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Abstract

Given the best-fit results of six neutrino oscillation parameters, we plot the Dirac and Majorana unitarity 
triangles (UTs) of the 3 × 3 lepton flavor mixing matrix to show their real shapes in the complex plane. 
The connections of the three Majorana UTs with neutrino–antineutrino oscillations and neutrino decays 
are explored, and the possibilities of right or isosceles UTs are discussed. In the neutrino mass limit of 
m1 → 0 or m3 → 0, which is definitely allowed by current data, we show how the six triangles formed 
by the effective Majorana neutrino masses 〈m〉αβ (for α, β = e, μ, τ ) and their corresponding component 
vectors look like in the complex plane. The relations of such triangles to the Majorana phases and to the 
lepton-number-violating decays H++ → α+β+ in the type-II seesaw mechanism are also illustrated.
© 2016 Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the quark sector the language of the unitarity triangles (UTs) has proved to be quite useful 
in describing weak CP violation which is governed by the nontrivial phase of the 3 × 3 Cabibbo–
Kobayashi–Maskawa (CKM) quark flavor mixing matrix [1]. The same UT language was first 
applied to the lepton sector in 1999 [2] to illustrate CP violation in neutrino oscillations, and 

* Corresponding author.
E-mail addresses: xingzz@ihep.ac.cn (Z.-z. Xing), zhujingyu@ihep.ac.cn (J.-y. Zhu).
http://dx.doi.org/10.1016/j.nuclphysb.2016.03.031
0550-3213/© 2016 Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2016.03.031
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:xingzz@ihep.ac.cn
mailto:zhujingyu@ihep.ac.cn
http://dx.doi.org/10.1016/j.nuclphysb.2016.03.031
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2016.03.031&domain=pdf


Z.-z. Xing, J.-y. Zhu / Nuclear Physics B 908 (2016) 302–317 303
a peculiar role of the Majorana phases in such leptonic UTs was emphasized in 2000 [3]. Since 
then a lot of attention has been paid to this kind of geometrical description of lepton flavor mixing 
and its applications in neutrino phenomenology [4–9].

Thanks to a number of well-established neutrino oscillation experiments [10], one has deter-
mined the neutrino oscillation parameters �m2

21, |�m2
31|, θ12, θ13 and θ23 to a good degree of 

accuracy in the standard three-flavor scheme [11,12]. Although the sign of �m2
31 remains un-

known, a preliminary hint for δ ∼ 3π/2 has been seen by combining the latest T2K [13] and 
Daya Bay [14] data [15]. This progress is remarkable, because it allows us to plot the UTs of the 
3 × 3 Pontecorvo–Maki–Nakagawa–Sakata (PMNS) lepton flavor mixing matrix U [16] in the 
complex plane to show their real shapes. One of the purposes of the present paper is just to do 
this job. We are going to classify the six UTs into two categories: three Dirac triangles governed 
by the orthogonality relations

�e : Uμ1U
∗
τ1 + Uμ2U

∗
τ2 + Uμ3U

∗
τ3 = 0 ,

�μ : Uτ1U
∗
e1 + Uτ2U

∗
e2 + Uτ3U

∗
e3 = 0 ,

�τ : Ue1U
∗
μ1 + Ue2U

∗
μ2 + Ue3U

∗
μ3 = 0 , (1)

which are insensitive to the Majorana phases of U ; and three Majorana triangles dictated by the 
orthogonality relations

�1 : Ue2U
∗
e3 + Uμ2U

∗
μ3 + Uτ2U

∗
τ3 = 0 ,

�2 : Ue3U
∗
e1 + Uμ3U

∗
μ1 + Uτ3U

∗
τ1 = 0 ,

�3 : Ue1U
∗
e2 + Uμ1U

∗
μ2 + Uτ1U

∗
τ2 = 0 , (2)

whose orientations are fixed by the Majorana phases of U . In section 2 the real shapes of these six 
triangles will be shown with the help of the best-fit results of six neutrino oscillation parameters, 
and their uncertainties associated with the 1σ uncertainties of the input parameters will be briefly 
illustrated. Furthermore, the possibilities of right or isosceles UTs in a given neutrino mass or-
dering will be discussed, and the connections of the Majorana UTs with neutrino–antineutrino 
oscillations and neutrino decays will be explored.

