org/10.1088/1126-6708/2009/11/091
https://arxiv.org/abs/0908.0057
https://inspirehep.net/literature/827630
https://doi.org/10.1103/PhysRevD.60.104030
https://arxiv.org/abs/hep-th/9905099
https://inspirehep.net/literature/499897
https://doi.org/10.1007/JHEP10(2017)070
https://doi.org/10.1007/JHEP10(2017)070
https://arxiv.org/abs/1707.06245
https://inspirehep.net/literature/1610873
https://doi.org/10.1103/PhysRevD.87.124013
https://arxiv.org/abs/1304.6131
https://inspirehep.net/literature/1229487
https://doi.org/10.1103/PhysRevD.64.064024
https://arxiv.org/abs/hep-th/0101194
https://inspirehep.net/literature/552569
https://doi.org/10.1088/1361-6382/ac45d8
https://doi.org/10.1088/1361-6382/ac45d8
https://arxiv.org/abs/2007.03709
https://inspirehep.net/literature/1805796


J
H
E
P
0
1
(
2
0
2
3
)
0
4
9

[43] G. Aminov, A. Grassi and Y. Hatsuda, Black hole quasinormal modes and Seiberg-Witten
theory, Annales Henri Poincare 23 (2022) 1951 [arXiv:2006.06111] [INSPIRE].

[44] M. Bianchi, D. Consoli, A. Grillo and J.F. Morales, More on the SW-QNM correspondence,
JHEP 01 (2022) 024 [arXiv:2109.09804] [INSPIRE].

[45] T.-S. Tai, Seiberg-Witten prepotential from WZNW conformal block: Langlands duality and
Selberg trace formula, Mod. Phys. Lett. A 27 (2012) 1250129 [arXiv:1012.4972] [INSPIRE].

[46] K. Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000) 929
[hep-th/0005106] [INSPIRE].

[47] J. Chandra and T. Hartman, Coarse graining pure states in AdS/CFT, arXiv:2206.03414
[INSPIRE].

[48] T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond
classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].

[49] F. Denef, S.A. Hartnoll and S. Sachdev, Black hole determinants and quasinormal modes,
Class. Quant. Grav. 27 (2010) 125001 [arXiv:0908.2657] [INSPIRE].

[50] P. Arnold, P. Szepietowski and D. Vaman, Computing black hole partition functions from
quasinormal modes, JHEP 07 (2016) 032 [arXiv:1603.08994] [INSPIRE].

[51] F. Jugeau, G. Moutsopoulos and P. Ritter, From accelerating and Poincare coordinates to
black holes in spacelike warped AdS3, and back, Class. Quant. Grav. 28 (2011) 035001
[arXiv:1007.1961] [INSPIRE].

– 26 –

https://doi.org/10.1007/s00023-021-01137-x
https://arxiv.org/abs/2006.06111
https://inspirehep.net/literature/1800737
https://doi.org/10.1007/JHEP01(2022)024
https://arxiv.org/abs/2109.09804
https://inspirehep.net/literature/1925171
https://doi.org/10.1142/S0217732312501295
https://arxiv.org/abs/1012.4972
https://inspirehep.net/literature/882158
https://doi.org/10.4310/ATMP.2000.v4.n4.a5
https://arxiv.org/abs/hep-th/0005106
https://inspirehep.net/literature/527120
https://arxiv.org/abs/2206.03414
https://inspirehep.net/literature/2092647
https://doi.org/10.1007/JHEP09(2013)109
https://arxiv.org/abs/1306.4682
https://inspirehep.net/literature/1239364
https://doi.org/10.1088/0264-9381/27/12/125001
https://arxiv.org/abs/0908.2657
https://inspirehep.net/literature/829077
https://doi.org/10.1007/JHEP07(2016)032
https://arxiv.org/abs/1603.08994
https://inspirehep.net/literature/1436517
https://doi.org/10.1088/0264-9381/28/3/035001
https://arxiv.org/abs/1007.1961
https://inspirehep.net/literature/860837

	Introduction
	Review
	Constructing the Selberg zeta function for mathbbH**3/Gamma
	Warped AdS(3) quotients
	Spacelike stretched warped AdS(3) black holes
	Warped self-dual solutions


	A Selberg zeta function for warped AdS(3) black holes
	Warped AdS(3) black holes
	Warped self-dual solutions

	Scalar fields on WAdS(3) black hole backgrounds
	Conformal weights of the scalar field
	Thermal frequencies
	Quasinormal modes
	Warped AdS(3) black holes
	Warped self-dual solutions


	Mapping the Selberg zeroes to quasinormal modes
	Warped AdS(3) black holes
	Warped self-dual solutions

	Discussion
	Coordinate transformations
	BTZ conformal coordinates

