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1 Introduction

Below open-charm threshold, the mass spectrum of conventional charmonium states aligns
with the potential quark model [1]. According to this model, there exist five vector charmonium
states between the 1D state (1)(3770)) and 4.7 GeV/c?, specifically identified as the 3S, 2D, 4S,
3D, and 5S states [2]. However, within this energy range, an overabundance of vector states
have been detected. Among them, three (conventional) states, namely (4040), 1(4160)
and 1(4415) [3], the 3S, 2D, and 4S states, respectively, are primarily characterized as
open-charm states. In addition, four new (non-conventional) states, i.e. Y (4230), Y (4360),
Y (4634), and Y (4660), are predominantly observed in hidden-charm final states. These
states are generated via initial state radiation (ISR) processes at BaBar and Belle [4-12],
or by direct production processes at CLEO [13] and BESIII [14, 15]. The overpopulation
of structures in this mass region and the mismatch of the properties between the potential
model predictions and experimental measurements make them good candidates for exotic
states. Many hypotheses have been proposed to explain their nature [2, 16-23], including
the possibility of being hybrid states, multiple-quark states, or even molecular structures.
In particular, charmless decays of these non-conventional states are proposed by the hybrid



model [16]. On the other hand, if these states are considered as pure charmonium [19], their
baryonic decays, which have not yet been observed, would provide important information
to validate the scenario as suggested in ref. [20].

The complex situation reflects our limited understanding of the strong interaction, par-
ticularly in its non-perturbative aspects. In order to address this challenging problem, it is
imperative to make additional experimental measurements, and the study of v/Y — BB de-
cays holds great promise. These decays exhibit a straightforward topology in terms of the final
states, and the underlying interaction mechanism is assumed to be dominated by three-gluon
or one-photon processes. Additionally, investigations into the electromagnetic form factors or
effective form factors of BB pairs have the potential to provide insight into the internal compo-
sition of charmonium(-like) states. Although many experimental studies [8, 24-31] of BB pair
production in this energy region have been performed by the BESIII and Belle experiments,
except for two evidences of 1(3770) — AA and E-E*, no significant indication for BB decay
of other vector charmonium(-like) states has been found. Thus, more precise measurements
of exclusive cross sections for BB final states above the open-charm threshold are crucial.

This paper reports the measurements of the Born cross section and the effective form
factor for the process of ete™ — £ TX~ using the data corresponding to a total integrated
luminosity of 24.1fb™! collected at center-of-mass (CM) energies (1/s) between 3.510 and
4.951 GeV with the BESIII detector [32] at the BEPCII collider [33]. In addition, potential
resonances are searched for by fitting the dressed cross section of the ete™ — XX~ reaction.

2 BESIII detector and Monte Carlo simulation

The BESIII detector [32] records symmetric ee™ collisions provided by the BEPCII storage
ring [33] in the range of /s from 2.0 to 4.95 GeV, with a peak luminosity of 1 x 1033 cm=2s~!
achieved at /s = 3.77 GeV. BESIII has collected large data samples in this energy region [34—
36]. The cylindrical core of the BESIII detector covers 93% of the full solid angle and
consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight
system (TOF), and a CsI(T1) electromagnetic calorimeter (EMC), which are all enclosed in a
superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported
by an octagonal flux-return yoke with resistive plate counter muon identification modules
interleaved with steel. The charged-particle momentum resolution at 1 GeV/c is 0.5%, and
the dF/dz resolution is 6% for electrons from Bhabha scattering. The EMC measures photon
energies with a resolution of 2.5% (5%) at 1 GeV in the barrel (end cap) region. The time
resolution in the TOF barrel region is 68 ps, while that in the end cap region was 110 ps. The
end cap TOF system was upgraded in 2015 using multigap resistive plate chamber technology,
providing a time resolution of 60 ps [37-39] and benefiting 82% of the data used in this analysis.

To evaluate detection efficiencies and estimate backgrounds, simulated data samples
are produced using GEANT4-based Monte Carlo (MC) software [40], which incorporates the
geometric description of the BESIII detector [41] as well as the detector response. The
simulation of the ete™ — £+X~ production process models the beam energy spread in
the ete™ annihilation process, employing KKkMC [42]. For each of the 41 CM energy points
ranging from 3.510 to 4.951 GeV, a sample of 100,000 events is simulated with a uniform



phase space (PHSP) distribution. The £+~ baryon pair and their subsequent decays are
simulated using EVTGEN [43, 44] with a PHSP model.