On the other hand, we are curious about whether the reconstructed elements of the effective 
Majorana neutrino mass matrix

〈m〉αβ ≡ m1Uα1Uβ1 + m2Uα2Uβ2 + m3Uα3Uβ3 (3)

can be similarly described in the complex plane. The answer is affirmative, but this will involve 
the quadrangles instead of the triangles in general [17]. In the neutrino mass limit m1 → 0 or 
m3 → 0, which is compatible with current neutrino oscillation data and allows one to remove 
one of the Majorana phases, the relations in Eq. (3) will be simplified to describe six triangles. 
Such mass triangles (MTs) are phenomenologically interesting in the sense that they are directly 
related to some rare but important lepton-number-violating (LNV) processes. The example asso-
ciated with the neutrinoless double-beta (0ν2β) decay has recently been discussed in Ref. [18]. 
In the present paper we are going to show how each MT formed by 〈m〉αβ (for α, β = e, μ, τ ) 
and its two component vectors in the m1 → 0 or m3 → 0 limit looks like. The relations of such 
triangles to the Majorana phases and to the LNV decays H++ → α+β+ in the type-II seesaw 
mechanism will also be illustrated.

Let us stress that considering the neutrino mass limit m1 → 0 or m3 → 0 makes sense in 
several aspects. Experimentally, this possibility is not in conflict with any available data. The-
oretically, it is consistent with the spirit of Occam’s razor [19], and either m = 0 or m = 0
1 3
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can naturally be obtained in a neutrino mass model (e.g., the minimal type-I seesaw mechanism 
[20]). Phenomenologically, verifying or excluding this special case may help explore the true 
neutrino mass spectrum. It is also appealing in cosmology because it implies that today’s cosmic 
neutrino background, whose typical temperature is only about 1.9 K (i.e., about 1.6 × 10−4 eV), 
may have both relativistic and nonrelativistic components!

2. Leptonic UTs

The 3 × 3 PMNS lepton flavor mixing matrix U is commonly parametrized as follows:

U =
⎛
⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23
s12s23 − c12s13c23e

iδ − c12s23 − s12s13c23e
iδ c13c23

⎞
⎠Pν , (4)

where cij ≡ cos θij , sij ≡ sin θij (for ij = 12, 13, 23), and Pν = Diag
{
eiρ, eiσ ,1

}
containing 

two Majorana phases. For the sake of simplicity, here we adopt the best-fit and 1σ results of six 
neutrino oscillation parameters obtained in Ref. [12]:

• Normal mass ordering (NMO) of the neutrinos: θ12 = 33.48+0.78◦
−0.75◦ , θ13 = 8.50+0.20◦

−0.21◦ , 

θ23 = 42.3+3.0◦
−1.6◦ , δ = 306+39◦

−70◦ , �m2
21 = 7.50+0.19

−0.17 × 10−5 eV2 and �m2
31 = +2.457+0.047

−0.047 ×
10−3 eV2;

• Inverted mass ordering (IMO) of the neutrinos: θ12 = 33.48+0.78◦
−0.75◦ , θ13 = 8.51+0.20◦

−0.21◦ , θ23 =
49.5+1.5◦

−2.2◦ , δ = 254+63◦
−62◦ , �m2

21 = 7.50+0.19
−0.17 × 10−5 eV2 and �m2

32 = −2.449+0.048
−0.047 ×

10−3 eV2.

At present the two Majorana phases ρ and σ are completely unknown. Hence we typically take 
ρ = 0 and σ = π/4 throughout this paper for the purpose of illustration. With the help of the 
best-fit inputs we plot the three Dirac UTs defined by Eq. (1) and the three Majorana UTs defined 
by Eq. (2) in Figs. 1 and 2, respectively, to show their real shapes. Both the NMO and IMO cases 
have been taken into account in our plotting, and the inner angles of the six triangles are defined 
in a consistent way as follows:

φαi ≡ arg

[
− UβjU

∗
γj

UβkU
∗
γ k

]
= arg

[
−UβjU

∗
βk

UγjU
∗
γ k

]
, (5)

where the Greek and Latin subscripts keep their cyclic running over (e, μ, τ) and (1, 2, 3), re-
spectively. Some discussions and comments are in order.

(a) In either the Dirac case or the Majorana case, the inner angles φμ1 and φμ2 (or φτ1 and 
φτ2) seem to be sensitive to the neutrino mass ordering. To understand this, we notice

φτ1 
 φμ2 
 δ − π , φτ2 
 φμ1 
 2π − δ (6)

in the leading-order approximation thanks to the relative smallness of θ13. Hence these four 
angles are actually sensitive to the best-fit value of δ, which belongs to the third quadrant in the 
NMO case (i.e., �m2

