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1 Introduction

The low energy effective field theory (EFT) often suffers from the naturalness issues as
quantum corrections to a scalar mass or the cosmological constant are sensitive to much
higher energy scale in the absence of some symmetry reason. Presumably, they appear
problematic because of our ignorance of quantum gravity, in the context of which the notion
of naturalness may change drastically. This has recently been one of important topics in
the swampland program, which aims to identify quantum gravity constraints on the low
energy EFT in light of observations in string theory [1] (for reviews, see [2–6]).

Many of conjectured criteria distinguishing theories that are consistent with quantum
gravity (belong to the ‘landscape’) from that are not (belong to the ‘swampland’) rely on
the distance conjecture [7]. It states that the infinite distance limit of the scalar moduli
space corresponds to a particular corner of the landscape, beyond which the EFT breaks
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down as an infinite tower of states descends from UV. A typical example of a tower of
states might be a set of Kaluza-Klein (KK) modes, which would become light if the moduli
determining the size of extra dimensions are stabilized at infinitely large values.

Concerning the cosmological constant Λ, the naturalness of an extremely small and
positive observed value given by ∼ 10−120mPl, where mPl = 1/

√
8πG is the reduced Planck

mass, can be studied in the context of the distance conjecture by asking whether the
mass scales of towers of states remain heavy enough to be decoupled from the EFT in the
vanishing limit of Λ. Indeed, it was pointed out that without introducing the negative
tension objects, not only the realization of the de Sitter (dS) and the Minkowski vacuum [8],
but also the scale separation between the KK mass scale and |Λ| in the anti-de Sitter (AdS)
vacuum is challenging [9] in the flux compactifications (see also [10] for earlier discussion).
Such an observation motivated the conjecture that for the consistency with quantum gravity,
the vanishing limit of Λ in AdS space corresponds to the infinite distance limit of the
moduli space. Then there exists a tower of states with mass scale ∆m following the scaling
behavior,

∆m ∼
(
|Λ|
m4

Pl

)α
mPl, (1.1)

where α is some positive number [11]. Extending this ‘AdS distance conjecture’ (ADC)
to dS space, we can predict the existence of a tower of light states in the universe with a
small, positive Λ as we observe it. If it is identified with the KK mode, α is constrained to
lie in the range 1

4 ≤ α ≤
1
2 [12], which is obtained by combining the observational bound

on the size of extra dimensions [13] and the Higuchi bound [14]. We remark here that
the breakdown of the EFT in the Λ→ 0 limit claimed by the ADC does not exclude the
Minkowski vacuum from the landscape. The ADC just tells us the discontinuity between
the Minkowski vacuum with exactly vanishing Λ and the (A)dS vacuum in the Λ → 0
limit: they are different branches of the space of vacua in the landscape hence cannot be
interpolated by the EFT consisting of the finite number of fields.

Meanwhile, there are several counterexamples in string models allowing the scale
separation (see, for example, [15] and references therein). Moreover, in the language of the
low energy effective supergravity, the size of Λ is determined by the amount of supersymmetry
(SUSY) breaking. More concretely, if SUSY is unbroken, the universe is in the AdS vacuum
with the smallest negative Λ (thus the largest |Λ|) given by |Λ| = 3m2

Plm
2
3/2, where m3/2 is

the gravitino mass. When SUSY is broken by F-term, D-term, or the antibrane uplift, the
universe can be in the Minkowski or the dS vacuum, as well as the AdS vacuum with smaller
|Λ|. Then it may be m3/2 rather than |Λ| that is connected to a tower of states hence the
distance conjecture, as claimed in the ‘gravitino distance conjecture’ [16, 17] (see [18] for
earlier discussion and [19] for the study on the size of extra dimensions in view of m3/2).

In order to resolve all such ambiguities, we need to investigate the connection between
the mass scale of a tower of states and various ingredients used to determine Λ in string
models, i.e., fluxes, non-perturbative effects, and uplift in more detail. For this purpose,
we consider the concrete model, the warped deformed conifold supported by background
fluxes [20] which is realized in the orientifold compactifications of Type IIB string theory [21],
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with the uplift produced by antibranes at the tip of the throat [22]. We point out in this
article that the antibrane uplift which plays the crucial role in realizing the metastable dS
vacuum [23, 24] can be easily connected to the distance conjecture. Indeed, it was already
observed in [25] that when the throat is strongly warped, both the KK mass scale mKK and
the uplift potential Vup produced by D3-branes are redshifted in the same way, satisfying
the scaling behavior given by mKK ∼ (Vup)1/4. This gives rise to following questions, which
we try to answer in this article:

• Can we find the similar scaling behavior when the throat is weakly warped?: the
scaling behavior in [25] tells us that mKK and V 1/4

up depend on the stabilized value of
the conifold modulus and the volume modulus in the same way. Whereas the value of
the conifold modulus does not play the crucial role in the extremely weakly warped
throat, the volume dependence still remains, from which we can find out the scaling
behavior between Vup and the tower mass scale associated with the bulk.

• Why Vup produced by D3-branes is directly connected to the tower mass scale?: the
tower mass scale like the string or the KK mass scale is determined by the geometry of
the internal manifold, such as the size of the throat or the internal volume. Meanwhile,
the warping of the internal manifold also regulates the size of the four-dimensional
spacetime over which D3-branes are extended, thus the size of Vup. From this, we
expect that the tower mass scale and Vup can be connected in a direct way, which
will be explored in detail in this article.

Moreover, whereas the size of Vup is typically identified with the AdS vacuum energy density
before uplift, this makes sense only for the tiny cosmological constant as we observe today.
Since they have different origins and can be different in size in the vacuum of sizeable
|Λ|, we need to distinguish them. In this sense, in the model building point of view, it is
Vup rather than |Λ| or m3/2 which needs to be considered in connection with the distance
conjecture. Indeed, the exponent 1/4 in the scaling behavior found in [25] originates from
the fact that D3-branes are extended over the noncompact four-dimensional spacetime,
which reminds us of the argument in [12] that the lower bound on α in (1.1) given by 1/4
is interpreted as the inverse of the number of noncompact spacetime dimensions. We also
find that whereas the lightest tower mass scale obeys the scaling behavior with respect to
Vup, away from this, there always exists a tower of states satisfying α = 1/4, even though
the mass scale of which may not be the lightest tower mass scale.

We emphasize that the scaling behavior is physically meaningful only if the number
of D3-branes is nonzero. This indicates the discontinuity between the exactly vanishing
Vup in the absence of D3-branes and the nonzero but very tiny Vup in the following sense.
Suppose we construct some AdS vacuum by tuning the fluxes and non-perturbative effects
but without using the uplift. Here the moduli determining the sizes of the throat and the
overall internal volume are stabilized appropriately so that all possible towers of states are
heavy enough not to affect the low energy EFT. If we try to find the AdS vacuum with the
same size of Λ using the uplift in addition, however, the stabilized values of the moduli are
strongly restricted not to allow very tiny Vup since otherwise there appears a tower of states
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which becomes extremely light, invalidating the EFT. Then we can say that these two AdS
vacua with the same size of Λ are different branches in the space of vacua. Extension of the
argument to Minkowski or dS space is straightforward: in the moduli space the Minkowski
vacuum stabilized by the fluxes and non-perturbative effects only (see, for example, [26]) is
separated from that obtained by the tiny uplift of AdS, in which a tower of states becomes
extremely light as well. Moreover, the uplift is an essential ingredient to realize the dS
vacuum. Whereas Vup cannot be too large in order not to allow the sizeable backreaction of
D3-branes or the runaway behavior of the moduli potential, our discussion indicates that
too tiny Vup is also problematic. Hence, the size of the AdS cosmological constant before
the uplift should not be too small and the Minkowski minimum before the uplift is not
allowed when we try to realize the dS vacuum with tiny Λ as we observe it.

The organization of this article is as follows. Section 2 consists of three parts. In
section 2.1, we review the essential features of the warped deformed conifold and discuss the
meaning of the strong and weak warping more carefully. In section 2.2, we consider the string
excitations and the KK modes as possible towers of states in the string compactifications
and present their mass scales in the strongly and weakly warped throat, respectively. In
section 2.3, we investigate whether these mass scales follow the scaling behavior with respect
to Vup. In order to explore the scaling behavior in more detail, we do not attach the tuning
between the superpotential and Vup for the metastable dS vacuum with almost vanishing
Λ. Indeed, there is a priori no reason that the AdS cosmological constant determined by
combining various superpotential terms of different origins, namely, fluxes supporting the
warped throat, fluxes supporting the bulk, and non-perturbative effects, must be almost
the same as Vup in size. Meanwhile, as observed in section 3, the superpotential and Vup
are not completely irrelevant, but required to satisfy some inequalities for consistency.
First, regardless of the sign and the size of Λ, for the EFT we use to be reliable, it should
be protected from the effects of towers of states. Therefore, the masses of moduli under
consideration must be lighter than the lightest tower mass scale, which imposes the lower
bound on Vup through the scaling behavior. We discuss this constraint by considering the
conifold modulus mass in section 3.1 and the gravitino mass as well as the volume modulus
mass in section 3.2, respectively. In particular, the condition concerning the gravitino mass
imposes the inequality that the superpotential and Vup must obey. Second, as discussed
in section 3.3, in the simple model like the KKLT [23] and the large volume scenario [24],
Vup should not be too large compared to the size of the AdS cosmological constant before
uplift, since otherwise the moduli potential shows the runaway behavior and the moduli
are destabilized. All the discussions above can be rewritten as the constraints on the
superpotential: various terms in the superpotential must be tuned such that when they are
summed up, the conditions considered in section 3 are not violated. After emphasizing this,
we close our discussion with concluding remarks. Appendices are devoted to reviews on
Klebanov-Strassler throat, the form of Vup describing the brane/flux annihilation, and the
coefficient of the Gukov-Vafa-Witten superpotential, results of which are used throughout
this article.
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1.1 Notes on conventions

Throughout the article, we will focus on Type IIB superstring theory, on which models
like the KKLT [23] or the large volume scenario [24] are based. The string length scale is
defined as `s = 2π

√
α′, the inverse of which ms = `−1

s corresponds to the string mass scale.
The bosonic part of the Type IIB supergravity action is given by

SIIB = 1
2κ2

10

∫
d10x
√
−G

[
R− ∂Mτ∂

Mτ

2(Imτ)2 −
gs|G3|2

2Imτ −
g2
s |F5|2

4

]
+ g2

s

8iκ2
10

∫
C4 ∧G3 ∧G3

Imτ
(1.2)

in the Einstein frame, where the string coupling constant gs = eΦ0 ≡ e〈Φ〉 is fixed by
the dilaton stabilization. The metric is related to that in the string frame by GMN =
e−

1
2 (Φ−Φ0)GSMN . Here τ = C0 + ie−Φ, G3 = F3 − τH3, with F3 = dC2 and H3 = dB2,

G5 = dC4 − 1
2C2 ∧ dB2 + 1

2B2 ∧ dC2, and |Fp|2 = 1
p!FM1···MpF

M1···Mp . The gravitational
coupling in ten-dimensional supergravity is given by 2κ2

10 = g2
s(2π)7α

′4 = g2
s`

8
s/(2π).

