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Abstract: A necessary ingredient for extending the BFKL equation to next-to-next-to-
leading logarithmic (NNLL) accuracy is the one-loop central emission vertex (CEV) for
two gluons which are not strongly ordered in rapidity. Here we consider the one-loop six-
gluon amplitude in N = 4 super Yang-Mills (SYM) theory in a central next-to-multi-Regge
kinematic (NMRK) limit, we show that its dispersive part factorises in terms of the two-gluon
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in the NMRK limit, both the colour structure and the kinematic dependence of the two-gluon
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In fact, the transcendental functions of the latter can be conveniently written in terms of
impact factors, trajectories, single-emission CEVs and a remainder, which is a function of
the conformally invariant cross ratios which characterise the six-gluon amplitudes in planar
N = 4 SYM. Finally, as expected, in the MRK limit the two-gluon CEV neatly factorises
in terms of two single-emission CEVs.
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1 Introduction

In the Regge limit, in which the squared centre-of-mass energy s is much larger than
the momentum transfer |t|, s � |t|, any 2 → 2 scattering process is dominated by the
exchange in the t channel of the highest-spin particle. In the case of QCD or N = 4
Super Yang-Mills (SYM) theory, that implies the exchange of a gluon in the t channel.
Contributions that do not feature gluon exchange in the t channel are power suppressed
in t/s. Building upon this feature, the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation
describes strong-interaction processes with two large and disparate scales, s � |t|, by
resumming the radiative corrections to parton-parton scattering to all orders at leading
logarithmic (LL) [1–4] and next-to-leading logarithmic (NLL) accuracy [5–8] in log(s/|t|).
The resummation of large energy logarithms extends to higher-multiplicity final states
in special kinematic limits and improves the description of scattering events where large
rapidity intervals are spanned [9–15]. In the last decade or so, the Regge limit has been
explored extensively in both N = 4 SYM [16–21] and QCD [22–26] amplitudes and cross
sections [27, 28]. Furthermore, owing to its relative simplicity, it has been used to constrain,
compute or validate amplitudes in general kinematics [26, 29–36].

The BFKL equation [1–4] describes rapidity evolution in terms of an integral of the
gluon propagator exchanged in the t channel over all transverse momenta. The kernel
of this integral equation consists of two elements, which are described schematically in
figure 1 and which we review in section 2.1: a virtual component corresponding to the Regge
trajectory, which first occurs in the one-loop 2→ 2 scattering amplitude at LL accuracy in
log(s/|t|) (figure 1(a)), and a real component involving the emission of a gluon into the final
state. The latter involves a vertex termed the Lipatov or central-emission vertex (CEV),
which first occurs in the tree-level 2 → 3 amplitude in multi-Regge kinematics (MRK)
(figure 1(b)), where the outgoing partons are strongly ordered in light-cone momentum, or
equivalently in rapidity. Upon integrating the BFKL evolution equation one thus resums
corrections in which all emissions are ordered in rapidity, forming the famous ladder graphs.
At LL accuracy, each gluon emission along the ladder introduces a factor of O(αS log(s/|t|))
after rapidity integration. The impact factors, eq. (2.2), are not part of the gluon ladder,
but sit at its ends. In figure 1, they are represented by the green blobs. When they are
squared, they constitute the jet impact factors and contribute to jet cross sections at LL
accuracy [9–12, 14].

The 2 → 2 scattering amplitudes at LL accuracy are real-valued, and the terms of
O(αnS logn(s/|t|)) exponentiate, manifesting the phenomenon of gluon Reggeization [37].
The hard scattering is effectively mediated by the t-channel exchange of a single Reggeized
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(a) (b)

Figure 1. Interference diagrams which contain the building blocks required for constructing the
BFKL equation at LL accuracy: (a) gluon Regge trajectory at one loop; (b) one-gluon central emission
vertex at tree level. Tree-level impact factors (shown in green) are required for the computation of
cross sections, but are not required to determine the evolution of the t-channel Reggeon.

(a) (b) (c)

Figure 2. Interference diagrams which contain the building blocks required for constructing the
BFKL equation at NLL accuracy: (a) gluon Regge trajectory at two loops; (b) one-gluon central-
emission vertex at one loop; (c) two-gluon central emission vertex at tree level.

gluon, or Reggeon, carrying an octet colour charge, just as at tree level, and it gives rise to
a Regge pole in the complex angular momentum plane.

The BFKL equation has been extended to next-to-leading logarithmic (NLL)
accuracy [5–8], allowing one to resum the terms of O(αnS logn−1(s/|t|)) [38, 39]. This
generalization involves next-to-leading-order corrections to the BFKL kernel, consisting
of three elements, which are depicted schematically in figure 2: two-loop corrections to
the Regge trajectory [40–44] (figure 2(a)), one-loop corrections to the central emission
vertex [45–49] (figure 2(b)), which we review in section 2.2, and a new tree-level vertex
function for the emission of two gluons (figure 2(c)) (or of a quark-antiquark pair) that are
not strongly ordered in rapidity [50–54], which we review in section 3. The latter requires
the evaluation of a six-parton tree-level amplitude in the so-called next-to-multi-Regge
kinematics (NMRK), in which the outgoing partons are strongly ordered in rapidity except
for two gluons (or a quark-antiquark pair) emitted centrally off the gluon ladder. When
these are integrated in rapidity, they yield a factor of O(α2

S log(s/|t|)), thus contributing at
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NLL accuracy. Crucial to carrying out the BFKL program at NLL accuracy is the fact that
the real part — or more precisely, the s↔ u signature-odd part — of the 2→ 2 amplitude
is still described by the exchange of a single Reggeized gluon [38, 39]. Note that the same
is not true for the imaginary (signature even) part of the amplitude, which is governed by
the exchange of a pair of Reggeized gluons [22, 24, 25].

In order to compute jet cross sections at NLL accuracy [13, 15] through the BFKL
equation, jet impact factors at next-to-leading order (NLO) in αS [55, 56] are required.
They are based on the one-loop impact factor [45, 49, 57–59], eq. (2.18), and the impact
factor for the emission of two gluons or of a quark-antiquark pair [50–54, 60], evaluated
in the NMRK in which the gluons are strongly ordered in rapidity except for two partons
emitted at one end of the ladder.

Extending the BFKL equation to next-to-next-to-leading logarithmic (NNLL) accuracy
faces additional challenges.1 Chief amongst these is the fact that starting at this logarithmic
order, the real part of 2→ 2 amplitudes is not anymore governed by a single Reggeized gluon.
Instead, it also involves contributions from three Reggeon exchange [24, 26, 44, 64–66] and
the mixing of the latter with a single Reggeon. These give rise to a Regge cut as well as a
Regge pole in the complex angular momentum plane. This makes the determination of the
three-loop Regge trajectory, characterizing the Regge-pole term, a subtle problem, as it
requires to disentangle Regge pole and cut contributions, see e.g. [24, 64, 67]. Recently this
problem has been resolved [26, 68] and the three-loop Regge trajectory in QCD has been
determined [36, 68, 69]. This gives some hope that the analytic structure of amplitudes in
the Regge limit can be understood beyond NLL accuracy also in the multi-leg case, and
indeed that the BFKL programme could eventually be extended to NNLL and beyond.

Carrying out the BFKL program at NNLL accuracy one needs, in addition to the
three-loop Regge trajectory (figure 3 (a)), which has recently been determined [36, 68, 69],
various corrections to the central emission vertex. These are described schematically in
figure 3 and include the following elements: the emission vertex of three partons along the
gluon ladder [60, 70, 71] (figure 3 (e)), which have been obtained by evaluating seven-parton
tree-level amplitudes in next-to-next-to-multi-Regge kinematics (NNMRK); the square of
the one-loop correction to the emission vertex of one gluon (figure 3 (c)); the one-loop
correction to the emission vertex of two gluons (figure 3 (d)) or of a quark-antiquark pair
along the gluon ladder; and the two-loop correction to the central-emission vertex of one
gluon (figure 3 (b)). The latter two contributions are yet to be determined. In this paper,
we compute the one-loop corrections to the central-emission vertex of two gluons in N = 4
SYM. Utilizing the supersymmetric decomposition of QCD loop amplitudes [72–74], the
N = 4 result is a first step toward the determination of the same quantity in QCD. To this
end we use the one-loop six-gluon amplitudes in N = 4 SYM based on refs. [73, 74]. By
considering the appropriate NMRK kinematic limit of these amplitudes and comparing the
result with a Regge-factorized form, we extract the two-gluon central-emission vertex in
both the same helicity and opposite helicity configurations.

1The BFKL equation has been extended to NNLL [61, 62] and to N3LL accuracy [63] in planar N = 4
SYM theory.
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(a) (b) (c)

(d) (e)

Figure 3. Interference diagrams which contain the building blocks required for constructing the
BFKL equation at NNLL accuracy: (a) gluon Regge trajectory at three loops; (b) one-gluon CEV
at two loops; (c) self-interference of one-gluon CEV at one loop; (d) two-gluon CEV at one loop; (e)
three-gluon CEV at tree level.

An important motivation for our investigation, besides the extension of the BFKL
program, stems from the potential of the NMRK limit to unravel the analytic structure (as
well as the colour structure) of multi-leg amplitudes. Indeed, direct analytical evaluation
of multi-leg amplitudes in general kinematics at one-loop level is highly demanding, and
the extension to two loops and beyond is ever more so. Even when such amplitudes are
known, bringing them to a compact form and evaluating them efficiently are in general
unsolved problems, which are of high interest both from a theoretical perspective and
because of their immediate relevance to precision collider physics. Understanding the
behaviour of amplitudes in various limits, where drastic simplifications occur, is a key
strategy towards understanding them in general kinematics. Specifically, in the MRK limit
one-loop amplitudes are very simple indeed: they are proportional to the tree amplitude,
and involve simple kinematic dependence on the transverse momenta of the emitted gluons.
We shall see that the NMRK limit of six gluon amplitudes (already in N = 4 SYM) features
several new aspects compared to MRK, including new colour structures as well as rational
functions that depart from the tree-level amplitude, making it closer in complexity to the
amplitude in general kinematics, while still more tractable.
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We find that a useful way to organise the one-loop amplitudes in N = 4 SYM is by
separately considering the dispersive and absorptive parts of the amplitude. We find that
in the NMRK limit, the dispersive part of the one-loop amplitude factorises in terms of a
one-loop two-gluon CEV, while the absorptive part admits no such simple factorisation.
However, upon considering the helicity-summed interference of the one-loop amplitude
with the tree-level amplitude, we observe that only the dispersive part of the amplitude
contributes at NNLL accuracy, which is a promising result for the prospect of extending
the BFKL kernel to this logarithmic accuracy. We also find that simplifications occur
when considering the interference of the dispersive part of the one-loop amplitude with
the tree-level amplitude: while, as mentioned above, the one-loop two-gluon CEV has an
additional, fully symmetric colour structure which does not feature at tree level, this new
colour structure does not contribute at NNLL accuracy. It does however, contribute to cross
sections at N3LL accuracy, where one must consider the square of the one-loop two-gluon
CEV, giving rise to a quartic Casimir invariant.

The structure of this paper is as follows. In section 2 we review the factorised structure
of amplitudes at LL and NLL accuracy. In section 3 we review the properties of the
tree-level two-gluon central-emission vertex and we obtain new representations of this
vertex. In section 4 we take the central NMRK limit of the one-loop six-gluon amplitude
in N = 4 SYM. We find that the dispersive part of the amplitude factorises in terms of
a one-loop two-gluon CEV. We obtain this CEV for the case of same-helicity gluons in
section 4.1 and for the case of opposite-helicity gluons in section 4.2. In section 4.3 we
consider the NLO gg → gggg squared matrix element and show that several simplifications
occur in this context. We discuss the implications of these results for the NNLL BFKL
kernel. In section 5 we speculate how the behaviour we have observed for six-gluon one-loop
amplitudes may be extended to higher multiplicity and loop order. Finally, we conclude
in section 6. Several appendices are included: in appendices A and B we display the
kinematic regions and invariants of interest; in appendix C we list the power-suppressed
helicity configurations; in appendix D we list the tree-level and one-loop six-gluon NMHV
amplitudes in N = 4 SYM in general kinematics; in appendix E we include alternative
forms of the tree-level opposite-helicity CEV; in appendix F we display the absorptive part
of the one-loop six-gluon amplitude in N = 4 SYM in the NMRK limit; in appendix G we
compute the MRK, soft and collinear limits of the one-loop two-gluon CEV.

2 The building blocks of the BFKL equation

In this section we review the factorized structure of four and five gluon amplitudes in the
Regge limit. We define the elements which appear in this factorization, which are also the
building blocks of the BFKL equation, as shown schematically in figures 1, 2 and 3. We
will need these when discussing the more involved two-gluon central emission vertex in
N = 4 SYM, which we determine from the six-gluon amplitude in the following sections.
As high-energy factorization properties are universal, that is independent of the particular
gauge theory being considered, our discussion in the present section will be entirely general.
Note however that the functions appearing in the factorized amplitudes, such as impact
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factors, Regge trajectory and central emission vertices, do depend on the theory under
consideration starting from one loop.

2.1 Building blocks at LL accuracy

In the Regge limit, one can write the tree-level 2→ 2 amplitudes in a factorised way. For
example, the amplitude for gluon-gluon scattering g1 g2 → g3 g4 at tree level and at fixed
helicities may be written as [1, 2],

M(0)
4g =

[
gS (F a3)a2c

Cg(0) (pν2
2 , p

ν3
3 )
] s
t

[
gS (F a4)a1c

Cg(0)(pν1
1 , p

ν4
4 )
]
, (2.1)

with the incoming momenta p1 and p2 parametrised as in eq. (A.2), and with s = (p1 + p2)2,
q = −(p2 + p3), t = q2 ' −|q⊥|2 and (F c)ab = i

√
2facb, and where the superscript νi labels

the helicity of gluon gi. We consider all the momenta as outgoing, so the helicities for
incoming partons are reversed, see appendix A.1. As is apparent from the colour coefficient
(F a3)a2c(F a4)a1c, in eq. (2.1) only the antisymmetric octet 8a is exchanged in the t channel.