31 > 0) or the second quadrant in the IMO case (i.e., �m2
32 < 0) as given 

above. In comparison, the other five inner angles of the UTs are not so sensitive to δ, and thus 
their results do not drastically change in the NMO and IMO cases, as one can easily see in Figs. 1
and 2.
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Fig. 1. The real shapes of three Dirac UTs in the complex plane, plotted by inputting the best-fit values of θ12, θ13, θ23
and δ [12] in the NMO (left panel) or IMO (right panel) case.
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Fig. 2. The real shapes and orientations of three Majorana UTs in the complex plane, plotted by assuming the Majorana 
phases (ρ,σ ) = (0,π/4) and inputting the best-fit values of θ12, θ13, θ23 and δ [12] in the NMO (left panel) or IMO 
(right panel) case. The dashed triangles correspond to (ρ,σ ) = (0,0) for comparison.
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(b) The so-called Jarlskog invariant of the 3 × 3 PMNS matrix U [21] is now given as

J = sin 2θ12 cos θ13 sin 2θ13 sin 2θ23
sin δ

8



{ −2.68 × 10−2 (NMO) ,

−3.16 × 10−2 (IMO) ,
(7)

and it measures the strength of CP violation in neutrino oscillations. In particular, all the areas 
of the six different UTs are equal to |J |/2 [2]. On the other hand, the nine inner angles of these 
triangles may form the following angle matrix:

� =
(

φe1 φe2 φe3
φμ1 φμ2 φμ3
φτ1 φτ2 φτ3

)



⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( 9.00◦ 21.44◦ 149.56◦
49.33◦ 112.90◦ 17.77◦
121.67◦ 45.66◦ 12.67◦

)
(NMO) ,

( 10.79◦ 25.11◦ 144.10◦
101.31◦ 64.11◦ 14.58◦
67.90◦ 90.78◦ 21.32◦

)
(IMO) ,

(8)

whose elements satisfy the sum rules φα1 +φα2 +φα3 = φei +φμi +φτi = π (for α = e, μ, τ and 
i = 1, 2, 3) [8,22]. We find that the two off-diagonal asymmetries of � about its φe1–φμ2–φτ3
and φe3–φμ2–φτ1 axes read as

AL ≡ φe2 − φμ1 = φμ3 − φτ2 = φτ1 − φe3 

{ −27.89◦ (NMO) ,

−76.20◦ (IMO) ;
AR ≡ φe2 − φμ3 = φμ1 − φτ2 = φτ3 − φe1 


{ +3.67◦ (NMO) ,

+10.53◦ (IMO) .
(9)

These results mean that � only contains four independent elements, which can reversely be used 
to determine the Dirac CP-violating phase and three flavor mixing angles.

(c) The three Majorana UTs are more interesting in the sense that their orientations depend 
on the values of the phase parameters ρ and σ . Even though the UTs collapsed into lines in 
the δ = 0 (or π ) case, there would exist leptonic CP violation unless those lines happened to lie 
in the abscissa or ordinate axis. This point was first observed in Ref. [3], and it has been clearly 
illustrated in Fig. 2 with the typical inputs ρ = 0 and σ = π/4. In fact, the orientations of triangles 
�1, �2 and �3 depend respectively on σ , −ρ and ρ − σ in the chosen parametrization of U . 
That is why �2 keeps unchanged when the (ρ, σ) = (0, 0) case is shifted to the (ρ, σ) = (0, π/4)

case in our plotting. In general, the Majorana UTs �1, �2 and �3 with arbitrary values of ρ and 
σ can be obtained through rotating their counterparts with ρ = σ = 0 anticlockwise by σ , −ρ

and ρ − σ , respectively.
(d) To reflect the Majorana nature of the PMNS matrix U , one may redefine the Majorana 

phases as follows: ψαi ≡ arg
(
UαjU

∗
αk

)
with the Latin subscripts running over (1, 2, 3) in a 

cyclic way. These phases are independent of the phases of three charged leptons, and they form 
the following phase matrix:

� =
(

ψe1 ψe2 ψe3
ψμ1 ψμ2 ψμ3
ψτ1 ψτ2 ψτ3

)



⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( −9.00◦ 54.00◦ −45.00◦
49.33◦ −171.66◦ 122.33◦

−139.67◦ −13.10◦ 152.77◦

)
(NMO) ,

( −61.00◦ 106.00◦ −45.00◦
51.10◦ −164.78◦ 113.68◦

−139.69◦ −9.89◦ 149.58◦

)
(IMO) ,

(10)

where we have used the same inputs as those in obtaining Eq. (8), and taken ρ = 0 and σ = π/4
for illustration. It is obvious that the nine elements in the three rows of � satisfy the sum rules 
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Table 1
The numerical results for nine inner angles of the six UTs obtained with the inputs of the best-fit values and 1σ ranges 
of θ12, θ13, θ23 and δ [12]. Note that the unitarity conditions φ

α1 + φ
α2 + φ

α3 = φ
ei

+ φ
μi

+ φ
τi

= π must hold (for 
α = e, μ, τ and i = 1, 2, 3).