2 Connection between tower mass scale and uplift

2.1 Warped deformed conifold

To begin with, we consider the ten-dimensional metric given by

ds2 = e2A(y)e2Ω(x)gµνdx
µdxν + e−2A(y)gmndy

mdyn, (2.1)

where e2Ω(x) is the Weyl factor that can be chosen freely and gmn is the metric of the
Calabi-Yau threefolds in which the deformed conifold (also known as the Klebanov-Strassler
throat) is embedded (see appendix A for a review on the throat geometry). The warp factor
A(y) is obtained by solving the equation of motion

− ∇̃2(e−4A(y)) = 1
12Imτ GmnpG

m̃np + (localized source term), (2.2)

where the tilde in the Laplacian and the upper indices indicates that the metric gmn rather
than Gmn = e−2Agmn is used. Since the equation of motion is invariant under the rescaling
gmn → λgmn and e2A → λe2A as well as the y-independent shift of e−4A [27], one may
choose both λ2 and the shift to be the same function of x, σ(x), such that the metric above
is rewritten as [28, 29]

ds2 = e2A(y)e2Ω(x)gµνdx
µdxν + e−2A(y)σ(x)1/2gmndy

mdyn, (2.3)

where the warp factor is given by

e−4A(y) = 1 + e−4A0(y)

σ(x) , (2.4)

which is often denoted by h(y). Then σ(x) is interpreted as a volume modulus, the
stabilization of which fixes the size of the overall internal volume. While e−4A0 ' 0 in the
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bulk region, e−4A0 near the tip of the throat is given by

e−4A0(y) = 22/3 (α′gsM)2

ε8/3
I(η)

I(η) =
∫ ∞
η

dx
x coth x− 1

sinh2 x
(sinh(2x)− 2x)1/3.

(2.5)

Since the conifold deformation parameter ε has a mass dimension −3/2, it is convenient to
introduce the dimensionless parameter |z| = ε2/`3s.

From
√
−G = e−2Ae4Ωσ3/2√−g4

√
g6 and the fact that the four-dimensional part of the

Ricci scalar is given by e−2Ae−2ΩR4, one finds that

1
2κ2

10

∫
d10x
√
−GR ⊃ 1

2κ2
10

∫
d6y
√
g6e
−4A

∫
d4xe2Ωσ3/2R4. (2.6)

Then it is convenient to choose the Weyl factor to be

e2Ω(x) = V0`
6
s

σ(x)3/2 ∫ d6y
√
g6e−4A = 〈σ(x)3/2〉

σ(x)3/2 , (2.7)

where
V0 = 〈σ

3/2〉
`6s

∫
d6y
√
g6e
−4A, (2.8)

such that 〈eΩ〉 = 1. We may also rescale the coordinates and σ(x) such that
∫
d6y
√
g6e
−4A =

`6s is satisfied hence the internal volume in units of the string length is simply written as
V0 = 〈σ3/2〉. In this case, the gravitational coupling in four dimensions is given by

m2
Pl = 1

κ2
4

= V0`
6
s

κ2
10
, (2.9)

which also reads
ms = gs√

4πV0
mPl. (2.10)

This will be used throughout this article to convert the mass scale in terms of ms into that
in terms of mPl.

Meanwhile, we will observe the behaviors of the potential and the particle spectrum
in two limits, the strongly and weakly warped throat. For this purpose, we need to
investigate the dominant effects in the strongly (weakly) warped throat more carefully.
Through the moduli stabilization, parameters σ and |z| ≡ ε2/`3s are fixed at 〈σ〉 = V2/3

0 and
|z| = Λ3

0exp[−2πK
gsM

] [21], respectively. Then we can say the throat is strongly warped if

e−4A ' e−4A0

〈σ〉
' 22/3I(0) (gsM)2

(2π)4|z|4/3V2/3
0
� 1, (2.11)

is satisfied (see also (2.5)). When the inequality is reversed, the throat may be said
to be weakly warped. One caveat here is that the term containing e−4A0/〈σ〉 ∼
(gsM)2/[(2π)4|z|4/3V2/3

0 ] which we will call the ‘warping term’ is not always subdomi-
nant in the weak warping case defined in this way. To see this, we note that the F-term
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potential for |z| produced by the fluxes is proportional to the inverse of the Kähler metric
Kzz (see (3.7) and also appendix A.3 for a review) which contains

(
log Λ3

0
|z|

+ c′(gsM)2

(2π)4V2/3
0 |z|4/3

)−1

. (2.12)

In the |z| → 0 limit, the condition (2.11) is satisfied, and the term in the parenthesis is
evidently dominated by the second warping term. Meanwhile, in the opposite limit |z|/Λ3

0 →
1, the warping term again dominates over the first logarithmic term log(Λ3

0/|z|) which can
be identified with the throat length ηUV (see discussion below (A.9)) as ηUV becomes close
to 0. Indeed, the combination |z|2/3[log(Λ3

0/|z|)]1/2 is maximized at |z|/Λ3
0 = e−3/4 ' 0.47,

having the value [31/2/(2e1/2)]Λ2
0 ' 0.53Λ2

0. Then the logarithmic term dominates over the
warping term when |z| is in the range around |z| = e−3/4Λ3

0, where the lower(upper) bound
becomes closer to zero (one) when V0 gets larger.

If we restrict our attention to the case in which |z| is so small that |z|2/3V1/3
0 �

(gsM)/(2π)2 is satisfied (the strong warping in the sense of (2.11)), we may define the
strongly warped throat in a more restrictive way by imposing

(2π)2|z|2/3V1/3
0

gsM

(
log Λ3

0
|z|

)1/2

= (2π)2|z|2/3V1/3
0

gsM
η

1/2
UV � 1, (2.13)

i.e., the dominance of the warping term over the logarithmic term in Kzz, as considered
in [30]. That is, the upper bound on the combination |z|2/3V1/3

0 in the strongly warped
throat is more restricted by the factor 1/η1/2

UV , which is smaller than 1 for |z|/Λ3
0 � 1. Then

the throat in which
1
η

1/2
UV

<
(2π)2|z|2/3V1/3

0
gsM

< 1 (2.14)

is satisfied also belongs to the weakly warped throat. In the same way, we can also
divide the case of the ‘extremely weakly warped throat’, in which the warping term
[(2π)2|z|2/3V1/3

0 ]/(gsM) is similar to or even larger than 1 thus e−4A takes the value around
1, into two classes: a) the warping term is subdominant compared to ηUV in Kzz as |z|/Λ3

0
is still smaller than 1 but V0 is large (thus satisfying (2π)2|z|2/3V1/3

0 & (gsM)/η1/2
UV), and b)

|z|/Λ3
0 is too close to 1 so the warping term dominates over the logarithm term in Kzz. In

this article, we mainly focus on the strongly (weakly) warped throat in the sense of (2.13)
((2.14)) and discuss the ‘extremely weakly warped throat’ separately.

2.2 Mass scales of towers of states

In this section, we explore the possible towers of states in the compactification of Type
IIB string theory and their mass scales in the presence of the warped deformed conifold.
First of all, the string excitations produce a tower of states with the mass scale ms given
by (2.10). Moreover, compactifying the ten-dimensional theory on six-dimensional manifold
naturally introduces a tower of states consisting of the KK modes. From the Laplacian
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associated with the metric (2.3),

∇2 = 1√
−G

∂M
(√
−GGMN∂N

)
= 1
e2A(y)e2Ω(x)

[
1

e2Ω(x)σ(x)3/2∂µ(e2Ω(x)σ(x)3/2gµν∂ν)

+ e2Ω(x)

e−4A(y)σ(x)1/2
1
√
g6
∂m (√g6g

mn∂n)
]
,

(2.15)

and the facts that 〈eΩ〉 = 1 and V0 = 〈σ3/2〉, one finds that the KK mass scale is given by

m2
KK = 〈e2Ω〉

〈e−4A〉〈σ1/2〉
1
R2 = 1

〈e−4A〉V1/3
0

1
R2 , (2.16)

where R is the typical length scale of the internal manifold.
For the KK modes in the bulk, 〈e−4A〉 = 1 and 2πR = `s = m−1

s are taken, then their
mass scale is estimated as

mKK = 2πms

V1/6
0

=
√
π
gs

V2/3
0

mPl. (2.17)

On the other hand, the mass scale of the KK modes localized near the tip of the throat
is redshifted by the warp factor. Near the tip, the deformed throat is equivalent to
S3 × S2 × R (see (A.4)) and the typical length scale of the S3 part (A-cycle) is given by
R2 = ε4/3(2/3)1/3 = `2s|z|2/3(2/3)1/3. For the S2 ×R part (B-cycle), the throat length scale
ηUV is multiplied to R in addition, giving R2/`2s = η2

UV|z|2/3(2/3)1/3 [31]. Since we are
primarily interested in the case of 〈e−4A〉 ' 〈e−4A0/σ〉 ' 22/3I(0)(gsM)2/[(2π)4|z|4/3V2/3

0 ],
we focus on the lowest KK mass scale in the presence of the warped throat given by1

mw
KK = 21/231/6π3/2

I(0)1/2
|z|1/3

MηUVV
1/3
0

mPl ∼
|z|1/3

MηUVV
1/3
0

mPl. (2.18)