Since the four-gluon amplitude is a maximally helicity-violating (MHV) amplitude,
eq. (2.1) describes

(4
2
)

= 6 helicity configurations. However, at leading power in t/s, helicity
is conserved along the s-channel direction, so in eq. (2.1) four helicity configurations are
leading, two for each tree impact factor, g∗ g → g, with g∗ an off-shell gluon. At leading
order, the helicity-conserving impact factors are simply given by a phase. In the explicit
spinor representation of appendix A.1 these phases are [75],

Cg(0)
(
p	2 , p

⊕
3

)
= 1 , Cg(0)

(
p	1 , p

⊕
4

)
= p∗4⊥
p4⊥

, (2.2)

where we have chosen to set the phase of one of the impact factors to 1. The impact factors
transform under parity into their complex conjugates,[

Cg
(
pν , p′ν

′)]∗ = Cg
(
p−ν , p′−ν

′)
. (2.3)

The helicity-flip impact factor Cg(0)(p⊕, p′⊕) and its parity conjugate Cg(0)(p	, p′	) are
power suppressed in t/s. In eq. (2.2), and in what follows, we encircle the helicity index to
avoid any confusion with the light-cone direction labelling.

The tree amplitudes for quark-gluon or quark-quark scattering have the same form
as eq. (2.1), up to replacing one or both gluon impact factors Cg(0) (2.2) with quark
impact factors Cq(0), and the colour factors (F c)ab in the adjoint representation with the
colour factors T cij in the fundamental representation of SU(Nc), which we normalise as
tr (T aT b) = TF δ

ab, with TF = 1. So in the Regge limit, 2 → 2 scattering amplitudes
factorise into gluon or quark impact factors and a gluon propagator in the t channel, and
are uniquely determined by them.

At LL accuracy in log(s/|t|), the four-gluon amplitude is given to all orders in αS by
Reggeizing the gluon, i.e. by dressing the gluon propagator in eq. (2.1) as [1, 2]

1
t
→ 1

t

(
s

τ

)α(t)
, (2.4)

– 6 –
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where τ > 0 is a Regge factorisation scale, which is of order of |t|, and much smaller than s.
The function α(t) is the gluon Regge trajectory which is related to the loop transverse-
momentum integration. The latter is infrared divergent, and in dimensional regularization
with d = 4− 2ε, it can be written as

α(t) = αS
4πα

(1)(t) +O
(
α2
S

)
, with α(1)(t) = Nc

2
ε

(
µ2

−t

)ε
κΓ , (2.5)

where for brevity we omit the dependence of α(t) on µ2. In eq. (2.5), αS ≡ g2
S/(4π) is

the bare coupling, and the O(α2
S) term indicates the presence of higher corrections which

become relevant beyond LL accuracy, Nc is the number of colours, and

κΓ ≡ (4π)ε Γ(1 + ε) Γ2(1− ε)
Γ(1− 2ε) . (2.6)

It is said that in the Regge limit, the four-gluon amplitude of eq. (2.1) with the dressing in
eq. (2.4), is determined by the t-channel exchange of a single Reggeized gluon, or Reggeon.

In five-gluon scattering g1 g2 → g3 g4 g5, the multi-Regge kinematics (MRK) are defined
as a strong ordering in the light-cone momenta,

p+
3 � p+

4 � p+
5 , |p3⊥| ' |p4⊥| ' |p5⊥| . (2.7)

or equivalently in the rapidities, of the produced gluons, eq. (A.15). In MRK, appendix A.2,
the tree five-gluon amplitude takes the factorised form (figure 1(b)),

M(0)
5g = s

[
gS (F a3)a2c1

Cg(0) (pν2
2 , p

ν3
3 ))

] 1
t1

(2.8)

×
[
gS (F a4)c1c2

V g(0) (q1, p
ν4
4 , q2)

] 1
t2

[
gS (F a5)a1c2

Cg(0)(pν1
1 , p

ν5
5 )
]
,

with q1 = −(p2 + p3), q2 = q1 − p4, and ti = q2
i ' −qi⊥q∗i⊥ (i = 1, 2). The impact factors

are given in eq. (2.2), while the emission vertex of a real gluon from the t-channel gluon,
which is termed the CEV, is [1, 76]

V g(0)
(
q1, p

⊕
4 , q2

)
= q∗1⊥q2⊥

p4⊥
, (2.9)

which transforms under parity into its complex conjugate,[
V g(0) (q1, p

ν , q2)
]∗

= V g(0) (q1, p
−ν , q2

)
. (2.10)

The phase of eq. (2.9) is fixed by the phases of the impact factors, eq. (2.2), and eq. (A.14).
The one-loop gluon Regge trajectory, eq. (2.5), and the tree-level central-emission

vertex (CEV), eq. (2.9), are the building blocks of an iterative structure, in the sense that
a tree six-gluon amplitude in MRK, g1g2 → g3g4g5g6, will display two CEVs along the
gluon ladder, with the four outgoing gluons separated by three large rapidity gaps. At LL
accuracy, each of the corresponding t-channel gluons Reggeizes according to eq. (2.4) with
the one-loop trajectory of eq. (2.5). Similarly, a seven-gluon amplitude in MRK will display
three CEVs, and at LL accuracy it will feature four Reggeized t-channel gluons across each
of the rapidity gaps, and so on for higher-multiplicity amplitudes. This iterative structure is
captured by the leading-order BFKL equation. It is depicted in figure 4, which is suggestive
of an all-multiplicity, all-order generalization.

– 7 –
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Figure 4. The factorised structure of gluon amplitudes in MRK. The zigzag line represents the
Reggeized gluon propagator given in eq. (2.4). The coloured blobs represent impact factors, and
one-gluon CEVs. At LL accuracy these elements are only required at tree level, but much like the
gluon Regge trajectory α(t), they can be defined to all orders in perturbation theory (note that this
interpretation departs from the previous figures where the blobs are specific to a given loop order).

2.2 Building blocks at NLL accuracy

As mentioned in the introduction, in order to extend the BFKL equation to NLL accuracy,
as done in refs. [5–8], one needs three ingredients, which are described schematically by
figure 2. First, one needs one-loop corrections to the single-gluon CEV of eq. (2.9), which
can be extracted from a five-gluon one-loop amplitude [45–49] (figure 2(b)), as we show
later in this section. Second, one requires the tree-level CEV for two gluons, which are
not ordered in rapidity. This object can be extracted from a tree-level six-gluon amplitude
at NMRK [50–52, 54, 60] (figure 2(c)) and it will be again extracted and analysed in
some detail in section 3 below. Finally, one needs two-loop corrections to the Regge
trajectory α(t) [40–44]. The latter may be extracted from 2→ 2 amplitudes at two loops
(figure 2(a)). This requires an operative prescription to disentangle the Regge trajectory
from the impact factor. In what follows, we briefly present such a prescription following
ref. [45].

We recall that in the Regge limit, 2→ 2 scattering amplitudes g1 g2 → g3 g4, can be
conveniently split into odd M(−)

4g and even M(+)
4g components under so-called signature

symmetry, corresponding to a kinematic s↔ u interchange,

M4g(s, t) =M(−)
4g (s, t) +M(+)

4g (s, t) , M(±)
4g (s, t) = M4g(s, t)±M4g(u, t)

2 , (2.11)

with u = −s − t ' −s. In order to resum energy logarithms in M4g(s, t) beyond LL
accuracy it is useful to define a signature-symmetric logarithm,

L ≡ log
(
s

−t

)
− iπ

2 = 1
2

[
log

(−s− i0
−t

)
+ log

(−u
−t

)]
, (2.12)
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and expand the amplitude at leading power in the Regge limit as

M(±)
4g = g2

S

∞∑
n=0

(
αS
4π

)n n∑
m=0

LmM(±,n,m)
4g , (2.13)

with m = n yielding the coefficients at LL accuracy, m = n − 1 the coefficients at NLL
accuracy, and so on. With eqs. (2.12) and (2.13) at work, one can show [23] that the
coefficients of the odd (even) amplitude,M(∓,n,m)

4g , are purely real (imaginary). Moreover,
M(−)

4g only receives contributions from t-channel exchange of an odd number of Reggeons,
whileM(+)

4g , from an even number.
Owing to Bose symmetry, also the colour factors ofM(−)

4g andM(+)
4g are respectively

odd and even under the interchange of the colour indices of the corresponding gluons g2 and
g3 (or, instead, those of g1 and g4). The tree amplitude in eq. (2.1) is entirely odd under
signature, and indeed, its colour structure is antisymmetric under interchanging a2 and a3,
corresponding to a pure t-channel octet exchange, 8a. Higher-order contributions to this
process involve in general additional colour structures, as dictated by the decomposition of
the product 8a ⊗ 8a into irreducible representations,

8a ⊗ 8a = {1⊕ 8s ⊕ 27} ⊕
[
8a ⊕ 10⊕ 10

]
, (2.14)

where the curly (square) brackets contain the representations which are even (odd) under
signature. However, at NLL accuracy, the signature-odd component of the amplitude, i.e.
M(−,n,n−1)

4g for all n in eq. (2.13), is still governed by the exchange of a single Reggeon in
the t channel, and eq. (2.4) generalises in a straightforward way to [45],

M(−)[8a]
4g = 1

2
[
gS (F a3)a2c

Cg (pν2
2 ,p

ν3
3 ))

] s
t

[(
s

τ

)α(t)
+
(−s
τ

)α(t)
] [
gS (F a4)a1c

Cg (pν1
1 ,p

ν4
4 )
]
,

(2.15)

where the colour and kinematic parts of the amplitude are each odd under g2 ↔ g3
interchange.

In eq. (2.15), we expand the gluon Regge trajectory in αS as

α (t) = αS
4πα

(1) (t) +
(
αS
4π

)2
α(2)(t) +O

(
α3
S

)
, (2.16)

with α(1) in eq. (2.5), and α(2) is the two-loop Regge trajectory which enters the BFKL
equation at NLL accuracy. Likewise, we expand the helicity-conserving impact factor,

Cg(p⊕, p′	) = Cg(0)(p⊕, p′	) + αS
4π C

g(1)(p⊕, p′	) +O
(
α2
S

)
, (2.17)

with one-loop corrections,

Cg(1) (p⊕, p′	) = Cg(0) (p⊕, p′	) cg(1)(t) . (2.18)

The same applies to the opposite helicity-conserving impact factor Cg(p	, p′⊕). Note
that the one-loop coefficients cg(1) are real and independent of the helicity configuration.
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The coefficient cg(1), and therefore also Cg, depend on the renormalisation and Regge-
factorisation scales µ2 and τ , but we omit this dependence for brevity.

The 2→ 3 scattering amplitudes, g1 g2 → g3 g4 g5, can be likewise split into odd and
even components under signature symmetry,

M5g =M(+,+)
5g +M(+,−)

5g +M(−,+)
5g +M(−,−)

5g , (2.19)

with

M(σa,σb)
5g (pν1

1 , p
ν2
2 , p

ν3
3 , p

ν4
4 , p

ν5
5 )

= 1
4M5g (pν1

1 , p
ν2
2 , p

ν3
3 , p

ν4
4 , p

ν5
5 ) + σa

4 M5g (pν1
1 , p

ν3
3 , p

ν2
2 , p

ν4
4 , p

ν5
5 ) (2.20)

+ σb
4 M5g (pν5

5 , p
ν2
2 , p

ν3
3 , p

ν4
4 , p

ν1
1 ) + σaσb

4 M5g (pν5
5 , p

ν3
3 , p

ν2
2 , p

ν4
4 , p

ν1
1 ) ,

where the two signature indices σa and σb can separately be +1 or −1. By Bose symmetry,
the upper and lower vertices (see figure 11) then acquire a corresponding colour symmetry:
the upper vertex is symmetric/antisymmetric upon interchanging the colour indices a2 and
a3 for σa = + and σa = −, respectively. Similarly, the lower one is symmetric/antisymmetric
upon interchanging a1 and a5 for σb = + and σb = −, respectively. Specifically, theM(−,−)

amplitude, which we discuss below, is antisymmetric in colour in both the upper and
lower vertices.

In MRK, eq. (2.20) is understood to involve the exchanges s34 ↔ s24 = −s34 and
s45 ↔ s41 = −s45 along with the associated change in sign of s = s12 = −s13 = −s52 = s35.
At NLL accuracy, the signature odd-odd component of the amplitude,M(−,−), is governed
by an antisymmetric octet exchange, 8a, in the t1 and t2 channels, corresponding to a single
Reggeon. One can then generalise eq. (2.8),

M(−,−)[8a]
5g = 1

4s [gS(F a3)a2c1 C
g(pν2

2 , p
ν3
3 ))] 1

t1

[(
s34
τ

)α(t1)
+
(−s34

τ

)α(t1)
]

(2.21)

× [gS(F a4)c1c2 V
g(q1, p

ν4
4 , q2)] 1

t2

[(
s45
τ

)α(t2)
+
(−s45

τ

)α(t2)
]

× [gS(F a5)a1c2 C
g(pν1

1 , p
ν5
5 )] ,

where the CEV now includes one-loop corrections

V g (q1, p
ν4
4 , q2) = V g(0) (q1, p

ν4
4 , q2) + αS

4πV
g(1) (q1, p

ν4
4 , q2) +O

(
α2
S

)
, (2.22)

which we express as

V g(1) (q1, p
ν4
4 , q2) = V g(0) (q1, p

ν4
4 , q2) vg(1)

(
t1, |p4⊥|2, t2

)
. (2.23)

where vg(1) is real and helicity-independent. Similarly to cg(1), we omit the dependence on
the scales µ2 and τ in vg(1) and V g.

