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Abstract

We reformulate the canonical seesaw mechanism in the case that the electroweak gauge symmetry is 
unbroken, and show that it can formally work and allow us to derive an exact seesaw formula for the 
light and heavy Majorana neutrinos. We elucidate the reason why there is a mismatch between the mass 
eigenstates of heavy Majorana neutrinos associated with thermal leptogenesis and those associated with 
the seesaw framework, and establish the exact and explicit relations between the original and derivational
seesaw parameters by using an Euler-like parametrization of the 6 × 6 active-sterile flavor mixing matrix.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Motivation

Among all the proposed mechanisms toward deeply understanding the true origin of tiny 
masses of the three known neutrinos νi (for i = 1, 2, 3), whose flavor eigenstates are commonly 
denoted as να (for α = e, μ, τ ), the canonical seesaw mechanism [1–5] stands out as being most 
economical and most natural. The simplicity of this mechanism lies in two aspects: (a) it just 
takes into account the right-handed neutrino fields NαR, the chiral counterparts of the left-handed 
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neutrino fields ναL (for α = e, μ, τ ), which were originally ignored from the particle content of 
the standard model (SM) [6]; (b) it simply allows for lepton number violation or the Majorana 
nature of massive neutrinos [7], which is completely harmless to the theoretical framework of 
the SM itself. The naturalness of this mechanism is reflected in its attributing the small masses 
of νi to the existence of three heavy Majorana neutrinos Ni (for i = 1, 2, 3), whose masses are 
expected to be far above the fulcrum of the seesaw — presumably the electroweak symmetry 
breaking scale of the SM characterized by the vacuum expectation value of the Higgs field. On 
the other hand, the seesaw mechanism offers a big bonus to cosmology: the CP-violating and 
out-of-equilibrium decays of heavy Majorana neutrinos may give rise to a net lepton-antilepton 
asymmetry in the early Universe, and such a leptogenesis mechanism [8] can finally lead to 
baryogenesis as a natural interpretation of the observed baryon-antibaryon asymmetry in today’s 
Universe [9]. In this sense the seesaw mechanism is the very stone that can kill two fundamental 
birds in particle physics and cosmology.

Note that the seesaw mechanism is expected to take effect at a superhigh energy scale �which 
is essentially of the order of the heavy Majorana neutrino masses. But the SU(2)L ×U(1)Y elec-
troweak gauge symmetry has been unbroken until the Higgs field develops a nonzero vacuum 
expectation value v of O

(
102

)
GeV. In this situation the three active neutrinos are actually im-

possible to acquire their true masses of O(v2/�) at the seesaw scale � due to the absence of a 
real fulcrum of the seesaw. On the other hand, thermal leptogenesis can be realized via the lepton-
number-violating decays of heavy Majorana neutrinos into the leptonic and Higgs doublets at �. 
So we are well motivated to ask a conceptually important question: how can the seesaw mech-
anism formally survive with the unbroken electroweak gauge symmetry and work together with 
the leptogenesis mechanism? If the answer to this question is affirmative, we wonder whether the 
mass eigenstates of heavy Majorana neutrinos associated with thermal leptogenesis are exactly 
the same as those associated with the seesaw mechanism itself.1 In case that there exists a mis-
match between these two sets of mass bases, then the question becomes how small this mismatch 
is likely to be.

To answer the above questions and clarify some conceptual ambiguities that have never been 
taken seriously, we are going to study how to make the seesaw mechanism formally work before 
spontaneous electroweak symmetry breaking. We show that an exact seesaw relation between 
the light and heavy Majorana neutrinos can be established far above the electroweak scale, and it 
becomes the realistic seesaw relation after the Higgs field develops its vacuum expectation value. 
In this way it is straightforward to elucidate the reason why there is a mismatch between the mass 
eigenstates of heavy Majorana neutrinos associated with thermal leptogenesis and those associ-
ated with the seesaw mechanism. With the help of a full Euler-like parametrization of the flavor 
structure in the seesaw framework, we illuminate such a mismatch in a more specific way. The 
exact and explicit relations between the original and derivational parameters of massive Majo-
rana neutrinos are obtained as a by-product, and they are expected to be useful in determining or 
constraining some of the original seesaw parameters from the low-energy neutrino experiments.

1 A mismatch of this kind has been observed and discussed in the seesaw framework after spontaneous electroweak 
symmetry breaking and in an approximate way (see, e.g., Refs. [10–14]). Here we shall take a new look at it before
electroweak symmetry breaking and in an exact way at the tree level.
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2. A formal seesaw mechanism?

2.1. The leptonic Yukawa interactions

Let us begin with the gauge-invariant leptonic Yukawa interactions and the SU(2)L-singlet 
Majorana neutrino mass term of the canonical seesaw mechanism at �2

−L� = �LYlH lR + �LYνH̃NR + 1

2
(NR)cMRNR + h.c. , (1)

where �L = (
νL lL

)T denotes the leptonic SU(2)L doublet of the SM with

νL = (
νeL νμL ντL

)T and lL = (
leL lμL lτL

)T standing respectively for the column vec-

tors of the left-handed neutrino and charged lepton fields, H̃ ≡ iσ2H ∗ with H = (
φ+ φ0

)T
being the Higgs doublet of the SM and σ2 being the second Pauli matrix, lR = (

leR lμR lτR
)T

and NR = (
NeR NμR NτR

)T stand respectively for the column vectors of the right-handed 

charged lepton and neutrino fields which are the SU(2)L singlets, (NR)c ≡ CNR
T
with C being 

the charge-conjugation matrix and satisfying C−1 = C† = CT = −C, Yl and Yν represent the re-
spective Yukawa coupling matrices of charged leptons and neutrinos, and MR is the symmetric 
right-handed neutrino mass matrix. In Eq. (1) the hypercharges of �L, lR, NR, H and H̃ are −1/2, 
−1, 0, +1/2 and −1/2, respectively. Since νLYνNR is a Lorentz scalar and can be transformed 
into

