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1 Introduction

The Peccei-Quinn (PQ) mechanism [1, 2] is probably the best solution to the strong CP
problem of the Standard Model (SM) [3]. This solution predicts a new Goldstone boson,
the so-called axion [4, 5], which is hunted by many experiments. Recent constrains from
astrophysics [6, 7] and particle physics [8, 9] imply that the breaking scale of PQ symmetry,
fa, is much larger than the electroweak scale. Due to this large-scale separation, Effective
Field Theory (EFT) is a well-suited framework to describe the interactions between the
axion and other light particles (usually from the SM).

In previous works, some of us have shown [10–12] that axion models exhibit intrinsic
ambiguities in their formulation, and this has a dramatic impact on the coupling of axions
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to massive gauge fields. One of the main conclusion of ref. [10] states as follows: when axion
models are specified in a representation in which the axion has only derivative couplings to
SM chiral fermions, such as in DFSZ-like axion models [13, 14],1 some chiral reparametri-
sation of the fermionic fields are implicit and lie at the root of the so-called anomalous
axion couplings to gauge field strengths. For vector gauge interactions, it is well known
that derivative couplings to fermions decouple faster than local anomalous operators, which
thus capture the whole axion to gauge boson couplings. By contrast, derivative interactions
do not systematically decouple for chiral gauge interactions, ultimately because the gauge
symmetry is necessarily spontaneously broken when the chiral fermions get their masses.
Importantly, non-decoupling contributions from derivative interactions can arise from the
usual axial coupling to fermions, but also from the vector one. Both can be anomalous in
the presence of chiral gauge interactions. In practice, keeping track of these non-decoupling
effects is crucial to get consistent, parametrisation-independent couplings of the axion to
gauge bosons. Only with them, one can match the results obtained using a linear repre-
sentation of the complex Peccei-Quinn scalar field, in which the axion has pseudoscalar
couplings to chiral fermions, and no anomaly-related ambiguities ever arise.

On a more technical side, these results have been derived by appropriately computing
anomalous triangle diagrams regularised using Weinberg’s method [17, 18] which allow
to parametrise the initial ambiguity inherent to the momentum rooting in the amplitude
integrals. This rigorous treatment allows to obtain generalised Ward identities, in which
one can tune which current is anomalous, or not, which is physically mandatory and not
guaranteed in a more naive computation. The ref. [19] reaches similar conclusions from a
more anomaly matching EFT-oriented point of view, which brings interesting insights to
axion couplings to chiral gauge fields.

In this work, our goal is not only to add up on the understanding and construction
of low energy axion EFTs, but also more generally on the possible interplays or entangle-
ments between spontaneous and anomalous symmetry breaking that can arise when chiral
fermions are integrated out. Further, our goal is to perform this analysis exclusively in a
functional context, by building the low-energy EFT following a step-by-step integration of
the chiral fermion fields, without recourse to triangle Feynman diagrams or Ward identities,
and take advantage of the elegant and convenient techniques developed recently to inte-
grate out heavy fermionic fields [20–30]. The only ingredients will thus be dimensionally-
regulated functional traces, and the order-by-order invariance of the EFT operators under
gauge transformations, when the appropriate would-be-Goldstone bosons are accounted
for. Ultimately, the same non-decoupling of derivative interactions will be observed, in the
sense that the EFT built from them will start with dimension-five operators.

The main novelties of our approach are the following: within the path integral formal-
ism for one-loop matching, we show how to consistently integrate out heavy chiral fermions,
which are charged under both the local and global symmetries. Focusing on the Goldstone-
gauge bosons couplings, we show how to deal with γ5 within dimensional regularisation

1KSVZ-like models [15, 16] involve vector-like fermions, whose masses are decoupled from the sponta-
neous electroweak symmetry breaking, and the discussion is much simpler.
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to properly keep track of the ambiguities arising in the one-loop effective action. In the
functional matching, we show that the gauge invariant combinations of the EFT operators
can be used to fix these ambiguities. Hence, for the first time, with the functional method
for one-loop matching, we can fully control which symmetry currents are anomalous and
which ones are anomaly free. Therefore, the Wilson coefficients can be obtained correctly.
We then derive the universal formula that captures all EFT couplings of Goldstone bosons
with gauge bosons (both massive and massless) consistently and generically. Our results
can be easily applied to various axion UV models.

The plan of the manuscript is the following: In section 2, we integrate out a chiral
fermion from a toy model to obtain a gauge and Goldstone boson EFT. This section will
mainly concentrate on the physical interpretations so the reader can understand the logic
behind the construction without entering into the details of the calculation. The crucial
point of this section is to show how ambiguous coefficients can be fixed by enforcing the
Ward identities, which are now written in terms of gauge invariant combinations of the
EFT operators. For the reader who is familiar to this topic, one can skip this section and
go directly to the following section.

In section 3, we will detail how to evaluate the one-loop effective action from the
path integral functional approach and how we deal with the ambiguities originating from
the QFT anomalies. The main outcome of this section is eq. (3.29), a master formula
which can be easily used to obtain effective couplings between gauge fields and Goldstone
bosons, and which encapsulates the subtleties occurring when dealing with anomalous
global symmetries in a chiral gauge theory.

In section 4, we apply this master formula to various models starting with a simple
chiral toy model with an additional global U(1) symmetry. We then explicitly apply our
results to axion models and recover, for instance, the non-intuitive axion couplings involv-
ing massive gauge fields in DFSZ-like models. We conclude in section 5 while additional
computational details regarding master integrals can be found in appendix A.

2 EFTs with spontaneously and anomalously broken symmetries

Readers familiar to the topic of anomalous symmetries in the EFT may directly jump
to the following sections. Our goal here is to introduce the formalism using a simplified
setting. More precisely, our goal is to integrate out fermions that can be charged under
both global and local symmetries. Further, those fermions will not be assumed vector-
like: their left- and right-handed components need not have the same charges under these
symmetries. This generates two complications. First, obviously, such fermions can only
acquire a mass, and thus be integrated out, when the chiral components of the symmetries
are spontaneously broken. Second, the classical symmetries cannot all survive quantisation,
and there must be some anomalies. These two effects are entangled, and further, they
induce some freedom in how the fermionic part of the UV Lagrangian is to be parametrised.
So, before any attempt at integrating out the fermions, it is necessary to fix this freedom.
As we will discuss in this section, from a functional point of view, one parametrisation
emerges as the most natural, but requires a specific treatment of anomalous effects and
derivative interactions.
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2.1 EFTs and gauge invariance

We start from a generic UV Lagrangian exhibiting some set of local symmetries and in-
volving fermionic degrees of freedom. Typically, the fermionic part of the Lagrangian is of
the form, including for simplicity only one axial and one vector gauge field,

Lfermion
UV = Ψ̄

(
i∂µγ

µ + gV Vµγ
µ − gAAµγ

µγ5)Ψ . (2.1)

Let us first consider abelian gauge symmetries for simplicity.2 At the classical level, this
theory is invariant under U(1)V and U(1)A gauge transformations, which we define as:

U(1)V : Vµ → Vµ + 1
gV
∂µθV , Ψ→ exp(iθV )Ψ , (2.2)

U(1)A : Aµ → Aµ + 1
gA
∂µθA , Ψ→ exp(−iθAγ5)Ψ . (2.3)

Our goal is to integrate out the fermion to get the tower of effective interactions by perform-
ing an inverse mass expansion.3 This obviously means that the fermion to be integrated
out should be massive, which forces the axial gauge symmetry to be spontaneously bro-
ken. To be able to consistently account for this, let us include the complex scalar field
φA which, by acquiring a vacuum expectation value v, will spontaneously break the axial
gauge symmetry,

Lfermion
UV = Ψ̄

(
i∂µγ

µ + gV Vµγ
µ − gAAµγ

µγ5)Ψ− yΨ
(
Ψ̄LφAΨR + h.c.

)
, (2.4)

with yΨ the Yukawa coupling, and two Weyl components ΨR,L = PR,L Ψ with PR,L =
(1± γ5)/2.

If one wants to focus on manifest gauge invariance, it is convenient to include the
Goldstone boson, πA, and adopt an exponential or polar representation for the complex
scalar field,

φA = 1√
2

(v + σA) exp
[
i
πA(x)
v

]
. (2.5)

Indeed, thanks to the exponential parametrisation of the Goldstone boson, this theory is
still manifestly gauge invariant provided, together with the transformation of eq. (2.3),

πA → πA + 2vθA , (2.6)

while σA is gauge invariant and plays no rôle in that regard. Said differently, with this
representation, it is sufficient to keep only the gauge bosons and the Goldstone fields
explicitly to construct the EFT, which will involve only these fields in a gauge invariant way.

By contrast, if one insists on manifest renormalisability, the Goldstone boson has to
enter linearly, that is, by writing the scalar field acquiring a vacuum expectation value v
as linear in all its components,

φA = 1√
2

(v + σA + iπA) . (2.7)

2We will discuss later the peculiarities arising in the non abelian case.
3More precisely we will use convenient Covariant Derivative Expansion (CDE) techniques.
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The σA is no longer gauge invariant since a U(1)A gauge transformation is nothing but
a SO(2) rotation for the (v + σA, πA) vector. If one insists on manifest gauge invariance,
the difficulty then is that σA should explicitly appear in Lfermion

UV . Even if in the abelian
case, this is quite simple, this would introduce unnecessary model-dependence in the non-
abelian case.

So, at the end of the day, it is legitimate in order to be able to consistently account
for spontaneous breaking of the axial gauge symmetry, to consider the exponential repre-
sentation of the Goldstone boson,

Lfermion
UV = Ψ̄

(
i∂µγ

µ + gV Vµγ
µ − gAAµγ

µγ5 −M exp
[
i
πA
v
γ5
])

Ψ , (2.8)

where M ≡ yΨv/
√

2 stands for the mass of the fermion. Yet, at this stage, a Taylor
expansion4 produces the pseudoscalar πAΨ̄γ5Ψ coupling, and is the same as it would be in
the linear representation of φA. So, the distinction between linear and polar representation
may appear quite academic. Yet, the exponential parametrisation offers an alternative
route. Instead of a Taylor expansion, there is a well-known exact procedure to recover a
linearised Lagrangian that allows to transfer the Goldstone dependence from the Yukawa
sector to the gauge sector. Based on the chiral rotation that is given by eq. (2.3), it suffices
to perform a field-dependent reparametrisation of the fermion fields

Ψ→ Ψ = exp
[
− iπA(x)

2v γ5
]
Ψ , (2.9)

and the Lagrangian in eq. (2.8) becomes

Lfermion
UV = Ψ̄

(
i∂µγ

µ −M + gV Vµγ
µ −

[
gAAµ −

∂µπA(x)
2v

]
γµγ5

)
Ψ . (2.10)

Under this form, Ψ is invariant under the axial gauge transformation U(1)A, so the mass
term does not cause any trouble even for a chiral gauge symmetry and could easily be
factored out for an EFT mass expansion. The quadratic operator defined in eq. (2.10)
has the virtue of being manifestly gauge invariant. The Goldstone boson itself ensures the
theory stays invariant when Aµ → Aµ + 1

g
A
∂µθA thanks to πA → πA + 2vθA . Evidently, for

that to work, one should not get rid of them by moving to the unitary gauge.
However, as a side effect, the theory is still not manifestly renormalisable since the

∂µπA(x) operator is of dimension five. Yet, this form looks particularly well suited for
an inverse mass expansion since M ∼ v. Let us stress, though, that one should not be
tempted to conclude that the ∂µπA(x) operator is subleading and can be neglected. Such
considerations can only be consistently done after the fermion field has been integrated
out, and as we will see in details in the following, this operator does contribute in general
to the leading terms in the EFT.