Finally, we note that while the signature-odd NLL gg → gg amplitude is governed by a
pure t-channel 8a exchange, leading to the simple resummation formula in eq. (2.15), the
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signature-even NLL amplitudeM(+)
4g , which is purely imaginary, is governed by two-Reggeon

exchange, leading to a more complex structure involving all t-channel representations that
are compatible with the even signature in (2.14), namely the singlet 1, the symmetric octet
8s and the 27. Such a contribution occurs already in the non-logarithmic signature-even
one-loop termM(+,1,0)

4g , which is proportional to iπ [59]. More generally, the signature-even
amplitude obeys the BFKL equation [2–4]: it is described by ladder graphs formed between
two Reggeized gluons, which admits an all-order iterative solution [22, 24, 25], rendering
both infrared-singular and finite corrections M(+,n,n−1)

4g computable for all n for general
colour. The signature-even gluon-gluon amplitude at NLL accuracy can only contribute to
a squared amplitude, and thus to a cross section, at NNLL accuracy.

2.3 Building blocks at NNLL accuracy

As outlined in the introduction, computing the next-to-next-to-leading-order corrections
to the BFKL kernel requires to determine five elements: the three-loop correction to the
Regge trajectory [36, 68, 69] (figure 3 (a)); the two-loop correction to the single-gluon CEV2

(figure 3 (b)); the square of the one-loop correction to the single-gluon CEV3 (figure 3 (c));
the one-loop correction to the two-parton (two gluons or a quark-antiquark pair) CEV
(figure 3 (d)); the tree-level three-parton CEV (figure 3 (e)), which is known for the case
of three gluons [60, 70, 71]. We note in passing that the tree-level four-gluon CEV, which
would occur at N3LL accuracy, is also known [60].

Computing the three-loop gluon Regge trajectory has required to tackle a new hurdle:
starting at NNLL accuracy the signature-odd part of the gg → gg amplitude (namely its
real part) cannot be described purely in terms of a single-Reggeon exchange [23, 26, 44, 64–
66, 68, 82–85]. Instead, contributions from three Reggeon exchange occur, starting from two
loops [23, 65, 85], and furthermore, three-Reggeon mixing with a single Reggeon kicks in
starting at three loops [23]. As a consequence, a resummation formula of the form eq. (2.15),
which corresponds to a pure Regge pole in the complex angular momentum plane, is
insufficient. It must be supplemented by additional contributions which do not admit such
simple factorization and exponentiation properties, and build up a Regge-cut in the complex
angular momentum plane. Since t-channel 8a contributions, which are proportional to the
tree amplitude, arise from both single and multiple Reggeon exchange, it had not been
obvious how to disentangle Regge pole and cut contributions when working at fixed order.

Infrared factorisation shows that [82, 83], in addition to the usual diagonal terms of
the colour octet exchange, also non-diagonal terms in the t-channel colour basis contribute
to the real part of M (−,2,0)

4g [64, 84]. More recently, following the computation of NNLL
correctionsM(−,n,n−2)

4g to the odd amplitude through four loops [26, 66], the structure of
the NNLL tower has been understood [68], uncovering a deep connection to the non-planar
origin of Regge cuts [86, 87]. Specifically, it has become clear that planar multi-Reggeon
contributions at NNLL only occur at two and three loops. These contribute to the Regge

2The two-loop correction to the single-gluon CEV is known in planar N = 4 SYM theory [77].
3The one-loop correction to the single-gluon CEV is known in planar N = 4 SYM theory to all

orders in ε [77]. Beyond O(ε0), the one-loop single-gluon CEV requires the one-loop pentagon in 6 − 2ε
dimensions [78–81].
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pole, and factorise along with the single-Reggeon contribution as in eq. (2.15), while
the non-planar multi-Reggeon contributions are precisely those that build up the Regge
cut. Accordingly, the three-loop gluon Regge trajectory has been determined [36, 68, 69],
providing the fully-virtual input, shown in figure 3 (a), that is necessary for extending the
BFKL equation to NNLL accuracy,

While the two-loop corrections to the single-gluon CEV (figure 3 (b)) are yet to be
determined, in this paper, we evaluate the one-loop corrections to the two-gluon CEV
(figure 3 (d)) in N = 4 SYM, as a first step toward computing the same quantity in QCD.

Let us also note that in order to compute jet cross sections at NNLL accuracy through
the BFKL equation, jet impact factors at next-to-next-to-leading order (NNLO) in αS will
be needed. Building blocks to evaluate the latter are the two-loop impact factors [64]; the
one-loop impact factors for the emission of two gluons [88] or of a quark-antiquark pair,
evaluated in NMRK; and the tree impact factor for the emission of three partons at one
end of the ladder [70] evaluated in NNMRK. Further, one must include the square of the
one-loop helicity-violating impact factor [59].

3 The two-gluon central-emission vertex at tree level

In this section we investigate several equivalent representations of the two-gluon CEV at
tree level. In section 3.1 we introduce a new set of kinematic variables which, in particular,
greatly simplifies the task of showing equivalence between the different representations
of the CEV. In section 3.2 we obtain new representations for the opposite-helicity CEV
from amplitudes that were derived via Britto-Cachazo-Feng-Witten (BCFW) recursion
relations [89, 90]. Not only do these representations make clear the collinear structure of
the tree-level CEV, the individual rational terms that comprise the BCFW amplitudes
appear also in the one-loop six-gluon NMHV amplitudes of N = 4 SYM. The study of
these rational terms therefore also lays the groundwork for section 4, where we obtain the
one-loop two-gluon CEV in N = 4 SYM.

We begin by reviewing the factorisation properties of six-gluon amplitudes in the central
NMRK. We consider the production of four gluons of momenta pi, with i = 3, 4, 5, 6 in the
scattering of two gluons of momenta p1 and p2, with the momenta parametrised in terms of
lightcone coordinates as in eq. (A.2). We suppose that the outgoing gluons are in a central
NMRK configuration, as described in appendix A.3, where the rapidities and transverse
momenta of the outgoing gluons satisfy

y3 � y4 ' y5 � y6 ; |p3⊥| ' |p4⊥| ' |p5⊥| ' |p6⊥| . (3.1)

In the NMRK region of eq. (3.1), the tree-level amplitude for the g1 g2 → g3 g4 g5 g6
scattering process is [50–52, 54]:

M(0)
6g

∣∣∣
NMRK

=
∑
σ∈S2

g4
S (F a3)a2c1(F aσ4F aσ5 )c1c3(F a6)a1c3 M

(0)
6g

(
pν1

1 , p
ν2
2 , p

ν3
3 , p

νσ4
σ4 , p

νσ5
σ5 , p

ν6
6

)
,

(3.2)
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where the sum is over the two permutations of the gluon labels 4 and 5, and on the
right-hand side an NMRK subscript on the colour-ordered amplitudes M (0)

6g is understood.
The latter factorise in this limit as

M
(0)
6g (pν1

1 ,p
ν2
2 ,p

ν3
3 ,p

ν4
4 ,p

ν5
5 ,p

ν6
6 ) = sCg(0) (pν2

2 ,p
ν3
3 ) 1

t1
Agg(0) (q1,p

ν4
4 ,p

ν5
5 , q3) 1

t3
Cg(0) (pν1

1 ,p
ν6
6 ) ,

(3.3)

with s = s12 = (p1 + p2)2, q1 = −(p2 + p3), q3 = p1 + p6, s23 = t1 = q2
1 ' −|q1⊥|2,

s61 = t3 = q2
3 ' −|q3⊥|2. Here Agg(0)(q1, p

ν4
4 , p

ν5
5 , q3) is the tree-level two-gluon central-

emission vertex, which is the subject of this section. This quantity has been studied
previously [50–52, 54] and our analysis here is primarily intended to prepare the grounds
for the determination of this quantity at one loop in the next section.

Since the six-gluon amplitude can be in either a maximally helicity-violating (MHV)
or next-to-maximally helicity-violating (NMHV) configuration, eq. (3.2) describes a total
of 2

(6
2
)

+
(6
3
)

= 50 helicity configurations. Out of these, 34 configurations are associated
to amplitudes which have at least one helicity-flip impact factor, appendix C, and thus
are power suppressed in ti/s, with i = 1, 3. Conversely, at leading power in ti/s, helicity
is conserved along the s-channel direction in Minkowski space, so in eq. (3.2) 16 helicity
configurations are leading. Two are associated to each tree impact factor, g∗ g → g, with g∗
an off-shell gluon, eq. (2.2).

Multiplying the four helicity configurations associated to the impact factors, there are
four helicity configurations associated to the central-emission vertex for the emission of two
gluons, g∗ g∗ → g g, which read4 [50–52, 54]

Agg(0)
(
q1, p

⊕
4 , p

⊕
5 , q3

)
= q∗1⊥q3⊥

p4⊥

√
x4
x5

1
〈4 5〉 , (3.4)

Agg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
1

= −p
∗
4⊥
p4⊥

{
− 1
s45

[
y5 p5⊥|q1⊥|2

p∗5⊥
+ x4 p4⊥|q3⊥|2

p∗4⊥
+ s234 p4⊥p5⊥

p−4 p
+
5

]

+ (q3⊥ + p5⊥)2

s234
− q3⊥ + p5⊥

s45

[
p4⊥
y4
− p5⊥

x5

]}
, (3.5)

where the kinematic invariants are given in eqs. (A.26), (A.28), and (A.31), and where we
use the momentum fractions,

xi = p+
i

p+
4 + p+

5
, yi = p−i

p−4 + p−5
, i = 4, 5 . (3.6)

In eqs. (3.4)–(3.5), similarly to eq. (2.2), we have encircled the helicity index and we have
appended the index |1 to the opposite-helicity vertex (eq. (3.5)) in order to stress that
this is the first amongst several equivalent representations we are going to consider for
this quantity.

4Note that having defined (F c)ab = i
√

2facb, the central-emission vertices, eqs. (2.9), (3.4) and (3.5), do
not display the usual overall powers of

√
2.
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Note that the impact factors, eq. (2.3), and the central-emission vertex, eqs. (3.4)–(3.5),
transform under parity into their complex conjugates,[

Agg(0) (q1, p
ν4
4 , p

ν5
5 , q3)

]∗
= Agg(0)

(
q1, p

−ν4
4 , p−ν5

5 , q3
)
, (3.7)

allowing one to obtain Agg(0)(q1, p
	
4 , p

	
5 , q3) and Agg(0)(q1, p

	
4 , p

⊕
5 , q3) from those in eq. (3.5).

If the further MRK limit is taken, i.e. further requiring p+
4 � p+

5 , the two-gluon CEV
factorises into a product of two Lipatov vertices times an intermediate t-channel pole. The
MRK limit is discussed in appendix G.1.

In ref. [60] an alternative form of the opposite-helicity two-gluon CEV was found by
using the CSW rules [91], eq. (E.1). This is a compact form of the vertex, consisting of only
four rational terms, but unlike eq. (3.5), this representation appears to have unphysical
poles e.g. at p4⊥ + p5⊥ = 0. This is a feature which is shared with the new representations
we will obtain from the BCFW recursion relations in section 3.2. Before obtaining these
new representations, we will first introduce a minimal set of independent variables which
we will use throughout this paper. In particular, these variables will make it simple to
analytically verify the equivalence of all the representations of the opposite-helicity vertex
we will study, thereby proving that the apparent unphysical singularites in the CSW and
BCFW representations are spurious.

3.1 A minimal set of variables

In MRK the central-emission vertex for the emission of one gluon can be expressed in
terms of one independent transverse momentum, i.e. in terms of two real parameters. We
expect that the emission of one more gluon out of the central-emission vertex will require
the introduction of the variables of one more on-shell massless particle, i.e. three more
real parameters, such that the central-emission vertex for the emission of n gluons will
be expressed in terms of a set of (3n − 1) independent real parameters. In particular,
the central-emission vertex for the emission of two gluons will be given in terms of five
real parameters.

We write p4⊥ and p5⊥ in terms of MRK t-channel transverse momenta,

p4⊥ = q1⊥ − q2⊥ , p5⊥ = q2⊥ − q3⊥ . (3.8)

In the sum of the equations above, q2⊥ cancels such that transverse momentum conservation
in NMRK is fulfilled. We parametrise the ratios of transverse momenta in eq. (3.8) in terms
of two complex variables, w and z,

p4⊥
q1⊥

= 1
1− z ,

q2⊥
q1⊥

= −z
1− z ,

p5⊥
q3⊥

= −1
1− w ,

q2⊥
q3⊥

= −w
1− w . (3.9)

Inverting these relations gives us

z = − q2⊥
p4⊥

, w = q2⊥
p5⊥

. (3.10)
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Using complex parametrization of the transverse momenta (see appendix A.1), z and w are
also complex. We will use z̄ and w̄ to denote their complex conjugates.

In summary, we may parametrise the central-emission vertex for the emission of two
gluons, involving five real degrees of freedom, in terms of the set {w, z,X}, where X is a
real positive variable which depends on the rapidity difference between p4 and p5,

X ≡ p+
4
p+

5
= x4
x5
. (3.11)

The MRK limit is reached by taking X →∞. When we use the acronym MRK, we will
always mean this canonical MRK limit with the strict rapidity ordering y3 � y4 � y5 � y6.
The multi-Regge regime with strict rapidity ordering y3 � y5 � y4 � y6 is also contained
within the central NMRK limit of appendix A.3, and we will refer to this kinematic condition
as MRK′. The MRK′ limit is reached by taking X → 0.

The leading NMRK behaviour of several Lorentz invariant quantities are listed in
terms of the minimal set of variables in appendix B. In terms of this minimal set,
eqs. (3.4)–(3.5) become

Agg(0)
(
q1, p

⊕
4 , p

⊕
5 , q3

)
= q∗1⊥
q1⊥

z (w − 1) (z − 1)X
(w +Xz) , (3.12)

Agg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
1

= w̄2z2|z − 1|2X2

|w +Xz|2 (|w|2 +X|z|2) + z2X

(1 +X|z|2)

+ Xz

|w +Xz|2
( |w − 1|2Xz̄

(1 +X) + w̄
(
1 +X|z|2

)
−
(
|w|2 +X|z|2

)
− w̄z(1 +X)

)
.