νLYνNR = [νLYνNR]
T = (NR)cY T

ν (νL)c , (2)

where (νL)c ≡ CνL
T is the charge-conjugated counterpart of νL, one may easily rewrite Eq. (1)

as

−L� = lLYllRφ0 + 1

2

[
νL (NR)c

]( 0 Yνφ
0∗

YT
ν φ0∗ MR

)[
(νL)c

NR

]
+νLYllRφ+ − lLYνNRφ− + h.c. . (3)

This expression is highly nontrivial in the sense that it clearly shows a direct correlation between 
the left- and right-handed neutrino fields via their Yukawa couplings to the neutral component 
of the Higgs doublet even though the SU(2)L ×U(1)Y gauge symmetry is perfect at the seesaw 
scale �. In this situation the 3 × 3 Yukawa coupling matrix Yν can be regarded as a “virtual” 
fulcrum of the seesaw before spontaneous electroweak symmetry breaking.

Note that both the scalar field φ0 and its charge-conjugated counterpart φ0∗ have the mass 
dimension and act like two complex numbers in Eq. (3). But of course they possess the respective 
hypercharges +1/2 and −1/2 as φ± do. After spontaneous symmetry breaking φ0 and φ0∗ will 
acquire the same vacuum expectation value 〈φ0〉 = 〈φ0∗〉 = v/

√
2 with v � 246 GeV, together 

with 〈φ−〉 = 〈φ+〉 = 0, as in the SM. Then the formal seesaw will acquire a real fulcrum which 
allows one to naturally attribute the smallness of three active Majorana neutrino masses to the 
existence of three heavy Majorana neutrinos, as can be seen later on.

2 Throughout this paper, our discussions are subject to the minimal extension of the SM with three right-handed 
neutrino fields and lepton number violation at zero temperature, so as to make our key point clear and avoid possible 
complications (e.g., thermal corrections to the masses of heavy Majorana neutrinos [14]).
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2.2. The leptogenesis-associated basis

Now that all the SM particles are exactly massless in the early Universe when the temperature 
is far above the electroweak scale, a realization of thermal leptogenesis at � � v only needs 
to calculate the lepton-number-violating decays of heavy Majorana neutrinos into the leptonic 
doublet and the Higgs doublet at the one-loop level by simply starting from Eq. (1) instead of 
Eq. (3) (see, e.g., Refs. [8,15–18]). In this case the column vector of the mass eigenstates of 
three heavy Majorana neutrinos, denoted as N ′ = (

N1 N2 N3
)T , can easily be obtained by 

making the Autonne-Takagi transformation [19,20] as follows:

U
′†
0 MRU ′∗

0 =DN , N ′
R = U ′T

0 NR , (4)

where U ′
0 is a unitary matrix, and DN ≡Diag

{
M1, M2, M3

}
with Mi being the masses of Ni

(for i = 1, 2, 3). As a result, the Lagrangian L� in Eq. (1) becomes

−L� = �LYlH lR + �LYνH̃N ′
R + 1

2
(N ′

R)cDNN ′
R + h.c. , (5)

where Yν ≡ YνU
′∗
0 is defined for the sake of simplicity. The rates of Ni decaying into �L and H

or their CP-conjugated states are therefore determined by Mi and Yν , so are the corresponding 
CP-violating asymmetries associated closely with thermal leptogenesis [15–18].3 To be more 
specific, the flavor-dependent CP-violating asymmetries of Ni decays are given by

εiα ≡ 

(
Ni → �α + H

)− 

(
Ni → �α + H

)∑
α

[


(
Ni → �α + H

)+ 

(
Ni → �α + H

)]
= 1

8π
(
Y†

νYν

)
ii

∑
j �=i

{
Im

[(
Y∗

ν

)
αi

(
Yν

)
αj

(
Y†

νYν

)
ij

ξ(xji ) + (
Y∗

ν

)
αi

(
Yν

)
αj

(
Y†

νYν

)∗
ij

ζ(xji )
]}

, (6)

where the Latin and Greek subscripts run respectively over (1, 2, 3) and (e, μ, τ), xji ≡
M2

j /M2
i are defined, ξ(xji) = √

xji

{
1+ 1/

(
1− xji

)+ (
1+ xji

)
ln
[
xji/

(
1+ xji

)]}
and 

ζ(xji) = 1/ 
(
1− xji

)
are the loop functions. A net lepton-antilepton asymmetry can therefore 

result from εiα in the early Universe, and later on it can be partly converted into a net baryon-
antibaryon asymmetry via the sphaleron interactions (see Ref. [21] for a recent review).

At this point it is worth remarking that the right-handed neutrino fields NαR have zero weak 
isospin and hypercharge, and hence they have no coupling with the charged and neutral gauge 
bosons of the SM. As a consequence, the mass eigenstates of heavy Majorana neutrinos obtained 
from Eq. (4) do not participate in the weak charged-current interactions of the SM,

−Lcc = g

2
�Lγ μ

(
σ1W

1
μ + σ2W

2
μ

)
�L = g√

2
lLγ μW−

μ νL + h.c. , (7)

where g denotes the weak gauge coupling constant, σ1,2 represent the first and second Pauli 
matrices, Wμ

1,2 are two of the original SU(2)L gauge fields, and W±
μ ≡ (

W 1
μ ∓ iW 2

μ

)
/
√
2 stand 

for the fields of the physical charged gauge bosons W±. But in the seesaw framework we shall see 
that the expression of Lcc in Eq. (7) will get modified, and the corresponding mass eigenstates of 
three heavy Majorana neutrinos can definitely take part in the weak charged-current interactions.