4For the purpose of evaluating the one-loop effective action using the Covariant Derivative Expansion
(CDE), truncating this expansion is perfectly consistent since operators at most linear in a given Gold-
stone boson will be considered. Issues related to the apparent non-renormalisability of the exponential
parametrisation will not affect our developments.
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2.2 EFTs and anomalies

The Lagrangian in eq. (2.10) looks promising, but to reach it, we had to reparametrise the
fermion field, eq. (2.9), and there is one crucial caveat for that. The fermion being chiral,
this reparametrisation does not leave the path integral fermionic measure invariant. In
general, given that Ψ is coupled to gauge fields, the Jacobian, obtained using the singlet
anomaly result for chiral fermions [18, 31], sums up to additional terms in the Lagrangian
of the form

LUV ⊃ LJac
UV = 1

8π2
πA
2v

[
g2
V
FV ,µνF̃

µν
V

+ 1
3g

2
A
FA,µνF̃

µν
A

]
, (2.11)

with FµνX = ∂µXν −∂νXµ the usual field strength tensor applied to the generic gauge field
X and F̃µνX = (1/2)εµνρσF ρσX its dual field strength tensor with the suffix indicating if this
apply to the vector gauge field (V) or the axial one (A). These terms explicitly break gauge
invariance, since they get shifted under πA → πA + 2vθA .

There are two main ways to deal with the anomalous contributions shown in eq. (2.11).
If one wants to hold the interactions to be gauged, a first possibility consists in tuning the
chiral fermionic content such that the total contribution to the anomaly vanishes (as it
happens in the SM). The second possibility is to give up gauge invariance and reconsider
the local symmetry as a global symmetry. We clarify in the following these two cases to
consider:

• For gauge interactions that are meant to exist at the quantum level (then not being
anomalous), the fermionic content is supposed to be just right so that the sum of all
Jacobian terms sum up to zero. As is well known, this is the prototype of the gauge
interactions in the SM, where gauge anomalies cancel out only when all matter fields
are summed over. The important point is that the corresponding Goldstone fields
are allowed to be moved to and from the mass terms without generating a Jacobian
contribution. Indeed, the reparametrisation in eq. (2.9) must not generate Jacobian
terms since a gauge transformation acts like that on fermions, see eq. (2.3). In
this context, the strict equivalence between the Ψ̄

(
∂µπAγ

µγ5)Ψ and Ψ̄
(
Mγ5πA/v

)
Ψ

couplings can be viewed as the transcription of the non-anomalous Ward identity
∂µA

µ = 2iMP with Aµ = Ψ̄γµγ5Ψ and P = Ψ̄γ5Ψ. Indeed, to the divergence of
any correlation function of the axial gauge current, 〈0|Aµ... |0〉, we can associate
that with ∂µπA from eq. (2.10), which can then be equivalently calculated from
eq. (2.8) (after Taylor expanding the exponential term). Regarding the vector gauge
interactions, the situation is simpler since the mass term is gauge invariant. Imposing
Vµ → Vµ+ 1

g
V
∂µθV requires the ∂µθV piece to cancel out, i.e. any correlation function

of the vector gauge currents V µ = Ψ̄γµΨ satisfies the non-anomalous Ward identity
∂µV

µ = 0.

• Some of the gauge interactions may simply be absent if their symmetry is kept global.
In that case, one can simply remove the corresponding Aµ from the Lagrangian,
but keep the Goldstone bosons since they become independent physical degrees of

– 6 –



J
H
E
P
0
8
(
2
0
2
2
)
1
3
7

freedom. These global symmetries may or may not have anomalies, but whenever
they do, one should keep track of the Jacobian when passing from pseudoscalar to
derivative Goldstone boson couplings to fermions. As explained in refs. [10, 11], one
must obtain the same results using either the Lagrangian with pseudoscalar couplings
(after Taylor expanding the exponential term in eq. (2.8)), or that using derivative
couplings, eq. (2.10), provided the local anomalous terms, eq. (2.11), are then also
included. Indeed, the point is that derivative couplings do induce anomalous effects
that precisely cancel those in the local terms of eq. (2.11). In the inverse mass
expansion context, this shows that one must be careful not to perform the limit
M →∞ too soon, that is, discard the derivative interaction in eq. (2.10) on the basis
of its relative O(M2) suppression with respect to the fermion mass term, because it
does provide terms of the same order in M as those in eq. (2.11).

2.3 EFTs with local and global symmetries

The goal of the present paper is to consider scenarios combining both situations we have
discussed so far, that is, with spontaneously broken gauge symmetries and anomalous
global symmetries. Generically, our theory of interest corresponds to

LUV ⊃ Lfermion
UV + LJac

UV , (2.12)

with

Lfermion
UV = Ψ̄

[
i∂µγ

µ −M +
(
Vµ −

∂µπV
2vV

)
γµ −

(
Aµ −

∂µπA
2vA

)
γµγ5

−
(

0− ∂µπS
2vS

)
γµ −

(
0− ∂µπU

2vU

)
γµγ5

]
Ψ . (2.13)

and for the Jacobian, using the singlet anomaly result for chiral fermions [18, 31], and
noting that ΨL/R couples to V µ ±Aµ and ∂µ(πS ± πU ),

LJac
UV = 1

16π2
πU
2vU

[(
FV ,µν + FA,µν

)(
F̃µν
V

+ F̃µν
A

)
+
(
FV ,µν − FA,µν

)(
F̃µν
V
− F̃µν

A

)]
+ 1

16π2
πS
2vS

[(
FV ,µν + FA,µν

)(
F̃µν
V

+ F̃µν
A

)
−
(
FV ,µν − FA,µν

)(
F̃µν
V
− F̃µν

A

)]
= 1

8π2
πU
2vU

(
FV ,µνF̃

µν
V

+ FA,µνF̃
µν
A

)
+ 1

4π2
πS
2vS

FA,µνF̃
µν
V
, (2.14)

where πA and πV have no contact interactions with field strength tensors since these gauge
interactions are assumed anomaly-free. To insist on the fact that πS and πU are Goldstone
bosons associated to global symmetries, we explicitly assign their respective would-be-gauge
fields to 0 in eq. (2.12). In this expression and throughout the rest of this section, we have
set all the couplings to one to unclutter the derivation, but they can be straightforwardly
reintroduced, as we will do in the following sections. This parametrisation of the fermion
sector of the UV theory deserves several important comments:

• The UV theory necessarily involves several complex scalar fields, several species of
fermions to cancel the gauge anomalies, along with some set of scalar and fermion
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couplings ensuring the existence of the gauge and global symmetries at the Lagrangian
level. Further, as will be detailed in section 4, the pseudoscalar components of these
scalar fields in general mix, with some combinations eaten by the gauge fields, and
some left over as true physical degrees of freedom. With the above parametrisation,
we single out one of these fermions, and all the other UV features are encoded into
the parameters vS,U , vA,V , which in general involves vacuum expectation values and
some mixing angles, and in the fermion mass term M , which in general arises from
several Yukawa couplings.

• Adopting a non-linear representation for the scalar fields, with its associated loss of
renormalisability, is inevitable if one wishes to leave the details of the whole scalar
sector unspecified and start at the UV scale with an effective theory involving only
the Goldstone bosons. Indeed, those have to be constrained to live on the specific
coset space corresponding to the assumed symmetry breaking pattern. Note that for
an abelian global symmetry, the dynamics of the Goldstone bosons is particularly
simple, as there are no contact interactions among them, and all that remains is the
shift symmetry.

• One of the main goal of this work is to build an EFT by integrating out chiral fermions.
As we have discussed, it is then convenient to reparametrise the fermion fields, so that
the Goldstone boson couplings to fermions involve local partial derivative. This first
ensures the gauge and shift symmetries are manifest, but it also makes the fermion
mass term invariant under all symmetries. Though not compulsory, it then allows to
construct the EFT by factoring the mass term out in a symmetry preserving way.

• For the abelian toy model described here, the Goldstone bosons involved in vector cur-
rents, πS and πV , actually play no role. Indeed, for the vector gauge interaction, the
∂µπV Ψ̄γµΨ interaction can always be eliminated by a non-anomalous reparametrisa-
tion Ψ → exp

(
i πV2vV

)
Ψ, which leaves the fermion mass term invariant. Whether it is

spontaneously broken or not is thus irrelevant. For the scalar πS Goldstone boson
associated to a global symmetry, the reparametrisation Ψ → exp

(
i πS2vS

)
Ψ not only

removes the ∂µπSΨ̄γµΨ interaction, but being anomalous, it induces a Jacobian that
precisely kills the πS terms in eq. (2.14). The field πS thus disappears entirely from
the theory. These two facts are truly peculiar to the abelian gauge symmetry case,
with the fermion in a one-dimensional representation. So, to set up the formalism
to deal with more general theories, like the SM, we keep these fields explicitly in the
UV parametrisation of the fermion couplings.5

So, let us proceed and integrate out the fermion field involving local partial derivatives
in its quadratic operator. Details of the calculation will be presented in the following
section, but let us already discuss some interesting generic features. If one decides to

5Further, integrating out the fermion starting from eq. (2.13), to verify that the πS derivative interaction
indeed induces EFT operators that precisely cancel the Jacobian term in eq. (2.14) provides a non-trivial
check for our calculation, see section 4.1.
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use Feynman diagrams to integrate out fermions, one will have to deal with divergent
triangle amplitudes that one will have to carefully regularise. Even if this is a standard
manipulation in QFT, the potential spread of the anomaly has to be considered with great
care as discussed in refs. [10, 11]. In the functional approach, that we will follow all along
this work, the fact that the axial vector or vector couplings are anomalous manifests itself
by the presence of ambiguities in the functional trace.6

This means that starting from eq. (2.13), the fermion-less EFT expansion will start
with six dimension-five operators involving the Goldstone bosons πU and πS ,7

Lfermion
UV → L1loop

EFT =ωAV V
∂µπU
2vU

VνF̃
µν
V

+ ωAAA
∂µπU
2vU

(
Aν −

∂νπA
2vA

)
F̃µν
A

+ ωV V A
∂µπS
2vS

VνF̃
µν
A

+ ωV AV
∂µπS
2vS

(
Aν −

∂νπA
2vA

)
F̃µν
V

. (2.15)

The evaluation of the ωi coefficients8 involves divergent integrals and after their regular-
isation, those parameters end up fully ambiguous. We thus need to find a strategy to
fix them.