(3.13)

We note that the same-helicity vertex, eq. (3.12), contains a remaining phase q∗1⊥/q1⊥,
which cannot be expressed in terms of the minimal variables. The phases of eq. (3.12)
and eq. (3.13) are fixed by the assignment of phases of the impact factors, eq. (2.2), and
eq. (A.14). They are also consistent with the phase convention of eq. (2.9), which can be
checked by taking the MRK and MRK′ limit of eq. (3.12) and eq. (3.13) (see appendix G.1).
From eq. (B.2) we see that the physical singularity of the same-helicity vertex, eq. (3.12),
corresponds to

〈4 5〉 = 0 ↔ w +Xz = 0 . (3.14)

The opposite-helicity vertex, eq. (3.13), has a more complicated singularity structure. From
eq. (B.3) we see that the further physical singularities of this vertex correspond to the
vanishing of three-particle Mandelstam invariants,

s123 = 0 ↔ 1 +X = 0 ,
s234 = 0 ↔ 1 +X|z|2 = 0 ,
s345 = 0 ↔ |w|2 +X|z|2 = 0 .

(3.15)

The right-hand side of eq. (3.14) and eq. (3.15) define the physical-singularity surfaces of
the minimal set {w, z,X}. However, in NMRK, if we require all transverse momenta to
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be non-vanishing, the only singularity surface which can be reached is the collinear limit
w = −zX. This collinear limit is studied in appendix G.3. This agrees with the intuitive
picture of NMRK where, for example, the large rapidity separation y3 � y4 means we
cannot take the further collinear limit p3||p4. Relaxing the requirement of non-vanishing
transverse momenta, eqs. (3.12) and (3.13) are singular in the soft limits p4 → 0 and p5 → 0,
which are explored in appendix G.2.

3.2 BCFW representations

In ref. [54], the opposite-helicity vertex of eq. (3.5) was obtained from the tree-level six-gluon
amplitude given in ref. [92]. Compact expressions for NMHV six-gluon amplitudes were
later derived using the BCFW on-shell recursion relations [89, 90]. We present one of the
amplitudes obtained in ref. [89] here, which we will use as an example in the following:5

M
(0)
(3.16)

(
p⊕1 , p

⊕
2 , p

	
3 , p

⊕
4 , p

	
5 , p

	
6

)
=− 〈3|1 + 2|4]4

〈1 2〉〈2 3〉[4 5][5 6]s123〈1|2 + 3|4]〈3|4 + 5|6]

− 〈5 6〉4[2 4]4
〈5 6〉〈6 1〉[2 3][3 4]s234〈5|6 + 1|2]〈1|2 + 3|4]

− 〈3 5〉4[1 2]4
[6 1][1 2]〈3 4〉〈4 5〉s345〈3|4 + 5|6]〈5|6 + 1|2] .

(3.16)

A complete set of six-gluon NMHV tree amplitudes are listed in eqs. (D.1)–(D.3). A
second set of representations of the tree-level amplitudes are given by eqs. (D.6)–(D.8);
these are discussed further in appendix D.2. As mentioned earlier, the individual terms
of these BCFW-based amplitudes appear also in the six-gluon one-loop amplitudes in
N = 4 SYM. As an example, note that the rational coefficients that appear in the one-
loop amplitude (D.10) consist of the individual rational terms that make up the tree-level
amplitudes (D.2) and (D.7). In this section we are therefore interested not only in the
NMRK limit of the tree-level amplitudes as a whole, but also in the NMRK behaviour of
the individual rational terms which will appear outside the context of tree-level amplitudes
in section 4.2.

BCFW-based representations have the additional advantage of making the collinear
singularity structure of the tree amplitudes manifest. For example, eq. (3.16) has separate
poles at 〈4 5〉 = 0 and [45] = 0, while eq. (3.5) only displays a pole at s45 = 0. The form
in eq. (3.5) entangles the two types of contributions, from different helicity intermediate
states; also, individual terms are more singular than the actual amplitude. The BCFW-
based representations are therefore more amenable to the study of collinear limits, a
property which is utilised in appendix G.3. In addition to physical singularities (spinor
products of two cyclically adjacent momenta, and Mandelstam invariants of three cyclically
adjacent momenta), the individual terms in these BCFW-based representations also contain
unphysical singularities (which cancel in the sum of terms appearing in the amplitude). A

5This amplitude is equal to the complex conjugate of eq. (D.2) and we have expanded the Di functions
to display the physical and spurious poles of the amplitude.
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simple example is provided by the spinor string

〈3|4 + 5|6] −−−−→
NMRK

−q∗3⊥

√√√√p+
3
p+

6
(p4⊥ + p5⊥) = |q1⊥|2

√√√√p+
3
p+

6

z̄(w̄ − 1)(w − z)
|w|2|z − 1|2

(3.17)

which appears in the denominator of terms in eq. (3.16).
For six-particle kinematics there is a simple relationship between the square of such

spinor strings and two- and three-particle Mandelstam invariants,

〈3|4 + 5|6]〈6|4 + 5|3] = s123s345

(
1− s12s45

s123s345

)
. (3.18)

The quantity appearing on the right-hand side, s12s45/(s123s345), is a conformally-invariant
cross ratio [93]. In this way we see that each of the unphysical singularity surfaces of
the rational terms in eqs. (D.1)–(D.3) corresponds to one of the following cross ratios
equalling unity,

uA = s12s45
s123s345

−−−−→
NMRK

s45(
p+

4 + p+
5

) (
p−4 + p−5

) = |w +Xz|2

(1 +X) (|w|2 +X|z|2) ,

vA = s23s56
s234s123

−−−−→
NMRK

(−t1) p+
5(

|q2⊥|2 + p−4 p
+
5

) (
p+

4 + p+
5

) = X|1− z|2
(1 +X|z|2) (1 +X) ,

wA = s34s61
s345s234

−−−−→
NMRK

(−t3) p−4(
p−4 + p−5

) (
|q2⊥|2 + p−4 p

+
5

) = X|1− w|2|z|2
(|w|2 +X|z|2) (1 +X|z|2) .

(3.19)

We use the label A to indicate that these are the cross ratios of the colour ordering
{1, 2, 3, 4, 5, 6}, which we will refer to as σA. In the NMRK region these cross ratios lie in
the range [0, 1], and are studied further in appendix B.1. We choose to label the unphysical
singularities of the BCFW representations by the cross ratio which tends to unity as this
unphysical singularity surface is approached,

PAx = 0 ⇒ xA = 1, x ∈ {u, v, w}. (3.20)

This notation will be helpful in section 4.2 for demonstrating that the NMHV one-loop
six-gluon amplitudes in N = 4 are free from unphysical singularities. We use the term
PAx to generically refer to the unphysical-singularity surfaces of the terms in the BCFW
representation of the amplitudes. We list these unphysical-singularity surfaces in NMRK in
terms of both light-cone coordinates and the minimal variables,

〈1|2 + 3|4] = 0 ↔ PAv = 0 ↔ q∗2⊥ − p∗4⊥
p+

5
p+

4
= 0 ↔ 1 +Xz̄ = 0 ,

〈3|4 + 5|6] = 0 ↔ PAu = 0 ↔ p4⊥ + p5⊥ = 0 ↔ w − z = 0 ,

〈5|6 + 1|2] = 0 ↔ PAw = 0 ↔ q∗2⊥ + p∗5⊥
p−4
p−5

= 0 ↔ w +X|z|2 = 0 ,

(3.21)
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which provides intuition for the origin and nature of the unphysical singularities that appear
in eqs. (3.22) and (3.24) below. Equations (A.32) and (B.4) list the full expressions for the
NMRK limit of these spinor strings in lightcone and minimal coordinates respectively, from
which the unphysical singularity surfaces of eq. (3.21) can be identified.

It is interesting to note that a given BCFW representation of a tree amplitude can give
rise to different representations of the opposite-helicity two-gluon CEV. As an example, we
can obtain a representation for this CEV from eq. (3.16) by taking the central NMRK limit
of this amplitude and dividing by impact factors and t-channel propagators according in
eq. (3.3). In this way we obtain

Agg(0)(q1, p
⊕
4 , p

	
5 , q3)

∣∣∣
2

= RAuv +RAvw +RAwu , (3.22)

with

RAuv = X3|w − 1|2 (z̄ − 1) |z|2
(X + 1) (w̄ +Xz̄) (w − z) (1 +Xz̄) ,

RAvw = zX (w − 1) (z − 1)
(1 +X|z|2) (1 +Xz̄) (w +X|z|2) ,

RAwu = − z3X3 (w̄ − 1) |z − 1|2|z|2
(w +Xz) (|w|2 +X|z|2) (w +X|z|2) (w − z) .

(3.23)

Eq. (3.22) is our second representation for the opposite helicity vertex, equivalent to eq. (3.13)
above. In addition to the physical singularities of eq. (3.14) and eq. (3.15), individual terms
in eq. (3.22) feature the unphysical singularities of eq. (3.21). We denote the rational terms
in (3.23) by their singularities, where RAxy features unphysical poles at PAx = 0 and PAy = 0.

We can obtain another equivalent representation for the opposite-helicity vertex from
eq. (3.16) by taking the central NMRK limit of

M
(0)
(3.16)

(
p⊕3 , p

	
4 , p

⊕
5 , p

⊕
6 , p

	
1 , p

	
2

)∗
.

This gives us our third representation of the CEV,

Agg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
3

= RAūv̄ +RAv̄w̄ +RAw̄ū , (3.24)

with

RAūv̄ = X|w − 1|2 (z − 1) |z|2
(X + 1) (w +Xz) (w̄ − z̄) (1 +Xz) ,

RAv̄w̄ = X3 (w̄ − 1) (z̄ − 1) z4z̄

(1 +X|z|2) (1 +Xz) (w̄ +X|z|2) ,

RAw̄ū = − Xz (w − 1) w̄4|z − 1|2
(w̄ +Xz̄) (|w|2 +X|z|2) (w̄ +X|z|2) (w̄ − z̄) .

(3.25)

The notation RAx̄ȳ indicates these rational terms have unphysical singularities at P̄Ax = 0
and P̄Ay = 0, where as usual, we use bar to denote complex conjugation. Of course, these
six rational terms are not independent due to the relation,

RAuv +RAvw +RAwu = RAūv̄ +RAv̄w̄ +RAw̄ū. (3.26)
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(a) (b) (c)

Figure 5. The colour connections of the three representative colour orderings we discuss in this
paper, displayed on a two-sided rapidity plot: (a) σA; (b) σA′ ; (c) σB , which uses ’t Hooft graphical
notation, with untwisted colour lines. Modulo cyclic permutations of the colour ordering, the gluons
which fall between incoming gluons 2 and 1 are placed on the “front” side of the plot, while the
gluons which fall between 1 and 2 are placed on the “back” side. In MRK, the gluons are ordered
in rapidity both on the front and on the back sides, however the relative ordering between the
two sides is immaterial [75, 95]. On the front side, colour and rapidity have the same ordering; on
the back, the opposite ordering. In NMRK, the strict orderings may be relaxed on either side as
appropriate [51].

These rational terms, when divided by the appropriate MHV central-emission vertex,
correspond to the NMRK limit of the dual-conformal-invariant R-invariants of N = 4
SYM [94]. In this paper however, we do not normalise by the MHV vertex as this will
avoid the introduction of the MHV phase, and will lead to simpler expressions when we
take further kinematic limits of these rational terms.

Having studied the physical and spurious poles of the BCFW representation of the
opposite-helicity CEV, we briefly return to the CSW representation of the vertex, eq. (E.1).
We write this in terms of the minimal variables in eq. (E.2). We can now see that this
representation has the expected physical singularities of eqs. (3.14) and (3.15), and also
spurious poles at PAu = 0 and P̄Av = 0. In addition to these representations, one can find a
compact representation of the central-emission vertex, eq. (E.3), which only has a single
spurious pole at PAu = 0. We have checked analytically that the five representations of
the opposite-helicity vertex in eqs. (3.13), (3.22), (3.24), (E.2) and (E.3) are all equivalent.
The equivalence of these expressions shows that PAx = 0 are not true singularities of
the central-emission vertex, and we say that they are spurious, or removable poles of
this expression.

3.3 Other colour orderings

So far we have only investigated a single colour ordering, which we termed σA. All colour
orderings were studied in NMRK at tree-level in ref. [51]. There the leading behaviour
was found to be given by colour orderings that have p1 adjacent to p6 and p2 adjacent
to p3. An interchange of p1 ↔ p6 or p2 ↔ p3 leads only to a change in the sign of the
amplitude. In addition to σA we should therefore consider the representative orderings
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σA′ = {1, 2, 3, 5, 4, 6} and σB = {1, 4, 2, 3, 5, 6}, which are displayed in figure 5 using the
two-sided rapidity plot [75, 95].6 The ordering σA′ , is related to the former by a simple
interchange of p4 ↔ p5, which we may directly apply to the functions in eq. (3.5). In terms
of the minimal variables this operation is given by

z −−−−→
p4↔p5

1 + w
1− z
z

,

w −−−−→
p4↔p5

1 + z
1− w
w

,

X −−−−→
p4↔p5

1
X
.

(3.27)

Throughout this paper we will use a prime to refer to an interchange of p4 ↔ p5, for example

q2 ≡ q1 − p4 = q3 + p5, so q′2 ≡ q1 − p5 = q3 + p4, (3.28)

which is the relevant t-channel momentum for the MRK′ limit. For example, the equal-
helicity tree-level CEV in the minimal variables is given by

Agg(0)
(
q1, p

⊕
5 , p

⊕
4 , q3

)
= q∗1⊥
q1⊥

w(w − 1)(z − 1)
(w +Xz) . (3.29)

For completeness, we list the full analysis of the BCFW representations of the opposite-
helicity vertex for the ordering σA′ in appendix E.1.