3 Here we have used some calligraphic characters to denote the relevant physical quantities in the basis where MR
is diagonalized by the unitary transformation made in Eq. (4). This basis is associated with Ni decays and thermal 
leptogenesis, and it is conceptually different from the basis taken for the seesaw mechanism as can be seen below.
4
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2.3. The seesaw-associated basis

We proceed to show that the canonical seesaw mechanism can “formally” work before spon-
taneous electroweak symmetry breaking but the corresponding mass eigenstates of three heavy 
Majorana neutrinos are not exactly the same as Ni (for i = 1, 2, 3) obtained above for the neu-
trino decays and thermal leptogenesis. To clarify this important point, let us diagonalize the 
symmetric 6 × 6 matrix in Eq. (3) in the following Autonne-Takagi way:

U†
(

0 Yνφ
0∗

YT
ν φ0∗ MR

)
U∗ =

(
Dν 0
0 DN

)
, (8)

where U is a 6 × 6 unitary matrix, and the diagonal and real matrices Dν and DN are defined as 
Dν ≡Diag

{
m1, m2, m3

}
and DN ≡Diag

{
M1, M2, M3

}
. Meanwhile, the column vectors of left-

and right-handed neutrino fields 
[
νL (NR)c

]T and 
[
(νL)c NR

]T undergo the transformations[
νL

(NR)c

]
−→U†

[
νL

(NR)c

]
,

[
(νL)c

NR

]
−→ UT

[
(νL)c

NR

]
, (9)

such that the Lagrangian L� in Eq. (3) keeps unchanged and thus its overall gauge symmetry 
is unbroken. Now that Yν is dimensionless and φ0 has the same mass dimension as MR, one 
may argue that mi should be the “working” or “virtual” mass parameters of three light Majorana 
neutrinos as the electroweak gauge symmetry is unbroken at the seesaw scale �. In comparison, 
Mi are essentially the true masses of three heavy Majorana neutrinos in the existence of the 
φ0(∗)-mediated neutrino Yukawa interactions. Along this line of thought, we find that it is useful 
to decompose U into the product of three matrices,

U =
(

I 0
0 U ′

0

)(
A R

S B

)(
U0 0
0 I

)
, (10)

where the 3 ×3 unitary matrix U ′
0 has been defined in Eq. (4) to primarily describe flavor mixing 

in the sterile (heavy) neutrino sector, U0 denotes the other 3 × 3 unitary matrix that is mainly 
responsible for flavor mixing in the active (light) neutrino sector, while the 3 × 3 matrices A, B , 
R and S signify the interplay between these two sectors [22–24]. The unitarity of U assures

AA† + RR† = BB† + SS† = I ,

AS† + RB† = A†R + S†B = 0 ,

A†A + S†S = B†B + R†R = I . (11)

On the other hand, the arbitrary charged-lepton Yukawa coupling matrix Yl in Eq. (3) can be 
diagonalized by a bi-unitary transformation:

U
†
l

(
Ylφ

0
)

Vl = Dl , l′L = U
†
l lL , l′R = VllR , (12)

where Ul and Vl are unitary, Dl ≡ Diag
{
me, mμ, mτ

}
stands for the “working” or “virtu-

al” masses of three charged leptons before spontaneous electroweak symmetry breaking,4 and 

4 Note that the scalar field φ0 in Eq. (12) carries a hypercharge, and hence Dl cannot be simply understood as a diagonal 
“mass” matrix. The physical meaning of Dl is actually vague in our calculations which are mathematically exact and 
clear, so is the physical meaning of Dν in Eq. (8). But this vagueness will automatically disappear after spontaneous 
electroweak symmetry breaking, as can be subsequently seen.
5
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l′ = (
e μ τ

)T is defined as the column vector of the mass eigenstates of three charged 

leptons versus the column vector of their flavor eigenstates l = (
le lμ lτ

)T . Substituting 
Eqs. (8)—(10) and (12) into Eq. (3), we immediately arrive at

−L� = l′LDll
′
R + 1

2
ν′
LDν(ν

′
L)c + 1

2
(N ′

R)cDNN ′
R + νLYllRφ+ − lLYνNRφ− + h.c. , (13)

where ν′ = (
ν1 ν2 ν3

)T denotes the column vector of the working mass eigenstates of three 

light Majorana neutrinos far above the electroweak scale, and N ′ = (
N1 N2 N3

)T stands for 
the column vectors of the mass eigenstates of three heavy Majorana neutrinos relevant to the 
seesaw mechanism at � � v. In this case the flavor eigenstates νL and NR can be expressed in 
terms of the mass eigenstates ν′

L and N ′
R or their charge-conjugated states as follows:

νL = Uν′
L + R(N ′

R)c , NR = S′∗(ν′
L)c + U ′∗N ′

R , (14)

where U ≡ AU0, U ′ ≡ U ′
0B and S′ ≡ U ′

0SU0 are defined. Taking account of the Majorana 
property of νi and Ni (i.e., νc

i = νi and Nc
i = Ni [7] for i = 1, 2, 3), one simply obtains 

(N ′
R)c = (N ′c)L = N ′

L and (ν′
L)c = (ν′c)R = ν′

R. One may then substitute the expression of lL
in Eq. (12) and that of νL in Eq. (14) into the standard form of Lcc in Eq. (7) and get at

−Lcc = g√
2

(
e μ τ

)
Lγ μ

⎡⎣UPMNS

⎛⎝ν1
ν2
ν3

⎞⎠
L

+ RPMNS

⎛⎝N1
N2
N3

⎞⎠
L

⎤⎦W−
μ + h.c. , (15)

where UPMNS = U
†
l U is just the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton flavor 

mixing matrix [25–27] used to describe the flavor oscillations of three active neutrinos, and 
RPMNS = U

†
l R is an analogue of UPMNS in the seesaw mechanism which characterizes the 

strengths of weak charged-current interactions for three heavy Majorana neutrinos.
Without loss of generality, one may choose a convenient flavor basis in which the mass eigen-

states of three charged leptons are identified with their corresponding flavor eigenstates (i.e., 
lL = l′L, or equivalently Ul = I ). In this case we are simply left with UPMNS = U and RPMNS = R, 
namely the effects of lepton flavor mixing originate purely from the active and sterile Majorana 
neutrino sectors and from the interplay between these two sectors. We shall take advantage of 
this flavor basis in the following discussions unless otherwise specified.