Normal mass ordering (NMO) Inverted mass ordering (IMO)

best-fit ±1σ range best-fit ±1σ range

φ
e1 9.00◦ 2.73◦–11.90◦ 10.79◦ 2.19◦–12.03◦

φ
e2 21.44◦ 6.52◦–26.81◦ 25.11◦ 5.47◦–27.13◦

φ
e3 149.56◦ 142.00◦–170.54◦ 144.10◦ 141.60◦–172.20◦

φ
μ1 49.33◦ 13.41◦–119.42◦ 103.31◦ 39.53◦–167.04◦

φ
μ2 112.90◦ 44.87◦–161.11◦ 64.11◦ 9.87◦–129.39◦

φ
μ3 17.77◦ 5.21◦–22.03◦ 14.58◦ 2.78◦–17.52◦

φ
τ1 121.67◦ 51.34◦–163.72◦ 67.90◦ 10.65◦–132.77◦

φ
τ2 45.66◦ 12.13◦–114.46◦ 90.78◦ 33.72◦–164.48◦

φ
τ3 12.67◦ 3.66◦–19.17◦ 21.32◦ 4.67◦–23.38◦

ψα1 + ψα2 + ψα3 = 0 (for α = e, μ, τ ) [8], but those in the three columns do not have a definite 
correlation. Hence the number of independent parameters in � is six, two more as compared 
with that in �. Given Eq. (5), the nine inner angles of the six UTs can be expressed in terms of 
the nine elements of � as

φαi = ψβi − ψγ i ± π , (11)

in which the Greek subscripts run over (e, μ, τ) cyclically, and the “±” sign should be taken in 
a proper way to assure φαi ∈ [0,π).

The numerical results for the shapes and inner angles of �α (for α = e, μ, τ ) and �i (for 
i = 1, 2, 3) given above are subject to the inputs of the best-fit values of θ12, θ13, θ23 and δ. 
Among them, δ involves the largest uncertainty. One may fix the values of the three flavor mixing 
angles to check how the shapes of six UTs change with different values of δ. Instead of making 
such a check by taking some numerical examples, let us outline a general observation based on 
the leading-order analytical approximations made in Eq. (6). It is clear how φτ1 
 φμ2 
 δ − π

and φτ2 
 φμ1 
 2π − δ vary with the change of δ. Because φμ1 + φμ2 
 φμ1 + φτ1 
 φτ1 +
φτ2 
 φμ2 + φτ2 
 π holds as a consequence of the above approximations, the inner angles φe1, 
φe2, φμ3 and φτ3 must be small as required by the unitarity conditions, and hence φe3 must be 
the largest inner angle. This general analytical observation is actually supported by the explicit 
numerical results shown in Eq. (8).

When the uncertainties of all the four input parameters are taken into account, the situation 
will become quite messy. To illustrate, let us consider the 1σ intervals of the input quantities and 
calculate the nine inner angles of six UTs. As illustrated in Table 1, the 1σ uncertainty of each 
inner angle is rather significant as compared with its best-fit outcome, implying a remarkable 
change of the shape of each UT. A direct illustration of such uncertainties of �α and �i in the 
complex plane is difficult, since all the sides and inner angles will deviate from those in the 
best-fit case (i.e., in Figs. 1 and 2). At present one possible way out is to rescale and rotate each 
UT to make two of its three vertices always locate at the (0, 0) and (1, 0) points in the horizontal 
coordinate axis [12]. In this case, however, the uncertainty associated with the third vertex of 
each rescaled UT remains quite significant. Although the sides of each real UT and those of its 
rescaled counterpart are different, the inner angles of these two triangles are exactly the same. 
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So Table 1 is almost equally helpful for illustrating how the shapes of six UTs are sensitive to 
the uncertainties of θ12, θ13, θ23 and especially δ. Once δ is determined in the next-generation 
accelerator-based neutrino oscillation experiments, it will be possible for us to see the true shapes 
of leptonic UTs to a reasonably good degree of accuracy, just as we have seen the true shapes of 
six CKM UTs in the quark sector today.1