In the central NMRK limit, the colour-ordered amplitude of the remaining ordering σB
similarly factorises as

M
(0)
6g (pν1

1 ,p
ν4
4 ,p

ν2
2 ,p

ν3
3 ,p

ν5
5 ,p

ν6
6 ) = sCg(0) (pν2

2 ,p
ν3
3 ) 1

t1
Bgg(0) (q1,p

ν4
4 ,p

ν5
5 , q3) 1

t3
Cg(0) (pν1

1 ,p
ν6
6 ) ,
(3.30)

However, the tree-level CEV for the ordering σB is not independent to that of the orderings
σA and σA′ due to the relationship [51],

Agg(0)(q1, p
ν4
4 , p

ν5
5 , q3) +Agg(0)(q1, p

ν5
5 , p

ν4
4 , q3) +Bgg(0)(q1, p

ν4
4 , p

ν5
5 , q3) = 0 . (3.31)

This relation follows [70] from the U(1) decoupling equation [98, 99], or as the leading con-
tribution in NMRK to a Kleiss-Kuijf relation [100] which relates colour-ordered amplitudes
at tree level [101]. Eq. (3.31) is simple to verify in the equal-helicity case using eqs. (3.12)
and (3.29), and

Bgg(0)
(
q1, p

⊕
4 , p

⊕
5 , q3

)
= q∗1⊥q3⊥
p4⊥p5⊥

= −q
∗
1⊥
q1⊥

(w − 1) (z − 1) . (3.32)

To demonstrate the relationship given in eq. (3.31) for the opposity-helicity case, it
will be easier to first obtain a representation of Bgg(0) in the minimal variables. At tree
level, there are therefore only two independent colour orderings in NMRK, as in eq. (3.2).
However, in the one-loop MHV amplitudes of N = 4 SYM, the tree-level amplitudes

6An earlier version of the two-sided rapidity plot, for which though colour was absent, was used in
multiperipheral and dual models [96, 97].
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for σA, σA′ and σB will all be multiplied by distinct transcendental functions, so these
colour orderings are independent beyond tree level. Furthermore, in the one-loop NMHV
amplitudes for N = 4 SYM, we encounter rational coefficients of transcendental functions
which are not simply tree-level amplitudes. However, as mentioned in the outset of section 3,
these rational coefficients consist of the individual terms in the BCFW representations of
the tree amplitudes. For this reason, we investigate the BCFW-based representation of the
tree-level amplitudes for the σB ordering in this section, with an emphasis on the individual
rational terms.

We now perform a study analogous to section 3.2 for the ordering σB . We first list the
cross ratios for this colour ordering,

uB = s14s35
s142s235

= p+
4 p
−
5

|q′2⊥|2 + p+
4 p
−
5

= X|z|2

|w + z − wz|2 +X|z|2

vB = s42s56
s423s142

= p−4 p
+
5

|q2⊥|2 + p−4 p
+
5

= 1
1 +X|z|2

(3.33)

wB = s23s61
s235s423

= (−t1) (−t3)(
|q2⊥|2 + p−4 p

+
5

) (
|q′2⊥|2 + p+

4 p
−
5

) = |w − 1|2|z − 1|2X|z|2
(1 +X|z|2) (|w + z − wz|2 +X|z|2)

which, like eq. (3.19), lie in the range [0, 1] for our physical kinematic region. Return-
ing to our example amplitude, the NMRK limit of M (0)

(3.16)(p
⊕
1 , p

⊕
4 , p

	
2 , p

⊕
3 , p

	
5 , p

	
6 ) yields

the representation,

Bgg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)
= RBuv +RBvw +RBwu , (3.34)

with

RBuv = z|w − 1|2|z − 1|2
z̄(w + z − wz) ,

RBvw = − z(w − 1)(z − 1)
z̄(1 +X|z|2)(w + z − wz +X|z|2) ,

RBwu = − (w̄ − 1)X2z3(z̄ − 1)z̄
(w + z − wz)(w + z − wz +X|z|2)(|w + z − wz|2 +X|z|2) ,

(3.35)

while the NMRK limit of M (0)
(D.1)(p

	
1 , p

	
4 , p

	
2 , p

⊕
3 , p

⊕
5 , p

⊕
6 ) yields the representation,

Bgg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)
= RBūv̄ +RBv̄w̄ +RBw̄ū , (3.36)

with

RBūv̄ = 0 ,

RBv̄w̄ = − (w̄ − 1) (z̄ − 1) |z|2z2X2

(1 +X|z|2) (w̄ + z̄ − w̄z̄ +X|z|2) ,

RBw̄ū = − z (w − 1) (z − 1) (w̄ + z̄ − w̄z̄)3

z̄ (w̄ + z̄ − w̄z̄ +X|z|2) (|w + z − wz|2 +X|z|2) .

(3.37)
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One can now verify the relation eq. (3.31) using the representations in eq. (3.34) or eq. (3.36)
along with those obtained in section 3.2.

Recalling eq. (A.28) and eq. (B.3), the physical-singularity surfaces of this ordering are

s142 = 0 ↔ p+
3 p
−
6 = 0 ,

s234 = 0 ↔ |q2⊥|2 + p−4 p
+
5 = 0 ↔ 1 +X|z|2 = 0 ,

s235 = 0 ↔ |q′2⊥|2 + p+
4 p
−
5 = 0 ↔ |w + z − wz|2 +X|z|2 = 0 ,

(3.38)

where we note that there is no singularity in the collinear limit, eq. (3.14). In the NMRK
limit s142 ∼ s12 which does not depend on the central degrees of freedom of the process.
We therefore have not listed an entry for this Mandelstam invariant in terms of the minimal
variables. With reference to eqs. (A.33) and (B.5), the unphysical-singularity surfaces are7

〈1|4 + 2|3] = 0 ↔ PBv = 0 ↔ q∗2⊥ = 0 ,
〈2|3 + 5|6] = 0 ↔ PBu = 0 ↔ q′2⊥ = 0 ↔ w + z − wz = 0 ,

〈5|6 + 1|4] = 0 ↔ PBw = 0 ↔ q∗2⊥
p∗4⊥

+ q′2⊥
p5⊥

p+
5
p+

4
= 0 ↔ w + z − wz +X|z|2 = 0 .

(3.39)
We note that under the transformation in eq. (3.27) one obtains

uB ←→
p4↔p5

vB , wB ←→
p4↔p5

wB , (3.40)

and

RBuv ←→p4↔p5
(RBuv)∗, RBvw ←→p4↔p5

(
RBwu

)∗
,

RBūv̄ ←→p4↔p5
(RBūv̄)∗ = 0, RBv̄w̄ ←→p4↔p5

(
RBw̄ū

)∗
. (3.41)

These properties will be useful for organising the one-loop opposite-helicity amplitude in
section 4.2.

3.4 The target-projectile exchange

The amplitude in eq. (3.2) is manifestly symmetric under the target-projectile exchange.
The manifest symmetry is broken on the right-hand side of eq. (3.3) by the choice of
impact factors in eq. (2.2), which is dictated by the momentum representation, eq. (A.5), of
the spinor products. However, in transverse-momentum space the impact factors in (2.2)
are just phases, and hence the central-emission vertex for the emission of two gluons is
invariant under target-projectile exchange up to an overall phase. We may consider then
the target-projectile map F , which interchanges

p1 ↔
F
p2 , p3 ↔

F
p6 , p4 ↔

F
p5 . (3.42)

In NMRK the target-projectile map acts as

q1⊥ ↔
F
−q3⊥ , p4⊥ ↔

F
p5⊥ , p±4 ↔

F
p∓5 . (3.43)

7In the minimal coordinates, the limit q∗2⊥ → 0 is equivalent to taking w̄ and z̄ to zero at the same rate.
The ratio w̄/z̄ is well defined in this limit.
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In terms of the minimal set {w, z,X} these flip relations can be expressed as

w ↔
F
z , X 7→

F

|z|2

|w|2
X . (3.44)

Under these flips, the cross ratios for the σA ordering, eq. (3.19), change as

uA ↔
F
uA , vA ↔

F
wA , (3.45)

while the spurious poles change as

w +X|z|2 −→
F
z(1 +Xz̄) , w − z −→

F
−(w − z) , 1 +Xz̄ −→

F

w +X|z|2

w
, (3.46)

i.e. the first and third spurious-pole surfaces in eq. (3.21) are swapped. Furthermore, the
rational coefficients (3.23) change as

RAuv −→
F

wz̄

w̄z
RAwu , RAūv̄ −→

F

wz̄

w̄z
RAw̄ū ,

RAvw −→
F

wz̄

w̄z
RAvw , RAv̄w̄ −→

F

wz̄

w̄z
RAv̄w̄ , (3.47)

RAwu −→
F

wz̄

w̄z
RAuv , RAw̄ū −→

F

wz̄

w̄z
RAūv̄ ,

from which we see that both eqs. (3.22) and (3.24) are invariant under the target-projectile
map F , up to an overall phase. By contrast, for the σB ordering we find that each cross
ratio (eq. (3.33)) is invariant under this map,

uB ↔
F
uB , vB ↔

F
vB , wB ↔

F
wB , (3.48)

the spurious singularity surfaces (3.39) are likewise invariant, while each rational term in
eqs. (3.34) and (3.36) is invariant up to an overall phase,

RBxy −→
F

wz̄

w̄z
RBxy , RBx̄ȳ −→

F

wz̄

w̄z
RBx̄ȳ , x, y ∈ {u, v, w}, x 6= y .

Having investigated the tree-level CEV, and in particular the rational terms RIxy which
comprise the BCFW representations of this CEV, we proceed to the study of this vertex at
one loop.

4 The two-gluon central-emission vertex at one loop

In this section we will extract the two-gluon central-emission vertex at one loop in N = 4
SYM. The plan is analogous to the extraction of the tree-level vertex in section 3. We will
begin with the one-loop amplitude in general kinematics, and find the leading behaviour
in the central NMRK limit defined in appendix A.3. We expect that in this limit, the
amplitude will factorise into the known one-loop impact factors and Regge trajectories
associated with the two large rapidity spans, and a new piece which depends only on the
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central degrees of freedom, i.e. the gluons 4 and 5 and the transverse t-channel momenta.
We will identify this new central piece with the one-loop CEV.

The study of the two-gluon CEV in N = 4 SYM is not only of interest in its own right;
via the supersymmetric decomposition of QCD amplitudes at one loop [72–74], it is also
an ingredient for the two-gluon CEV in QCD. As such, we will begin by clarifying the
connection between the two.

The colour decomposition we use for the QCD one-loop six-gluon amplitude is [101],

M(1)
QCD = g6

S

∑
σ∈S5/R

[
tr (F aσ1 · · ·F aσ6 )M (1)[8]

QCD

(
p
νσ1
σ1 , . . . , p

νσ6
σ6

)
+Nf tr (T aσ1 · · ·T aσ6 )M (1)[3]

QCD

(
p
νσ1
σ1 , . . . , p

νσ6
σ6

) ]
, (4.1)

where S5 = S6/Z6 is the group of non-cyclic permutations and R is the total reflection, e.g.
R(1, 2, 3, 4, 5, 6) = (6, 5, 4, 3, 2, 1). The superscript [R] on colour-ordered amplitudes denotes
the colour representation of the particle circulating in the loop. We remind the reader that
F ai and T ai are generators in the adjoint and fundamental representations respectively.
For convenience we define separate colour-dressed amplitudes for the gluon-loop and
quark-loop contributions,

M(1)[8]
QCD = g6

S

∑
σ∈S5/R

tr (F aσ1 · · ·F aσ6 )M (1)[8]
QCD

(
p
νσ1
σ1 , . . . , p

νσ6
σ6

)
, (4.2)

M(1)[3]
QCD = g6

S

∑
σ∈S5/R

tr (T aσ1 · · ·T aσ6 )M (1)[3]
QCD

(
p
νσ1
σ1 , . . . , p

νσ6
σ6

)
, (4.3)

such that the QCD amplitude of eq. (4.1), with Nf Dirac fermions in the fundamental
representation, is obtained by

M(1)
QCD =M(1)[8]

QCD +NfM
(1)[3]
QCD . (4.4)

Colour-ordered gluon amplitudes in QCD at one loop may be further decomposed into
supersymmetric multiplets circulating in the loop,

M
(1)[8]
QCD = M

(1)
N=4 − 4M (1)

N=1χ +M
(1)
scalar , (4.5a)

M
(1)[3]
QCD = M

(1)
N=1χ −M

(1)
scalar . (4.5b)

To bring this supersymmetric decomposition to the level of colour-dressed QCD amplitudes
we define the colour-dressed contribution from the N = 4 multiplet,

M(1)
N=4 = g6

S

∑
σ∈S5/R

tr (F aσ1 · · ·F aσ6 )M (1)
N=4

(
p
νσ1
σ1 , . . . , p

νσ6
σ6

)
. (4.6)

For the colour-dressed contributions from the N = 1 multiplet and the scalar circulating
in the loop, we separately consider the cases where these are in the adjoint or fundamen-
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tal representations,

M(1)[8]
N=1χ = g6

S

∑
σ∈S5/R

tr (F aσ1 · · ·F aσ6 )M (1)
N=1χ

(
p
νσ1
σ1 , . . . , p

νσ6
σ6

)
, (4.7a)

M(1)[3]
N=1χ = g6

S

∑
σ∈S5/R

tr (T aσ1 · · ·T aσ6 )M (1)
N=1χ

(
p
νσ1
σ1 , . . . , p

νσ6
σ6

)
, (4.7b)

M(1)[8]
scalar = g6

S

∑
σ∈S5/R

tr (F aσ1 · · ·F aσ6 )M (1)
scalar

(
p
νσ1
σ1 , . . . , p

νσ6
σ6

)
, (4.7c)

M(1)[3]
scalar = g6

S

∑
σ∈S5/R

tr (T aσ1 · · ·T aσ6 )M (1)
scalar

(
p
νσ1
σ1 , . . . , p

νσ6
σ6

)
, (4.7d)

such that we can write the QCD one-loop colour-dressed amplitude as

M(1)
QCD =

(
M(1)
N=4 − 4M(1)[8]

N=1χ +M(1)[8]
scalar

)
+Nf

(
M(1)[3]
N=1χ −M

(1)[3]
scalar

)
. (4.8)

At one loop, this decomposition holds also at the level of the Regge-factorised expressions.
For example, we can write the one-loop coefficient of the impact factor in eq. (2.18) as

c
g(1)
QCD =

(
c
g(1)
N=4 − 4cg(1)[8]

N=1χ + c
g(1)[8]
scalar

)
+Nf

(
c
g(1)[3]
N=1χ − c

g(1)[3]
scalar

)
. (4.9)

In this paper we focus on the N = 4 component,M(1)
N=4, of the one-loop amplitude.