2.4. Mismatch between the two bases

Before discussing a mismatch between the mass eigenstates of heavy Majorana neutrinos 
associated with thermal leptogenesis and those associated with the seesaw mechanism, let us 
take a look at the flavor structures of active and sterile neutrinos in the case that the electroweak 
gauge symmetry is unbroken at �. First of all, a combination of Eqs. (8) and (10) allows us to 
immediately derive the exact seesaw relation between the working masses of three light Majorana 
neutrinos and the real masses of three heavy Majorana neutrinos:

UDνU
T + RDNRT = 0 , (16)

in which U and R are also correlated with each other via the unitarity condition UU†+RR† = I . 
Note that U = AU0 holds, where the unitary matrix U0 is primarily responsible for flavor mixing 
of the three active neutrinos. So we find it useful to rewrite Eq. (16) as
6
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U0DνU
T
0 =

(
iA−1R

)
DN

(
iA−1R

)T

, (17)

whose left- and right-hand sides are composed of the derivational and original seesaw parame-
ters, respectively. This point will become more obvious when a complete Euler-like parametriza-
tion of the 6 × 6 unitary matrix U in Eq. (10) is adopted, as can be seen in section 3. Needless 
to say, the active-sterile flavor mixing matrix R essentially plays the role of the neutrino Yukawa 
coupling matrix Yν in the canonical seesaw framework,

Yνφ
0∗ = RDN

[
I −

(
B−1SA−1R

)T
]

U ′T ; (18)

and the right-handed Majorana neutrino mass matrix MR can be reconstructed into the form

MR = U ′
[
DN −

(
B−1SA−1R

)
DN

(
B−1SA−1R

)T
]

U ′T . (19)

Note that all the quantities in Eqs. (18) and (19) belong to the original seesaw parameters in the 
sense that they have nothing to do with Dν and U0 — the working masses and the primary flavor 
mixing matrix of three light Majorana neutrinos which are derived from the seesaw mechanism.

Now we turn to an unavoidable mismatch between the mass eigenstates of three heavy Ma-
jorana neutrinos associated with the seesaw and leptogenesis mechanisms. Eq. (14) tells us that 
the mass eigenstates N ′

R in the seesaw basis can be expressed as

N ′
R = (U ′∗)−1 [NR − S′∗(ν′

L)c
] = (B∗)−1

[
N ′

R − U ′T
0 S′∗(ν′

L)c
]

, (20)

where Eq. (4) has been used to link N ′
R to N ′

R. To be more explicit, Eq. (20) means⎛⎝N1
N2
N3

⎞⎠= (B∗)−1

⎡⎣⎛⎝N1
N2
N3

⎞⎠− U ′T
0 S′∗

⎛⎝ν1
ν2
ν3

⎞⎠⎤⎦ , (21)

from which the differences between Ni in the seesaw basis and Ni (for i = 1, 2, 3) in the thermal 
leptogenesis basis can be clearly seen. Similarly, a combination of Eqs. (4) and (19) leads us to

DN = B

[
DN −

(
B−1SA−1R

)
DN

(
B−1SA−1R

)T
]

BT , (22)

from which one may easily see the difference between DN and DN . Although N ′
R (or DN ) 

and N ′
R (or DN ) would exactly coincide with each other if the Yukawa coupling matrix Yν (or 

equivalently, R or S) were switched off, such a coincidence would make no sense because both 
the seesaw and leptogenesis mechanisms would fail in this special case. In the presence of the 
neutrino Yukawa interactions, thermal leptogenesis may take effect via the CP-violating and out-
of-equilibrium decays of heavy Majorana neutrinos into the leptonic and Higgs doublets, while 
the seesaw mechanism can “formally” work with the help of an interplay between the active and 
sterile neutrino fields coupled only to the neutral component of the Higgs doublet. That is the 
key reason why there is an inevitable mismatch between the seesaw- and leptogenesis-associated 
bases for heavy Majorana neutrinos before spontaneous electroweak symmetry breaking.

2.5. After gauge symmetry breaking

So far we have made some proper transformations of the charged lepton and neutrino fields 
in the flavor space to obtain their respective working or true mass eigenstates. All such unitary 
7
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flavor basis transformations are completely reversible, and hence they do not affect the gauge 
invariance of L� at the seesaw scale. As already shown in Eqs. (20) and (22), a seeable mismatch 
between N ′

R and N ′
R or between DN and DN results from the fact that the working seesaw 

mechanism itself is only associated with the neutral component of the Higgs doublet while the 
heavy Majorana neutrino decays and thermal leptogenesis at the seesaw scale � are associated 
with the whole Higgs doublet. This unavoidable mismatch deserves to be conceptually clarified 
as we have done, because it is an intrinsic issue of the seesaw and leptogenesis mechanisms.

It is now straightforward to prove that the formal seesaw mechanism far above the electroweak 
scale will become real after the Higgs potential of the SM is minimized at 〈H 〉 ≡ 〈0|H |0〉 =
v/

√
2 with a special direction characterized by 〈φ±〉 = 0 and 〈φ0〉 = v/

√
2, by which the elec-

troweak gauge symmetry is spontaneously broken and thus all the particles coupled to the Higgs 
field acquire their nonzero masses. In this case the Lagrangian in Eq. (3) can be simplified to a 
more popular form,

−L′
� = lLMllR + 1

2

[
νL (NR)c

]( 0 MD

MT
D MR

)[
(νL)c

NR

]
+ h.c. , (23)

where Ml ≡ Yl〈φ0〉 = Ylv/
√
2 denotes the charged lepton mass matrix, and MD ≡ Yν〈φ0〉 =

Yνv/
√
2 is usually referred to as the Dirac neutrino mass matrix. The expression of MD in terms 

of the seesaw parameters can be directly read off from Eq. (18), namely

MD = RDN

[
I −

(
B−1SA−1R

)T
]

U ′T . (24)

We find that the exact seesaw formula obtained in Eq. (16) and the analytical results obtained 
in Eqs. (19)—(22) formally keep unchanged after spontaneous gauge symmetry breaking, but 
they are now subject to the electroweak scale. In other words, the electroweak symmetry break-
ing itself does not really affect the flavor structures of the seesaw mechanism. This observation 
implies that it is possible to determine or constrain some of the original seesaw-associated fla-
vor parameters in some low-energy neutrino experiments, after the radiative corrections to such 
parameters are properly taken into account with the help of the relevant renormaliztion-group 
equations (RGEs) between a superhigh seesaw scale and the electroweak scale [28].