An interesting question that one may ask is whether one of the Dirac or Majorana UTs can be 
a special triangle, such as the right triangle or the isosceles triangle. This question makes sense 
because there do exist two right UTs (�c and �s ) in the quark sector [7] as indicated by current 
experimental data. If one is only concerned about Figs. 1 and 2 plotted by inputting the best-fit 
values of θ12, θ13, θ23 and δ, then the Dirac triangle �τ and the Majorana triangle �2 can be 
regarded as the right triangles with φτ2 being very close to π/2 in the IMO case. This point is 
also clear in Eq. (8), where φτ2 
 90.78◦ has been given. If φτ2 = π/2 holds exactly, then one 
will be able to obtain the following correlation between the Dirac phase and three flavor mixing 
angles:

cos δ = − cot θ12 tan θ23 sin θ13 , (12)

implying that δ must deviate from 3π/2 (or equivalently, −π/2) to some extent and lies in the 
third quadrant. Such an interesting relation can be tested with much more accurate neutrino 
oscillation data to be achieved in the foreseeable future, especially after δ is experimentally 
determined or constrained.

From a model-building point of view, the μ–τ reflection symmetry should be the simplest and 
most natural flavor symmetry behind the observed pattern of neutrino mixing [24,25]. It predicts 
δ = 3π/2 and θ23 = π/4, and therefore one is left with |Uμi | = |Uτi | (for i = 1, 2, 3). In this 
special case, we find that the three Majorana triangles �i turn out to be the isosceles triangles 
with φμi = φτi (for i = 1, 2, 3). Such a possibility is not consistent with the best-fit results of 
current experimental data, as one can see in either Eq. (8) or Fig. 2, but it cannot be excluded 
if the 2σ or 3σ results of a global fit are taken into account. In comparison with the Majorana 
triangles, the Dirac triangles are not sensitive to the μ–τ reflection symmetry.

In Ref. [9] it has been pointed out that the inner angles of three Dirac UTs can directly be re-
lated to the probabilities of normal neutrino oscillations. Here let us establish the direct relations 
between the Majorana phases ψαi defined above Eq. (10) and the probabilities of neutrino–
antineutrino oscillations given in Ref. [26]. The results are

P
(
να → νβ

)
≡ |K|2

E2

⎡
⎣∑

i

m2
i

(
SD

γ i

)2 + 2
∑
i<j

mimjS
M
αkS

M
βk cos

(
2�ji − ψαk − ψβk

)⎤
⎦ ,

P
(
να → νβ

)
≡ |K|2

E2

⎡
⎣∑

i

m2
i

(
SD

γ i

)2 + 2
∑
i<j

mimjS
M
αkS

M
βk cos

(
2�ji + ψαk + ψβk

)⎤
⎦ ,

(13)

where the subscripts (α, β, γ ) run over (e, μ, τ) cyclically, K and K are the kinematical factors 
independent of the index i (and they satisfy |K| = |K|), SD

αi ≡ |UβiU
∗
γ i | defines one side of the 

1 It is worth pointing out that the area of each CKM UT is equal to Jq/2 
 1.53 ×10−5 [23], where Jq 
 3.06 ×10−5

is the Jarlskog invariant of the CKM quark flavor mixing matrix. This result is about three orders of magnitude smaller 
than the area of each leptonic UT shown in Fig. 1 or 2, where δ 
 306◦ (NMO) or 254◦ (IMO) has been typically input.
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Dirac UTs, SM
αi ≡ |UαjU

∗
αk| defines one side of the Majorana UTs with (i, j, k) running over 

(1, 2, 3) cyclically, and �ji ≡ �m2
jiL/ (4E) with �m2

ji = m2
j −m2

i . It is therefore clear that the 
difference between the probabilities of να → νβ and να → νβ oscillations,

P
(
να → νβ

)
− P

(
να → νβ

)
= 4

|K|2
E2

∑
i<j

[
mimjS

M
αkS

M
βk sin

(
2�ji

)
sin

(
ψαk + ψβk

)]
,

(14)

results from the nontrivial values of the Majorana phases. On the other hand, the rates of νi →
νj + γ decays in the rest frame of νi (for mi > mj ) can be expressed as

�
(M)
νi→νj +γ = 9αemG2

Fm5
i

210π4M4
W

(
1 − m2

j

m2
i

)3 [(
1 + m2

j

m2
i

)
X − 2mj

mi

Y

]
, (15)

where

X ≡
∑
α

m4
α

(
SM

αk

)2 −
∑
α �=β

m2
αm2

βSM
αkS

M
βk cos

(
ψαk − ψβk

)
,

Y ≡
∑
α

m4
α

(
SM

αk

)2
cos

(
2ψαk

) +
∑
α �=β

m2
αm2

βSM
αkS

M
βk cos

(
ψαk + ψβk

)
(16)

with α and β running over e, μ and τ . Since such decay modes are CP-conserving, their rates 
remain finite even if all the Majorana phases vanish.