3 Event selection

Due to the large background in the selection of ete~ — £TX~ events, both the T and
Y~ are required to be reconstructed via the decay modes ¥T — pr? and £~ — pr® with
0 = 7.

Tracks of charged particles detected in the MDC are required to lie within the angular
coverage of the MDC |cos | < 0.93, where 6 is the angle between the charged track and the
z axis, which is the symmetry axis of the MDC. At least one positively charged and one

the subsequent decay w

negatively charged track are required to be reconstructed in the MDC with good Kalman
fits. Because the proton and anti-proton can be separated according to their momenta in
a ©+Y~ decay, a charged particle with momentum greater than 0.5 GeV/c is identified as
a proton or anti-proton.

For 7° reconstruction, the energies of photons are required to be greater than 25 MeV
in the EMC barrel region (|cosf| < 0.8) and greater than 50 MeV in the EMC end cap
(0.86 < |cosf| < 0.92). To suppress electronic noise and energy deposits unrelated to the
events, the EMC shower time measured with respect to the collision signal, is required to
satisfy 0 < t < 700 ns. After these selections, at least four photons are required.

The best candidate of all combinations of ppyyyvy within an event is determined by a
six-constraint (6C) kinematic fit, which imposes energy and momentum conservation and
constrains the masses of photon pairs to the known mass of 7° [45]. The ppr%7® combination
with the smallest fit x? is chosen. For different p(p) and 7° combinations, the ¥ and ¥~ pair
with the minimum of \/(Mpﬂo — my+)? 4+ (Mpro — ms- )2, is selected. Here, M, ) is the
invariant mass of the pr’(pm") combination, and M+ (5;-) is the known mass of ¥ (X7) from
the Particle Data Group (PDG) [45]. Figure 1 shows the distributions of M), o versus Mo for

each energy point and the sum of all energy points. M, 050 is required to be within the range

70 (1—)7r0

of [my+ — 40, my+ + 30], which is labeled by S in figure 1. The resolution o and the signal
region are determined by a fit with the Crystal-Ball function [46]. Due to the longer tail of the
photon energy deposition at the low energy side in the EMC, the signal region is asymmetric.

4 Born cross section measurement

4.1 Determination of signal yields

After applying the event selection criteria on data, the remaining background mainly comes
from non-2 X~ events, such as ete™ — 79707 /1 — m079p. To estimate the background
yield in the signal region, four sideband regions B; (where i = 1, 2, 3, 4) are utilized. These
sideband regions, shown in figure 1, have the same area as the signal region, and the exact
ranges are defined by

e Bi: M

om0 € [1.119, 1.154] GeV/c? & Mo € [1.219, 1.254] GeV /2,

e By: M0 € [1.219, 1.254] GeV/c? & Mo € [1.219, 1.254] GeV /2,
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Figure 1. Distributions of Mp.o versus Mj,o for data at each energy point between 3.510 and
4.951 GeV and the sum of all energy points (bottom right) from data. The red boxes represent the
signal regions and the green boxes represent the selected sideband regions.

o Bs: M0 € [1.119, 1.154] GeV/c? & Mo € [1.119, 1.154] GeV /2,
o By: M0 € [1.219, 1.254] GeV/c? & Mo € [1.119, 1.154] GeV /2.

The signal yield Nops for the ete™ — £T3~ reaction at each energy point is determined
by subtracting the number of events in the sideband regions from the signal region, i.e.,
Nobs = Ng — Npig, where Ng is the number of events from the signal region and Npi, =
%221:1 Np,. Statistical uncertainties are calculated based on the TRolke method [49], and
the statistical significance is evaluated based on the observed p-value [48]. The results are
listed in table 1. For the energy points with statistical significance less than 3o, the upper



limit at the 90% confidence level (C.L.) is also estimated based on the TRolke method, which
takes into account systematic uncertainties.