We now consider the extremely weakly warped throat, in which [(2π)2|z|2/3V1/3
0 ]/(gsM)

is similar to or larger than 1 such that e−4A is close to 1. Even in this case, R2/`2s is still
given by η2

UV|z|2/3(2/3)1/3, then the mass scale of the KK modes localized in the throat is
given by

mew
KK ∼

gs

ηUV|z|1/3V
2/3
0

mPl = gs|z|
ηUV|z|4/3V

2/3
0

mPl. (2.19)

Imposing the extremely weak warping condition, the upper bound on mew
KK/mPl is given

by (2π)4gs|z|/[ηUV(gsM)2], which is again smaller than gs|z|/ηUV since gsM > (2π)2.
1More precisely, mw

KK/mKK ∼ [|z|1/3V1/3
0 ]/[ηUV(gsM)], which is smaller than V1/6

0 /[(2π)(gsM)1/2ηUV].
On the other hand, the condition gsM > (2π)2 can be imposed in addition from the requirement that
the squared length scale of the deformed conifold α′gsM (see (A.6)) is larger than `2

s for the metric as a
supergravity solution to be a valid description [31]. Then mw

KK/mKK < V1/6
0 /[(2π)2ηUV]. Since even large

volume V0 ∼ 103 gives V1/6
0 ∼ π, the upper bound on the ratio is typically smaller than 1. .
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When ηUV is larger than the warping term, we also have another bound mew
KK/mPl <

(2π)4gs|z|/(gsM)2 < gs|z|, which can be stronger than the previous bound for ηUV smaller
than 1. Thus, mew

KK can be sub-Planckian. On the other hand, as |z|/Λ3
0 gets close to

1, ηUV → 0, then mew
KK becomes extremely heavy, invalidating the EFT. Indeed, since

mew
KK/mKK ∼ 1/[|z|1/3ηUV], mew

KK is typically heavier than the bulk KK mass scale mKK: for
|z|/Λ3

0 < 1, ηUV = log(Λ3
0/|z|) varies mildly with respect to |z| compared to |z|1/3 and for

|z|/Λ3
0 ' 1, ηUV = 0. Then the bulk KK scale mKK is typically the lowest tower mass scale.
It is worth observing how the structure of the metric is reflected in that of the KK mass

scale given by (2.16). Expressing the ten-dimensional metric in a more comprehensive way,

ds2 = e2Ω4(x,y)gµνdx
µdxν + e2Ω6(x,y)gmndy

mdyn, (2.20)

where
e2Ω4(x,y) = e2A(y)e2Ω(x), e2Ω6(x,y) = e−2A(y)σ(x)1/2, (2.21)

one immediately infers from (2.15) that the KK mass scale is written as

mKK = 〈eΩ4〉 1
〈eΩ6〉R

= 〈eA〉 1
〈eΩ6〉R

, (2.22)

where R ∼ ηUVε
2/3 = ηUV|z|1/3`s. This evidently shows that 〈eΩ4〉 = 〈eA〉 corresponds

to the redshift factor. When the throat is warped satisfying |z|2/3V1/3
0 � (gsM)/(2π)2,

eΩ6 becomes independent of V0 as eΩ6 ' (e−A0/σ1/4)× σ1/4 ∼ (gsM)1/2|z|−1/3. Moreover,
mKK is inversely proportional to 〈eΩ6〉R, in which the factor |z|−1/3 in eΩ6 is cancelled by
the factor |z|1/3 in R (see discussion above (A.6)). Then the KK mass scale is estimated
as mw

KK ∝ 〈eA〉ms ∼ |z|1/3V1/6
0 ms, which coincide with (2.18). In contrast, when the

throat is extremely weakly warped, eA is no longer proportional to V1/6
0 |z|1/3 so the factors

〈σ1/2〉 = V1/6
0 in eΩ6 and |z|1/3 in R are not cancelled. Since 〈eΩ4〉 = 1, one finds that

mew
KK ∝ |z|−1/3V−1/6

0 ms.

2.3 Uplift potential and a tower of states

We now put D3-branes at the tip of the throat. This breaks SUSY, and can be used to uplift
the potential for the volume modulus σ(x) to a metastable dS vacuum. The uplift potential
is given by the sum of the DBI action and the Chern-Simons term. Since these two are
the same in magnitude, we obtain Vup = 2p(T3/gs)

∫
d4x
√
−γ, where p is the number of

D3-branes, T3 = 2π`−4
s is the D3-brane tension, and γ is the induced metric on D3-branes.

If D3-branes are extended over the noncompact four-dimensional spacetime, the induced
metric is given by ds2

D3 = e2Ω4(x,y)gµνdx
µdxν = e2A(y)e2Ω(x)gµνdx

µdxν , which gives

Vup = 2pT3
gs
e4Ω4(x,y) = 4πpm

4
s

gs
e4A(y)e4Ω(x), (2.23)

where e4A corresponds to the redshift factor. We note that the factor 4 in the exponent of
e4Ω4(x,y) comes from the four noncompact dimensions over which D3-branes are extended.
As sketched in appendix B, the same result is obtained in the context of the brane/flux
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annihilation, which is described by the polarization of NS5-brane wrapping the S3 part of
the throat [22, 32].

When the throat is warped satisfying |z|2/3V1/3
0 � (gsM)/(2π)2, Vup is estimated to be

V w
up = 24/3π3

I(0)
gsp

M2
|z|4/3

σ(x)2m
4
Pl, (2.24)

or 〈V w
up〉 ∼ (gsp/M2)(|z|4/3/V4/3

0 )m4
Pl. As pointed out in [25], 〈V w

up〉 depends on V0 and |z|
in the same way as (mw

KK)4. More concretely, comparing (2.24) with (2.18) we obtain the
scaling behavior

mw
KK ∼

1
g

1/4
s ηUVM1/2p1/4

〈V w
up〉1/4. (2.25)

We note that in addition to the power-law dependence on |z| and V0 which is relevant to
the scaling behavior, mw

KK also contains the logarithmic term ηUV = log(Λ3
0/|z|). Indeed,

whereas Vup is generated by D3-branes localized at the tip of the throat and redshifted
by e4A, the KK mode is determined by the overall size of the throat, ηUV, with the same
redshift effect.

Such a simple scaling behavior also appears in the extremely weakly warped throat, but
the associated tower mass scale is not the throat KK mass scale. To see this, we compare
〈Vup〉 ∼ (p/gs)〈e4A〉m4

s obtained from (2.23) (〈eΩ(x)〉 = 1 is used) with the throat KK
mass scale given by (2.16), m4

KK ∼ 〈e4A〉R−4 ∼ 〈e4A〉(〈eΩ6〉|z|1/3/ηUV)4m4
s. We have seen

that as the warping gets stronger, the combination 〈eΩ6〉|z|1/3 = 〈e−A〉V1/6
0 |z|1/3 becomes

independent of both V0 and |z| hence away from ηUV, m4
KK depends on V0 and |z| through

the combination 〈e4A〉m4
s, just like 〈Vup〉. In contrast, when we estimate the throat KK

mass scale for the extremely weakly warped throat, e−A ' 1 does not cancel V1/6
0 and |z|1/3

any longer. Indeed, the uplift potential in the extremely weakly warped throat is written as

V ew
up = g3

s

4π
p

σ(x)3m
4
Pl

[
1 + 22/3(gsM)2I(0)

(2π)4|z|4/3σ(x)

]−1

' g3
s

4π
p

σ(x)3m
4
Pl, (2.26)

such that 〈V ew
up 〉/m4

Pl = [g3
s/(4π)]p/V2

0 . While this expression presumes that D3-branes are
localized at the tip of the throat, this in fact is not well guaranteed in the extremely weakly
warped throat. Indeed, the position of D3-branes in the throat can be found from the value
of η at which V ew

up with the η dependence restored,

g3
s

4π
p

σ(x)3m
4
Pl

[
1 + 22/3(gsM)2I(η)

(2π)4|z|4/3σ(x)

]−1

, (2.27)

is stabilized. Since this is a monotonically increasing function of η, D3-branes are stabilized
at η = 0 classically. On the other hand, as the throat is extremely weakly warped such
that the warping term is much smaller than one for any value of η, the increasing rate is
also suppressed, so in terms of η, the position of D3-branes in a throat, V ew

up corresponds to
the very shallow potential. Then quantum mechanically, the probability that D3-branes
are located in other region of the throat, or even outside the throat is not negligible.
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Nevertheless, as we can learn from the basic quantum mechanics example, the bound state
must exist even when the depth of the potential is very tiny, in which the probability to
find the D3-branes inside the potential is still larger than that to find D3-branes outside
the throat. Moreover, we also expect that the probability is maximized at η = 0, the tip of
the throat, since this is the point at which V ew

up is stabilized classically. This may become
invalid if |z|/Λ3

0 becomes close to one, or equivalently, ηUV ' 0, in which the throat region
terminates even before the potential increases in a meaningful size so the dominance of the
probability to find D3-branes at the tip of the throat is not so strong. Therefore, in the
following discussion, we focus on the case in which ηUV is still sizeable so the localization of
D3-branes at the tip of the throat is relatively reliable.

From (2.26), one finds that V ew
up depends on σ(x) through e4Ω(x) = V2

0/σ(x)3 only, so
unlike V w

up which is proportional to σ−2, V ew
up ∝ σ−3. We note that since 〈eΩ〉 = 1, after

the stabilization of σ(x), 〈V ew
up 〉 can be written as 4πp(m4

s/gs), which evidently shows that
〈V ew

up 〉 is independent of |z|. This explains why 〈V ew
up 〉 is not simply related to mew

KK or mew
W

through the scaling behavior. Instead, we can find two possible towers of states which
satisfy the scaling behavior with respect to 〈V ew

up 〉. The first one is the string excitations:
the sting mass scale ms satisfies the scaling behavior given by

ms ∼
(
gs

4πp

)1/4
〈V ew

up 〉1/4. (2.28)

This reflects the fact that when we fix mPl, ms becomes light in the V0 →∞ limit.2 Indeed,
as ms → 0, the D-brane tension also decreases in size, which makes 〈V ew

up 〉 given by the
energy stored in D3-branes smaller. Another one is the bulk KK mass scale given by (2.17)
satisfying

mKK ∼
1
p1/3

〈V ew
up
m4

Pl

〉1/3
mPl. (2.29)

This is not strange because mKK becomes light as V0 increases. In any case, towers of
states satisfying the scaling behavior with respect to 〈V ew

up 〉 are relevant to the overall
internal volume V0, not the throat geometry. Moreover, as we discussed in section 2.2, in
the extremely weakly warped throat, mKK is typically lighter than mew

KK, so we can say
that in both strongly and (extremely) weakly warped throat, the lightest tower mass scale
obeys the scaling behavior with respect to Vup.