Actually, these ambiguities are the exact analog of those arising for the triangle dia-
grams, whose expressions are ambiguous since they depend on the routing of the momenta
when working at the Feynman diagram level. In that case, the ambiguities are removed
by imposing the appropriate Ward identities, that is, gauge invariance. So, we would like
to do the same here, and impose the vector and axial gauge invariance. However, all
the operators in eq. (2.15) are already gauge invariant! Actually, the would-be-Goldstone
bosons πA are not even needed to ensure the gauge invariance, and they never contribute
to S-matrix elements. The reason is that their contributions, or the θV,A terms arising
when Vµ → Vµ + ∂µθV or Aµ → Aµ + ∂µθA , drop out by integration by parts9 thanks to
the antisymmetry of F̃µν

V,A
and the Bianchi identity.

In the initial Lagrangian of eq. (2.12) we decided to treat both the would-be Goldstone
bosons (πV and πA) and the Goldstone bosons (πS and πU ) on equal footing by writing
them with local derivative acting on them. Since this increases the degree of divergence
of integrals one would then be tempted, in order to minimise the number of integrals to
regularise, to preferentially consider the situation where the would-be Goldstone bosons
enter the mass term (let us remind that this can be trivially done since the gauge symmetries
are assumed not to be anomalous). Then, after Taylor expanding the mass term one
obtains,

Lfermion
UV = Ψ̄

[
i∂µγ

µ −M
(

1 + πA
vA

iγ5
)

+ Vµγ
µ −Aµγµγ5 + ∂µπS

2vS
γµ + ∂µπU

2vU
γµγ5

]
Ψ .

(2.16)
6More precisely the ambiguity is localised in the Dirac matrices trace if one chooses to use dimensional

regularisation, as we will do.
7A priori the only non vanishing dimension five operators have to involve Dirac traces with only one γ5

matrix or with three γ5 matrices.
8The ωi coefficients carry the CP properties of their associated three Lorentz structures. As an example,

∂µπU is CP-odd, Vν and F̃µν
V

are CP-even so the associated coefficient reads ωAV V .
9One should note that integration by parts can be performed without any hesitation since the fermion

has been formally integrated out.
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Since by construction the U(1)V and U(1)A symmetries are gauged, the would-be-Goldstone
bosons, πV and πA, are not involved in bosonic operators up to dimension five, starting
from eq. (2.16). This means that the fermion-less EFT expansion will start again with four
dimension-five operators involving only the Goldstone bosons πS and πU ,

Lfermion
UV → LEFT =ωAV V

∂µπU
2vU

VνF̃
µν
V

+ ωAAA
∂µπU
2vU

AνF̃
µν
A

+ ωV V A
∂µπS
2vS

VνF̃
µν
A

+ ωV AV
∂µπS
2vS

AνF̃
µν
V

. (2.17)

Since πA drops out of eq. (2.15) under integration by part, we recover exactly the same
effective interactions. Moving the would-be-Goldstone to the fermion mass term, that is,
making it gauge-dependent, does not help to fix the ωi coefficients because gauge invariance
is still automatic for the leading dimension-five operators. The only way forward is to
perturb the theory to break this automatic gauge invariance, so that non-trivial constraints
on the ωi coefficients can emerge. One possibility is to associate to the Goldstone bosons,
πS and πU , auxiliary gauge fields Sµ and Uµ, respectively, as we will now discuss.

2.4 Remove ambiguities with artificial gauging

One way to fix ωAV V , ωV V A , ωV AV and ωAAA using the constraint of gauge invariance is
to introduce fictitious10 vector and axial vector gauge fields associated to the πS and πU
Goldstone bosons. These fictitious gauge fields then enter in the effective operators of
eq. (2.15), and prevent gauge invariance from being automatic under partial integration.
They also prevent the contributions involving the would-be-Goldstone bosons of the true
symmetries to vanish. This trick, introduced in ref. [19], is the key to derive non-trivial
constraints and fix the ambiguous coefficients.

One may be a bit uneasy about this gauging of the global symmetries since these are
precisely the symmetries that are anomalous. Actually, in the following, we will never need
to use the fictitious gauge invariance in any form. All that matters is that these fictitious
gauge fields act as background fields for ∂µπS and ∂µπU , so as to upset the automatic
(true) gauge invariances. This is sufficient to derive non-trivial constraints from the true,
non-anomalous gauge symmetries.

Yet, as advocated in ref. [19], it can also be technically interesting to view these
background fields as fictitious gauge fields, because then all the symmetries are treated
on the same footing. As we will detail in section 3, the calculation of the EFT becomes
fully generic. The nice feature is that under this form, one can decide only at the very end
which of the gauge symmetries is to be anomalous, hence fictitious, by imposing the exact
invariance of the EFT under the other gauge symmetries, those that are kept active.

To illustrate all that, let us thus rewrite our initial Lagrangian as

Lfermion
UV,I = Ψ̄

[
i∂µγ

µ −M +
(
Vµ −

∂µπV
2vV

)
γµ −

(
Aµ −

∂µπA
2vA

)
γµγ5

+
(
Sµ −

∂µπS
2vS

)
γµ +

(
Uµ −

∂µπU
2vU

)
γµγ5

]
Ψ . (2.18)

10At the end of the day, we will still want the global symmetry to stay global and to set to zero these
fictitious vector fields.
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In this Lagrangian, the ∂µπV piece is irrelevant, since it can be eliminated by an innocuous
reparametrisation, but let us keep it anyway for now. Integrating out the fermion leads to
the EFT :

L1loop
EFT,I =ωV V A

(
Sµ −

∂µπS
2vS

)(
Vν −

∂νπV
2vV

)
F̃µν
A

+ ωAV V

(
Uµ −

∂µπU
2vU

)(
Vν −

∂νπV
2vV

)
F̃µν
V

+ ωV AV

(
Sµ −

∂µπS
2vS

)(
Aν −

∂νπA
2vA

)
F̃µν
V

+ ωAAA

(
Uµ −

∂µπU
2vU

)(
Aν −

∂νπA
2vA

)
F̃µν
A
, (2.19)

with again the ambiguous coefficients ωAV V , ωV V A , ωV AV and ωAAA (the details of the cal-
culation will be presented in the next section). All these interactions are still automatically
gauge invariant thanks to the presence of the would-be-Goldstone bosons. Now, the key
is to remember that the true gauge interactions are anomaly-free by assumption. This
means the πA can be freely moved to the mass term by a reparametrisation of the fermion
field, without Jacobian, and as said above, the ∂µπV term can be discarded, again without
Jacobian. Thus, the UV Lagrangian can equivalently be written as

Lfermion
UV,II = Ψ̄

[
i∂µγ

µ −M
(

1 + πA
vA

iγ5
)

+ Vµγ
µ −Aµγµγ5

+
(
Sµ −

∂µπS
2vS

)
γµ +

(
Uµ −

∂µπU
2vU

)
γµγ5

]
Ψ . (2.20)

This time, there is no ambiguity in calculating the Wilson coefficients of the operators in-
volving the would-be-Goldstone bosons. The five-dimensional effective interactions become

L1loop
EFT,II ⊃ωV V A

(
Sµ −

∂µπS
2vS

)
VνF̃

µν
A

+ ωAV V

(
Uµ −

∂µπU
2vU

)
VνF̃

µν
V

+ ωV AV

(
Sµ −

∂µπS
2vS

)
AνF̃

µν
V

+ ηASV
πA
vA
FS , µνF̃

µν
V

+ ωAAA

(
Uµ −

∂µπU
2vU

)
AνF̃

µν
A

+ ηAUA
πA
vA
FU , µνF̃

µν
A
, (2.21)

where ωAV V , ωV V A , ωV AV and ωAAA are ambiguous, but not ηASV and ηAUA since they arise
from convergent integrals. Importantly, under this form, the true U(1)V and U(1)A gauge
invariances are no longer automatic.

Now, we end up with two equivalent ways to fix the ambiguities. Either we enforce
the matching of eq. (2.21) with eq. (2.19), or we impose gauge invariance on eq. (2.21). In
both cases, the constraints take the same form, but the latter is obviously more economical
from a calculation point of view and will be adopted in the next sections.

For instance, for the vector gauge fields, since πV is absent from eq. (2.21), matching
with eq. (2.19) requires ωV V A and ωAV V to vanish. Equivalently, invariance of eq. (2.21) un-
der Vµ → Vµ+∂µθV immediately imposes ωV V A = ωAV V = 0. This corresponds to the usual
result that for vector gauge interactions, the derivative interactions of a Goldstone boson
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with the fermions contributes only at the subleading order in the mass expansion, other-
wise known as the Sutherland-Veltman theorem. The local Jacobian terms in eq. (2.14)
immediately catch the whole πUV V coupling.

For the axial gauge field, matching eq. (2.21) with eq. (2.19) obviously permits to
fix the ambiguous ωV AV and ωAAA in terms of ηAV S and ηAUA , which are fully calculable.
Alternatively, performing a U(1)A gauge transformation Aµ → Aµ + ∂µθA together with
πA → πA+ 2vAθA in eq. (2.21) generates the gauge variation, after integrating by part and
using the Bianchi identity,

δA
(
L1loop

EFT,II
)

=
(1

2ωV AV + 2ηASV
)
θAF

µν
S
F̃V , µν +

(1
2ωAAA + 2ηAUA

)
θAF

µν
U
F̃A, µν . (2.22)

Hence, the requirement of gauge invariance asks for

δA
(
L1loop

EFT,II
)

= 0⇔ ωV AV = −4ηASV and ωAAA = −4ηAUA . (2.23)

The effective axion-bosonic Lagrangian is obtained by adding LJac
UV and L1loop

EFT,II and finally
setting the fictitious vector fields to zero, this gives the result,

LEFT = 1
16π2

πU
vU
FV ,µνF̃

µν
V

+
[ 1

16π2 − ηAUA
]
πU
vU
FA,µνF̃

µν
A

+
[ 1

8π2 − ηASV
]
πS
vS
FA,µνF̃

µν
V
.

(2.24)

Let us stress again that the ηAUA and ηASV are fully calculable, unambiguous coefficients
originating from convergent integrals. The determination of ωV AV and ωAAA from the
requirement of gauge invariance is now transparent, and precisely matches that using Ward
identities in a Feynman diagram context [10]. This is the general procedure we will adopt
in the following to derive our bosonic EFTs. Of course, in the physical case, none of the
interactions parametrised by ηASV and ηAUA exist since they require the presence of the
fictitious Uµ and Sµ gauge fields as background values.11 Yet, this derivation sheds a new
light on the violation of the Sutherland-Veltman theorem in the presence of spontaneously
broken axial gauge interactions. Ultimately, it is due to the contribution of the associated
would-be-Goldstone boson. The net effect is that the πSV A and πUAA couplings are not
fully determined by the corresponding terms in the Jacobian, eq. (2.14), since derivative
interactions do contribute at leading order in the inverse mass expansion.