Note that the exact seesaw formula obtained in Eq. (16) can be simplified to the more popular 
form in the leading-order approximations of Eqs. (19) and (24). That is, MR � U ′DNU ′T and 
MD � RDNU ′T , so the effective mass matrix for three active Majorana neutrinos is given by

Mν ≡ U0DνU
T
0 � −RDNRT � −MDM−1

R MT
D , (25)

where A � B � I has been assumed (i.e., U � U0 holds in the neglect of the non-unitary effects 
characterized by A �= I ). In this approximation the effective Majorana mass term for three active 
neutrinos at low energies turns out to be

−Lν = 1

2
νLMν(νL)c + h.c. = 1

2
ν′
LDν(ν

′
L)c + h.c. , (26)

where the column vector of the light neutrino mass eigenstates ν′
L has already been defined 

below Eq. (13), and the physical meaning of Dν as the diagonal Majorana neutrino mass matrix 
becomes definite and obvious.
8
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3. How small is the mismatch?

3.1. An Euler-like parametrization

To clearly see how small the difference between N ′
R (or DN ) and N ′

R (or DN ) is expected 
to be, let us follow Refs. [22–24] to make an Euler-like parametrization of the 6 × 6 unitary 
matrix U in Eq. (10). First of all we introduce fifteen 6 × 6 Euler-like unitary matrices of the 
form Oij (for 1 ≤ i < j ≤ 6): its (i, i) and (j, j) entries are both identical to cij ≡ cos θij with 
θij being a flavor mixing angle and lying in the first quadrant, its other four diagonal elements 
are all equal to one, its (i, j) and (j, i) entries are given respectively by ŝ∗

ij ≡ e−iδij sin θij and 

−ŝij ≡ −eiδij sin θij with δij being a CP-violating phase, and its other off-diagonal elements are 
all equal to zero. These matrices are then grouped in the following way to respectively describe 
the active flavor sector, the sterile flavor sector and the interplay between these two sectors:(

U0 0
0 I

)
= O23O13O12 ,(

I 0
0 U ′

0

)
= O56O46O45 ,(

A R

S B

)
= O36O26O16O35O25O15O34O24O14 , (27)

where the pattern of U0 is quite similar to the standard parametrization of a unitary PMNS matrix 
as advocated by the Particle Data Group [9],5

U0 =
⎛⎝ c12c13 ŝ∗

12c13 ŝ∗
13−ŝ12c23 − c12ŝ13ŝ

∗
23 c12c23 − ŝ∗

12ŝ13ŝ
∗
23 c13ŝ

∗
23

ŝ12ŝ23 − c12ŝ13c23 −c12ŝ23 − ŝ∗
12ŝ13c23 c13c23

⎞⎠ , (28)

and the expression of U ′
0 can be directly read off from that of U0 with the subscript replacements 

12 ↔ 45, 13 ↔ 46 and 23 ↔ 56 for the three rotation angles and three CP-violating phases. The 
explicit expressions of A, B , R and S in terms of cij and ŝij (for i = 1, 2, 3 and j = 4, 5, 6) are 
rather lengthy, and hence they are listed in Eqs. (A.1) and (A.2) in Appendix A for the same 
of simplicity. Among the four active-sterile flavor mixing matrices, only A and R affect the 
physical processes in which the light and heavy Majorana neutrinos take part, as can be seen 
from Eq. (15). As both U = AU0 and R appear in Lcc in the chosen flavor basis (i.e., Ul = I ), 
three of the nice CP-violating phases (or their combinations) of A and R can always be rotated 
away by properly redefining the phases of three charged lepton fields [29,30].

The PMNS matrix U is obviously non-unitary because of UU† = AA† = I − RR† �= I , but 
its deviation from exact unitarity (i.e., from U0) is found to be very small. A detailed and care-
ful analysis of currently available electroweak precision measurements and neutrino oscillation 
data has put a stringent constraint on the non-unitarity of U — the latter is below or far be-
low O(10−2) [31–35]. This result implies that the deviation of AA† from I ought to be smaller 
than O(10−2), and thus the nine active-sterile flavor mixing angles in R should be smaller than 
O(10−1). The advantage of such a phenomenological observation is that U � U0 can be a quite 

5 When U0 is applied to the phenomenology of neutrino physics in the basis of Ul = I , it is the phase parameter 
δ ≡ δ13 − δ12 − δ23 that characterizes the strength of CP violation in neutrino oscillations.
9
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reliable approximation in most cases, but its disadvantage is that an experimental exploration of 
the seesaw-induced non-unitary effects of U at low energies will be rather challenging.