It is remarkable that we can always find a tower of states satisfying ∆m ∼ V 1/4
up , or more

precisely, ∆m ∼ V 1/d
up , where d is the number of noncompact spacetime dimensions. Here ∆m

corresponds to the KK mass scale for the warped throat satisfying |z|2/3V1/3
0 � (gsM)/(2π)2

and the string mass scale for the extremely weakly warped throat. We also emphasize that
the scaling behavior makes sense only if the number of D3-branes is nonzero, i.e., p 6= 0.
Indeed, the existence of a tower of states is a priori irrelevant to the presence of the uplift.
In the absence of the uplift, i.e., when p = 0, the spacetime geometry is given by the AdS
vacuum, which is a well defined four-dimensional supergravity solution so far as ∆m is well

2We note that ms is the fundamental mass scale from which mPl is induced through compactification.
Hence, the precise statement is that ms admitting mPl ∼ 1018GeV and the V → ∞ limit is very light.
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separated from the gravitino mass scale or the masses of the moduli under consideration. In
the presence of the uplift potential, the scaling behavior becomes meaningful and indicates
that the vacuum constructed by taking the 〈Vup〉 → 0 limit corresponds to the infinite
distance limit of the moduli space. That is, the values of the stabilized moduli consistent
with the 〈Vup〉 → 0 limit allows the tiny tower mass scale, indicating the descent of a tower
of states from UV as claimed in the distance conjecture.

3 Constraints on superpotential and uplift

Whereas the potential produced by the fluxes and non-perturbative effects which we will
denote by VAdS stabilizes the volume modulus σ(x) in the AdS minimum (or possibly,
the (meta)stable Minkowski vacuum) with |Λ| given by |〈VAdS〉| ≡ |VAdS|, the dS or the
Minkowski vacuum as well as the AdS vacuum with smaller |Λ| can be realized by adding
the uplift potential Vup to VAdS. As we have seen in the previous section, the mass scale of
a tower of states obeys the scaling behavior with respect to Vup, implying that when Vup
becomes too small, a tower of states descends from UV, invalidating the EFT. In other
words, the AdS vacuum determined by VAdS cannot be perturbed by the tiny uplift effect.
On the other hand, Vup is required not to be too larger than the sum of |VAdS| and Vh, the
height of the potential VAdS at the local maximum, since otherwise the combined potential
VAdS + Vup does not have local minima but shows the runaway behavior. Indeed, when Vup
becomes too large, the backreaction of antibranes on the background geometry is no longer
negligible. The sum |VAdS|+ Vh is more or less comparable to |VAdS| in the simple models
like the KKLT or the large volume scenario, where the non-perturbative effect is dominated
by the single term (in fact, in the KKLT scenario, VAdS does not have a local maximum). In
this case, while Vup almost comparable to |VAdS| can be used to realize the Minkowski or the
(A)dS vacuum with tiny Λ, it should not be much larger than |VAdS|, say, O(10)× |VAdS|.
In the presence of more than two comparable non-perturbative effects, tuning between them
may allow the sum |VAdS| + Vh much larger than |VAdS|. In this article, we restrict our
attention to the simple case where the condition Vup . O(10)× |VAdS| is imposed. We also
note that whereas the models we are considering aim to realize the metastable dS vacuum,
we do not attach this goal but allow the AdS and the Minkowski vacuum, as well as the
dS vacuum with the sizeable Λ. From this, we investigate the range of the superpotential
consistent with the bounds on Vup for the valid EFT description.

Meanwhile, the size of |VAdS| cannot be larger than the supersymmetric vacuum
energy given by ΛSUSY = 3m2

Plm
2
3/2, where m3/2 = eK/(2m

2
Pl)|W |/m2

Pl ∼ |W |/(m2
PlV0) is

the gravitino mass. Since VAdS is the F-term potential produced by the fluxes and non-
perturbative effects, the size of |VAdS| is determined by the amount of SUSY breaking
parametrized by the F-term, F a = eK/(2m

2
Pl)KabDbW . In the minimal model of the KKLT

scenario [23], the F-term vanishes, so VAdS stabilizes σ(x) in the supersymmetric AdS
minimum satisfying 〈VAdS〉 = −ΛSUSY. In this case, SUSY is broken by Vup only. In
the large volume scenario [24], on the other hand, whereas the largest mass scale of the
volume modulus is around m3/2 [33] the F-term has nonzero vacuum expectation value, so
|VAdS| ∼ (|W |2/m2

Pl)(logV0/V3
0 ) is suppressed compared to ΛSUSY by logV0/V0. Then we
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can impose the minimal condition on Vup and the superpotential in the simple model like
the KKLT or the large volume scenario given by

∆m > m3/2, and
Vup . O(10)× |VAdS| ≤ O(10)× ΛSUSY = O(10)× 3m2

Plm
2
3/2,

(3.1)

which may be more restricted depending on the model. For instance, the lower bound on
∆m is expected to be the heaviest mass of the moduli under consideration. We note that
if the non-perturbative effects are tuned such that |VAdS|+ Vh becomes much larger than
|VAdS|, it introduces the mass scale mh defined by |VAdS| + Vh = m2

Plm
2
h. Then one may

expect that the volume modulus mass σ(x) is not much enhanced compared to mh, from
which the constraint in the form of (3.1) with m3/2 replaced by mh can be imposed. This
is quite model dependent so we do not explore in more detail.

As we have seen in section 2.3, we can always find a tower of states obeying the
scaling behavior with respect to Vup. When the throat is warped satisfying |z|2/3V1/3

0 �
(gsM)/(2π)2, the throat KK mass scale mw

KK is the lowest tower mass scale and at the same
time, scales like mw

KK ∼ 〈V w
up〉1/4. Then the first condition in (3.1) reads 〈V w

up〉1/4 > m3/2.
For the extremely weakly warped throat, the bulk KK mass scale is typically the lowest
tower mass scale. Since it satisfies mKK ∼ 〈V ew

up /m
4
Pl〉1/3mPl, the first condition in (3.1) is

equivalent to 〈V ew
up /m

4
Pl〉1/3mPl > m3/2. In any case, combined with the second condition

in (3.1), one finds that the uplift potential V w
up is bounded from both above and below.

To see the behavior of m3/2 more concretely, we first note that given the Kähler
potential

K

m2
Pl

= −2 logV0 − log(−i(τ − τ))− log
(
i

κ6
4

∫
Ω ∧ Ω

)
− log

( 1
κ6

4

∫
d6y
√
g6e
−4A

)
, (3.2)

the flux-induced Gukov-Vafa-Witten (GVW) superpotential is written as [34]

W = g
3/2
s√
4π

m6
Pl
`2s

(
mPl
ms

)3 ∫
Ω ∧G3, (3.3)

the coefficient of which is obtained by matching the flux term in the Type IIB supergravity
action with the form of the F-term potential [33] (see also [30]), as reviewed in appendix C.
Then m3/2 is given by

m3/2 = eK/(2m
2
Pl)
|W |
m2

Pl

= g2
s

2
√

2π

(
1

m6
Pli
∫

Ω ∧ Ω

)1/2
mPl
V0

(
m3

Plm
2
s

∫
Ω ∧G3 + (non-perturbative terms)

)

= g2
s

2
√

2π

(
1

m6
si
∫

Ω ∧ Ω

)1/2
mPl
V0

(
m5
s

∫
Ω ∧G3 +

∑
i

Aie
iaiρi

)
, (3.4)

where in the last line, we replace mPl multiplied to Ω byms, as the complex structure moduli
in Ω are typically written in units of `s, just like ε2 = `3sz, to give i

∫
Ω∧Ω/`6s ∼ O(1) under
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the normalization
∫
d6y
√
g6e
−4A = `6s. Moreover, even though the origins are different, the

coefficients of the non-perturbative effects are written in the same way as the coefficient of
the GVW superpotential for convenience. For later use, we define the dimensionless part of
the superpotential by

Ŵ = m5
s

∫
Ω ∧G3 +

∑
i

Aie
iaiρi . (3.5)

Indeed, the size of the GVW superpotential can be tuned by adjusting the amount of the
harmonic (0, 3)-form in G3, which eventually determines the size of ΛSUSY. Such a tuning
can be easily analyzed by considering Ŵ .