Let us begin by discussing the relevant helicity configurations. As at tree level, there are
two distinct helicity configurations for the one-loop two-gluon central-emission vertex. In
order to derive this CEV we take the central NMRK limit, as defined in eq. (A.24), of
M(1)
N=4(pν1

1 , p
ν2
2 , p

−ν2
3 , pν4

4 , p
ν5
5 , p

−ν1
6 ). Thus, to obtain the same-helicity vertex, i.e. ν4 = ν5,

the six-gluon amplitude we begin with must necessarily be an (anti-)MHV amplitude. In
section 4.1 we take the central NMRK limit of (anti-)MHV one-loop six-gluon amplitudes
in N = 4 SYM to obtain the one-loop two-gluon CEV of this theory. In turn, in order to
extract the one-loop opposite-helicity vertex we must instead take the NMRK limit of a
helicity configuration with ν4 6= ν5, which is necessarily an NMHV amplitude. This study
is performed in section 4.2.

In both cases we can simplify the procedure by recalling some results from section 3.
Although eq. (4.6) consists of a sum of 60 colour orderings, only 12 of these are not power
suppressed by the rational terms in the central NMRK limit. This is straightforward for
the MHV amplitudes, which are proportional to the tree-level result, up to logarithmically
varying functions, as we will see in eq. (4.17). For the NMHV amplitudes, eqs. (D.9)–(D.11),
this is not the case. However, each of the pairs of individual rational terms in these
amplitudes are power suppressed in the NMRK limit for colour orderings that do not have
both p2 and p3 adjacent, and p6 and p1 adjacent. This means we need only study the 12
colour orderings that are leading at tree-level also for the one-loop NMHV amplitudes. It
will be useful to consider the representative colour orderings,

σA = {1, 2, 3, 4, 5, 6} , σA′ = {1, 2, 3, 5, 4, 6} , σB = {1, 4, 2, 3, 5, 6} , (4.10)

that we introduced in section 3. We further introduce the notation ↔σ to indicate a kinematic
(momentum and spin) interchange of 2 ↔ 3, and σ

↔
to indicate a kinematic interchange
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of 1↔ 6. As an example of this notation,
↔
σA
↔

= {6, 3, 2, 4, 5, 1} . (4.11)

The amplitude can thus be written as a decomposition into symmetric (+) and antisymmetric
(−) components, as done in eq. (2.19),

M(1) =M(1)(+,+) +M(1)(+,−) +M(1)(−,+) +M(1)(−,−). (4.12)

Owing to Bose symmetry for gluon amplitudes, these kinematic interchanges translate
directly into interchanges of the corresponding colour indices, so for example M(1)(−,−)

corresponds to the component of the amplitude in which an antisymmetric colour repre-
sentation is exchanged in both the t1 and t3 channels, M(1)(+,−) corresponds to one in
which a symmetric representation is exchanged in the t1 channel, while an antisymmetric
one in the t3 channel, etc. In the central NMRK limit it will be useful to organise the
colour-dressed amplitudes according to this symmetry. For example, when there is an
adjoint representation circulating in the loop we obtain

M(1)(−,−) = g6
SF

a3a2c1F a6a1c3

× 1
4

{
tr (F c1F a4F a5F c3)×

(
M (1)(σA)−M (1)

(↔
σA
)
−M (1)(σA

↔
)+M (1)

(↔
σA
↔

))
+tr (F c1F a5F a4F c3)×

(
M (1)(σA′)−M (1)

( ↔
σA′

)
−M (1)

(
σA′
↔

)
+M (1)

( ↔
σA′
↔

))
+tr (F c1F a4F c3F a5)×

(
M (1)(σB)−M (1)

(↔
σB
)
−M (1)

(
σB
↔

)
+M (1)

(↔
σB
↔

))}
,

(4.13)

which in particular is valid for one-loop gluon amplitudes in N = 4 SYM, eq. (4.6). The
analogous expressions for the other signatures are listed in eqs. (F.1)–(F.3).

Before extracting the same-helicity CEV in section 4.1 and the opposite-helicity CEV
in section 4.2, we list here the known one-loop coefficients of the impact factor and Lipatov
vertex in N = 4 SYM, which will be of use in our extraction of both helicity configurations
of the two-gluon CEV. The one-loop coefficient, eq. (2.18), of the impact factor in N = 4
SYM is

c
g(1)
N=4(t) = NcκΓ

(
µ2

−t

)ε(
− 2
ε2

+ 1
ε

log
(
τ

−t

)
+ π2

2 −
δR
6

)
, (4.14)

where δR = 1 in conventional dimensional regularisation (CDR) and in ’t-Hooft-Veltman
(HV) schemes, while δR = 0 in dimensional reduction. The QCD one-loop impact factor,
from which eq. (4.14) may be understood through the decomposition of eq. (4.9), was
computed for δR = 1 in [45, 48, 49, 57], and for δR = 0 in [48, 49]. Secondly, the single-gluon
CEV to one-loop accuracy, eq. (2.23), in N = 4 SYM is given by

v
g(1)
N=4

(
t1, |p4⊥|2, t2

)
= NcκΓ

(
− 1
ε2

(
µ2

|p4⊥|2

)ε
+ π2

3

+ 1
ε

[(
µ2

−t1

)ε
+
(
µ2

−t2

)ε]
log

(
τ

|p4⊥|2
)
− 1

2 log2
(
t1
t2

))
.

(4.15)
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Note that eq. (4.15) is independent of the helicity of the produced particle, and of the
regularisation parameter δR. The one-loop coefficient was computed in QCD in [45–49],
from which the N = 4 part, eq. (4.15), may be extracted. We note that since in N = 4
SYM the beta function vanishes, eqs. (4.14) and (4.15) do not need to be renormalised. In
this paper we use the dimensional reduction choice with δR = 0, preserving the uniform
transcendentality property of the N = 4 SYM amplitude.

4.1 Same-helicity vertex

In this section we take the NMRK limit of the MHV amplitude,

M(1)
N=4

(
pν1

1 , p
ν2
2 , p

−ν2
3 , p⊕4 , p

⊕
5 , p

−ν1
6

)
. (4.16)

After the CEV for ν4 = ν5 = ⊕ has been obtained, the CEV for ν4 = ν5 = 	may be obtained
by complex conjugation, just as for the tree-level vertex, eq. (3.7). The colour-ordered
amplitudes for one-loop six-gluon MHV amplitudes in N = 4 SYM are [73]

M
(1)
N=4

(
p
νσ1
σ1 , · · · , p

νσ6
σ6

)
= κΓ

(4π)2M
(0)
(
p
νσ1
σ1 , · · · , p

νσ6
σ6

)
V6 (σ1, · · · , σ6) , (4.17)

where the transcendental terms are given by the function,

V6 (σ1, · · · , σ6) =
6∑
i=1
− 1
ε2

(
µ2

−t[2]
i

)ε
−

6∑
i=1

log
(
−t[2]

i

−t[3]
i

)
log

−t[2]
i+1

−t[3]
i



+ 1
2

3∑
i=1

log2

 −t[3]
i

−t[3]
i+1

− 3∑
i=1

Li2

1−

(
−t[2]

i

) (
−t[2]

i+3

)
(
−t[3]

i

) (
−t[3]

i−1

)
+ π2,

(4.18)

which does not depend on the helicities of the gluons. Here we have used the notation,

t
[r]
i = (pσi + · · ·+ pσi+r−1)2. (4.19)

When analytically continuing to the physical region, as discussed in appendix A.1, we give
all Mandelstam invariants a small positive imaginary part, t[m]

i → t
[m]
i + i0. For logarithms

of ratios of invariants, this prescription yields

log

−t[m]
i

−t[n]
j

 = log

∣∣∣∣∣∣ t
[m]
i

t
[n]
j

∣∣∣∣∣∣
− iπ (Θ

(
t
[m]
i

)
−Θ

(
t
[n]
j

))
, (4.20)

where the Heaviside function Θ(x) is defined as Θ(x) = 1 for x > 0 and Θ(x) = 0 otherwise.
Care must be taken when performing the analytic continuation of the arguments of the
dilogarithms in eq. (4.18) to the physical region, as discussed in appendix F.

From eq. (4.17) we see that the one-loop amplitudes in N = 4 SYM in the same-helicity
configuration are given by the tree-level gluon amplitude times the transcendental function
V6. As a step towards taking the full NMRK limit of eq. (4.16), let us keep only the leading
power terms of the rational functions. This means we neglect all but the 12 leading colour
orderings in eq. (4.16), and for these 12 leading colour orderings, we take the NMRK limit
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of the tree-level colour-ordered amplitudes that appear in eq. (4.17). We recall that in the
NMRK limit, an interchange of pν2

2 ↔ pν3
3 or pν6

6 ↔ pν1
1 leads only to a sign change of the

leading tree-level amplitude. This lets us write, for example, the (−,−) component of the
colour-dressed amplitude in the NMRK limit as

M(1)(−,−)
N=4 (pν4 ,pν5)−−−−→

NMRK

g6
S

κΓ
(4π)2 F

a3a2c1F a6a1c3

× 1
4

{
tr (F c1F a4F a5F c3)M (0)(σA)|NMRK

(
V6(σA)+V6

(↔
σA
)

+V6
(
σA
↔

)
+V6

(↔
σA
↔

))
+tr (F c1F a5F a4F c3)M (0)(σA′)|NMRK

(
V6(σA′)+V6

( ↔
σA′
)

+V6
(
σA′
↔

)+V6
( ↔
σA′
↔

))
+tr (F c1F a4F c3F a5)M (0)(σB)|NMRK

(
V6(σB)+V6

(↔
σB
)

+V6
(
σB
↔

)
+V6

(↔
σB
↔

))}
,

(4.21)

where we factorised the tree amplitude for each colour ordering. The positive relative signs
in this equation, in contrast to eq. (4.13), are due to the sign flips in the tree amplitude
M (0)(σ). Here, and in the following, we suppress the momentum and helicity arguments of
M(1)
N=4, apart from the two central gluons 4 and 5. Next, we write the tree-level colour-

ordered amplitudes in the central NMRK in a factorized form according to eq. (3.3), e.g. for
the A colour ordering we use

M (0)(σA)
∣∣∣
NMRK

= Cg(0)
(
pν2

2 , p
−ν2
3

) 1
t1
Agg(0)(q1, p

⊕
4 , p

⊕
5 , q3) 1

t3
Cg(0)

(
pν1

1 , p
−ν1
6

)
(4.22)

and similarly for the A′ and B orderings.
Turning our attention to the transcendental functions, we observe a major simplification

in the central NMRK limit upon considering the dispersive part of the amplitude, defined by
taking the real part of the transcendental functions. We find that the latter is given solely
by the (−,−) component, eq. (4.21), as the dispersive parts of the remaining components of
eq. (4.12), quoted in eqs. (F.1)–(F.3), vanish. This simplification is due to the fact that, for
the 12 leading configurations (shown in e.g. eq. (4.21)), the real part of the transcendental
functions V6 in the central NMRK limit is unchanged by an interchange of p2 ↔ p3 or
p6 ↔ p1. In conclusion, the dispersive part of the colour-dressed amplitude in the central
NMRK limit is given by

Disp
[
M(1)
N=4(p⊕4 , p⊕5 )

]
−−−−→
NMRK

g6
S

κΓ
(4π)2 s12F

a3a2c1Cg(0)
(
pν2

2 , p
−ν2
3

) 1
t1

1
t3
F a6a1c3Cg(0)

(
pν1

1 , p
−ν1
6

)
×{

tr (F c1F a4F a5F c3)Agg(0)(q1, p
⊕
4 , p

⊕
5 , q3)Re [V6(σA)|NMRK]

+ tr (F c1F a5F a4F c3)Agg(0)(q1, p
⊕
5 , p

⊕
4 , q3)Re [V6(σA′)|NMRK]

+ tr (F c1F a5F c3F a4)Bgg(0)(q1, p
⊕
4 , p

⊕
5 , q3)Re [V6(σB)|NMRK]

}
.

(4.23)

– 28 –



J
H
E
P
0
8
(
2
0
2
2
)
2
7
1

By contrast, the absorptive part of the amplitude, defined by taking the imaginary part
of the transcendental functions, in NMRK receives contribution from all terms in the
decomposition of eq. (4.12). The absorptive part of the amplitude is discussed further in
appendix F, and the four signature components are listed in eqs. (F.8)–(F.11). In section 4.3
we show that this absorptive part does not contribute to the colour-summed NLO gg → gggg

squared matrix element in the central NMRK limit. This means that, in particular, only
the dispersive part of the one-loop amplitude contributes to the dijet cross section at NNLL
accuracy. We now move to the study of the real part of V6 for the relevant colour orderings,
leaving the analogous discussion of the imaginary parts of V6 to appendix F.

As noted in ref. [16], the real part of V6 can be written, without any approximation, as a
combination of one-loop functions that describe amplitudes in MRK — the one-loop Regge
trajectory of eq. (2.5), the impact factor of eq. (4.14) and the Lipatov vertex, eq. (4.15) —
plus a remainder term that vanishes in the MRK limit. We will refer to this term as the
NMRK remainder function (∆V below). The arguments of the one-loop MRK functions
can be chosen such that the remainder function is free from infrared (IR) divergences, and
is a function of conformally-invariant cross ratios alone. For future convenience we choose
to group these one-loop MRK functions into two components. One component is a function
which collects the ‘central’ behaviour that will be relevant for our central NMRK limit,

U
(
t̃1, η̃12, t̃2, s̃2, η̃23, t̃3

)
= v

g(1)
N=4

(
t̃1, η̃12, t̃2

)
+ α(1) (t̃2) log

(
s̃2
τ

)
+ v

g(1)
N=4

(
t̃2, η̃23, t̃3

)
.