Although both neutrino–antineutrino oscillations and neutrino decays are undetectable at 
present, Eqs. (13)–(16) show that their sensitivities to the Majorana UTs are conceptually in-
teresting and thus deserve a careful study. Note that all the sides of the Dirac UTs (i.e., SD

αi) 
can be determined from the appearance experiments of normal neutrino oscillations, and all the 
sides of the Majorana UTs (i.e., SM

αi ) are measurable in the disappearance experiments of nor-
mal neutrino oscillations [27]. Hence only the absolute neutrino mass scale and the CP-violating 
phases are still unknown in the probabilities of neutrino–antineutrino oscillations and the rates 
of neutrino decays shown above. If such rare processes can really be measured in the future, 
it will be greatly useful for probing the Majorana phases of massive neutrinos. In practice, the 
0ν2β decay is the only LNV process that is being searched for in depth at low energies, and its 
effective neutrino mass can be expressed as 2

∣∣〈m〉ee
∣∣ = m2|Ue2|2

∣∣∣∣∣1 + m1

m2
· U2

e1

U2
e2

+ m3

m2
· U2

e3

U2
e2

∣∣∣∣∣
= m2|Ue2|2

∣∣∣∣∣1 + m1

m2

∣∣∣∣Ue1

Ue2

∣∣∣∣
2

e+2iψe3 + m3

m2

∣∣∣∣Ue3

Ue2

∣∣∣∣
2

e−2iψe1

∣∣∣∣∣ . (17)

So a measurement of |〈m〉ee| will allow us to constrain ψe1 and ψe3, but more experimental 
information from some other LNV processes is needed in order to fully determine these two 
Majorana phases in the standard three-flavor neutrino mixing scheme.

2 The treatment in Eq. (17) is currently most reasonable in the sense that the present data cannot rule out the possibility 
of m1 = 0 or m3 = 0. In either of these two special but interesting cases, one of the Majorana phases will disappear, 
leading to a much simpler expression of |〈m〉ee| as one will see in section 3.
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3. Effective MTs

Since the 3 × 3 Majorana mass matrix totally involves six independent elements defined in 
Eq. (3), one may extend the exercise done in Eq. (17) to reexpress the effective Majorana mass 
terms 〈m〉αβ as follows:

〈m〉αβ = m2Uα2Uβ2

(
1 + m1

m2
· Uα1Uβ1

Uα2Uβ2
+ m3

m2
· Uα3Uβ3

Uα2Uβ2

)

= m2Uα2Uβ2

[
1 + m1

m2

∣∣∣∣∣
Uα1Uβ1

Uα2Uβ2

∣∣∣∣∣ e+i
(
ψα3+ψβ3

)
+ m3

m2

∣∣∣∣∣
Uα3Uβ3

Uα2Uβ2

∣∣∣∣∣ e−i
(
ψα1+ψβ1

)]
,

(18)

where α and β run over e, μ and τ . In the complex plane Eq. (18) represents six quadrangles 
whose inner angles are some combinations of the Majorana phases. But such a geometrical de-
scription is so complicated that it might not be very useful for neutrino phenomenology. For this 
reason, we shall subsequently focus on a much simpler but interesting situation.

It is obvious that one of the two phase combinations in Eq. (18) can always be rotated away 
in the neutrino mass limit m1 → 0 or m3 → 0. Given the phase convention of the PMNS matrix 
U in Eq. (4), one may simply switch off ρ so as to fit the m1 = 0 or m3 = 0 case. For this reason, 
we write out the explicit expressions of the six effective Majorana neutrino masses defined in 
Eq. (3) by setting ρ = 0:

〈m〉ee ≡ m1c
2
12c

2
13 + m2s

2
12c

2
13e

2iσ + m3s
2
13e

−2iδ ,

〈m〉μμ ≡ m1

(
s12c23 + c12s13s23e

iδ
)2 + m2

(
c12c23 − s12s13s23e

iδ
)2

e2iσ + m3c
2
13s

2
23 ,

〈m〉ττ ≡ m1

(
s12s23 − c12s13c23e

iδ
)2 + m2

(
c12s23 + s12s13c23e

iδ
)2

e2iσ + m3c
2
13c

2
23 ;

〈m〉eμ ≡ −m1c12c13

(
s12c23 + c12s13s23e

iδ
)

+ m2s12c13

(
c12c23 − s12s13s23e

iδ
)

e2iσ

+ m3c13s13s23e
−iδ ,

〈m〉eτ ≡ m1c12c13

(
s12s23 − c12s13c23e

iδ
)

− m2s12c13

(
c12s23 + s12s13c23e

iδ
)

e2iσ

+ m3c13s13c23e
−iδ ,

〈m〉μτ ≡ −m1

(
s12s23 − c12s13c23e

iδ
)(

c23s12 + c12s13s23e
iδ
)

− m2

(
c12s23 + s12s13c23e

iδ
)(

c12c23 − s12s13s23e
iδ
)

e2iσ + m3c
2
13c23s23 . (19)

Then it is much easier to consider the m1 → 0 or m3 → 0 limit, in which 〈m〉αβ and its two 
component vectors form a mass triangle (MT) in the complex plane.