Any model concerning the warped deformed conifold also requires the stabilization of
the conifold modulus z, the complex structure modulus determining the size of the warped
throat. The z dependent part of the Kähler potential is written as

K

m2
Pl

= `6s
πi
∫

Ω ∧ Ω

[
|z|2

(
log Λ3

0
|z|

+ 1
)

+ 9c′(gsM)2

(2π)4V2/3
0
|z|2/3

]
+ · · · , (3.6)

then the F-term potential for z is given by (see appendix A.3 for a review)

VKS(|z|) = g4
s

8V2
0

[
log Λ3

0
|z|

+ c′(gsM)2

(2π)4V2/3
0 |z|4/3

]−1(
M

2π log Λ3
0
|z|
− K

gs

)2

m4
Pl. (3.7)

This shows that the conifold modulus is stabilized at |z| = Λ3
0exp[−2πK

gsM
]. In addition, the

mass of the conifold modulus in the absence of uplift is given by

m2
z = m2

Pl
Kzz

Vzz
∣∣∣
|z|=Λ3

0e
− 2πK
gsM

= πi
∫

Ω ∧ Ω
`6s

[
log Λ3

0
|z|

+ c′(gsM)2

(2π)4V2/3|z|4/3

]−2
g4
s

8V2
0

(
M

2π

)2 m2
Pl

2|z|2 .
(3.8)

3.1 Conifold modulus mass scale

3.1.1 Strongly warped throat

We first consider the mass of the conifold modulus in the strongly warped throat in the
sense of (2.13). Since the term in the square brackets in (3.8) is dominated by the second
warping term, we obtain

mz = 4π7/2

c′

(
i
∫

Ω ∧ Ω
`6s

)1/2 |z|1/3

MV1/3
0

mPl. (3.9)

As noted previously, the typical length scale associated with Ω is given by `s so we expect
that i

∫
Ω ∧ Ω/`6s to be O(1). Then mz depends on the same combination |z|1/3/V1/3

0 as
the KK mass scale mw

KK given by (2.18), obeying the relation

mz ∼ (2π)3ηUVm
w
KK ∼

(2π)2

(gsM2p)1/4 〈V
w

up〉1/4. (3.10)

– 14 –



J
H
E
P
0
7
(
2
0
2
3
)
0
8
2

Since the throat is strongly warped, i.e., ηUV > 1, the KK mass scale mw
KK is typically

lighter than mz. This indicates that the EFT based on the four-dimensional supergravity
description can be invalidated by the KK modes lighter than the conifold modulus. As
claimed in [31], the light KK modes may be compatible with the four-dimensional description
for the stabilization of |z| if the species cutoff above which the gravitational coupling in
the loop becomes strong by the large number of particle species [35, 36] is well adjusted
such that the light KK modes just rescale the Kähler metric Kzz through the one-loop
correction. We note that whereas the scaling behavior mz ∼ (gsM2p)−1/4〈V w

up〉1/4 works
only for nonzero p, i.e., it has a discontinuity between zero and nonzero p, the relation
mz ∼ ηUVmKK is irrelevant to the existence of the uplift potential.

We can understand the origin of the relation mz ∼ |z|1/3/V1/3
0 in the following way.

When the throat is strongly warped, the Kähler metric Kzz is enhanced by the warp factor
e−4A ' e−4A0/σ ∼ |z|−4/3V−2/3

0 . In the F-term potential, the factors eK and (Kzz)−1

provide V−2
0 and e4A respectively, and the redefinition of σ(x) for the canonical kinetic

term gives (Kzz)−1 ∼ e4A in addition. Combining them, we have V−2
0 (e4A)2 ∼ |z|8/3/V2/3

0 .
Meanwhile, DzW contains log(Λ3

0/|z|), which originates from the monodromy behavior
of z around z ' 0. Then Vzz is dominated by the term containing |(DzW )z|2 ∼ 1/|z|2
at the minimum of the potential. Combining all ingredients together, one finds that
m2
z ∼ (|z|1/3/V1/3

0 )2, consistent with the explicit result. While this reflects the throat
geometry significantly, we did not find a simple argument for the connection to mKK
or V 1/4

up .
Our discussion so far is based on the assumption that p, the number of D3-branes is

not so large that the mass scales are not much modified by Vup and the backreaction of
D3-branes is negligibly small. As pointed out in [37], the sum of potential terms depending
on z, VKS + V w

up (see (2.24) for V w
up and (3.7) for VKS) stabilizes z at the corrected value,

|z| = Λ3
0exp

−2πK
gsM

− 3
4 ±

√
9
16 −

4πp
gsM2

21/3c′

I(0)

 , (3.11)

from which p is restricted to be smaller than gsM
2. When this bound is violated, z

is stabilized at 0, giving ηUV → ∞, which is incompatible with the compact internal
volume. Whereas it was argued that such runaway behavior may not appear when we
take the off-shell contributions, i.e., quantum fluctuations around the stabilized values of
moduli, into account [38], it is true that the geometry and the potential are drastically
changed by the backreaction of D3-branes for large p. We also note that VKS and V w

up
have the similar structure: since both eK/m

2
Pl and m4

s/m
4
Pl are proportional to 1/V2

0 ,
eK/m

2
Pl(Kzz)−1 ∼ V−2

0 e4A in VKS and m4
se

4A in V w
up contain the common factor |z|4/3/V4/3

0 .
But VKS also contains the z dependent factor |DzW |2, which plays the crucial role in
stabilizing |z| at nonzero value.

3.1.2 Weakly warped throat

When the condition (2.14) is satisfied, the logarithmic term in Kzz dominates over the
warping term. In the extremely weakly warped throat, the logarithmic term loses its
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dominance for |z|/Λ3
0 ' 1, but at the same time the localization of D3-branes at the tip of

the throat is not guaranteed. Therefore, in both cases, so far as the valid EFT is concerned,
the logarithmic term is the leading term in Kzz. From (3.8), the conifold modulus mass in
these cases is given by

mz = 1
8
√
π

(
i
∫

Ω ∧ Ω
`6s

)1/2
g2
sM

V0

mPl

|z| log Λ3
0
|z|

∼ g2
sM

V0

mPl
|z|ηUV

. (3.12)

Now we can compare this with the lowest mass scale in the weak and extremely weak
warping case, respectively. For the weakly warped throat in the sense of (2.14), the
ratio mw

KK/mz ∼ |z|4/3V2/3
0 /(gsM)2 (see (2.18)) is smaller than 1/(2π)4 but larger than

1/[(2π)4ηUV]. Since mz is lighter than mw
KK, just like the strongly warped case, the

stabilization of the conifold modulus in the four-dimensional supergravity description can be
invalid unless the light KK modes under the species cutoff just contribute to the rescaling
of Kzz. For the extremely weakly warped throat, the ratio mew

KK/mz ∼ |z|2/3V1/3
0 /(gsM)

(see (2.19)) and mKK/mz ∼ |z|V1/3
0 ηUV/(gsM) (see (2.17)) are similar to or larger than

1/(2π)2 and |z|1/3ηUV/(2π)2, respectively, so as well known, mz can be lighter than the KK
mass scale, which is trustworthy provided |z|/Λ3

0 is not too close to 1.
Before discussing the correction to the stabilized value of |z| by Vup, we note that if we

are also interested in the subleading terms in the derivatives of the potential with respect to
z, neglecting the warping term from the beginning can be misleading. To see this, consider
dVKS/dz without assuming the weak warping, given by (see (3.7))

1
m4

Pl

dVKS

dz
= g4

s

8V2
0

[(
log Λ3

0
|z|

+ c′(gsM)2

(2π)4V2/3
0 |z|4/3

)−2(
1
2 + 2

3
c′(gsM)2

(2π)4V2/3
0 |z|4/3

)
1
z

(
M

2π log Λ3
0
|z|
− K

gs

)2

−
(

log Λ3
0
|z|

+ c′(gsM)2

(2π)4V2/3|z|4/3

)−1 1
z

(
M

2π

)(
M

2π log Λ3
0
|z|
− K

gs

)]
. (3.13)

In the second parenthesis in the first line, 1/2 and the term containing (gsM)2/[V2/3
0 |z|4/3]

come from the derivative of log(Λ3
0/|z|) and the warping term with respect to z, respectively.

While the latter is larger than the former under the condition (2.14), it cannot be written
if we ignore the warping term before taking derivative. In order to compare the term in
the first line with that in the second line, let us impose the weak warping condition and
ignore 1/2 in the second parenthesis in the first line. Since the warping term is subleading
compared to ηUV = log(Λ3

0/|z|) in the last line, we obtain

1
m4

Pl

dVKS
dz
' g4

s

8V2
0

1
ηUV

(
M

2π

)2
(

log Λ3
0
|z|
− 2π
gs

K

M

)
1
z

×
[(

2
3

c′(gsM)2

(2π)4ηUVV
2/3
0 |z|4/3

)(
log Λ3

0
|z|
− 2π
gs

K

M

)
− 1

]
.

(3.14)

In the square brackets, the first term comes from the dominant term of the first line (1/2
in the second parenthesis in the first line is ignored) and the second term comes from the
second line in (3.13), respectively. This evidently shows that the term in the second line
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in (3.13) is most dominant: the term log Λ3
0
|z| −

2π
gs

K
M quickly approaches zero around the

minimum and the coefficient is smaller then one.
In any case, the dominant term in d(VKS + Vup)/dz is written as

1
m4

Pl

d(VKS + Vup)
dz

' − g4
s

8V2
0

1
ηUV

(
M

2π

)2
(

log Λ3
0
|z|
− 2π
gs

K

M

)
1
z

+ 24/3π3

I(0)
gsp

M2
1
V4/3

0

2
3
z2/3

z1/3 ,

(3.15)
and the stabilized value of |z| is corrected to satisfy d(VKS + Vup)/dz = 0. It is convenient
to parametrize the correction to |z| by the shift in ηUV, the exponent of |z|, which will be
denoted by ε:

log Λ3
0
|z|

= 2π
gs

K

M
+ ε. (3.16)

Then we obtain

ε = 8π
3

21/3

I(0)
p

gsM2

[
(2π)4

(gsM)2 ηUV|z|4/3V
2/3
0

]
. (3.17)

From (2.14), one finds that for the weakly warped throat, ε lies in the range

8π
3

21/3

I(0)
p

gsM2 < ε <
8π
3

21/3

I(0)
p

gsM2 ηUV. (3.18)

From the lower bound, we can say that the correction to the stabilized value of |z| in the
presence of the uplift is controllable provided p < gsM

2/ηUV, similar to the bound on p in
the strongly warped throat. For the extremely weakly warped throat, the EFT is reliable
only for ηUV not too close to 0. Taking derivative of the second term in (2.26) with respect
to z, we obtain

1
m4

Pl

d(VKS + Vup)
dz

' − g4
s

8V2
0

1
ηUV

(
M

2π

)2
(

log Λ3
0
|z|
− 2π
gs

K

M

)
1
z

+ g3
s

4π
p

V2
0

22/3I(0)(gsM)2

(2π)4|z|4/3V2/3
0

2
3

1
z
.

(3.19)
Then ε defined by (3.16) is estimated as

ε ' 16π
3

pηUV
gsM2

(
22/3I(0)(gsM)2

(2π)4|z|4/3V2/3
0

)
. (3.20)

The term in the parenthesis in the r.h.s. is similar to or smaller than 1 and also ηUV for
ηUV < 1, so the value of ε smaller than 1 is allowed provided p < (gsM2)/ηUV.