4.2 Determination of Born cross section and effective form factor

The Born cross section for the ete™ — X TS~ process at a given CM energy is calculated by

N,
O'B N . obs . - 7 (41)
L- (1+5) ’ m 'E'BE-F%pr .BWO‘)W’Y
where Nypg is the number of observed signal events, £ is the integrated luminosity, (1 + 0) is
the ISR correction factor, ﬁ is the vacuum polarization (VP) correction factor, € is the

detection efficiency, and By;+_,,-0 and Bro_,,, are the PDG branching fractions [45]. The ISR
correction factor is obtained using the QED calculation as described in ref. [50], and the VP
correction factor is calculated according to ref. [51]. The efficiency and ISR correction factor
are obtained through an iterative process. Initially, the cross section is measured without
any correction factors. Using this initial line shape, signal MC samples are regenerated, and
their efficiencies and ISR correction factors are recalculated. Subsequently, the Born cross
section of eTe™ — L1t~ is updated and used as input for the next iteration. To expedite
the iteration procedure, an iterative weighting method, as proposed in ref. [52], is employed.
The procedure is iteratively performed until the difference of € - (1 4 ¢) with the last iteration
falls below 0.5%. The results of the measured Born cross sections and the X7 effective form
factors Geg(s) for different energy points are listed in table 2. Geg(s) is defined as [26]

3sToB
|Getr(s)| = \/2m205(2r 1) (4.2)

where s is the square of the CM energy, a = ﬁ is the fine structure constant, the variable

B =4/1— % is the velocity of ¥ in the laboratory department, 7 = 17—, and the Coulomb
s+

factor C' [53, 54] parameterizes the electromagnetic interaction between the outgoing baryon

and anti-baryon. For neutral baryons, the Coulomb factor is unity, while for point-like charged

fermions, C' = ”70‘ .Y 1j§ [55-58]. Figure 2 displays the energy dependence of the Born
l1—e

cross section and XV effective form factor Geg(s) measurements, as well as a comparison

of the Born cross sections and the effective form factors with the CLEO-c results [59] at
Vs = 3.770 and 4.160 GeV.

5 Systematic uncertainty

The systematic uncertainties on the Born cross section measurements mainly originate

from the integrated luminosity, ¥ (37) reconstruction, background, angular distribution,
branching fractions, and input line shape.

5.1 Luminosity

The luminosity at all energy points is measured using Bhabha events with the uncertainties
of 1.0% [60] below 4.0 GeV, 0.7% [61] from 4.0 to 4.6 GeV and 0.5% [62] above 4.6 GeV, which
are taken as the systematic uncertainties due to the luminosity measurement.



\/g (GGV) NS kag Nobs (< NUL) S (U)
3.510 89.073%°  18. 8+4 5 70.3%945 7.9
3.582 12.0146  4.0732 8.0737% 3.3
3.650 44. 0+7 i 10.0t§;§’ 34.0750 7.9
3.670 13. 0+4 i 2.8733 10.3751 4.5
3.773 324.032.8 139.3122 184.8t}§2 7.9
3.808 2.0138 1.3720 08729 (< 45) 0.9
3.867 4.0%32 3. 3+§S 0.872% (< 5.8) 08
3.871 4.0%32 1.023 3 0“? (<7.5) 23
3.896 6.073¢ 1.5725 33 (< 10.2) 2.8
4.008 29. o+gj§ 11.3t§g 17 8+ 4.5
4.128 13.0135 65737 6.5758 (< 14.8) 24
4.157 16. otié 4.3%29 11.8t§.2 4.4
4.178 99.07550 545181 44, 5t;°1~8 5.5
4.189 12.013%  9.073% 5(<10.9) 1.3
4.199 15. otgg 7.8736 7 3+ 9(<16.3) 25
4.209 14.073% i 7.8138 2 (<15.1) 2.2
4.226 450178 16.015} 29 otgi 6.0
4.236 21.0737  9.0755 17 12.075% 3.5
4.244 16.0155  6.8734 9.3153 3.1
4.258 28. 0+6 1 19.8752 8. 3+64 (< 20.7) 2.0
4.267 13.0t§g 7.01538 0+3§ (< 13.9) 2.2
4.278 5.0153 3.0722 20728 (<7.2) 1.3
4.288 17.0752 83138 8.8T47 (< 17.9) 2.8
4.312 150739 8.0133 7.0752 (< 15.5) 24
4.337 13.0135 58732 7351 (< 15.7) 2.7
4.358 16.0058 138735 23131 (<122) 1.0
4.377 14. 0+3 5 63753 7.8133 (< 16.0) 2.8
4.396 11.0133 73733 3.873% (< 11.5) 1.6
4.416 26.01%%  19.0153  7.07)% (<184) 1.8
4.436 17.0ti;§ 8.8757 8.3752 (< 17.9) 26
4.527 3.01%3 2.5118 05728 («5.2) 07
4.600 11. 0+44 105733 05752 (<88) 0.7
4.628 7.0153 6.5751 05732 (<7.3) 0.7
4.641 12.0t§;2 6.3133 58755 (< 13.6) 2.2
4.661 8.073% 6.075¢ 2.0732 (<8.6) 1.1
4.682 26.0752  21.8%%2 43792 (<16.6) 1.3
4.740 7.0158 3.3t§38 3.8732(<9.9) 20
4.750 4.0133 3.5139 05728 (<58) 0.7
4.781 10.013% 6. 5+3 7 3.515% (< 11.1) 15
4.918 5.0733 45733 0532 (<64) 0.7
4.951 5.0734 2.0+2¢ 3.0725 (<8.0) 1.9