In view of the best-fit values of two neutrino mass-squared differences reported by Gonzalez-
Garcia et al. [11], we obtain m2 
 0.0087 eV and m3 
 0.0496 eV in the m1 → 0 limit (NMO); 
or m1 
 0.0487 eV and m2 
 0.0495 eV in the m3 → 0 limit (IMO). In either case one may plot 
the six effective MTs with the help of Eq. (16), the best-fit values of θ12, θ13, θ23 and δ, and 
the assumption of σ = π/4. Our results about the MTs �AiBiCi (for i = 1, 2, · · · , 6, NMO) or 
�DiEiFi (for i = 1, 2, · · · , 6, IMO) are shown in Figs. 3 and 4, respectively. Some discussions 
and comments are in order.
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Fig. 3. Six effective MTs �A
i
B

i
C

i
(for i = 1, 2, · · · , 6) of the Majorana neutrinos in the m1 → 0 limit in the complex 

plane, plotted by assuming the Majorana phase σ = π/4 and inputting the best-fit values of �m2
21, �m2

31, θ12, θ13, θ23
and δ [12] in the NMO case.
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Fig. 4. Six effective MTs �D
i
E

i
F

i
(for i = 1, 2, · · · , 6) of the Majorana neutrinos in the m3 → 0 limit in the complex 

plane, plotted by assuming the Majorana phase σ = π/4 and inputting the best-fit values of �m2
21, �m2

32, θ12, θ13, θ23
and δ [12] in the IMO case.
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(1) A remarkable merit of these effective MTs is that they allow us to easily read off the 
magnitudes of 〈m〉αβ . For instance, |〈m〉ee| ∼ |〈m〉eμ| ∼ |〈m〉eτ | ∼ O

(
10−3

)
eV and |〈m〉μμ| ∼

|〈m〉μτ | ∼ |〈m〉ττ | ∼ O
(
10−2

)
eV in the NMO case; or |〈m〉αβ | ∼O

(
10−2

)
eV in the IMO case. 

Because of m2/m3 
 17.5% in the m1 → 0 limit, it is easy to understand why the shortest side of 
�A4B4C4 is m2|Uμ2|2 and why |〈m〉μμ| 
 m3|Uμ3|2 holds. The effective MTs �A5B5C5 and 
�A6B6C6 have a similar property in the NMO case. In comparison, the m3 → 0 case is simpler 
because |〈m〉αβ | ∝ m2 
 m3 holds.

(2) In the IMO case the effective MT �D1E1F1 is especially interesting because its inner 
angle � D1F1E1 happens to equal 2σ thanks to m3 → 0. Therefore, a measurement of |〈m〉ee| of 
the 0ν2β decay will allow one to determine the Majorana phase σ in the m3 → 0 limit. Similarly, 
� A5C5B5 
 2σ holds in the m1 → 0 limit thanks to the smallness of θ13. This observation 
implies that it is possible to determine the Majorana phase from a measurement of the effective 
mass |〈m〉μτ | in the NMO case with m1 
 0.

(3) The texture of the symmetric Majorana neutrino mass matrix Mν , whose six independent 
elements are just equal to 〈m〉αβ (for α, β = e, μ, τ ), can be illustrated with the help of Figs. 3
and 4 as follows:

|Mν | =
( |〈m〉ee| |〈m〉eμ| |〈m〉eτ |

|〈m〉eμ| |〈m〉μμ| |〈m〉μτ |
|〈m〉eτ | |〈m〉μτ | |〈m〉ττ |

)




⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(0.0036 0.0072 0.0033
0.0072 0.0217 0.0243
0.0033 0.0243 0.0273

)
(m1 → 0) ,

(0.0363 0.0239 0.0213
0.0239 0.0125 0.0180
0.0213 0.0180 0.0254

)
(m3 → 0) ,

(20)

in unit of eV. Such a texture of Mν may be reproduced in a specific neutrino mass model once a 
kind of flavor symmetry and its proper breaking are taken into account [28].