3.2. Smallness of the mismatch

Eq. (20) tells us that a difference between the mass eigenstates of three heavy Majorana 
neutrinos associated with the seesaw mechanism (i.e., N ′

R) and those associated with thermal 
leptogenesis (i.e., N ′

R) is mainly characterized by the deviation of (B∗)−1 from the identity ma-
trix I . With the help of Eq. (A.2), we arrive at

(B∗)−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

c−1
14 c−1

24 c−1
34 0 0

+t̂14c
−1
24 c−1

34 t̂∗15 + t̂24c
−1
34 c−1

24 t̂∗25
+t̂34c

−1
15 c−1

25 t̂∗35
c−1
15 c−1

25 c−1
35 0

+t̂14c
−1
24 c−1

34 c−1
24 t̂∗16 + t̂24c

−1
34 t̂15 t̂

∗
25 t̂

∗
16

+t̂24c
−1
34 c−1

25 c−1
16 t̂∗26 + t̂34 t̂15c

−1
25 t̂∗35 t̂∗16

+t̂34c
−1
35 c−1

16 c−1
26 t̂∗36 + t̂34 t̂25 t̂

∗
35c

−1
16 t̂∗26

+t̂15c
−1
25 c−1

35 t̂∗16 + t̂25c
−1
35 c−1

16 t̂∗26
+t̂35c

−1
16 c−1

26 t̂∗36
c−1
16 c−1

26 c−1
36

⎞⎟⎟⎟⎟⎟⎟⎟⎠

� I +

⎛⎜⎜⎜⎜⎜⎝
1

2

(
s214 + s224 + s234

)
0 0

ŝ14 ŝ
∗
15+ŝ24 ŝ

∗
25+ŝ34 ŝ

∗
35

1

2

(
s215 + s225 + s235

)
0

ŝ14 ŝ
∗
16+ŝ24 ŝ

∗
26+ŝ34 ŝ

∗
36 ŝ15 ŝ

∗
16+ŝ25 ŝ

∗
26+ŝ35 ŝ

∗
36

1

2

(
s216 + s226 + s236

)

⎞⎟⎟⎟⎟⎟⎠ , (29)

where t̂ij ≡ eiδij tan θij is defined, and all the terms of O(s4ij ) or smaller have been omitted from 
the second equation as an excellent approximation due to the smallness of θij (for i = 1, 2, 3 and 
j = 4, 5, 6). We see that (B∗)−1 is also a lower triangular matrix like B itself. On the other hand, 
the factor U ′T

0 S′∗ appearing in Eq. (20) can be explicitly expressed as follows:

U ′T
0 S′∗ = BT S∗U∗

0 � −
⎛⎝ ŝ∗

14 ŝ∗
24 ŝ∗

34
ŝ∗
15 ŝ∗

25 ŝ∗
35

ŝ∗
16 ŝ∗

26 ŝ∗
36

⎞⎠U∗
0 , (30)

where Eq. (A.2) has been used, and the terms of O(s3ij ) or smaller have been omitted from the 
second equation as a very good approximation. Now we conclude that the heavy Majorana neu-
trino mass basis N ′

R is identical to N ′
R up to the accuracy of O(s2ij ), but it contains a small 

contribution of O(sij ) from the light Majorana neutrino mass basis (ν′
L)

c in the seesaw frame-
work. Since the magnitudes of θij (for i = 1, 2, 3 and j = 4, 5, 6) are highly suppressed in a 
realistic seesaw model with little fine-tuning, the mismatch between N ′

R and N ′
R is expected to 

be negligible in most cases.
Let us proceed to examine how small the difference between DN and DN in Eq. (21) can be. 

First of all, Eq. (A.2) allows us to make the approximation

B � I −

⎛⎜⎜⎜⎜⎜⎝
1

2

(
s214 + s224 + s234

)
0 0

ŝ∗
14 ŝ15+ŝ∗

24 ŝ25+ŝ∗
34 ŝ35

1

2

(
s215 + s225 + s235

)
0

ŝ∗
14 ŝ16+ŝ∗

24 ŝ26+ŝ∗
34 ŝ36 ŝ∗

15 ŝ16+ŝ∗
25 ŝ26+ŝ∗

35 ŝ36
1 (

s216 + s226 + s236

)

⎞⎟⎟⎟⎟⎟⎠ , (31)
2

10
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where the terms of O(s4ij ) or smaller have been omitted. Secondly, we obtain

A−1R

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

t̂∗14 c−1
14 t̂∗15 c−1

14 c−1
15 t̂∗16

c−1
14 t̂∗24 t̂14 t̂

∗
15 t̂

∗
24+c−1

15 c−1
24 t̂∗25

+t̂14c
−1
15 t̂∗16 t̂∗24 + t̂15 t̂

∗
16c

−1
24 t̂∗25

+c−1
16 c−1

24 c−1
25 t̂∗26

c−1
14 c−1

24 t̂∗34
+t̂14 t̂

∗
15c

−1
24 t̂∗34 + c−1

15 t̂24 t̂
∗
25 t̂

∗
34

+c−1
15 c−1

25 c−1
34 t̂∗35

+t̂14c
−1
15 t̂∗16c

−1
24 t̂∗34 + t̂15 t̂

∗
16 t̂24 t̂

∗
25 t̂

∗
34

+t̂15 t̂
∗
16c

−1
25 c−1

34 t̂∗35 + c−1
16 t̂24c

−1
25 t̂∗26 t̂∗34

+c−1
16 t̂25 t̂

∗
26c

−1
34 t̂∗35 + c−1

16 c−1
26 c−1

34 c−1
35 t̂∗36

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�
⎛⎝ ŝ∗

14 ŝ∗
15 ŝ∗

16
ŝ∗
24 ŝ∗

25 ŝ∗
26

ŝ∗
34 ŝ∗

35 ŝ∗
36

⎞⎠ (32)

from Eq. (A.1), where the terms of O(s3ij ) or smaller have been neglected in the second equation 

as a reasonably good approximation. The exact expression of B−1S can be directly read off from 
that of − 

(
A−1R

)∗
with the help of Eq. (32) by making the subscript replacements 15 ↔ 24, 

16 ↔ 34 and 26 ↔ 35, so can its approximate expression. As a consequence,

B−1SA−1R � −
(

s214+s224+s234 ŝ14 ŝ
∗
15+ŝ24 ŝ

∗
25+ŝ34 ŝ

∗
35 ŝ14 ŝ

∗
16+ŝ24 ŝ

∗
26+ŝ34 ŝ

∗
36

ŝ∗
14 ŝ15+ŝ∗

24 ŝ25+ŝ∗
34 ŝ35 s215+s225+s235 ŝ15 ŝ

∗
16+ŝ25 ŝ

∗
26+ŝ35 ŝ

∗
36

ŝ∗
14 ŝ16+ŝ∗

24 ŝ26+ŝ∗
34 ŝ36 ŝ∗

15 ŝ16+ŝ∗
25 ŝ26+ŝ∗

35 ŝ36 s216+s226+s236

)
(33)

holds in the same approximation as made above. This result implies that DN and DN are identi-
cal to each other up to the accuracy of O(s2ij ), simply because on the right-hand side of Eq. (22)

the second term is suppressed in magnitude to O(s4ij ) as compared with the first term.
It is worth remarking that our above analytical approximations are more or less subject to 

the canonical seesaw mechanism at an energy scale far above the electroweak scale, and thus 
the mismatch between N ′