3 Integrating out chiral fermions

In the previous section we discussed, qualitatively, peculiarities arising when building an
EFT, while integrating out fermionic fields, from a UV theory with exact or spontaneous
gauge symmetries and anomalous global symmetries. In this section we will, quantitatively,
construct these EFTs involving gauge fields and their associated would-be-Goldstone bosons

11Looking back, it is clear that gauge invariance under these fictitious symmetries is never imposed in any
form. All that matters is to prevent the would-be-Goldstone bosons from being automatically absent from
both eq. (2.19) and eq. (2.21), and true gauge invariance from being automatic in both EFT Lagrangians.
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and simple Goldstone bosons associated to global symmetries. While the would-be Gold-
stone bosons can display derivative or pseudo-scalar couplings to fermions, since ultimately
this depends on the fermion parametrisation (as we have discussed before), the Goldstone
bosons will have to be taken firmly with local derivative couplings to fermions. Strictly
speaking, from a path integral point of view, those details of the model are not mandatory
to perform the main computation part, meaning forming the operator basis, evaluating
the loop integrals after regularizing them. The symmetry aspects of the model will only
matter at the very last stage when matching a UV theory onto its EFT.

In this section, we will briefly review the core techniques for calculating Wilson coeffi-
cients of EFT higher dimensional operators at the one-loop level by utilizing the functional
approach. Since our interest is about the anomaly structure of specific QFTs, we will con-
centrate, in a general way, on the task of integrating out chiral fermions or fields which
chiraly interact with gauge fields. We will also remind the reader how anomalies arise
depending on how the one-loop effective action is regularised.

3.1 Evaluation of the fermionic effective action

We consider a generic UV theory containing a heavy Dirac fermion Ψ of massM interacting
bilinearly with a light field φ, which is encapsulated inside the background function X[φ].12

The matter Lagrangian of this generic UV theory can be written as follows,

Lfermion
UV

[
Ψ, φ

]
⊃ Ψ̄

[
Pµγ

µ −M +X[φ]
]
Ψ = Ψ̄QUV[φ] Ψ , (3.1)

where Pµ = i∂µ and introducing QUV [φ] the fermionic quadratic operator. The background
function X[φ] that we will consider throughout this paper is

X[φ] = Vµ[φ]γµ −Aµ[φ]γµγ5 −W1[φ]iγ5 , (3.2)

where we decompose X[φ] in terms of vector Vµ[φ], axial-vector Aµ[φ] and pseudo-scalar
W1[φ] structures,13 which are all the different types of interactions we will need to match
our “axion motivated” UV theory to an EFT. In order to obtain the fermionic one-loop
effective action, the light field φ is treated classically, integrating out the fermion field
Ψ yields14

eiS
1loop
EFT [φ] =

∫
DΨDΨ eiSUV[Ψ, φ]

' eiSUV[Ψc, φ]
∫
Dη̄Dη ei

∫
d4x η̄QUV[φ]η = eiSUV[Ψc, φ] detQUV[φ]

= eiSUV[Ψc, φ]eTr lnQUV[φ] , (3.3)

12For simplicity, we will consider Ψ and φ as singlets but the following procedure is more general and it
is still possible to treat them as multiplets.

13We note that Vµ[φ], Aµ[φ] and W1[φ] do not contain any Dirac matrices or momentum variables qµ.
The structures Vµ[φ] and Aµ[φ] can include gauge fields or local derivative of scalar fields.

14The quantity S1loop
EFT corresponds to the fermion 1PI action and it is formally divergent. We will discuss

its gauge variation and its regularisation in the following.
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where in the second line of eq. (3.3) we have expanded the fermion fields around their
classical background values, Ψ = Ψc + η and performed the integration over the quantum
fluctuations η. Eventually, we have traded the functional determinant for the functional
trace, “Tr”, running over the functional space and internal indices of the quadratic operator,
QUV[φ]. We therefore arrive at the one-loop effective action arising from integrating out a
fermion:

S1loop
EFT = −iTr ln(/P −M + Vµ[φ]γµ −Aµ[φ]γµγ5 −W1[φ]iγ5) . (3.4)

Generally, in the functional space, one can write the quadratic operator as a function of
position, x̂, and momentum, p̂, operators. Projecting onto position space, these operators
become x̂ = x and p̂µ = i∂µ. The standard initial step is to evaluate the trace over
functional space by inserting the momentum eigenstate basis together with employing the
canonical quantum mechanical trick of inserting the identity matrix,

∫
d4x |x〉 〈x| = 1,15

S1loop
EFT = −i

∫
d4q

(2π)4 〈q| tr lnQUV (x̂, p̂µ) |q〉

= −i
∫
d4x

∫
d4q

(2π)4 〈q| x〉 〈x| tr lnQUV (x̂, p̂µ) |q〉

= −i
∫
d4x

∫
d4q

(2π)4 e
iq·x tr lnQUV (x, i∂µ)e−iq·x

=
∫
d4x

∫
d4q

(2π)4 (−i) tr lnQUV (x, i∂µ − qµ) , (3.5)

where “tr" now denotes the trace over spinor and internal symmetry indices only. Here
the 〈x| denotes the eigenstate of local operator in position space, e.g. 〈x| QUV (x̂, p̂) =
QUV (x, i∂µ) 〈x|, and the convention for inner product is 〈x| q〉 = e−iq·x. An “open" deriva-
tive from the kinematic operator will get shifted due to eiq·xi∂µe

−iq·x = i∂µ + qµ. We
perform also a conventional change of integration variable q → −q. As we will study later,
we emphasise that in the case where one has to deal with a local derivative of a bosonic
field, e.g.

[
∂µπ(x)

]
, this term will not be shifted under the sandwich of eiq·x

[
∂µπ(x)

]
e−iq·x

since the partial derivative of this coupling is “closed". Therefore, on the computational
side, depending on the vector or axial-vector nature of the local derivative couplings, one
can absorb these terms into the vector (Vµ[φ]) and axial-vector (Aµ[φ]) structures of the
UV quadratic operator.16

Ultimately, the expansion of the logarithm in terms of a series of local operators sup-
pressed by the fermion mass scale can be performed by a variety of techniques,

L1loop
EFT = −iTr ln(/P − /q −M −X[φ])

= i tr
∞∑
n=1

1
n

∫
d4q

(2π)4

[
−1

/q +M

(
− /P − Vµ[φ]γµ +Aµ[φ]γµγ5 +W1[φ]iγ5

)]n
. (3.6)

15For the reader who would like to investigate in details the whole computation steps, we recommend
refs. [20, 22, 25, 32].

16This underlines the practical usefulness of our initial choice of parametrisation made in eq. (3.4).
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The remarkable point at this stage is that the q-momentum integration can be factorised
out from the generic operator structures. Indeed, regardless of the method used to evaluate
the logarithm expansion, it can be done once-and-for-all, and the result is the same and
universal in the sense that the final expression is independent of the details of the UV
Lagrangian, which remain encapsulated in the X matrix of light fields, covariant derivative
Pµ, and mass matrix M . This leads to the so-called concept of the Universal One-Loop
Effective Action (UOLEA) (see refs. [21, 23, 24, 26, 28]).

Note that in our calculations we will deal with multiple vector, axial vector and pseudo-
scalar interactions so we will consider in all generalities

Vµ[φ] ≡ gi
V
V i
µ[φi] , Aµ[φ] ≡ gi

A
Aiµ[φi] , W1[φ] ≡ gi

W1
W i

1[φi] , (3.7)

with an implicit summation over the i index.

3.2 Ambiguities and regularisation of the functional trace

The evaluation of the one-loop effective Lagrangian eq. (3.6) usually encounters divergent
integrals and we use dimensional regularisation [33] to evaluate them along with the MS

scheme for renormalisation. The traces over Dirac matrices have to be performed in d =
4 − ε dimensions, and the ε-terms resulting from the contractions with the metric tensor
(satisfying then gµνgµν = d) must be kept in the computations. These ε-terms will then
multiply with the (1/ε) pole of the divergent integrals and yield finite contributions. We
emphasise that depending on the regularisation scheme for γ5 in d-dimensions, different
results for ε-terms in Dirac traces will emerge (see for examples refs. [34–36]). We will
come back shortly to describe in details the prescription we used to evaluate ill-defined
Dirac traces involving γ5 matrices, in dimensional regularisation.

We now turn back on the ambiguities arising in some of our integrals in the 4-
dimensional space. Usually, when computing one-loop divergent triangle Feynman dia-
grams (corresponding to the Adler–Bell–Jackiw anomaly [37, 38]), it is well-known that,
in d = 4 dimensions, an ambiguity of the loop integral arises. It corresponds to an ar-
bitrariness in the chosen integration variables (see ref. [17]), and actually there can be
surface terms that do depend on the chosen momentum routing. Those surface terms then
contribute to the divergence of vector-currents and axial-vector-currents, and all the naive
Ward identities cannot be satisfied simultaneously. At least some of them will be anoma-
lous. The important point is that the arbitrariness of integral variable can be parametrised
in terms of free parameters (see the standard refs. [17, 18] and the more recent refs. [10, 19]).
By tuning the value of those free parameters, one can decide which symmetry is broken
at the quantum level, and which are kept active. Evidently, to obtain the correct physical
results, all the gauge symmetries must be preserved.

When switching to the d-dimensional space, the ambiguity on the loop integrals does
not arise anymore from dependencies on the chosen momentum routing, but it is now
inherent from the Dirac algebra sector. Indeed, not all the usual properties of the Dirac
matrices can be maintained once in d > 4 dimensions, essentially because γ5 and the anti-
symmetric tensor εµνρσ are intrinsically four-dimensional objects. Whatever the chosen
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definition, there is no way to consistently preserve both the anticommutativity properties
of γ5 matrices, i.e. {γµ, γ5} = 0, and the trace cyclicity property in d > 4 dimensions. In
the original work of ’t Hooft and Veltman [33], they noted that the momentum routing
ambiguity is replaced by an ambiguity in the location of γ5 in the Dirac traces. Using
their prescriptions for the Dirac algebra in d > 4 dimensions (see refs. [33, 39]), it is then
possible to introduce free parameters keeping track of all the possible γ5 locations in a
given Dirac matrices string [40]. As before, one can then tune these parameters to choose
which symmetry is broken anomalously, and which one have to be preserved. This is the
strategy we will employ to calculate the ambiguous Dirac traces in eq. (3.6).

3.3 Evaluation of the anomaly related operators

We now concentrate on the derivation of the operators which ultimately involve a mixture
of three gauge fields and Goldstone bosons with a derivative acting on them. With our
parametrisation, they arise from combinations of the generic vector Vµ[φ] and axial-vector
Aµ[φ] fields. Due to the presence of γ5 Dirac matrices in their Wilson coefficients, they are
truly ambiguous in dimensional regularisation. Then we will proceed with the evaluation
of operators involving one Goldstone boson (without any derivative acting on it), namely
the W1[φ] field in our generic parametrisation. These operators have been evaluated using
the usual Feynman diagrams technique (see refs. [10, 19, 41]). Since those computations
are subtle and lead to confusions, this is legitimate to wonder how one would perform them
from a different point of view, such as within the path integral formalism. Which is what
we present now.