Table 1. Number of events: Ng is from the signal region, Nypi, is the number of background events,
Nops is the number of events by subtracting the backgrounds, S(o) is the statistical significance, and
NUL is the upper limit for an energy point with statistical significance less than 3o.



V5 (GeV) L (pb™1) ﬁ e (1438)  Nops (< NI oB (tb) |Getr(s)] x1073 S (0)
3.510 405.4 1.04 0.25 70.3710° 2517.97375-% + 103.2 239118 405 7.9
3.582 85.7 1.04 0.25 8.01%% 1366.37539-0 + 56.0 181743 + 0.4 3.3
3.650 410.0 1.02 0.25 34.0779 1236.57258°% + 50.7 17.6718 £ 0.4 7.9
3.670 84.7 0.99 0.25 10.3457 1866248327 + 76.5 21.8759 4+ 0.4 4.5
3.773 2931.8 1.06 0.26 184. 8*1?-2 891.47897 + 36.5 15.67908 +0.3 7.9
3.808 50.5 1.06 0.26 0 (<45) 211475538487 (< 1268.5) 7.771%3+0.2 (< 18.9) 0.9
3.867 108.9 1.05 0.25 0. stgg (< 5.8) 99.47308744.1 (< 768.9)  5.479:340.1 (< 15.0) 0.8
3.871 110.3 1.05 0.26 3.0123 (< 7.5)  390.4%239-3416.0 (< 976.1) 10.773440.2 (< 17.0) 2.3
3.896 52.6 1.05 0.26 45733 (<10.2) 1222.3+8550450.1 (< 2770.5)19.175:940.4 (< 28.8) 2.8
4.008 482.0 1.04 0.26 17.878:9 527.671154 £ 21.6 131722403 4.5
4.128 401.5 1.05 0.26 6.575% (< 14.8)  231.37530049.5 (< 526.6)  9.073+0.2 (< 13.6) 2.4
4.157 408.7 1.05 0.26 118155 411.5H81 +16.9 121734 +0.2 44
4.178 3189.0 1.05 0.25 44,5708 202.77192 +8.3 8.6709+0.2 5.5
4.189 526.7 1.06 0.25 +3 : 8(<10.9) 82371942434 (< 298.9) 5.5733+0.1(<10.5) 1.3
4.199 526.0 1.06 0.25 3750(<16.3)  198.0733%048.1 (< 445.2)  8.5739+0.2 (< 12.8) 2.5
4.209 517.1 1.06 0.25 t;‘;? (<15.1) 173173830471 (< 418.3)  8.07F1+0.2 (< 12.5) 2.2
4.226 1100.9 1.06 0.25 29.0179 377.3T 01 £155 11.9773 £0.2 6.0
4.236 530.3 1.06 0.25 12,0749 3274073 £ 134 111533 £ 0.2 3.5
4.244 538.1 1.06 0.25 9.3%54 248.3773%° £ 10.2 9.7827 £ 0.2 3.1
4.258 828.4 1.05 0.25 8.3704 (< 20.7)  143.01111945.9 (< 358.9) 74725402 (< 11.7) 2.0
4.267 531.1 1.05 0.25 6.00539 (< 13.9)  162.7130%846.7 (< 377.0)  7.9725+0.2 (< 12.1) 2.2
4.278 175.7 1.05 0.25 20728 (< 7.2)  164.972113+6.8 (< 593.6) 8.0752+0.2(< 15.2) 1.3
4.288 502.4 1.05 0.26 87T (< 17.9)  249.378339410.2 (< 509.9) 9. 9+2 140.2(< 14.1) 2.8
4.312 501.2 1.05 0.25 70732 (< 15.5)  201.471208+48.3 (< 445.9)  8.9727+0.2 (< 13.3) 24