R (or DN ) and N ′
R (or DN ) is very small. This situation will change 

when the low-scale seesaw and leptogenesis scenarios, in which a mismatch between the two 
sets of mass bases for heavy Majorana neutrinos is crucial, are taken into account (see, e.g., 
Refs. [11,12]).

3.3. Determination of Dν and U0

As already shown in Eq. (17), the nine effective flavor parameters of three light Majorana 
neutrinos in Dν and U0 (i.e., three effective masses, three flavor mixing angles and three CP-
violating phases) can be expressed in terms of the eighteen seesaw parameters hidden in A, R
and DN (i.e., three heavy Majorana neutrino masses, nine active-sterile flavor mixing angles and 
six CP-violating phases). It is obvious that all the derivational seesaw parameters on the left-
hand side of Eq. (17) would vanish if R ∝ Yν were switched off. So this equation provides an 
unambiguous way to determine the light degrees of freedom from the heavy degrees of freedom 
in the seesaw framework.

To be more specific, the six independent elements of the effective Majorana neutrino mass 
matrix Mν ≡ U0DνU

T
0 are given as follows:(

Mν

)
11 = m1c

2
12c

2
13 + m2ŝ

∗2
12c

2
13 + m3ŝ

∗2
13 ,(

Mν

) = −m1c12c13
(
ŝ12c23 + c12ŝ13ŝ

∗ )

12 23

11
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+m2ŝ
∗
12c13

(
c12c23 − ŝ∗

12ŝ13ŝ
∗
23

)+ m3c13ŝ
∗
13ŝ

∗
23 ,(

Mν

)
13 = m1c12c13

(
ŝ12ŝ23 − c12ŝ13c23

)
−m2ŝ

∗
12c13

(
c12ŝ23 + ŝ∗

12ŝ13c23
)+ m3c13ŝ

∗
13c23 ,(

Mν

)
22 = m1

(
ŝ12c23 + c12ŝ13ŝ

∗
23

)2 + m2
(
c12c23 − ŝ∗

12ŝ13ŝ
∗
23

)2 + m3c
2
13ŝ

∗2
23 ,(

Mν

)
23 = −m1

(
ŝ12c23 + c12ŝ13ŝ

∗
23

)(
ŝ12ŝ23 − c12ŝ13c23

)
−m2

(
c12c23 − ŝ∗

12ŝ13ŝ
∗
23

)(
c12ŝ23 + ŝ∗

12ŝ13c23
)+ m3c

2
13c23ŝ

∗
23 ,(

Mν

)
33 = m1

(
ŝ12ŝ23 − c12ŝ13c23

)2 + m2
(
c12ŝ23 + ŝ∗

12ŝ13c23
)2 + m3c

2
13c

2
23 . (34)

On the other hand, Eq. (17) tells us that these six matrix elements can originally be determined by 
Mν = −(

A−1R
)
DN

(
A−1R

)T thanks to the exact seesaw relation bridging the big gap between 
the light and heavy Majorana neutrinos. With the help of the explicit expression of A−1R given in 
Eq. (32), it is straightforward to obtain the expressions for the elements of Mν in terms of Mi , θij

and δij (for i = 1, 2, 3 and j = 4, 5, 6). Instead of presenting the exact analytical results, which 
are rather lengthy and hence less instructive, here we make the leading-order approximations for 
the expressions of A and R given in Eq. (A.1) and then arrive at(

Mν

)
11 � −

[
M1ŝ

∗2
14 + M2ŝ

∗2
15 + M3ŝ

∗2
16

]
,(

Mν

)
12 � − [

M1ŝ
∗
14ŝ

∗
24 + M2ŝ

∗
15ŝ

∗
25 + M3ŝ

∗
16ŝ

∗
26

]
,(

Mν

)
13 � − [

M1ŝ
∗
14ŝ

∗
34 + M2ŝ

∗
15ŝ

∗
35 + M3ŝ

∗
16ŝ

∗
36

]
,(

Mν

)
22 � −

[
M1ŝ

∗2
24 + M2ŝ

∗2
25 + M3ŝ

∗2
26

]
,(

Mν

)
23 � − [

M1ŝ
∗
24ŝ

∗
34 + M2ŝ

∗
25ŝ

∗
35 + M3ŝ

∗
26ŝ

∗
36

]
,(

Mν

)
33 � −

[
M1ŝ

∗2
34 + M2ŝ

∗2
35 + M3ŝ

∗2
36

]
. (35)

Let us emphasize that there appear nine CP-violating phases in Eq. (35), but three of them (or 
their combinations) are redundant and can always be removed by rephasing the charged lepton 
fields in a proper way.6 A combination of Eqs. (34) and (35) allows us to establish the direct re-
lations between the nine derivational and eighteen original seesaw parameters. So the former can 
in principle be determined from the latter for a given seesaw model (a top-down approach), and 
the latter may be partly probed or constrained from the former with the help of some low-energy 
neutrino experiments (a bottom-up approach). A careful and detailed analysis of the parameter 
space along this line of thought will be made elsewhere.