3.3.1 Evaluation of the ambiguous terms

We start with the exercise of computing the divergent terms that naturally arise when
evaluating eq. (3.6). The generic form of these operators is

GiµG
j
νF̃

k
µν = GiµG

j
ν

(1
2ε

µνρσ∂[ρG
k
σ]

)
, (3.8)

where we use the notation Giµ to denote a generic gauge field and to avoid confusions
with the vector and axial-vector structures in eq. (3.6). We also introduce the upper
indices i,j,k to keep the computation as general as possible and offer us the possibility to
apply this computations to multiple gauge field configurations later on. Since starting with
eq. (3.6), we chose to deal with vector and axial-vector structures, in order to reconstruct
the ambiguous operators in the EFT, we need

• One insertion of Pµ to account for the partial derivative and then allow to form a
field strength tensor.

• Several combinations of vector and axial-vector structures. It is clear that to generate
the anti-symmetric tensor εµνρσ the product of Dirac matrices must involve an odd
number of γ5 matrix. It exists only two possibilities, either an “AV V ” contribution
with one γ5 or an “AAA” contribution with three γ5.
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While evaluating the one-loop effective Lagrangian of eq. (3.6), several contributions to the
ambiguous effective interaction would arise from the n = 4 polynomial terms

L1loop
EFT ⊃ i tr

1
4

∫
ddq

(2π)d

[
−1

/q +M

(
− Pµγµ − Vµ[φ]γµ +Aµ[φ]γµγ5 +W1[φ]γ5

)]4

⊃
∑
N

f
AV V

N
O(PAV V ) + f

AAA

N
O(PAAA) , (3.9)

where O(PAV V ) denotes the class of operator containing one γ5 matrix and O(PAAA) the
one containing three γ5 matrices.

Evaluation of the O(P AV V ) structures. There are three different types of combina-
tion that contribute to the O(PAV V ) structure, namely O(V V PA), O(V APV ), O(AV PV ).
Each type of combination contains four universal structures, and it is related together via
trace cyclicity. At this stage, due to the ambiguity of γ5-positions, one should not use
trace cyclicity to minimise the number of universal structures that need to be evaluated.
To present in detail the evaluation procedure of the Dirac trace and its regularisation, let
us focus on one explicit example out of 12 universal structures included in eq. (3.9)

O(V V PA) ⊃ 1
4

∫
ddq

(2π)d tr
[ −1
/q +M

Vµγ
µ −1
/q +M

Vνγ
ν −1
/q +M

Pργ
ρ −1
/q +M

Aσγ
σγ5

]
= i

4

[
− 4M4I4

i + 16M2I[q2]4i
]
tr
(
εµνρσVµVνPρAσ

)
+ 1

4 I[q4]4i
[
gabgcd + gacgbd + gadgbc

]
tr
(
γaγ

µγbγ
νγcγ

ργdγ
σγ5

)(
VµVνPρAσ

)
,

(3.10)

where the fermion propagators are decomposed into −1
/q+M = M

q2−M2 + −/q
q2−M2 . For the

tensorial integrals, we use∫
ddq

(2π)d
qµ1 · · · qµ2nc

(q2 −m2
i )ni(q2 −m2

j )nj · · ·
= gµ1···µ2ncI[q2nc ]ninj ···ij··· , (3.11)

where gµ1···µ2nc is the completely symmetric tensor, e.g. gµνρσ = gµνgρσ + gµρgνσ + gµσgνρ,
and we denote the master integrals as I[q2nc ]ninj ···ij··· . The explicit expression and the value of
some useful master integrals are derived in the appendix A. In the second line of eq. (3.10),
all the loop integrals are finite, one can then evaluate the various Dirac traces in the
usual naive scheme. The last line of eq. (3.10) contains divergent integrals, I[q4]4i , which
have to be regularised. Let us show how to evaluate such an ambiguous quantity as
tr
(
γaγ

µγbγ
νγcγ

ργdγ
σγ5) of eq. (3.10). We follow the procedure described earlier in the sec-

tion 3.2. Before evaluating the Dirac trace in d-dimension, we first write down all possible
structures that are equivalent to the original Dirac string by naively anti-commuting γ5,

tr
(
γaγ

µγbγ
νγcγ

ργdγ
σγ5)→ ā1tr

(
γaγ

µγ5γbγ
νγcγ

ργdγ
σ)+ ā2tr

(
γaγ

µγbγ
νγ5γcγ

ργdγ
σ)

+ ā3tr
(
γaγ

µγbγ
νγcγ

ργ5γdγ
σ)+ ā4tr

(
γaγ

µγbγ
νγcγ

ργdγ
σγ5) ,
(3.12)
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where we introduce the four free parameters, āi, to keep track of the position of the γ5
matrix in eq. (3.12). Let us briefly comment on the fact that

• In d = 4 dimensions, all Dirac structures on the R.H.S of eq. (3.12) are equivalent.

• In d = 4 − ε dimensions, by using the Breitenlohner-Maison-’t Hooft-Veltman
(BMHV) scheme (see refs. [33, 39]), the γ5 matrix does not anti-commute anymore
with Dirac γµ matrices. Therefore, each Dirac trace will give a different result due to
the different position of γ5 matrix. The free parameters āi is a device to keep track
of the γ5-positions.

• Enforcing a consistent result in d = 4 and d = 4 − ε dimensions requires that∑4
i=1 āi = 1.

After plugging eq. (3.12) into eq. (3.10), one obtains

O(V V PA)

⊃ 1
4
[
4M4I4

i − 16M2I[q2]4i − 24 ε (−ā1 + ā2 − ā3 + ā4) I[q4]4i
]
tr
(
εµνρσVµVνPρAσ

)
= 1

32π2

[
− 1− ā1 + ā2 − ā3 + ā4

]
tr
[
V i
µV

j
ν F̃

Ak

µν

]
, (3.13)

where in the last line of eq. (3.13), we replace the vector and axial-vector structures by
Vµ ≡ gi

V
V i
µ , Aµ ≡ gi

A
Aiµ , we also omit the gauge couplings to simplify the expression

of (3.13) and highlight the final value of loop integrals and Dirac traces. We remind the
reader that gi

V
and gi

A
will only appear when it is necessary. Also, keep in mind that in

eq. (3.13) the ε-terms will hit the pole 1
ε of the divergence integral, I[q4]4i , and generate

finite contributions. We then apply the same method for the other contributions in OPAV V .
One should note that since in eq. (3.6), Pµ = i∂µ, is the “open" derivative one can therefore
omit the operator structures which start with a Pµ since they lead to inert boundary terms.
We underline one more time that at this stage, one cannot use the cyclicity property of
the trace to reduce the number of terms that need to compute. Adding all the different
contributions together gives

L1loop
EFT ⊃ i

(
24ε āV iV jAk I[q4]4i

)
tr
[
V i
µV

j
ν F̃

Ak

µν

]
+ i
(
− 4M4I4

i + 16M2I[q2]4i + 24ε āV jAkV i I[q4]4i
)
tr
[
V j
µA

k
νF̃

V i

µν

]
+ i
(
4M4I4

i − 16M2I[q2]4i + i 24ε āAkV iV j I[q4]4i
)
tr
[
AkµV

i
ν F̃

V j

µν

]
. (3.14)

Since the āi coefficients are basically free, there are no reasons to give any physical meaning
to the different contributions. For each operator structure, we redefine the total values of
āi by the new free parameters, e.g. āV iV jAk , āV jAkV i , āAkV iV j . Readout the value of loop
integrals, the above equation reduces to

L1loop
EFT ⊃

1
8π2 āV iV jAktr

[
V i
µV

j
ν F̃

Ak

µν

]
+ 1

8π2 āV jAkV itr
[
V j
µA

k
νF̃

V i

µν

]
+ 1

8π2 āAkV iV j tr
[
AkµV

i
ν F̃

V j

µν

]
. (3.15)
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The three operators of eq. (3.15) are not independent and by using integration by parts one
should always end up with two independent operators and then two free parameters. As we
will see later, in practice one decides to remove such or such operator by use of integration
by parts based on the symmetries that are preserved or not since all operators are not
invariant under the same vector or axial symmetries. As an example, if one supposes that,
within our notation, the V i current might be anomalous, one may integrate by parts the
first operator of eq. (3.14), tr

(
V i
µV

j
ν F̃

Ak
µν

)
, and after discarding the total derivative operator,

and redefining the free parameters, one obtains

L1loop
EFT ⊃

1
8π2 āV jAkV itr

[
V j
µA

k
νF̃

V i

µν

]
+ 1

8π2 āAkV iV j tr
[
AkµV

i
ν F̃

V j

µν

]
. (3.16)

At this point, one should comment on the fact that if one would have used the BMHV
scheme without performing the decomposition of eq. (3.12), one would have found each
Wilson coefficients of the operators in eq. (3.14) to vanish. This is ultimately due to the
fact that, by default, vector currents cannot be anomalous while only following the BMHV
procedure. Even if one would have expected to be able to write effective operators as
displayed in eq. (3.15) from the first principle, we have rigorously shown how to obtain it in
dimensional regularisation, i.e the “AVV” interaction can be described by two independent
operators for which it exists two Wilson coefficients which are ambiguous i.e free.

Evaluation of the O(P AAA) structures. We now turn to the second class of operator,
O(PAAA), that contains three γ5 matrices. Similarly to the previous case with O(PAV V ),
we start here by giving an explicit example for an operator that belongs to this class,

OAAPA ⊃ 1
4

∫
ddq

(2π)d tr
[
−1

/q +M
Aµγ

µγ5 −1
/q +M

Aνγ
νγ5 −1

/q +M
Pργ

ρ −1
/q +M

Aσγ
σγ5

]4

= i
1
4
[
4M4I4

i + 16M2I[q2]4i
]
tr
(
εµνρσAµAνPρAσ

)
+ 1

4 I[q4]4i
[
gabgcd+gacgbd+gadgbc

]
tr
(
γaγ

µγ5γbγ
νγ5γcγ

ργdγ
σγ5

)(
AµAνPρAσ

)
,

(3.17)

we then parameterise the ambiguous Dirac trace, tr
(
γaγ

µγ5γbγ
νγ5γcγ

ργdγ
σγ5), by using

tr
(
γaγ

µγ5γbγ
νγ5γcγ

ργdγ
σγ5)

→ b̄1tr
(
γaγ

µγ5γbγ
νγcγ

ργdγ
σ)+ b̄2tr

(
γaγ

µγbγ
νγ5γcγ

ργdγ
σ)

+ b̄3tr
(
γaγ

µγbγ
νγcγ

ργ5γdγ
σ)+ b̄4tr

(
γaγ

µγbγ
νγcγ

ργdγ
σγ5) . (3.18)

Afterwards, evaluating in d = 4− ε dimensions with BMHV’s scheme, we obtain

OAAPA

⊃ i

4
[
4M4I4

i + 16M2I[q2]4i + 24 ε
(
− b̄1 + b̄2 − b̄3 + b̄4

)
I[q4]4i

]
tr
(
εµνρσAµAνPρAσ

)
= 1

32π2

[1
3 + b̄1 − b̄2 + b̄3 − b̄4

]
tr
[
AiµA

j
νF̃

Ak

µν

]
, (3.19)
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where in the last step of the computation we evaluate the value of loop integrals, express
Aµ ≡ Aiµ. We also note that gi

A
will appear when it is necessary. The computation for the

other operators belonging to O(PAAA) are similar and the full result reads

L1loop
EFT ⊃

(
i 24εb̄AiAjAk I[q4]4i

)
tr
[
AiµA

j
νF̃

Ak

µν

]
+
(
i 24εb̄AjAkAi I[q4]4i

)
tr
[
AjµA

k
νF̃

Ai

µν

]
+
(
i 24εb̄AkAiAj I[q4]4i

)
tr
[
AkµA

i
νF̃

Aj

µν

]
. (3.20)

which basically resumes to

L1loop
EFT ⊃

1
8π2 b̄AiAjAktr

[
AiµA

j
νF̃

Ak

µν

]
+ 1

8π2 b̄AjAkAitr
[
AjµA

k
νF̃

Ai

µν

]
+ 1

8π2 b̄AkAiAj tr
[
AkµA

i
νF̃

Aj

µν

]
. (3.21)

These three operators in eq. (3.21) are not independent and one is free to remove
one by the use of integration by parts. Consequently, in dimensional regularisation, the
“AAA” interaction can be described by two independent operators attached to two free
Wilson coefficients reflecting ambiguities in the evaluations of such interactions.