4.337 505.0 1.05 0.25 73757 (< 15.7)  208.671%7+8.6 (< 451.7) 9. 2*3 OiO 2(<13.5) 2.7
4.358 544.0 1.05 0.24 3553 (<12.2)  62.0100%5+2.5 (< 336.1) 1401 (< 11.7) 1.0
4.377 522.7 1.05 0.25 7.8733 (< 16.0)  214.7711%148.8 (< 443.3) 94+ 54+0.2 (< 13.6) 2.8
4.396 507.8 1.05 0.25 38739 (< 11.5)  107.871523+4.4 (< 330.7)  6.7735+0.1(< 11.8) 1.6
4.416 1090.7 1.05 0.25 70558 (< 18.4)  93.67723+3.8(< 245.9) 6. 3t§3i0 1(<10.2) 1.8
4.436 569.9 1.05 0.25 83752 (< 17.9)  208.6118°+£8.6 (< 452.7)  9.5739+0.2 (< 14.0) 2.6
4.527 112.1 1.05 0.25 0.572% (< 5.2) 65.0737942.7 (< 675.7)  5.4744240.1 (< 17.6) 0.7
4.600 586.9 1.05 0.25 0. 5t3§ (< 8.8) 12.5H19%340.5 (< 220.6)  2.471%340.1 (< 10.3) 0.7
4.628 521.5 1.05 0.25 0.5733 (< 7.3) 14.2799240.6 (< 206.9) 6+$ 240.1 (< 10.0) 0.7
4.641 551.7 1.05 0.25 8§71 (< 13.6)  154.3711%0+6.2 (< 364.9) 140.2(< 13.4) 2.2
4.661 529.4 1.05 0.25 th (< 8.6) 54.5787242.9 (< 234.3) 2+42io 1(<10.8) 1.1
4.682 1667.4 1.05 0.25 43782 (<16.6) 3747345415 (< 146.3)  4.373240.1(<86) 1.3
4.740 163.9 1.05 0.25 387532 (<9.9) 333978194134 (< 881.4) 13.275 ?iO 3(<21.4) 2.0
4.750 366.6 1.05 0.25 0.5728 (< 5.8) 19.9718564+0.8 (< 231.1)  3.279440.1 (< 11.0) 0.7
4.781 511.5 1.06 0.25 35780 (< 11.1)  99.4%113644.0 (< 315.3)  7.373240.1 (< 13.0) 1.5
4.918 207.8 1.06 0.25 0.5tgg (< 6.4) 35.2725041.4 (< 450.0) 4. 5t5430j:0.1 (<16.2) 0.7
4.951 159.3 1.06 0.25 3.0728 (< 8.0)  274.3tBTT411.0 (< 731.5) 12.773340.3 (< 20.8) 1.9

Table 2. The CM energy (1/s), the integrated luminosity (£), the VP correction factor (ﬁ),

the ISR correction factor and the detection efficiency (e- (1 4 4)), the signal yield (Nyps), the upper
limit of signal yield at the 90% C.L. (NVL), the Born cross section (o
(|Ge(s)]) and the statistical significance (S). The first and second uncertainties for o and |Gog(s)|
are statistical and systematic, respectively.

), the effective from factor
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Figure 2. The measured Born cross section (top) and X7 effective form factor (bottom) for ete™ —

Y%~ versus CM energy, where the uncertainties include both the statistical and systematic ones.