4. Summary

We have reformulated the canonical seesaw mechanism by considering the fact that the elec-
troweak gauge symmetry is unbroken at the seesaw scale characterized by the masses of heavy 
Majorana neutrinos, and shown that it can formally work and allow us to derive an exact seesaw 
relation between the active (light) and sterile (heavy) Majorana neutrinos. In this way we have 

6 A straightforward way to remove the three redundant phase parameters of A and R is just to switch off three of the 
nine phases in the nine active-sterile flavor mixing matrices Oij (for i = 1, 2, 3 and j = 4, 5, 6) in Eq. (27) from the very 
beginning. As there are many options in doing so, we do not go into details here.
12
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elucidated the reason why there is an unavoidable mismatch between the mass eigenstates of 
heavy Majorana neutrinos associated with the seesaw and thermal leptogenesis mechanisms. 
The smallness of this mismatch has been discussed with the help of a complete Euler-like 
parametrization of the flavor structure in the seesaw framework, and the exact and explicit re-
lations between the original and derivational seesaw parameters have been established as a 
by-product.

We hope that this work may help clarify some conceptual ambiguities associated with the 
validity of the seesaw mechanism before and after spontaneous electroweak symmetry break-
ing, because such ambiguities have never been taken serious in the literature. It should also be 
helpful to clarify the ambiguities associated with the RGE evolution between the “virtual” flavor 
parameters of Majorana neutrinos at the seesaw scale and those “real” ones at the electroweak 
scale, which is crucial to bridge the gap between a well-motivated UV-complete flavor theory 
including the seesaw mechanism and all the possible low-energy flavor experiments.
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Appendix A. The expressions of A, B , R and S

Given the Euler-like parametrization of the 6 ×6 unitary flavor mixing matrix U decomposed 
in Eq. (27), the 3 ×3 active-sterile flavor mixing matrices A, B , R and S depend on the same nine 
rotation angles θij and nine phase angles δij (for i = 1, 2, 3 and j = 4, 5, 6). To be explicit [22,
23],
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A =

⎛⎜⎜⎜⎜⎜⎝
c14c15c16 0 0

−c14c15ŝ16ŝ
∗
26 − c14ŝ15ŝ

∗
25c26−ŝ14ŝ

∗
24c25c26

c24c25c26 0

−c14c15ŝ16c26ŝ
∗
36 + c14ŝ15ŝ

∗
25ŝ26ŝ

∗
36−c14ŝ15c25ŝ

∗
35c36 + ŝ14ŝ

∗
24c25ŝ26ŝ

∗
36+ŝ14ŝ

∗
24ŝ25ŝ

∗
35c36 − ŝ14c24ŝ

∗
34c35c36

−c24c25ŝ26ŝ
∗
36 − c24ŝ25ŝ

∗
35c36−ŝ24ŝ

∗
34c35c36

c34c35c36

⎞⎟⎟⎟⎟⎟⎠ ,

R =

⎛⎜⎜⎜⎜⎜⎜⎝

ŝ∗
14c15c16 ŝ∗

15c16 ŝ∗
16

−ŝ∗
14c15ŝ16ŝ

∗
26 − ŝ∗

14ŝ15ŝ
∗
25c26+c14ŝ

∗
24c25c26

−ŝ∗
15 ŝ16 ŝ

∗
26+c15 ŝ

∗
25c26 c16 ŝ

∗
26

−ŝ∗
14c15ŝ16c26ŝ

∗
36 + ŝ∗

14ŝ15ŝ
∗
25ŝ26ŝ

∗
36−ŝ∗

14ŝ15c25ŝ
∗
35c36 − c14ŝ

∗
24c25ŝ26ŝ

∗
36−c14ŝ

∗
24ŝ25ŝ

∗
35c36 + c14c24ŝ

∗
34c35c36

−ŝ∗
15ŝ16c26ŝ

∗
36 − c15ŝ

∗
25ŝ26ŝ

∗
36+c15c25ŝ

∗
35c36

c16c26 ŝ
∗
36

⎞⎟⎟⎟⎟⎟⎟⎠ ;

(A.1)

and

B =

⎛⎜⎜⎜⎜⎜⎝
c14c24c34 0 0

−c14c24ŝ
∗
34ŝ35 − c14ŝ

∗
24ŝ25c35−ŝ∗

14ŝ15c25c35
c15c25c35 0

−c14c24ŝ
∗
34c35ŝ36 + c14ŝ

∗
24ŝ25ŝ

∗
35ŝ36−c14ŝ

∗
24c25ŝ26c36 + ŝ∗

14ŝ15c25ŝ
∗
35ŝ36+ŝ∗

14ŝ15ŝ
∗
25ŝ26c36 − ŝ∗

14c15ŝ16c26c36

−c15c25ŝ
∗
35ŝ36 − c15ŝ

∗
25ŝ26c36−ŝ∗

15ŝ16c26c36
c16c26c36

⎞⎟⎟⎟⎟⎟⎠ ,

S =

⎛⎜⎜⎜⎜⎜⎜⎝

−ŝ14c24c34 −ŝ24c34 −ŝ34

ŝ14c24ŝ
∗
34ŝ35 + ŝ14ŝ

∗
24ŝ25c35−c14ŝ15c25c35

ŝ24 ŝ
∗
34 ŝ35−c24 ŝ25c35 −c34 ŝ35

ŝ14c24ŝ
∗
34c35ŝ36 − ŝ14ŝ

∗
24ŝ25ŝ

∗
35ŝ36+ŝ14ŝ

∗
24c25ŝ26c36 + c14ŝ15c25ŝ

∗
35ŝ36+c14ŝ15ŝ

∗
25ŝ26c36 − c14c15ŝ16c26c36

ŝ24ŝ
∗
34c35ŝ36 + c24ŝ25ŝ

∗
35ŝ36−c24c25ŝ26c36

−c34c35 ŝ36

⎞⎟⎟⎟⎟⎟⎟⎠ .

(A.2)

We see that both A and B are the lower triangular matrices, and the expression of B can be read 
off from that of A∗ with the subscript replacements 15 ↔ 24, 16 ↔ 34 and 26 ↔ 35. The expres-
sion of S can be similarly obtained from that of −R∗ with the same subscript replacements [24]. 
Note, however, that B and S do not affect any physical processes in the seesaw mechanism.
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