3.3.2 Evaluation of the pseudo-scalar unambiguous terms
We are now looking for to evaluate operators involving a pseudo-scalar φ (without local
partial derivative acting on it) and two field strength tensors. The generic operator form
is given by

φF jµνF̃
k
µν = φ

1
2 ε

µνρσ(∂[µG
j
ν]

)(
∂[ρG

k
σ]

)
, (3.22)

To reconstruct the pseudo-scalar terms from the expansion of eq. (3.6), we need
• Two insertions of Pµ to account for the two partial derivatives, then forming field

strength tensors.

• One insertion of W1[φ] to account for the pseudo-scalar field φ.

• To account for the two gauge fields, we need V V and AA structures. SinceW1[φ] con-
tains a γ5, the combination with AV structure will not contribute to the final result.

We collect the relevant classes of operators that contribute to the Wilson coefficients of
these pseudo-scalar terms,

L1loop
EFT ⊃ i tr

1
5

∫
ddq

(2π)d

[
−1

/q +M

(
− Pµγµ − Vµ[φ]γµ +Aµ[φ]γµγ5 +W1[φ]iγ5

)]5

⊃
∑
N

f
πV V

N
O(P 2V 2W1) + f

πAA

N
O(P 2A2W1) , (3.23)

The evaluation of the class of operator OP 2V 2W1 and OP 2A2W1 can be done very efficiently
by using the One-Loop Universal Effective Action (UOLEA) .17 One obtains

L1loop
EFT ⊃ −

1
8π2M

tr εµνρσ
(
W1[Pµ, Vν ][Pρ, Vσ] + 1

3W1[Pµ, Aν ][Pρ, Aσ]
)

= 1
16π2M

tr
(
W i

1F
V j

µν F̃
V k

µν + 1
3W

i
1F

Aj

µν F̃
Ak

µν

)
, (3.24)

17These operators have been explicitly evaluated and are then available in the fermionic UOLEA in
ref. [28].
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where we form the field strength tensors by using

εµνρσ[Pµ, V j
ν ][Pρ, V k

σ ] = i2

4 ε
µνρσ(∂[µV

j
ν]
)(
∂[ρV

k
σ]
)

= −1
2F

V j

µν F̃
V k

µν , (3.25)

and similarly for the axial currents. We note that if j 6= k, one needs to sum over the
exchange of j, k indices to avoid the factor 2 problem.

3.4 Summary and master formula

We summarise the computations and the main outcome of section 3. Starting with a
massive fermion which bilinearly involves some, yet undetermined, vector Vµ[φ], axial vector
Aµ[φ] and pseudo scalar W1[φ] interactions,

Lfermion
UV

[
Ψ, φ

]
⊃ Ψ̄

[
iγµ∂µ −M + Vµ[φ]γµ −Aµ[φ]γµγ5 −W1[φ]iγ5

]
Ψ , (3.26)

one obtains after integrating out the fermion field i.e evaluate the one-loop effective action
by expanding the functional trace with CDE techniques,

L1loop
EFT = i tr

∞∑
n=1

1
n

∫
d4q

(2π)4

[
−1

/q +M

(
− i∂µγµ − Vµγµ +Aµγ

µγ5 +W1iγ
5
)]n

, (3.27)

where in practice, the vector, axial-vector and pseudo-scalar structures are expressed as

Vµ[φ] ≡ gi
V
V i
µ[φi] , Aµ[φ] ≡ gi

A
Aiµ[φi] , W1[φ] ≡ gi

W1
W i

1[φi] , (3.28)

with an implicit summation over the i index. One can proceed and form the low energy
effective operators and evaluate their associated Wilson coefficients which are regularised
in dimensional regularisation. After regularisation, it is important to identify ambiguities
of some Wilson coefficients resulting from the fact that the gauge or anomalous aspects of
the symmetries have not been addressed yet. The generic one-loop effective Lagrangian,
still involving redundant operators as well as the ambiguous ā’s and b̄’s coefficients, reads

L1loop
EFT ⊃

1
8π2 āV iV jAktr

[
V i
µV

j
ν F̃

Ak

µν

]
+ 1

8π2 āV jAkV itr
[
V j
µA

k
νF̃

V i

µν

]
+ 1

8π2 āAkV iV j tr
[
AkµV

i
ν F̃

V j

µν

]
+ 1

8π2 b̄AiAjAktr
[
AiµA

j
νF̃

Ak

µν

]
+ 1

8π2 b̄AjAkAitr
[
AjµA

k
νF̃

Ai

µν

]
+ 1

8π2 b̄AkAiAj tr
[
AkµA

i
νF̃

Aj

µν

]
+ 1

16π2M
tr
(
W i

1F
V j

µν F̃
V k

µν + 1
3W

i
1F

Aj

µν F̃
Ak

µν

)
. (3.29)

This master formula is generic and encapsulates all the needed computations. Indeed, at
this stage, imposing the EFT to respect specific gauge invariance relations will link several
of these operators together and allow to fix the ambiguities of any free Wilson coefficients
in a very simple and elegant way. Since doing so, presuppose having a concrete model
in mind or set of symmetries, we now turn back to more phenomenological investigations
where this master formula is applied to various models.
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4 Application to axions

In this section, we use the results obtained in section 3 to build EFT involving would-
be-Goldstone bosons of spontaneously broken symmetries and Goldstone bosons of global
symmetries. As a first application, we apply the master formula of eq. (3.29) to concretely
build the intuited EFT of eq. (2.15) from the toy model presented in section 2. We will
then concentrate on more realistic constructions, e.g. building EFT involving the SM gauge
fields and an axion or ALP. This task might precisely imply to integrate out chiral fermions
which obtain their mass while the electroweak gauge symmetry is spontaneously broken,
the global PQ symmetry being spontaneously and anomalously broken. We provide a
simple expression adapted to SM gauge groups, and provide explicit use of it to derive
axion couplings to massive gauge fields in the original 2HDM setup as proposed by Peccei
and Quinn and in a more phenomenologically relevant version of it, the invisible axion
DFSZ model [13, 14].

4.1 A chiral toy model

So far, we have evaluated the operators involving three vector structures (which can also
incorporate derivative couplings) and the operators involving a pseudo-scalar field which
couples with two field strength tensors. We now give an example how to use the results of
the previous section to derive the EFT resulting from integrating out the chiral fermion of
the toy model of section 2. We remind the fermionic quadratic operator of this toy model,

Ltoy-model
UV = Ψ̄

[
i∂µγ

µ −M + Vµγ
µ −Aµγµγ5 −W1iγ

5
]
Ψ (4.1)

where the vector, axial-vector, and pseudo-scalar structures decompose as

Vµ =
{
Vµ,

[
Sµ −

∂µπS
2vS

]}
, Aµ =

{
Aµ,

[
Uµ −

∂µπU
2vU

]}
, W1 = M

πA
vA

, (4.2)

and the gauge couplings are omitted for simplicity. Making use of our master formula given
in eq. (3.29), one can straightforwardly obtain

L1loop
EFT =ωV AV

[
Sµ −

∂µπS
2vS

]
AνF̃

µν
V

+ ωAAA

[
Uµ −

∂µπU
2vU

]
AνF̃

µν
A

+ ηASV

[
πA
vA
FS , µνF̃

µν
V

]
+ ηAUA

[
πA
vA
FU , µνF̃

µν
A

]
. (4.3)

At this stage, ωV AV , ωAAA and ηASV , ηAUA read,

ωV AV = 1
8π2

(
1− b̄

)
, ωAAA = − 1

8π2 ā ; ηASV = 1
8π2 , ηAUA = 1

24π2 , (4.4)

with ā and b̄ the two free parameters. As presented in section 2, we now implement the
consistency between the UV model of eq. (4.1) and the associated EFT of eq. (4.3) by
fixing the nature of each symmetries i.e gauge or anomalous. We identify the precise value
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of the parameters ā and b̄ by requiring axial gauge invariance (leaving then the possibility
that the other transformations, only, could be anomalous)

δA

(
ωV AV

[
Sµ −

∂µπS
2vS

]
AνF̃

µν
V

+ 1
8π2

πA
vA
FS , µνF̃

µν
V

)
= 0 , and

δA

(
ωAAA

[
Uµ −

∂µπU
2vU

]
AνF̃

µν
A

+ 1
24π2

πA
vA
FU , µνF̃

µν
A

)
= 0 , (4.5)

where we perform the gauge variation of the axial current, δAAµ = ∂µθA, the would-
be-Goldstone, δAπA = 2vAθA, integrate by parts and combine the various contributions
proportional to (∂µθA)UνF̃µνA and (∂µθA)SνF̃µνV . This straightforwardly leads to,

ωV AV = − 1
2π2 ⇔ b̄ = 5 ; ωAAA = − 1

6π2 ⇔ ā = 4
3 . (4.6)

Finally, one can set to zero the artificial vector fields Sµ and Uµ and write the non-
ambiguous dimension-five bosonic operators, simply as

L1loop
EFT = 1

2π2
∂µπS
2vS

AνF̃V , µν + 1
6π2

∂µπU
2vU

AνF̃A, µν

= − 1
8π2

πS
vS
Fµν
A
F̃V ,µν −

1
24π2

πU
vU
Fµν
A
F̃A,µν . (4.7)

This is the one-loop contributions to the EFT Lagrangian obtained by integrating out a
chiral massive fermion in our toy model. To obtain the full EFT Lagrangian, one must add
the Jacobian terms given by eq. (2.14) with the one-loop terms of eq. (4.7),

LEFT = 1
16π2

πU
vU

(
FV ,µνF̃

µν
V

+ 1
3FA,µνF̃

µν
A

)
. (4.8)

We note that integrating out the fermion in a one-dimensional representation starting from
eq. (4.1), we obtain that the πS derivative interaction induces EFT operators that precisely
cancel the Jacobian term in eq. (2.14) as expected starting from an abelian gauge theory,
as discussed earlier, and this provides a non-trivial check for our calculation. We should
also remark that the πUV V coupling entirely arises from the Jacobian term, as predicted
by the Sutherland-Veltman theorem. However, the πUAA coupling does not and displays
an additional factor of 1/3 due to the one-loop contribution.