5.2 X1 (X7) reconstruction

The systematic uncertainty due to the X+ (¥X7) reconstruction efficiency incorporating the
tracking efficiencies, 7° reconstruction, and E+(i_) mass windows, is estimated by the
control sample of ¥(3686) — L+¥~ with the same method as described in refs. [63-72]. The
efficiency difference correlated with the angular distribution (cos#) between data and MC

is taken as the systematic uncertainty.

5.3 Background

The systematic uncertainty associated with the background, which is estimated based on the
sidebands, is determined by shifting the sideband region inward or outward by lo. Since
the number of events for each energy point is limited, all energy points are combined in
the estimation. The maximum difference before and after moving the sideband region is
taken as the systematic uncertainty.



Vs (GeV) Luminosity X1(X7) reconstruction Background AD B ILS Total

From 3.510 to 3.896 1.0 1.9 2.7 21 08 0.1 4.1
From 4.008 to 4.600 0.7 1.9 2.7 21 0.8 0.1 4.1
From 4.628 to 4.951 0.5 1.9 2.7 21 08 0.1 4.0

Table 3. Systematic uncertainties (in %) and their sources for each energy point on the Born cross
section measurement. Here, AD denotes angular distribution, 55 denotes branching fraction, and ILS
denotes input line shape.

5.4 Angular distribution

Since there are not enough events to determine the angular distribution for each energy point
separately, a control sample with large statistics and a DIY model [44] with customizable
angular distribution are used. With a large sample of 1)(3770) events as the control sample, the
angular distribution is obtained by a maximum likelihood fit to the helicity amplitude [73-75].
The DIY sample is initially generated with the central value of the fitting, and its efficiency
is considered as the nominal result. Subsequently, two additional DIY samples are generated
using the upper and lower limits of the fit uncertainty. The maximum difference in efficiency
between them and the nominal one is taken as the systematic uncertainty.

5.5 Branching fractions

The uncertainty from the branching fraction of ¥+ — pn¥ is 0.58% from the PDG [45],
and the uncertainty of the branching fraction of 7° — ~v is 0.03%. Combining with the
branching fraction of the opposite side £~ decay, the systematic uncertainty from the
branching fractions is 0.8%.

5.6 Input line shape

The systematic uncertainty of the input line shape is estimated by varying the central value
of the nominal input line shape within +1o of the statistical uncertainty, and the € - (1 + 9)
value for each energy point is recalculated. This process is repeated 200 times, after which
a Gaussian function is used to fit the e - (1 4 §) distribution. The width of the Gaussian
function is taken as the corresponding systematic uncertainty.

5.7 Total systematic uncertainty

The various systematic uncertainties on the Born cross section measurement are summarized
in table 3. Assuming all sources are independent, the total systematic uncertainty on the
cross section measurement is determined by adding them in quadrature.

6 Fit to the dressed cross section

The potential resonances in the line shape of the cross section for the ete™ — LTE~ reaction
are searched for by fitting the dressed cross section, o004 = B /|1 — II|? (including the
VP effect), using the least x? method:

P = AXTVIAX. (6.1)



This is done considering the covariance matrix V' and the vector of residuals AX between the
measured and fitted cross sections. The covariance matrix incorporates both the correlated
and uncorrelated uncertainties among different energy points. The systematic uncertainties
associated with the luminosity, ¥+ (X7) reconstruction, and branching fraction are assumed
to be fully correlated among the CM energies, while the other systematic uncertainties are
assumed to be uncorrelated.

Assuming the cross section of ete”™ — £TX~ includes a resonance plus a continuum
contribution, a fit to the dressed cross section with the coherent sum of a power-law (PL)

function plus a Breit-Wigner (BW) function

: P
O_dressed<\/§) = PL(\/E) 4 €Z¢BW(\/§) (\/g) , (62)
P(M)
is applied. Here ¢ is the relative phase between the BW function
V127l Bl
BW(vs) = —~—7 (6.3)

s—M?+iMT’
and the PL function

PL(Vs) = ——=—, (6.4)