(4.24)
The other component collects the remaining ‘non-central’ behaviour,

E
(
t̃1, s̃1; t̃3, s̃3

)
= c

g(1)
N=4

(
t̃1; τ

)
+ α(1) (t̃1) log

(
s̃1
τ

)
+ α(1) (t̃3) log

(
s̃3
τ

)
+ c

g(1)
N=4(t̃3; τ) .

(4.25)
The arguments decorated with tildes in eq. (4.24) and eq. (4.25) are placeholders: the
arguments assigned will differ for each colour ordering in eq. (4.23). However, we will
always make the natural choice of assigning t̃1 = t1 = s23 and t̃3 = t3 = s61, and we will
assign t̃2 = t2 = s234 when considering the MRK limit, and t̃2 = t′2 = s235 when considering
the MRK′ limit. Based on the structure of V6 in eq. (4.18), for a given colour ordering
we will also choose the remaining arguments to be constructed from colour-ordered two-
and three-particle Mandelstam invariants. This choice will be informed by our knowledge
of the MRK and MRK′ limit of this amplitude. However, these criteria do not lead to a
unique assignment of the arguments of eqs. (4.24) and (4.25): the remaining freedom will
be discussed separately for each colour ordering.

As a first example, let us see how this re-writing can be performed for the real part
of V6(σA). We first separate the non-central function E, making the natural choice of
Mandelstam variables for its arguments,

NcκΓRe [V6(σA)] = E(s23, s34; s61, s56) + VA . (4.26)

This choice of arguments for E is the simplest choice which is compatible with the known
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MRK limit,8

E(s23, s34; s61, s56) −−−−−→
(N)MRK

E
(
−|q1⊥|2, p+

3 p
−
4 ;−|q3⊥|2, p+

5 p
−
6

)
. (4.27)

The function VA in eq. (4.26) collects the remaining ‘central’ behaviour and it can
be identified as the transcendental function associated with the two-gluon CEV for the A
colour ordering. As anticipated, this function itself can be neatly written as

VA = UA + ∆VA(uA, vA, wA) , (4.28)

where, again guided by the MRK limit, we fix UA to equal the function U , eq. (4.24), with
arguments assigned as follows

UA = U

(
s23,

s34s45
s345
√
uA

, s234, s45,
s45s56
s456
√
uA

, s61

)
. (4.29)

This choice of kinematic arguments leads to a simple NMRK remainder function ∆VA, which
is IR-finite, vanishes in the MRK limit and depends only on the cross ratios, eq. (3.19),

∆VA(uA, vA, wA) = NcκΓ

(
π2

3 −
1
4 log2(uA)− 1

2 log(uA) log(vAwA)

− Li2 (1− uA)− Li2 (1− vA)− Li2 (1− wA)
)
.

(4.30)

The MRK limit of the cross ratios is uA → 1, vA → 0, wA → 0 (see eq. (G.7)). It is easy to
see that eq. (4.30) vanishes in this limit.

As mentioned above, eq. (4.29) is not the unique choice which leads to an IR-finite
NMRK remainder. In eq. (4.29) we made the further choice of requiring UA to be invariant
under target-projectile exchange, eq. (3.42). Yet even this physically-motivated requirement
does not uniquely specify arguments for UA: a rescaling of the t̃2 variable in eq. (4.29) by
an arbitrary power of uA, i.e. s234 → s234 × (uA)p for real p, yields a NMRK remainder
function which is an IR-finite function of cross ratios and is invariant under target-projectile
exchange. Our ultimate choice of arguments in eq. (4.29) was guided by the intuition that
the trajectory should be evaluated exactly at the t-channel invariant t2 = s234 also away
from the strict MRK limit. It would be interesting to explore this same procedure at higher
orders in ε, or at two loops, where, if such an organisation proves possible, there may be
additional constraints on the kinematic arguments.

We stress that eq. (4.26) holds in general kinematics if no approximation is made to the
kinematic invariants. However, we will proceed to make the kinematic approximations valid
in the central NMRK limit, in order to exploit the invariance of the real part under the
interchanges p2 ↔ p3 or p6 ↔ p1 in this limit, as in eq. (4.23). Thus, we specify eq. (4.28)
to the NMRK limit, by making the approximation,

UA −−−−→NMRK
U

(
−|q1⊥|2,

p−4 s45

p−4 + p−5
,−|q2⊥|2 − p+

5 p
−
4 , s45,

s45 p
+
5

p+
4 + p+

5
,−|q3⊥|2

)
, (4.31)

8As this function does not depend on the central degrees of freedom in the NMRK, no further simplification
is obtained by taking the further MRK limit.
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Figure 6. Schematic illustration of the behaviour of the dispersive part of the one-loop partial
amplitudeM (1)

N=4(σA) in the central NMRK limit. The first diagram on the right-hand side represents
the transcendental functions that depend on the central degrees of freedom, VA, which we identify as
the one-loop correction to the two-gluon CEV for this colour ordering. The remaining four diagrams
on the right-hand side are given by the known one-loop impact factors and gluon Regge trajectory
contributions, and are collected in the function E of eq. (4.25).

and also taking the NMRK approximation of the cross ratios, as listed in eq. (3.19), for
the arguments of eq. (4.30). This NMRK approximation of VA will later form one of the
building blocks of the colour-dressed two-gluon CEV. The structure of the NMRK limit of
the dispersive part of M (1)

N=4 is depicted in figure 6.
The function V6(σA′) is simply related to V6(σA) by an interchange of p4 ↔ p5. We

now use the known MRK′ limit of the amplitude as our guide, writing

NcκΓRe [V6(σA′)|NMRK] = E(s23, s35; s61, s46) + VA′ , (4.32)
VA′ = UA′ + ∆VA(uA′ , wA′ , vA′) , (4.33)

where UA′ is related to eq. (4.29) by the interchange of p4 ↔ p5. As was true for the
A ordering, in order to use the compact form of eq. (4.23), we will need to make the
NMRK approximations to the arguments of ∆VA in eq. (4.33), and similarly we make
the approximation,

UA′ −−−−→NMRK
U

(
−|q1⊥|2,

p−5 s45

p−4 + p−5
,−|q′2⊥|2 − p+

4 p
−
5 , s45,

s45 p
+
4

p+
4 + p+

5
,−|q3⊥|2

)
. (4.34)

Note that the NMHV remainder function for the A′ ordering is the same as for the A
ordering, because ∆VA(u,w, v) = ∆VA(u, v, w) based on eq. (4.30).

We now turn to study of the real part of V6(σB). The rational coefficient of this
transcendental function, M (0)(σB), has a leading contribution in both the MRK and MRK′
limits. It will be useful therefore to re-write this transcendental function in two ways: one
guided by the known MRK limit of the amplitude, and the other by the known MRK′ limit.
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As usual, we first separate the central and non-central functions,

NcκΓRe [V6(σB)] = E(s23,−s42; s61, s56) + VB = E(s23, s35; s61,−s14) + VB′ . (4.35)

The forms of the central functions VB and VB′ are guided, respectively, by the known MRK
and MRK′ limits of this function — note that both refer to the same colour ordering. These
central functions are given by

VB = UB + ∆VB(uB, vB, wB), VB′ = UB′ + ∆VB(vB, uB, wB) , (4.36)

where we have chosen to use the kinematic arguments,

UB = U

(
s23,

s14s42
s142uB

, s234,−s235,
s35s56
s356uB

, s61

)
,

UB′ = U

(
s23,

s35s56
s356vB

, s235,−s234,
s14s42
s142vB

, s61

)
,

(4.37)

for the one-loop MRK functions.
Unlike the A colour ordering, target-projectile symmetry does not constrain the ar-

guments of eq. (4.37): from eq. (3.48) we see that in NMRK, each cross ratio is invariant
under target-projectile exchange. Our choice of kinematic arguments in eq. (4.37) were
instead motivated by the requirement that UB and UB′ are related by the map which
interchanges {p2 ↔ p3, p4 ↔ p5, p1 ↔ p6}, corresponding to a symmetry of the real part of
V6(σB). We will refer to this map as G. For the natural assignment of variables in eq. (4.35),
the real parts of E are related by this map.9 Choosing UB and UB′ to be related by G
therefore means the respective NMRK remainder functions are also related by this map.
For the cross ratios, eq. (3.33), the map G leads to uB ↔

G
vB, while wB is invariant under

G. The NMRK remainder function that follows from the choices made in eq. (4.37) is

∆VB(uB,vB,wB) = ∆VB(vB,uB,wB) (4.38)

=NcκΓ

(
π2

3 −log(uB) log(vB)−Li2 (1−uB)−Li2 (1−vB)−Li2 (1−wB)
)
,

which is indeed invariant under G. We note, however, that by considering suitable rescaling
of the arguments of UB and UB′ by powers of uB or vB respectively (the quantities which tend
to unity in the MRK or MRK′ limits respectively), there is one alternative set of kinematic
assignments which lead to an NMRK remainder function that possesses the same desirable
properties as eq. (4.38): as for the σA ordering, our final choice of arguments in eq. (4.37)
was determined by requiring that t̃2 is identified with the relevant t-channel momentum
even in general kinematics, namely t2 and t′2 in the MRK and MRK′ limits, respectively.

In order to use eq. (4.35) within the compact form of eq. (4.23), we must make the
NMRK approximations

UB −−−−→NMRK
U

(
− |q1⊥|2,−

p−4
p−5
t′2, t2,−t′2,−

p+
5
p+

4
t′2,−|q3⊥|2

)
,

UB′ −−−−→NMRK
U

(
− |q1⊥|2,−

p−5
p−4
t2, t

′
2,−t2,−

p+
4
p+

5
t2,−|q3⊥|2

)
, (4.39)

9Note that we always choose the signs of the arguments of E such that it is in fact a real function.
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where it is understood that on the right hand side we use the NMRK limits of

t2 = s234 −−−−→
NMRK

−
(
|q2⊥|2 + p+

5 p
−
4

)
, t′2 = s235 −−−−→

NMRK
−
(
|q′2⊥|2 + p+

4 p
−
5

)
. (4.40)

Similarly, we apply the NMRK approximations listed in eq. (3.33) for the cross-ratio
arguments of eq. (4.38). We see that in the NMRK limit, UB and UB′ (and therefore VB
and VB′) are simply related by an interchange of p4 ↔ p5.

Having studied the three colour orderings of eq. (4.23), we will now move to a basis of
colour structures that more closely resembles the colour structure of the tree-level amplitude,
eq. (3.2). This basis will let us identify one-loop corrections associated with each of the tree-
level colour structures, as well as highlight the new colour structure that starts contributing
at one-loop level. Denoting the three traces by

TA = tr (F c1F a4F a5F c3) , TA′ = tr (F c1F a5F a4F c3) , TB = tr (F c1F a5F c3F a4) ,
(4.41)

we consider the following rotation of the sum inside the curly brackets in eq. (4.23)

TAMA + TA′MA′ + TBMB = (TA − TB)× 1
3(2MA −MA′ −MB)

+ (TA′ − TB)× 1
3(2MA′ −MA −MB)

+ 1
3(TA + TA′ + TB)× (MA +MA′ +MB) .

(4.42)

Using the identities,

tr
(
F aF bF c

)
= NcF

abc , tr
(
F aF b

[
F c, F d

])
= NcF

abeF ecd , (4.43)

we relate the first two combinations of colour structure on the right-hand side of eq. (4.42)
to the tree-level structures (F aσ4F aσ5 )c1c3 of eq. (3.2), and define the third colour factor in
terms of the fully-symmetric trace:

da1a2a3a4
A = 1

4!
∑
σ∈S4

tr (F aσ1F aσ2F aσ3F aσ4 ) . (4.44)

Making use of the additional relations that exist within NMRK, namely

E(t1,−s42; t3, s56)|NMRK = E(t1, s34; t3, s56)|NMRK ,

E(t1, s35; t3,−s14)|NMRK = E(t1, s35; t3, s46)|NMRK ,
(4.45)
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we now express eq. (4.23) as

Disp
[
M(1)
N=4

(
p⊕4 , p

⊕
5

)]
−−−−→
NMRK

g6
S

(4π)2 s12F
a3a2c1Cg(0)

(
pν2

2 , p
−ν2
3

) 1
t1
×

∑
σ∈S2

{
(F aσ4F aσ5 )c1c3

(
A
gg(1)
�

(
q1, p

⊕
σ4 , p

⊕
σ5 , q3

)
+Agg(0) (q1, p

⊕
σ4 , p

⊕
σ5 , q3

)
E (t1, s3σ4 ; t3, sσ56)

)

+ 1
Nc
d
c1aσ4aσ5c3
A A

gg(1)
d

(
q1, p

⊕
σ4 , p

⊕
σ5 , q3

)}
× 1
t3
F a6a1c3Cg(0)

(
pν1

1 , p
−ν1
6

)
,

(4.46)

where the totally symmetric colour structure dA starts contributing at one-loop level, with

A
gg(1)
d

(
q1, p

⊕
4 , p

⊕
5 , q3

)
= Agg(0)

(
q1, p

⊕
4 , p

⊕
5 , q3

)
(VA − VB) . (4.47)

The symmetry of the dA colour structure under the permutation S2 of eq. (4.46) means that
after the sum over the σ4, σ5 permutations is performed, there are only three independent
colour structures in this equation, as in eq. (4.23).

For the kinematic coefficient of the tree-level colour structures we find, using eqs. (3.31)
and (4.42),

A
gg(1)
� (q1, p

⊕
4 , p

⊕
5 , q3)

= 1
3
(
Agg(0)(q1, p

⊕
4 , p

⊕
5 , q3) (2VA + VB)−Agg(0)(q1, p

⊕
5 , p

⊕
4 , q3) (VA′ − VB′)

)
.