We now move on to more concrete axion models for which we will compute one-loop
induced effective couplings between axions and gauge bosons, with a particular interest for
those involving massive gauge fields.18.

4.2 Axion couplings to gauge fields

The axion field is a relic of the spontaneous symmetry breaking of a global U(1)PQ sym-
metry. A realistic model involving the QCD axion or an ALP, being a pseudo-scalar field
a(x), basically couples to fermions (of the SM or not) which have to be charged under
the Global U(1)PQ group but also other abelian or non-abelian groups such as the one of

18These results should and will reproduce those derived, using different techniques, in refs. [10, 19].
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the SM. For a massive chiral fermion, its bilinear form, after gauge symmetry breaking,
generically reads

LUV = LJac
UV + Ψ̄

[
i∂µγ

µ −M + Vµγ
µ −Aµγµγ5 −W1iγ

5
]
Ψ , (4.9)

where vector, axial-vector and pseudo-scalar structures include19

Vµ =
{
gi
V
V i
µ , g

PQ
V

(
∂µa− V PQ

µ

)}
, Aµ =

{
gi
A
Aiµ , g

PQ
A

(
∂µa−APQµ

)}
, W1 = M

πi
A

vA
, (4.10)

with V i
µ, A

i
µ stand for vector and axial-vector components of a generic chiral gauge field

Giµ, the term πi
A

(x) stands for the would-be-Goldstone boson in the case where Giµ obtains
its mass from gauge spontaneous symmetry breaking. V PQ

µ and APQµ are the fictitious
auxiliary gauge fields associated to the global PQ symmetry. Writing eq. (4.9) presupposes
a chiral fermion reparametrisation which induces a Jacobian term, LJac

UV. This contribution,
before gauge spontaneous symmetry breaking, reads

LJac
UV = 1

16π2fa
NPQ a(x)F iµνF̃ i, µν , (4.11)

where the i-index only runs for the gauge field strength tensors. The anomaly coefficient
can be generally expressed as,

NPQ =
∑

Ψ=ΨR,Ψ†
L

tr
[
PQ(Ψ)⊗G(Ψ)⊗G(Ψ)

]
, (4.12)

with PQ(Ψ) and G(Ψ) the PQ and gauge charge of the chiral fermion Ψ. Integrating out
the chiral fermion and making use of the master formula eq. (3.29), one obtains

L1loop
EFT =ωV AV

[
gPQ
V
gi
A
gj
V

(
∂µa− V PQ

µ

)
AiνF̃

V j ,µν
]
+ωAAA

[
gPQ
A
gi
A
gj
A

(
∂µa−APQµ

)
AiνF̃

Aj ,µν
]

+ 1
8π2

(
gPQ
V
gj
V

)πi
A

vA
F V

PQ

µν F̃ V
j ,µν + 1

24π2
(
gPQ
A
gj
A

)πi
A

vA
FA

PQ

µν F̃A
j ,µν

= − 1
4π2

(
gPQ
V
gi
A
gj
V

)
aFA

i

µν F̃
V j ,µν − 1

12π2
(
gPQ
A
gi
A
gj
A

)
aFA

i

µν F̃
Aj ,µν . (4.13)

In order to get the last line of the above equation, we imposed the crucial axial gauge
invariance, used integration by parts and Bianchi identity, neglected the surface terms,
and at the end of the computation, we removed the fictitious fields V PQ

µ and APQµ . Adding
all together, we are now able to build the axion-bosonic effective Lagrangian described
by LEFT = LJac

UV + L1loop
EFT where the generic formula of LJac

UV and L1loop
EFT are given by

eqs. (4.11), (4.13).

4.2.1 SM gauge and PQ symmetries

We now present two examples where the axion field couples with the SM gauge fields.
Our first example will be the original Peccei and Quinn scenario in which the axion is the

19Note that for convenience, we have used a different normalisation convention for the PQ charges than
the one used for gauge charges.
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pseudo-scalar component of a Two Higgs Doublet Model (2HDM). Our second application
will be to consider the so-called DFSZ axion model [13, 14]. To illustrate the results and
properties discussed in the previous sections, we will integrate out only one generation of
quarks, let us say

(
u d
)
. This computation was performed in ref. [10] by Feynman diagram

technique, accompanied by Pauli-Villars regularisation. We will recover some of its results
by using the functional method for one-loop matching.

We begin with the Jacobian terms which induce tree-level axion couplings to the SM
gauge fields,

LJac
UV = 1

16π2fa

(
g2
sNC aGµνG̃µν + g2NL aW i

µνW̃
i,µν + g′2NY aBµνB̃µν

)
, (4.14)

with the anomaly coefficients Ni computable as follows,

NC =
∑

Ψ=q†
L,uR,dR

CSU(3)c
(Ψ) dSU(2)L

(Ψ)PQ(Ψ) ,

NL =
∑

Ψ=q†
L; l†L

dSU(3)c
(Ψ)CSU(2)L

(Ψ)PQ(Ψ) ,

NY =
∑

Ψ=q†
L,uR,dR; l†L,eR

dSU(3)c
(Ψ) dSU(2)L

(Ψ)CU(1)Y
(Ψ)PQ(Ψ) , (4.15)

where we closely followed the conventions and notations of ref. [10] with dSU(3)c
(Ψ),

dSU(2)L
(Ψ) and CSU(3)c

(Ψ), CSU(2)L
(Ψ) are respectively the SU(3)c and SU(2)L dimensions

and quadratic Casimir invariant of the representation carried by the chiral fermion field
Ψ. Besides, PQ(Ψ) is the PQ charge of the fermion Ψ which is model-dependent. We will
come back to these PQ charges when discussing a peculiar axion model.

The one-loop effective Lagrangian resulting from integrating out the SM chiral
fermion is

L1loop
EFT ⊃

∑
f

−1
4π2

[(
gPQ
V
gZ
A
gZ
V

)f (
aFA

Z

µν F̃
V Z ,µν

)
+ 1

3
(
gPQ
A
gZ
A
gZ
A

)f (
aFA

Z

µν F̃
AZ ,µν

)
+
(
gPQ
V
gW
A
gW
V

)f (
aFA

W

µν F̃ V
W ,µν

)
+ 1

3
(
gPQ
A
gW
A
gW
A

)f (
aFA

W

µν F̃A
W ,µν

)
+
(
gPQ
V
gZ
A
gγ
V

)f (
aFA

Z

µν F̃
V γ ,µν

)]
, (4.16)

where gPQ
V
, gPQ

A
are axion-fermion-fermion couplings written in terms of Dirac bilinear

form. A summary of the gauge charges of SM fermions can be found in table 1.
The only thing that remains to be determined in eqs. (4.14), (4.15), (4.16) are the

fermions PQ charge, that we discuss now for several axion models.

4.2.2 PQ axion model

We first consider the original PQ scenario where the QCD axion is identified as the orthog-
onal state of the would-be-Goldstone of the Z boson in a 2HDM model (see refs. [1, 2]).
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i g W γ Z(
g i
V

)f
gsT

f
a

g√
2
T f3 eQf

g

2 cos θw
(T f3 − 2 sin2 θwQ

f )(
g i
A

)f 0 g√
2
T f3 0 g

2 cos θw
T f3

Table 1. SM fermion couplings to the SM gauge fields, where T fa , T
f
3 , Q

f , θw are respectively the
SU(3)C generators, the eigenvalue of the isospin operator, the electromagnetic charge and the weak
mixing angle.

The starting point is a fermion-Higgs Yukawa interaction, that we assume of type II, which
can be written as

L2HDM
Yukawa = −

[
YuūR Φ1 qL + Ydd̄R Φ†2 qL

]
− YeēR Φ†2 lL + h.c. . (4.17)

The two complex scalar fields can be written as

Φ1 = 1√
2
e
i
η1
v1

(
0
v1

)
, Φ2 = 1√

2
e
i
η2
v2

(
0
v2

)
, (4.18)

where η1, η2 are Goldstone bosons of the scalar fields Φ1 and Φ2. The vacuum expectation
value of the scalar fields, v1 and v2 are related by v2

1+v2
2 ≡ v2 '

(
246GeV

)2, and one usually
introduces the β angle such that v1 = v sin β, v2 = v cosβ and v2/v1 =

(
1/ tan β

)
≡ x.

The next step is to identify the would-be-Goldstone boson (that generates the mass of the
Z-boson) from its orthogonal state, defining then the axion. One has the following relations(

G0

a

)
=
(

cosβ sin β
− sin β cosβ

)(
η2
η1

)
. (4.19)

The Higgs doublets can be re-written as

Φ1 = 1√
2
e
iG

0
v1 ei x

a
v

(
0
v1

)
, Φ2 = 1√

2
e
iG

0
v2 ei

(
− 1
x

)
a
v

(
0
v2

)
, (4.20)

where G0 is PQ neutral and the Higgs doublets carry the following PQ charge, PQ(Φ1) = x

and PQ(Φ2) = −1/x. In order to identify the PQ axion model with eq. (4.9), we first make
the Yukawa Lagrangian becomes PQ-invariant by performing the chiral rotation,

Ψ→ eiPQ(Ψ)a
vΨ . (4.21)

The PQ charges for one generation of quarks
(
u d
)
are assigned, such as

PQ
(
qL;uR, dR

)
=
(
α;α+ x, α+ 1

x

)
. (4.22)

α is a free parameter that corresponds to the conservation of the baryon number.20 The
chiral rotation leads to the derivative coupling of axion with SM fermions as defined in

20For a general setup including also the lepton sector see refs. [10, 11].
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eq. (4.9) and the axion couplings to fermions read(
gPQ
V

)u = − 1
2v (2α+ x) ,

(
gPQ
A

)u = 1
2vx ;

(
gPQ
V

)d = − 1
2v

(
2α+ 1

x

)
,
(
gPQ
A

)d = 1
2v

(1
x

)
.