3.2 Gravitino mass

We now move onto another EFT validity condition m3/2 < ∆m. When the throat is warped
satisfying |z|2/3V1/3

0 � (gsM)/(2π)2, mw
KK is typically the lowest tower scale, then this

condition can be rewritten as

g2
s

2
√

2π
1

m3
s

(
i
∫

Ω ∧ Ω
)1/2

mPl
V0

Ŵ <
21/231/6π3/2

I(0)1/2
|z|1/3

MηUVV
1/3
0

mPl. (3.21)
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Assuming
∫

Ω ∧ Ω/`6s ∼ O(1), one finds that the fluxes and non-perturbative effects must
be tuned such that Ŵ satisfies at least

Ŵ <
1

g2
sMηUV

|z|1/3V2/3
0 . (3.22)

The upper bound on Ŵ can be understood as follows. The factor multiplied to Ŵ in m3/2
comes from eK/(2m

2
Pl) which is proportional to 1/V0, just like m2

s ∝ 1/V0. Moreover, while
eK/(2m

2
Pl) contains g1/2

s , the coefficient of the GVW superpotential contains g3/2 as can be
found in (3.3) (see also the last expression in (C.5)), so m3/2 is proportional to g2

s . Since
m2
s is also proportional to g2

s , m3/2 can be estimated as m3/2 ∼ (m2
s/mPl)Ŵ . Then the

bound m3/2 < mw
KK becomes (3.22).

We note that the bound m3/2 < mw
KK discussed above is just a minimum requirement,

and depending on the model, we need to investigate if other moduli under consideration
are still lighter than mw

KK. For the complex structure moduli, as we have seen, the conifold
modulus is typically heavier than mw

KK, which may invalidate the model.3 The mass scales
of the Kähler moduli are also model dependent. In the large volume scenario, the non-
perturbative effect is dominated by that of the small cycle modulus, stabilizing the overall
volume modulus at the large value (exponential in the small cycle modulus). The overall
volume modulus contributes to the potential through the Kähler potential only, hence each
term in the potential shows the power-law dependence on the overall volume modulus.
Then the moduli masses are similar to or even much lighter than m3/2 [33]. Meanwhile, in
the KKLT scenario where the single volume modulus σ is taken into account, Vσσ ∼ m2

3/2
but the normalization for the canonical kinetic term introduces a factor (Kσσ)−1 ∼ σ2 in
addition, so the volume modulus mass is enhanced by σ, i.e., mσ ∼ σm3/2 ∼ V

2/3
0 m3/2 [41].4

Requiring mσ < mw
KK, the bound on Ŵ is much more constrained as

Ŵ <
1

g2
sMηUV

|z|1/3. (3.23)

In the extremely weakly warped throat, the lowest tower mass scale is given by the
bulk KK mass scale, so the condition can be written as

g2
s

2
√

2π
1

m3
s

(
i
∫

Ω ∧ Ω
)1/2

mPl
V0

Ŵ <
√
π
gs

V2/3
0

mPl. (3.24)

From this we obtain

Ŵ <
V1/3

0
gs

, (3.25)

3The stabilization of the axio-dilaton τ depends on the complex structure moduli and fluxes in the model.
If the low energy effective superpotential is simply linear in τ , the τ mass can be light or even destabilize
the vacuum through the mixing with the volume modulus [39, 40].

4We may understand why such an enhancement does not arise in the large volume scenario in the following
toy example. When we have a potential term V ∼ e−a4τ4/τ

3/2
5 where τ4 is a small cycle modulus and τ5 is

the overall volume modulus, Vτ5τ5 ∼ e−a4τ4/τ
2+3/2
5 , but multiplying this by (Kτ5τ5 )−1 ∼ τ2

5 cancels τ−2
5 in

Vτ5τ5 again, resulting in m2
τ5 ∼ e

−a4τ4/τ
3/2
5 , showing the same power-law dependence on τ5 as V . This can

be contrasted with the KKLT-type potential V ∼ e−σ/σ, in which Vσσ is dominated not by ∼ e−σ/σ1+2

but by V ∼ e−σ/σ as the derivative with respect to σ can be taken on the exponential term as well. Then
m2
σ can be enhanced by multiplying (Kσσ)−1 ∼ σ2.
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where the upper bound is nothing more than mPl/mW, for the same reason as the bound
on Ŵ in the previous case. In the KKLT scenario, we can impose the condition mσ ∼
V2/3

0 m3/2 < mKK in addition, which provides the stronger bound Ŵ < 1/(gsV1/3
0 ).

3.3 Preventing runaway

The condition Vup . O(10)×|VAdS| with |VAdS| ≤ ΛSUSY = 3m2
Plm

2
3/2 is imposed to prevent

the potential including the uplift from exhibiting the runaway behavior. We first consider
the case in which the throat is warped satisfying |z|2/3V1/3

0 � (gsM)/(2π)2. In the large
volume scenario, SUSY is broken by F-term as well as Vup, so |VAdS| ∼ ΛSUSY(logV0/V0) is
smaller than ΛSUSY. Then the condition reads

24/3π3

I(0)
gsp

M2
|z|4/3

V4/3
0

< O(10)× 3g4
s

8π
1

m6
si
∫

Ω ∧ Ω
logV0
V3

0
|Ŵ |2, (3.26)

which is simplified to

|Ŵ |2 > O(10−1)× p

gs(gsM)2 |z|
4/3 V

5/3
0

logV0
, (3.27)

where
∫

Ω ∧ Ω/`6s ∼ O(1) is assumed. Combined with the condition m3/2 < mw
KK given

by (3.22), which is equivalent to the condition that the Kähler moduli are lighter than mw
KK,

one obtains the bound on |Ŵ |2 given by

O(10−1)× p

gs(gsM)2 |z|
4/3 V

5/3
0

logV0
< |Ŵ |2 < 1

g4
sM

2η2
UV
|z|2/3V4/3

0 . (3.28)

Comparing the lower and the upper bound, one finds that |Ŵ |2 can exist only if

O(10−1)× gspη2
UV
|z|2/3V1/3

0
logV0

< 1 (3.29)

is satisfied. This inequality provides a bound on the number of D3-branes p, which can be
taken into account in addition to p < gsM

2 obtained from (3.11). In fact, since |z|2/3V1/3
0 �

(gsM)/(2π2) is satisfied, the l.h.s. of the inequality is smaller than p(g2
sM)η2

UV/[(2π)2 logV0]
times a small constant, say, of O(10−1).

In the KKLT scenario, the F-term potential is stabilized at the supersymmetric AdS
minimum, so the runaway is prevented when Vup . O(10)× ΛSUSY, which reads

24/3π3

I(0)
gsp

M2
|z|4/3

V4/3
0

< O(10)× 3g4
s

8π
1

m6
s

∫
Ω ∧ Ω

|Ŵ |2

V2
0
, (3.30)

or equivalently,
|Ŵ |2 > O(10−1)× p

gs(gsM)2 |z|
4/3V2/3

0 . (3.31)

We note that the r.h.s. of the inequality is smaller than p/[(2π)2gs] by the condition
|z|2/3V1/3

0 � (gsM)/(2π)2. Combining this with (3.23), one obtains

O(10−1)× p

gs(gsM)2 |z|
4/3V2/3

0 < |Ŵ |2 < 1
g2
s(gsM)2η2

UV
|z|2/3, (3.32)
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which is valid only if
O(10−1)× gspη2

UV|z|2/3V
2/3
0 < 1 (3.33)

is satisfied. This inequality can be interpreted as a bound on p.
We now consider the extremely weakly warped throat. The condition on the large

volume scenario is given by

g3
s

4π
p

V2
0
< O(10)× 3g4

s

8π
1

m6
si
∫

Ω ∧ Ω
logV0
V3

0
|Ŵ |2, (3.34)

or equivalently,
|Ŵ |2 > O(10−1)× p

gs

V0
logV0

. (3.35)

Combined with the condition m3/2 < mKK given by (3.25), one obtains

O(10−1)× p

gs

V0
logV0

< |Ŵ |2 < V
2/3
0
g2
s

, (3.36)

which makes sense provided
p < O(10)× 1

gs

logV0

V1/3
0

. (3.37)

Meanwhile, for the KKLT scenario, the condition Vup . O(10)× ΛSUSY is written as

g3
s

4π
p

V2
0
< O(10)× 3g4

s

8π
1

m6
s

∫
Ω ∧ Ω

|Ŵ |2

V2
0
, (3.38)

which becomes the volume-independent condition

|Ŵ |2 > O(10−1)× p

gs
. (3.39)

Combined with the bound mσ < mKK given by Ŵ < 1/(gsV1/3
0 ), we obtain

O(10−1)× p

gs
< |Ŵ |2 < 1

g2
sV

2/3
0

, (3.40)

which is valid provided p < O(10)× [1/(gsV2/3
0 )].

4 Conclusions

In this article, we investigate the connection between the uplift and the distance conjecture
by considering the concrete model, the warped deformed conifold embedded into Type
IIB flux compactification with the uplift produced by D3-branes at the tip of the throat.
Whereas the various mass scales associated with towers of states can be found, it turns out
that the lowest tower mass scale obeys the scaling behavior with respect to Vup, which is
meaningful only if the number of D3-branes is nonzero. Then in the Vup → 0 limit, the EFT
becomes invalid by the descent of a tower of states from UV, as the distance conjecture
predicts. Since too large Vup also is not allowed in the EFT due to the sizeable backreaction
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and the possible runaway behavior of the moduli potential, the size of Vup consistent with
the EFT is bounded from both above and below. In the simple model like the KKLT or
the large volume scenario in which the non-perturbative effect is dominated by the single
term, this bound can be rewritten as the bound on the size of the superpotential.

The bound we found can be more restricted depending on the details of the model. For
instance, if mass of the volume modulus becomes very heavy due to the tuning between
more than two non-perturbative terms in the superpotential, the tower mass scale obeying
the scaling behavior with respect to Vup is required to be heavier than the volume modulus
mass. At the same time, the lower bound on Vup in this case is no longer |VAdS| but the
sum of |VAdS| and the height of VAdS at the local maximum, so it cannot be rewritten as a
bound on the superpotential in a simple manner.