where ¢g and n are free fit parameters, |/ P(y/s) is the two-body PHSP factor, the mass M
and total width I' are fixed to the assumed resonance with the PDG values [45], and I'c.B
is the products of the electronic partial width and the branching fraction for the resonance
decaying into the ¥TX~ final state. Note that due to limited statistics, we only take into
account the interference between the continuum contribution and each resonance, and no
longer consider the interference between resonances. The parameters without a resonance are
fitted to be (co = 2.3 £0.8,n = 8.5 + 0.3) with the goodness-of-fit x?/n.d.f = 31.2/(41 — 2),
and the parameters including a resonance are summarized in table 4. Considering systematic
uncertainties, the significance for each resonance is calculated by comparing the change
of x?/n.d.f with and without the resonance. Charmonium(-like) states, 1)(3770), 1(4040),
1 (4160), Y (4230), Y (4360), 1(4415), Y (4660), are all fitted separately by eq. (6.2), but no
significant resonance is found. Thus, upper limits of the products of branching fraction and
two-electronic partial width for these charmonium(-like) states decaying into the X T~ final
state including the systematic uncertainty are determined at the 90% C.L. using a Bayesian
approach [76]. Figure 3 shows the fit to the dressed cross section including a resonance [i.e.
¥ (3770), ¢ (4040), ¢(4160), Y (4230), Y (4360), 1/(4415) and Y (4660)] and without a resonance.
Due to the quadratic form of the cross section like eq. (6.2), there are multiple solutions [77],
which can be determined by scanning the parameters ¢ and ['¢e3, similar to the method used
in ref. [25]. The fit results and their multiple solutions are summarized in table 4.

7 Summary

Using a total of 24.1fb~! of eTe™ collision data above open-charm threshold collected with
the BESIII detector at the BEPCII collider, the process ete™ — Y1tX~ is studied. The
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Figure 3. Fits to the dressed cross section at the CM energy from 3.510 to 4.951 GeV with the
assumptions of a PL function only (upper left) and a power-law function plus a resonance (¢ (3770),
1(4040), (4160), Y (4230), Y (4360), 1(4415), and Y (4660)). Dots with error bars are the dressed
cross sections, and the solid lines show the fit results. The error bars represent the statistical and
systematic uncertainties summed in quadrature.
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Resonance parameters  Solution I Solution IT ?/n.d.f
by (3770) (rad) —26+04 —-2.0+04

28.8/(41 — 4)
LeeBy(3770)(1073€V) 19.5 £29.1  73.8 & 32.7 (< 101.5)
b d 20+06 —1.7+0.1
Py (aou) (rad) 30.5/(41 — 4)
Lee By 4010y (1073eV) 024+ 1.3  154.6 4 29.0 (< 216.6)
d —06+05 —15+0.1
by (4160 (rad) 27.9/(41 — 4)
LeeBya160)(1073eV) 0.8 £0.7 82.1 & 5.6 (< 94.6)
d 04+04 —15+0.1
Puazso) (rad) 26.5/(41 — 4)
LeeBy(azs0) (107%eV) 1.240.8 60.1 & 5.0 (< 72.4)
: d 1.74+07 —1.740.1
Pyazso) (rad) 30.1/(41 — 4)
LeeByazo0) (1073eV) 0.5+ 1.0 98.4 + 10.4 (< 118.8)
d 08+06 —1.6+0.1
¢’¢)(4415) (I‘a ) 305/(41 _ 4)
LeeBy(aa15) (1073eV) 0.1+0.5 47.7 + 6.8 (< 62.1)
d —-03+05 —15+02
Py acso) (rad) 30.6/(41 — 4)
LeeBy (a660) (10 3€V) 02+1.6 31.1 + 9.3 (< 49.6)

Table 4. The fitted resonance parameters to the dressed cross section for the ete™ — L1tX~ process
with two solutions. The fit procedure includes both statistical and systematic uncertainties except for
the CM energy calibration. The relative phase is given by ¢.

Born cross sections and effective form factors are measured at 41 CM energies that range
from 3.510 to 4.951 GeV. A fit to the dressed cross section of the ete™ — LT~ reaction
is performed, in which the line shape is described by a series of resonance hypotheses plus
a continuum contribution, or only a continuum contribution. However, no obvious signal
of ¥(3770), 1(4040), ¥(4160), Y (4230), Y (4360), ¥(4415), or Y (4660) is found, and upper
limits for the products of branching fraction and di-electronic partial width at the 90% C.L.
for these charmonium(-like) states decaying into the X T~ final state are determined.
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