Note that the probabilities of neutrino–antineutrino oscillations given in Eq. (13) can be sim-
plified to

P
(
να → νβ

)
= P

(
να → νβ

)
= |K|2

E2

∣∣∣〈m〉αβ

∣∣∣2
(21)

in the L → 0 limit (i.e., the so-called zero-distance effect). This result is a clear reflection of 
the Majorana nature of massive neutrinos. In fact, the effective Majorana neutrino masses 〈m〉αβ

may also show up in some other LNV processes, such the H++ → α+β+ decays in the type-II 
seesaw mechanism [29]. The branching ratios of these decay modes are

B(H++ → α+β+) = 2

1 + δαβ

·
∣∣∣〈m〉αβ

∣∣∣2

m2
1 + m2

2 + m2
3

, (22)

where α and β run over e, μ and τ . In the limit of m1 → 0 or m3 → 0, one may calculate 
B(H++ → α+β+) by inputting the best-fit values of relevant neutrino oscillation parameters and 
allowing the Majorana phase σ to vary from 0 to 2π . The numerical results are listed in Table 2
for the sake of illustration. Compared with the previous estimates of such decay modes made 
some years ago [30], our present results are more convergent because today’s neutrino oscillation 
data are more accurate and the neutrino mass limit under consideration is very special. Of course, 
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Table 2
The expected branching ratios of H++ → α+β+ decays in the type-II seesaw mecha-
nism, where the best-fit values of �m2

21, �m2
31 (or �m2

32), θ12, θ13, θ23 and δ [12] have 
been input and σ ∈ [0, 2π) has been taken.

Branching ratios In the m1 → 0 limit In the m3 → 0 limit

B(H++ → e+e+) 0.0894%→0.5307% 7.0476% → 47.5258%
B(H++ → e+μ+) 0.3426%→4.6215% 0.0744% → 34.8293%
B(H++ → e+τ+) 0.5022%→5.3036% 0.0613% → 50.2589%
B(H++ → μ+μ+) 14.1339%→24.5069% 2.0129% → 9.4731%
B(H++ → μ+τ+) 35.0848%→58.3642% 3.9764% → 25.5264%
B(H++ → τ+τ+) 21.7296%→34.7906% 1.8257% → 17.3884%

whether the type-II seesaw mechanism really works in Nature remains an open question, and how 
to measure possible rare LNV processes is a very big experimental challenge. The point that we 
are stressing is to see a potential link between the effective Majorana neutrino masses and some 
interesting LNV phenomena.

Assuming that a positive signal of the 0ν2β decay can be measured someday, then the cor-
responding knowledge of |〈m〉ee| will allow one to predict the rates of some other rare LNV 
processes, such as P(νe → νe) = |K|2|〈m〉ee|2/E2 from Eq. (21) and B(H++ → e+e+) =
|〈m〉ee|2/ 

(
m2

1 + m2
2 + m2

3

)
from Eq. (22). Once such a breakthrough really happens, it will defi-

nitely open a new window towards the deep secrets of Majorana particles.

4. Summary

Neutrino physics has entered the era of precision measurements, in which one is doing the 
best one can to answer some important questions, including what the absolute neutrino mass 
scale is, whether massive neutrinos are the Majorana particles, how large the effects of leptonic 
CP violation can be, and so on. Before these questions are experimentally answered, one may 
theoretically or phenomenologically try every shift available to bridge the gap between the ob-
servable quantities and the fundamental flavor parameters in the neutrino sector. In this regard 
we have paid particular attention to an intuitive description of leptonic CP violation and effective 
Majorana neutrino masses in the complex plane — namely, the Dirac and Majorana UTs as well 
as the effective MTs in the m1 → 0 or m3 → 0 limit.

With the help of the best-fit values of neutrino oscillation parameters, we have plotted the six 
UTs of the PMNS matrix to show their real shapes in the complex plane. The connections of the 
Majorana UTs with neutrino–antineutrino oscillations and neutrino decays have been explored, 
and the possibilities of right or isosceles UTs have also been discussed. In the second part of this 
paper, we have considered a special but phenomenologically allowed neutrino mass spectrum 
with m1 = 0 or m3 = 0 and the corresponding effective Majorana neutrino masses 〈m〉αβ — 
the latter can form six MTs in the complex plane. In this case we have shown how these MTs 
look like by assuming the Majorana phase σ to be π/4 as a typical example. The relations of 
such triangles to the LNV decays H++ → α+β+ in the type-II seesaw mechanism have been 
illustrated too.

We hope that this kind of study may enrich the neutrino phenomenology to some extent. 
Although the UTs and MTs can only provide us with a geometrical language to describe the 
flavor issues of massive neutrinos, they do have made some underlying physics more transparent 
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and intuitive. So they are useful and interesting, and their phenomenological applications deserve 
some further exploration.
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