Another issue which is not addressed in this article is that, whereas we simply assume
e−4A ' 1 outside the throat, the too large value of gsMK compared to V0 can result in
the existence of the singular points in the bulk region at which e−4A becomes zero or
even negative [42]. This leads to the serious control issue of the KKLT scenario with
almost vanishing Λ. We may avoid this problem in the large volume scenario or the moduli
stabilization in the (A)dS vacuum, but the constraints on Vup and the connection to the
distance conjecture is the subject of the future study.

On the other hand, when more than two throats are related homologically, the length of
each throat is shorter than log(Λ3

0/|z|) as the H3-flux accumulated in each throat is smaller
than K [43, 44]. Moreover, when D3-branes are located at the tip of only one of throats,
the corresponding throat is no longer equivalent to other throats [45]. Then through the
brane/flux annihilation, the uplift potential as well as the throat geometry changes until
SUSY is restored. In these cases, we may need to revisit the criterion distinguishing the
strong warping from the weak warping. Moreover, the hierarchies between mass scales
are not simple as what we discussed in this article. We expect that such nontrivial model
dependent features are helpful to understand the naturalness criterion on the string models,
especially those realizing the tiny cosmological constant as we observe it, in light of the
distance conjecture.

A Review on Klebanov-Strassler throat

In this appendix we summarize the features of the background geometry described by
the Klebanov-Strassler throat [20], a noncompact, asymptotically conical solution of Type
IIB supergravity supported by the fluxes. The metric of the Klebanov-Strassler throat is
given by

ds2
con = ε4/3K(η)

2

[
1

3K(η)3 (dη2 + (g5)2) + sinh2
(η

2

)
((g1)2 + (g2)2) + cosh2

(η
2

)
((g3)2 + (g4)2)

]
,

(A.1)
where

K(η) = (sinh(2η)− 2η)1/3

21/3 sinh η
. (A.2)
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Here ε parametrizes the deformation of the tip of the throat, i.e., smoothing out the S3

singularity of the T 1,1 ∼ S3 × S2 base described by ∑4
A=1w

2
A = ε2 with wA ∈ C and the

basis of 1-forms {gi} (i = 1, · · · , 4). The deformation is also parametrized by z ≡ ε2/`3s,
which is dimensionless and interpreted as the stabilized value of the conifold modulus, the
complex structure modulus determining the size of ε. Whereas the S3 subspace is referred
to as the A-cycle, the S2×R subspace in which R is parametrizerd by η is called the B-cycle.
Here η extends over [0, ηUV], where ηUV is the coordinate at which the throat is glued to
the compact bulk. Then the features of the geometry near and far from the tip of the throat
can be found by taking the limits η � 1 and η � 1, respectively.

A.1 Geometry near the tip (η � 1 limit)

In the η � 1 limit, the metric is approximated as

ds2
con '

ε4/3

4

(2
3

)1/3 [
dη2 + 1

2((g1)2 + (g2)2) + 2
(1

2(g5)2 + (g3)2 + (g4)2
)]

, (A.3)

where (g1)2 +(g2)2 and 1
2(g5)2 +(g3)2 +(g4)2 describes S2 and S3 of radius

√
2, respectively.

With the appropriate choice of the coordinates we may rewrite it as (see, e.g., [46] and
references therein)

ds2
con '

ε4/3

4

(2
3

)1/3 [
dη2 +η2(dω̃2 +sin ω̃dϕ̃2)+4(dψ2 +sin2ψ(dω2 +sin2ωdϕ2)

]
. (A.4)

On the other hand, the warp factor e−4A = 1 + e−4A0/σ(x) where

e−4A0(y) ' 22/3 (α′gsM)2

ε8/3
I(η)

I(η) =
∫ ∞
η

dx
x coth x− 1

sinh2 x
(sinh(2x)− 2x)1/3,

(A.5)

is dominated by e−4A0/σ when z = ε2/`3s is so small that |z|2/3V1/3
0 � (gsM)/(2π)2 is

satisfied. In this case, the factor ε4/3σ1/2 in the denominator of e−2A ' e−2A0/σ1/2 is
cancelled by the prefactor σ1/2 in Gmn = e−2Aσ1/2gmn (see (2.3)) and ε4/3 in gmn (more
precisely, ds2

con), respectively. Then the ten-dimensional metric near η ' 0 is written as

ds2 '
(2

3

)1/2 1
b20

ε4/3

(α′gsM)
〈σ3/2〉
σ(x) gµνdx

µdxν

+ b20
4 (α′gsM)

[
dη2 + η2(dω̃2 + sin ω̃dϕ̃2) + 4(dψ2 + sin2 ψ(dω2 + sin2 ωdϕ2)

]
,

(A.6)

where b20 = (4/3)1/3I(0)1/2 with I(0) ' 0.71805. While ε does not appear in the six-
dimensional internal space metric, as we will see in the discussion on the η � 1 limit, it
determines the length of the throat.
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A.2 Geometry far from the tip (η � 1 limit)

To see the η � 1 limit of the geometry, it is convenient to define the ‘radial coordinate’

r = 31/2

25/6 ε
2/3eη/3, (A.7)

in terms of which the metric is approximated as

ds2
con ' dr2 + r2

(
1
9(g5)2 + 1

6

4∑
i=1

(gi)2
)

= dr2 + r2ds2
T 1,1 . (A.8)

Whereas the warp factor e−4A = 1 + (e−4A0/σ) becomes 1 outside the throat, when
e−4A0/σ > 1 is satisfied in the throat region, e−4A0 is approximated as

e−4A0(y) ' L4

r4

[
1 + 3gsM

2πK log
(

r

rUV

)
+ 3gsM

8πK

]
, L4 = 27π

4 gsMKα′
2
, (A.9)

where rUV = r(η = ηUV). Denoting r(η = 0) by ηIR, the sum of first two terms, which
can be rewritten as [(3gsM)/(2πK)] log[r/rIR], represents the accumulation of the H3-flux
along the B-cycle, satisfying K = [(3gsM)/(2π)] log[rUV/rIR] = [(gsM)/(2π)]ηUV, where
in the last equality (A.7) is used. Using (A.7) again, one finds that z = ε2/`3s must be
stabilized at Λ3

0exp[−2πK
gsM

], with Λ0 = (25/6/31/2)(rUV/`s) [21]. Then we learn that ηUV, or
equivalently, 2πK

gsM
becomes larger as the warping gets stronger.

For the strongly warped throat, the ten-dimensional metric near rUV is close to

ds2 '
(
r

R

)2 〈σ3/2〉
σ(x) gµνdx

µdxν +
(
R

r

)2
(dr2 + r2ds2

T 1,1), (A.10)

where R4 = L4(1 + [(3gsM)/(8πK)]) and we used (2.7) for e2Ω. After the stabilization of σ
to 〈σ〉 = V2/3

0 and the rescaling r → r/〈σ1/4〉 = r/V1/6
0 , the geometry becomes AdS5×T1,1.

We note that for e−4A0/σ > 1, rUV is restricted to be smaller than R/σ1/4, or roughly
(gsMK)1/4`s/V1/6

0 (after rescaling, rUV < R ' (gsMK)1/4`s). Therefore, R is interpreted
as the radial size of the throat, which is required to be smaller than the overall volume size,
i.e., R < σ1/4, or (gsMK)1/4 < V1/6

0 [47].

A.3 Stabilization of the conifold modulus

The size of ε2 = z`2S is determined by the stabilization of the conifold modulus. The Kähler
potential for z is studied in [48] (see also [38] and appendix A of [30]), which we will
briefly sketch here. Using the fact that the warp factor e−4A ' 1 in the bulk and denoting
− log( i

κ6
4

∫
bulk Ω ∧ Ω) by Kbulk

cs , the Kähler potential for the complex structure moduli is
written as

Kcs
m2

Pl
= − log

(
i

κ6
4

∫
e−4AΩ ∧ Ω

)
= − log

(
i

κ6
4

∫
bulk

Ω ∧ Ω + i

κ6
4

∫
conifold

e−4AΩ ∧ Ω
)

' Kbulk
cs + eK

bulk
cs

i

κ6
4

∫
conifold

e−4AΩ ∧ Ω, (A.11)
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from which the Kähler metric for the complex structure moduli, represented by the harmonic
(2, 1)-form χa, is given by Kab = (i

∫
e−4Aχa∧χb)/(i

∫
e−4AΩ∧Ω). For the conifold modulus

S ≡ ε2 = `3sz which is localized in the throat, the numerator of Gab is dominated by the
throat part, whereas the denominator is still dominated by the bulk part, i.e.,

KSS =
i
∫

conifold e
−4AχS ∧ χS

i
∫

bulk e
−4AΩ ∧ Ω

= eK
bulk
cs

i

κ6
4

∫
conifold

e−4AχS ∧ χS , (A.12)

where
χS = g3 ∧ g4 ∧ g5 + d

[
F (η)(g1 ∧ g3 + g2 ∧ g4)

]
− id

[
f(η)(g1 ∧ g2) + k(η)(g3 ∧ g4)

]
,

F (η) = sinh η − η
2 sinh η , f(η) = η coth η − 1

2 sinh η (coth η − 1), k(η) = η coth η − 1
2 sinh η (coth η + 1).

(A.13)
In two limits η � 1 and η � 1, three functions used to define χS behave as

η → 0 : F (0) = η2

12 , f(0) = η3

12 , k(0) = η

3 ,

η →∞ : F (∞) = 1
2 − ηe

−η, f(∞) = η

2 , k(∞) = η

2 .
(A.14)

Putting
χS ∧ χS = − 2i

64π3dη ∧
(∏

i

gi
) d
dη

[f(η) + F (η)(k(η)− f(η)] (A.15)

and using
∫ ∏

i g
i = 64π3, the Kähler metric is written as

KSS

m2
Pl

= 2
πi
∫

Ω ∧ Ω

∫
dηe−4A d

dη
[f(η) + F (η)(k(η)− f(η)]

= 2
πi
∫

Ω ∧ Ω

∫
dη
[ d
dη

[e−4A(f + F (k − f)]− de−4A

dη
[f + F (k − f)]

]
.