(4.23)
Plugging eq. (4.22) into eq. (4.14) and rotating the electroweak gauge fields from their
interaction basis to their physical mass basis using W 3

µ = cwZµ + swAµ, Bµ = −swZµ +
cwAµ along with e = gsw = g′cw, one obtains the following Lagrangian for the Jacobian
contribution

L{u,d}Jac = 1
16π2v

(
g2
s

2

[
x+ 1

x

]
aGaµνG̃

a,µν + e2Nc

[4
9x+ 1

9x

]
aFµνF̃

µν

−
[
g2Nc α

]
aW+

µνW̃
−,µν − 2e2

cwsw
Nc

[1
2α+ s2

w

(4
9x+ 1

9x

)]
aZµνF̃

µν

+ e2

c2
ws

2
w

Nc

[
− (1− 2s2

w)α2 + s4
w

(4
9x+ 1

9x

)]
aZµνZ̃

µν
)
, (4.24)

where Nc = 3. Plugging eq. (4.23) into eq. (4.16) and performing the same electroweak
rotation lead to the following one-loop effective Lagrangian,

L1loop−{u,d}
EFT = 1

16π2v

(
g2Nc

[
α+ 1

6

(
x+ 1

x

)]
aW+

µνW̃
−,µν

+ e2

cwsw
Nc

[
α+

(1
3x+ 1

6x

)]
aZµνF̃

µν (4.25)

+ e2

c2
ws

2
w

Nc

[
(1− 2s2

w)α2 + 1
12

(
x+ 1

x

)
− s2

w

(1
3x+ 1

6x

)]
aZµνZ̃

µν
)
.

The effective axion-bosonic Lagrangian is obtained by adding L{u,d}Jac and L1loop−{u,d}
EFT and

gives the compact result,

La−bosonic
EFT = 1

16π2v

(
g2
s

2

[
x+ 1

x

]
aGaµνG̃

a,µν + e2Nc

[4
9x+ 1

9x

]
aFµνF̃

µν

+ g2Nc
1
6

[
x+ 1

x

]
aW+

µνW̃
−,µν

+ e2

cwsw
Nc

[(1
3x+ 1

6x

)
− 2s2

w

(4
9x+ 1

9x

)]
aZµνF̃

µν (4.26)

+ e2

c2
ws

2
w

Nc

[ 1
12

(
x+ 1

x

)
− s2

w

(1
3x+ 1

6x

)
+ s4

w

(4
9x+ 1

9x

)]
aZµνZ̃

µν
)
.

4.2.3 DFSZ axion model
Concerning the case of the more realistic axion DFSZ model [13, 14], the Yukawa couplings
are the same as in the 2HDM model, but now the scalar potential is modified. Typically,
the 2HDM model is extended by a gauge-singlet complex scalar field φ, with the scalar
potential

VDFSZ = V2HDM + Vφ2HDM + VφPQ + Vφ , (4.27)
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where we have 
Vφ2HDM = a1

(
φ†φ

)(
Φ†1Φ1

)
+ a2

(
φ†φ

)(
Φ†2Φ2

)
,

VφPQ = λ12
(
φ†φ

)
Φ†1Φ2 + h.c. ,

Vφ = µ2(φ†φ)+ λ
(
φ†φ

)2
.

(4.28)

Similarly to Φi of eq. (4.20), one can also write the new complex scalar field φ as

φ = 1√
2
e
i ηa
fa

(
0
fa

)
. (4.29)

In summary, for the DFSZ axion model, one obtains the PQ-charges and the breaking-scale
of the PQ-symmetry by rescaling their values in the axion PQ model, simply as follows,

x→ 2x2

x2 + 1 ,
1
x
→ 2

x2 + 1 , v → fa . (4.30)

The effective DFSZ axion-bosonic Lagrangian, obtained by adding L{u,d}Jac and L1loop−{u,d}
EFT ,

is given by

La−bosonic
EFT = 1

16π2fa

(
g2
s aG

a
µνG̃

a,µν + e2Nc
8x2 + 2

9(x2 + 1)aFµνF̃
µν

+ g2Nc

3 aW+
µνW̃

−,µν + e2

cwsw
Nc

3 + 6x2 − 4s2
w(4x2 + 1)

9(x2 + 1) aZµνF̃
µν

+ e2

c2
ws

2
w

Nc

[1
6 − s

2
w

2x2 + 1
3(x2 + 1) + s4

w

8x2 + 2
9(x2 + 1)

]
aZµνZ̃

µν
)
. (4.31)

These results do agree with those derived in refs. [10], using the more traditional
approach of Feynman diagram computations.

It is certainly a good moment to pause and appreciate the difference in strategy with
this last reference. The main and obvious distinction is that in this work, we favored the
path integral method to evaluate one-loop processes. However, we believe that another
elegant and insightful feature of this axionic EFT derivation is due to the direct and
consistent way of dealing with gauge and anomalous symmetries. Indeed, one needs not to
use the anomalous Ward-identities to alleviate ambiguities inherent to anomalies in QFTs.
Equivalently, one can use the interplay between higher-dimensional operators involving the
axion and the would-be-Goldstone bosons in order to consistently and easily derive axion
EFTs. This offers a neat method to also explore other sectors of axion EFTs.

5 Conclusion

In this work, we have considered the task of building EFTs by integrating out fermions
charged under both local and global symmetries. These symmetries can be spontaneously
broken, and the global ones might also be anomalously broken. This setting is typically
that encountered in axion models, where a new global but anomalous symmetry, U(1)PQ,
is spontaneously broken, so as to generate a Goldstone boson, the axion, coupled to gluons.
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The main novelties of our approach are twofold. First, the heavy fermion to be in-
tegrated out is allowed to have chiral charges for both the local and global symmetries.
The analysis is then much more intricate because of the presence of anomalies in various
currents, and because the fermion can only have a mass when all the chiral symmetries
are spontaneously broken. Second, we perform our analysis in a functional approach, by
systematically building EFTs using an inverse mass expansion, that is, identifying leading
operators and calculating their Wilson coefficients with the help of Covariant Derivative
Expansion. Our calculations are adaptable to various UV models and allow us to correctly
treat QFT anomalies.

In more details, our main results are the following:

• It exists many motivations for introducing Goldstone bosons of global symmetries
using a polar representation. Once this choice has been made, we have identified an
appropriate parametrisation of the fermionic part of the UV Lagrangian. Essentially,
with the purpose of an inverse mass expansion, if one wants to perform an exact
computation without truncating the initial UV theory, it is desirable to write the
fermion mass term as an invariant quantity under the various symmetries, even for
a chiral fermion. This requires some fermion field redefinitions. Only then one can
clearly identify the fermion bilinear operator to be inverted.

• Usually, Ward identities are used to enforce the desired gauge symmetries. When
dealing with anomalous quantities, these constraints are crucial to remove the am-
biguities that creep in through the regularisation process. But in our functional
approach, this cannot be immediately implemented because the leading operators in
the EFT end up being automatically gauge invariant. The only way forward is to
perturb the theory to upset this automatic gauge invariance. This is done with the
help of background fields, in a way very similar as in ref. [19]. Then, the necessary
Ward identity constraints can be recovered thanks to EFT operators involving the
would-be-Goldstone bosons of the exact gauge symmetries.

• The parametrisation of the fermion bilinear operator involves derivative interactions
with scalar and pseudoscalar fields. To our knowledge, a precise description of how
to perform the calculation of the determinant of such operators has never been pre-
sented. It should be noted that in that calculation, regularisation is necessary. For
that, we adopt dimensional regularisation and follow the ’t Hooft-Veltman prescrip-
tion. We show that the two-parameter ambiguities, well known in the context of
triangle Feynman diagrams, can be recovered. Those are crucial to allow one to
enforce all the gauge constraints in a consistent way.

• We recover in the functional context the results of refs. [10, 11, 19], that is, that
the derivative coupling of the Goldstone boson π to the fermions, Ψ̄(∂µπ γµγ5)Ψ and
Ψ̄(∂µπ γµ)Ψ, do not necessarily vanish in the infinite mass limit. They do contribute
to the leading EFT operator πV A, πAA, but not πV V . In other words, this last
coupling satisfies the Sutherland-Veltman theorem, and is fully driven by the anomaly,
but not the other two.
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In this paper we have presented how to deal with scenarios combining both spontaneous
and anomalous symmetry breaking. When building an EFT by integrating out chiral
fermions charged under those various symmetries it is legitimate to keep local partial
derivative interactions instead of traditional pseudo-scalar ones, but this has a cost. Now
the anomaly is spread into several contributions which have to be recombined with high care
when evaluating the S-matrix (see also refs. [10, 11, 19]). We have integrated these peculiar
fermions in the elegant and minimal functional approach and showed how to remove the
ambiguities one has to face to evaluate the functional trace in dimensional regularisation.
Inevitably, this corresponds to implement the anomalous Ward identities in a consistent
way within the path integral formalism. We did so by introducing fictitious vector fields
associated to the global symmetries so one can cure potential ambiguities undermining
the theory while enforcing gauge invariance. More generally, this work shows a possible,
neat and systematic path to follow to consistently build an entire EFT involving anomalous
symmetries. It should also be very useful to derive other EFT higher dimensional operators.
All in all, this procedure allowed us to compute in a transparent and in a very generic way
the Wilson coefficients of higher dimensional operators involving Goldstone bosons, this is
encapsulated in the master formula eq. (3.29). Furthermore, we showed how to apply this
master formula to the case of SM gauge interactions. Ultimately, we applied these results
to the axion Goldstone boson (in the general sense i.e being the QCD axion or simply an
ALP). We obtained in a closed form the higher dimensional operators involving the axion
and SM gauge fields and collected them so that one can recover the non-intuitive physical
coupling between axions and massive SM gauge fields which have been recently derived by
some of us in ref. [10]. The phenomenological relevance of these couplings are of particular
interest for collider ALPs searches but also their imprints in the early universe.
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Ĩ[q2nc ]nii nc = 0 nc = 1 nc = 2

ni = 1 M2
i

(
1− log M2

i
µ2

)
M4
i

4

(
3
2 − log M2

i
µ2

)
M6
i

24

(
11
6 − log M2

i
µ2

)
ni = 2 − log M2

i
µ2

M2
i

2

(
1− log M2

i
µ2

)
M4
i

8

(
3
2 − log M2

i
µ2

)
ni = 3 − 1

2M2
i

−1
4 log M2

i
µ2

M2
i

8

(
1− log M2

i
µ2

)
ni = 4 1

6M4
i

− 1
12M2

i
− 1

24 log M2
i

µ2

ni = 5 − 1
12M6

1
48M4 − 1

96M2

Table 2. Commonly-used master integrals with degenerate heavy particle masses. Ĩ = I/ i
16π2 and

the 2
ε − γ + log 4π contributions are dropped.

A Master integrals

In this appendix, we discuss the master integrals and tabulate some of them that are useful
in practice. In this paper our results are written in terms of master integrals I, defined by∫

ddq

(2π)d
qµ1 · · · qµ2nc

(q2 −M2
i )ni(q2 −M2

j )nj · · · = gµ1···µ2ncI[q2nc ]ninj ···ij··· (A.1)

with;

I[q2nc ]nii = i

16π2
(
−M2

i

)2+nc−ni 1
2nc(ni − 1)!

Γ( ε2 − 2− nc + ni)
Γ( ε2)

×
(2
ε
− γ + log 4π − log M

2
i

µ2

)
, (A.2)

where d = 4− ε is the space-time dimension, and µ is the renormalisation scale. In the MS
scheme, we replace,

(2
ε − γ + log 4π− log M2

i
µ2
)
by
(
− log M2

i
µ2
)
in the final result. We factor

out the common prefactor, I = i
16π2 Ĩ and present a table of Ĩ[q2nc ]nii for various nc and

ni, needed in our computations, in table 2.
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