(A.16)

The first integral can be evaluated by noting that f + F (k − f) becomes 0 for η → 0 and
ηUV

2 = 3
4 log(25/3

3 ) + 1
2 log( r

3
UV
S ) (see (A.7)) for η → ∞ where e−4A ' 1. For the second

integral, one can use the fact that
de−4A

dη
= 1
σ(x)

de−4A0

dη
= 22/3(α′gsM)2

σ(x)S4/3
dI(η)
dη

= −422/3(α′gsM)2

σ(x)S4/3
f + F (k − f)

(sinh(2η)− 2η)3/2 ,

(A.17)
to evaluate the integral numerically. We note that while the first integral is dominated by
the region η ' ηUV at which e−4A ' 1, the second integral contains the variation of the
warp factor, which is enhanced for the sizeable e−4A0/σ in the throat region. Then we have

KSS

m2
Pl

= 1
πi
∫

Ω ∧ Ω

[
log

(
r3

0
S

)
+ c′

(α′gSM)2

σ(x)S4/3

]
, (A.18)

where r0 = (25/3/3)1/2rUV and c′ ' 1.18. This can be obtained from the Käher potential
K

m2
Pl

=− 2 logV0 + `6s
π
∫

Ω ∧ Ω

[
|z|2

(
log Λ3

0
|z|

+ 1
)

+ 9c′(gsM)2

(2π)4V2/3 |z|
2/3
]

'− 3 log
(
V2/3

0 − 3c′(gsM)2`6s
(2π)4πi

∫
Ω ∧ Ω

|z|2/3
)

+ `6s
πi
∫

Ω ∧ Ω
|z|2

(
log Λ3

0
|z|

+ 1
)
,

(A.19)

where Λ0 = rUV/`s.
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Meanwhile, the flux induced GVW superpotential can be explicitly written by intro-
ducing (αI , βI) (I = 0, · · · , h2,1), the basis of the de Rham cohomology group H3(Z) and
(AI , BI), the Poincaré dual homology basis satisfying

AI ·AJ = 0 = BI ·BJ , AI ·BJ = δIJ ,∫
AJ

αI = −
∫
BI

βJ =
∫

CY3
αI ∧ βJ = δJI ,

(A.20)

such that the fluxes are quantized as

F3 = `2(M IαI +MIβ
I), H3 = `2(KIαI +KIβ

I), (A.21)

which is constrained by the tadpole condition
1
`2s

∫
CY3

F3 ∧H3 = M IKI −MIK
I = −ND3 + 1

2NO3 + χ

24 , (A.22)

where χ is the Euler characteristic of CY4 in the F-theory compactification. Meanwhile,
the holomorphic 3-form Ω is written as

Ω = ZIαI −FIβI , (A.23)

where
ZI =

∫
AI

Ω, FI =
∫
BI

Ω. (A.24)

Then the complex structure moduli are identified with ta = Za/Z0 (a = 1, · · · , h2.1) and
prepotential F (ta) can be defined as F(ZI) = (Z0)2F (ta) with FI = ∂IF , from which the
GVW superpotential (for the coefficient, see the first expression in (C.5)) is written as5

W = (gsV0)1/2m8
Pl`

2
s[(ZIMI + FIM

I)− τ(ZIKI + FIK
I)]. (A.25)

In particular, in terms of the A-cycle(S3) and the B-cycle (S2 × R) of the throat satisfying∫
A
F3 = `2sM,

∫
B
H3 = −4π2K,

∫
A
H3 =

∫
B
F 3 = 0, (A.26)

i.e., (MS ,MS) = (M, 0) and (KS ,KS) = (0,K), the conifold modulus and the corresponding
prepotential are given by

S =
∫
A

Ω = `3sz, FS =
∫
B

Ω = S

2πi

[
log

(
S

r0

)
− 1

]
+ (regular terms), (A.27)

respectively. Then the superpotential is written as

W = (gsV0)1/2m3
Pl

(
mPl
ms

)5 [
M

z

2πi

[
log

(
S

r0

)
− 1

]
− i

gs
Kz + · · ·

]
. (A.28)

Using (A.18) and (A.28), together with the Kähler potential given by (C.3) (giving
eK/m

2
Pl = V−1/2

0 (gs/2)(im6
Pl
∫

Ω∧Ω)−1(ms/mPl)6) one finds the F-term potential for z given
by (3.7).

5In the same way, the Kähler potential for the complex structure moduli can be written as

Kcs = − log
(∫

Ω ∧ Ω
)

= − log(i|Z0|2[2(F − F )− (ta − ta)(Fa + F a)]).
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B Uplift potential in terms of NS5-brane

In this appendix, we sketch how to obtain the uplift potential in terms of NS5-brane, which
is extended over the four-dimensional noncompact spacetime and wraps the S2 subspace of
the A-cycle (S3 part of the throat). From (2.3) and (A.4), the induced metric on NS5-brane
is written as

ds2
NS5 = e2A(y)e2Ω(x)ηµνdx

µdxν+e−2A(y)σ(x)1/2
(2

3

)1/3
ε4/3 sin2 ψ(dω2+sin2 ωdϕ2). (B.1)

Meanwhile, the NS5-brane action is given by

− SNS5 = T5
g2
s

∫
d6ξ
√
−g
√

det(g2−cycle + gs2πα′F2) + T5

∫
B6, (B.2)

where T5 = 2π`−6
s = T3/[(2π)2α′] (the Dp-brane tension is given by Tp = (2π)−p(α′)−

p+1
2 =

2π`−(p+1)
s ) and 2πα′F = 2πα′F2 + C2 with

2πα′
∫
S3
F2 = −4π2p,

C2 = M

(
ψ − 1

2 sin 2ψ
)

sinωdω ∧ dϕ+ · · · .
(B.3)

We also note that the imaginary self-duality ?6G3 = iG3 gives ?6H3 = −gsF3. Then we
obtain

VNS5 = 1
g2
s

(
T3

(2π)2α′

)
e4Ae4Ω4π(α′gsM)

×

√e−4Aσ(2/3)2/3ε8/3

(α′gsM)2 sin4ψ+
(
πp

M
−
(
ψ− 1

2 sin2ψ
))2

+
(
πp

M
−
(
ψ− 1

2 sin2ψ
))

= T3
gs

M

π
e4Ae4Ω

×

√e−4Aσ(2/3)2/3ε8/3

(α′gsM)2 sin4ψ+
(
πp

M
−
(
ψ− 1

2 sin2ψ
))2

+
(
πp

M
−
(
ψ− 1

2 sin2ψ
)) .
(B.4)

For ψ = 0, the potential is reduced to the D3-brane uplift potential given by (2.23), as
the term in the square brackets becomes 2πp/M . Indeed, when the condition |z|2/3V1/3

0 �
(gsM)/(2π2) is satisfied, the coefficient of sin4 ψ in the square root is simplified to b40 such
that

VNS5 = 21/3

I(0)

(
g3
s

8π

)
m4

Pl
(2π)4|z|4/3

(gsM)2σ(x)2
M

2π

×

√b40 sin4 ψ +
(
πp

M
−
(
ψ − 1

2 sin 2ψ
))2

+
(
πp

M
−
(
ψ − 1

2 sin 2ψ
)) . (B.5)

The O(1) coefficient 21/3/I(0) ' 1.75 is often denoted by c′′. We note that in contrast to
the Dp-brane action which is proportional to g−1

s , the NS5-brane action is proportional to
g−2
s , but since the F-flux contribution is proportional to gs, VNS5 can be reduced to VD3
for ψ = 0.
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C Coefficient of Gukov-Vafa-Witten superpotential

Here we sketch how to fix the coefficient of the GVW superpotential, following appendix A
of [33] (see also [30]). We begin with the fact that when the fluxes are turned on, the |G3|2

term in the Type IIB supergravity action (1.2) gives the potential for GIASD
3 , the imaginary

anti-self dual part of G3 consisting of the harmonic (3, 0)- and (1, 2)-forms (for derivation,
see, e.g., appendix in [21]). This is interpreted as the F-term potential obtained from the
GVW superpotential:

Vflux = gs
2κ2

10

∫
GIASD

3 ∧GIASD
3

Imτ

= gs
κ2

10

i

2Imτ
∫

Ω ∧ Ω
∑
a,b

(m2
PlK

ab)DaWGVWDbWGVW,
(C.1)

where
WGVW =

∫
Ω ∧G3. (C.2)

Here the indices a, b run over the complex structure moduli as well as τ and the inverse of
the Kähler metric Kab is obtained from the Kähler potential

K

m2
Pl

= −2 logV0 − log(−i(τ − τ))− log
(
i

κ6
4

∫
Ω ∧ Ω

)
− log

( 1
κ6

4

∫
d6y
√
g6e
−4A

)
, (C.3)

which consists of the Kähler potential for the overall volume (Kähler) modulus, axio-dilaton,
complex structure moduli, and Kähler moduli other than the overall volume modulus. We
note that whereas the last term is not taken into account in [33], it does not affect our
discussion so far as all the Kähler moduli other than the overall volume modulus are heavier
than the energy scale of the EFT (see [49] for more discussion on their properties). we also
note that the mass dimensions of κ10, Ω, and G3 are given by −8, −3, and −2, respectively,
which is consistent with the mass dimensions of Vflux and W given by 4 and −5, respectively.

Using 2κ2
10 = g2

s`
8
s/(2π) and (2.10), Vflux can be rewritten as

Vflux = (gsV0)m6
sm

10
Pl

(
mPl
ms

)6∑
a,b

KabDaWGVWDbWGVW, (C.4)

from which we find that the superpotential of mass dimension 3 is given by

W = (gsV0)1/2m3
sm

5
Pl

(
mPl
ms

)3 ∫
Ω ∧G3 = g

3/2
s√
4π

m6
Pl
`2s

(
mPl
ms

)3 ∫
Ω ∧G3. (C.5)

The first expression is often convenient since the coefficient is simply given by
(gsV0)1/2m8

Pl [30]. When we are interested in the EFT below the masses of the Käh-
ler moduli other than the overall volume modulus, the factor (mPl/ms)3 is cancelled by
(ms/mPl)3 in eK/(2m2

Pl), which comes from the last term in (C.3). On the other hand, since
the G3-flux is quantized in units of `2s (hence has the mass dimension −2) and Ω contains
the complex structure moduli which is written in units of some length scale, say, m−1

Pl or
m−1
s , the second expression is also useful [33].
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