(4.48)

We interpret this term as the one-loop coefficient of the all-orders expansion of this colour
structure,

Agg� (q1, p
ν4
4 , p

ν5
5 , q3) = A

gg(0)
� (q1, p

ν4
4 , p

ν5
5 , q3) + αS

4πA
gg(1)
� (q1, p

ν4
4 , p

ν5
5 , q3) +O(α2

S) , (4.49)

with

A
gg(0)
� (q1, p

ν4
4 , p

ν5
5 , q3) = Agg(0) (q1, p

ν4
4 , p

ν5
5 , q3) . (4.50)

As the structure dA first appears at one-loop level we write

Aggd (q1, p
ν4
4 , p

ν5
5 , q3) = αS

4πA
gg(1)
d (q1, p

ν4
4 , p

ν5
5 , q3) +O

(
α2
S

)
, (4.51)

in anticipation of higher-order corrections to this colour structure. We note that Agg(1)
d and

A
gg(1)
� both depend on µ2 and τ , but as for the one-loop coefficients of the impact factor

and Lipatov vertex, we omit this dependence for brevity.
The notation introduced in this section makes it straightforward to verify that the

eqs. (4.48) and (4.47) yield the expected MRK limit. We first note that by construction,
eqs. (4.28) and (4.36) both tend to the same MRK limit,

UA|MRK = UB|MRK = UMRK =U
(
−|q1⊥|2, |p4⊥|2,−|q2⊥|2, p+

4 p
−
5 , |p5⊥|2,−|q3⊥|2

)
. (4.52)
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Figure 7. Schematic illustration of the further factorisation of the one-loop two-gluon CEV for the
ordering σA in the MRK limit.

Using the MRK limits of the relevant cross ratios listed in eq. (G.7) together with the values
of the dilogarithm,

Li2 (0) = 0, Li2 (1) = π2

6 , (4.53)

we see that both ∆VA(uA, vA, wA) and ∆VB(uB, vB, wB) vanish in the MRK limit as desired.
This leads to the simple results,

A
gg(1)
�

(
q1, p

⊕
4 , p

⊕
5 , q3

)
−−−→
MRK

V g(0)
(
q1, p

⊕
4 , q2

) 1
t2
V g(0)

(
q2, p

⊕
5 , q3

)
UMRK , (4.54)

A
gg(1)
d

(
q1, p

⊕
4 , p

⊕
5 , q3

)
−−−→
MRK

0 . (4.55)

Equation (4.54) is depicted schematically in figure 7. The function UMRK generates all three
of the loop corrections on the right-hand side of the figure, thanks to the definition (4.24).
A similar analysis shows that

A
gg(1)
�

(
q1, p

⊕
5 , p

⊕
4 , q3

)
−−−−→
MRK′

V g(0)
(
q1, p

⊕
5 , q

′
2

) 1
t′2
V g(0)

(
q′2, p

⊕
4 , q3

)
UMRK′ , (4.56)

A
gg(1)
d

(
q1, p

⊕
5 , p

⊕
4 , q3

)
−−−−→
MRK′

0 , (4.57)

where

UA′ |MRK′ = UB′ |MRK′ = UMRK′ = U
(
−|q1⊥|2, |p5⊥|2,−|q′2⊥|2, p+

5 p
−
4 , |p4⊥|2,−|q3⊥|2

)
.

(4.58)

In appendix G we investigate the soft and collinear limits of eq. (4.46). In section 5 we
conjecture how the one-loop results of this section may be extended to all orders. In the
next subsection we obtain expressions analogous to eqs. (4.48) and (4.47) but for the case
where gluons 4 and 5 have opposite helicities.
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4.2 Opposite-helicity vertex

We now perform an analogous study to section 4.1 for the opposite-helicity case, where
we must start from an NMHV helicity configuration. We present the procedure for a
configuration of the form M(1)

N=4(pν1
1 , p

ν2
2 , p

−ν2
3 , p⊕4 , p

	
5 , p

−ν1
6 ). As for the tree-level vertex,

after the CEV for ν4 = −ν5 = ⊕ has been obtained, the CEV for ν4 = −ν5 = 	 may be
obtained by complex conjugation. The colour-ordered one-loop six-gluon NMHV amplitudes
in N = 4 SYM are given in eqs. (D.9)–(D.11). Unlike eq. (4.17), these NMHV amplitudes
are not proportional to the tree-level amplitude. Instead, the transcendental functions of
the NMHV amplitude, Wi are multiplied by pairs of the rational functions that appear
in the BCFW representations of the tree-level amplitude listed in appendix D.1. In the
NMRK, after dividing by the appropriate impact factors and t-channel propagators, these
rational coefficients are simply given by sums of pairs of the rational functions which we
have studied in sections 3.2 and 3.3,

SIxy = RIxy +RIx̄ȳ x, y ∈ {u, v, w}, I ∈ {A,A′, B}. (4.59)

Like the tree-level amplitudes, these rational coefficients of the transcendental functions
Wi change only by a sign under exchange of pν2

2 ↔ pν3
3 or pν6

6 ↔ pν1
1 . For the 12 leading

colour orderings, we further find that an exchange of p2 ↔ p3 or p6 ↔ p1 does not alter the
real part of the functions Wi. These properties collectively allow the dispersive part of the
amplitude to be written as

Disp
[
M(1)
N=4

(
p⊕4 , p

	
5

)]
−−−−→
NMRK

g6
S

κΓ

(4π)2 s12 F
a3a2c1 Cg(0)

(
pν2

2 , p
−ν2
3

) 1
t1

1
t3
F a6a1c3Cg(0)

(
pν1

1 , p
−ν1
6

)
×
{
tr (F c1F a4F a5F c3)

[
SAuvRe [W1 (σA)] + SAvwRe [W2 (σA)] + SAwuRe [W3 (σA)]

]
+ tr (F c1F a5F a4F c3)

[
SA
′

uvRe [W1 (σA′)] + SA
′

vwRe [W2 (σA′)] + SA
′

wuRe [W3 (σA′)]
]

+ tr (F c1F a5F c3F a4)
[
SBuvRe [W1 (σB)] + SBvwRe [W2 (σB)] + SBwuRe [W3 (σB)]

]}
,

(4.60)

analogously to eq. (4.23). On the right-hand side of eq. (4.60), the transcendental functions
are understood to be taken in the NMRK limit, but for brevity we do not indicate this
explicitly. As in section 4.1, we find that the dispersive part of the amplitude is given solely
by (−,−) exchange. This is not true for the absorptive part, which is studied in appendix F.
We will see in section 4.3 that the absorptive part does not contribute to the helicity- and
colour-summed NLO squared matrix element for gg → gggg, or to the dijet cross section at
NNLL. The absorptive part will only contribute at N3LL. For the remainder of this section
we focus on the dispersive part of the amplitude, eq. (4.60).

Unlike the tree-level expressions (e.g. eq. (3.22)), the sums of two rational terms,
eq. (4.59), do contain genuine unphysical poles. To demonstrate that the dispersive part
of the NMRK amplitude, eq. (4.60), is nonetheless free from unphysical singularities it is
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useful to use the fact that the sum of the three SIxy is twice the tree-level CEV to rewrite
eq. (4.60) as

Disp
[
M(1)
N=4

(
p⊕4 ,p

	
5

)]
−−−−→
NMRK

g6
S

κΓ

(4π)2 s12F
a3a2c1 Cg(0)

(
pν2

2 ,p
−ν2
3

) 1
t1

×
{
tr (F c1F a4F a5F c3)

[
2Agg(0)

(
q1,p

⊕
4 ,p
	
5 , q3

)
Re[W2 (σA)]

+SAuvRe[W1 (σA)−W2 (σA)]+SAwuRe[W3 (σA)−W2 (σA)]
]

+tr (F c1F a5F a4F c3)
[
2Agg(0)

(
q1,p

	
5 ,p
⊕
4 , q3

)
Re[W2 (σA′)]

+SA′uvRe[W1 (σA′)−W2 (σA′)]+SA
′

wuRe[W3 (σA′)−W2 (σA′)]
]

+tr (F c1F a5F c3F a4)
[
2Bgg(0)

(
q1,p

⊕
4 ,p
	
5 , q3

)
Re[W1 (σB)]

+SBvwRe[W2 (σB)−W1 (σB)]+SBwuRe[W3 (σB)−W1 (σB)]
]}

× 1
t3
F a6a1c3Cg(0)(pν1

1 ,p
−ν1
6 ) .

(4.61)

This rewriting simplifies our task for two reasons:

• From section 3 we know the functions Agg(0) and Bgg(0) are free from unphysical
singularities.

• The difference between two cyclic permutations of W is much simpler than a given
permutation of W .

To expand on the second point, the difference between two cyclic permutations of W can
be expressed as a single product of logarithms whose arguments are simple functions of the
cross ratios. This property holds even in general kinematics, although in the following we
implicitly consider the cross ratios to be taken in the NMRK limit. Let us first consider
these terms in the σA ordering,

W1(σA)−W2(σA) = log (vA) log
(
wA
uA

)
,

W3(σA)−W2(σA) = log (wA) log
(
vA
uA

)
.

(4.62)

We note in passing that these functions are related by the interchange of vA ↔ wA, which
has the physical interpretation of target-projectile exchange, eq. (3.45). This provides
our motivation for arranging eq. (4.61) as we have done, where W2(σA) multiplies the
corresponding tree-level CEV, while the remaining terms are related by

SAuvRe [W1(σA)−W2(σA)] −→
F

wz̄

w̄z
SAwuRe [W3(σA)−W2(σA)]. (4.63)
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PAu = 0 PAv = 0 PAw = 0

uA 1 |w−1|2X
(1+X)(1+|w|2X)

|z−1|2X
(1+X)(1+|z|2X)

vA
|z−1|2X

(1+X)(1+|z|2X) 1 |z−1|2X
(1+X)(1+|z|2X)

wA
|z−1|2X

(1+X)(1+|z|2X)
|w−1|2X

(1+X)(1+|w|2X) 1

Table 1. Behaviour of the cross ratios in the NMRK limit at the three unphysical-singularity
surfaces of the rational terms of the ordering σA, listed in eq. (3.21).

Table 1 lists the behaviour of the cross ratios at each unphysical-singularity surface.
From this table we see that at PAv = 0 or PAw = 0, the transcendental terms which multiply
the divergent rational terms in eq. (4.61) vanish. For the remaining unphysical singularity
at PAu = 0, we find

SAuv (W1(σA)−W2(σA)) + SAwu (W3(σA)−W2(σA))

−−−−→
PAu →0

(
SAuv + SAwu

)
log2

(
|z − 1|2X

(1 +X)(1 + |z|2X)

)
,

(4.64)

which is finite at PAu = 0, because in the sum SAuv +SAwu = 2Agg(0)−SAvw, the apparent pole
at PAu = 0 is a removable singularity.

The σA′ ordering is exactly analogous. For the σB ordering we have singled out in
eq. (4.61) the transcendental function W1(σB) to multiply the tree-level amplitude. The
other transcendental functions that appear in this colour structure are then

W2(σB)−W1(σB) = log (vB) log
(
uB
wB

)
,

W3(σB)−W1(σB) = log (uB) log
(
vB
wB

)
,

(4.65)

which are related to each other by the map G introduced in section 4.1. For the NMHV
tree-level rational functions in the NMRK limit, this map is equivalent to the composition
of interchanging p4 ↔ p5 with complex conjugation, i.e. the remaining terms in eq. (4.61)
have the property,

SBvw (W2(σB)−W1(σB)) ←→
p4↔p5

(
SBwu

)∗
(W3(σB)−W1(σB)) , (4.66)

where we have used eq. (3.41). Using the properties summarised in table 2, we see that this
ordering is also free from unphysical singularities. At PBu = 0 or PBv = 0, the rational terms
in eq. (4.61) which diverge are multiplied by transcendental terms (eq. (4.65)) that vanish.
At PBw = 0 we see that the transcendental terms in eq. (4.65) become equal, allowing us
to write

SBvw(W2(σB)−W1(σB))+SBwu(W3(σB)−W1(σB))−−−−→
PBw→0

(
SBvw+SBwu

)
log2

( 1
1+|z|2X

)
.

(4.67)
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PBu = 0 PBv = 0 PBw = 0

uB 1 1
1+|1+w

z
|2 1
X

1
1+|z|2X

vB
1

1+|z|2X 1 1
1+|z|2X

wB
1

1+|z|2X
1

1+|1+w
z
|2 1
X

1

Table 2. Behaviour of the cross ratios in the NMRK at the three unphysical-singularity surfaces of
the rational terms of the ordering σB , listed in eq. (3.39).

The sum of rational terms SBvw + SBwu is finite at PBw = 0, so we have shown that the
dispersive part of the amplitude eq. (4.61) is free from unphysical singularities, as expected.

As in section 4.1, we can write the real part of the transcendental functions exactly in
terms of the one-loop trajectory, impact factors and Lipatov vertex, plus a NMRK remainder
term. We first separate the transcendental function into a ‘central’ and ‘non-central’ pieces,

2NcκΓRe [W2(σA)] =E(t1, s34; t3, s56) + 2WA
2 , (4.68)

with E given in eq. (4.25), and we further separate the central function into

2WA
2 = UA + ∆WA(uA, vA, wA) . (4.69)

The function UA is given by eq. (4.29). In other words, this is a helicity-independent term.
In contrast, for the opposite-helicity case the remainder function is given by

∆WA(uA, vA, wA) = NcκΓ

(
−1

4 log2 (uA) + 1
2 log(uA) log(vAwA)− log(vA) log(wA)

)
.

(4.70)
Note that, as for the same-helicity case, eq. (4.30), the variable assignment in eq. (4.29)
leads to a NMRK remainder function which is IR-finite and symmetric under vA ↔ wA.
However, we note that unlike eq. (4.30), eq. (4.70) does not vanish in the MRK limit. We
will return to this point later. When working in NMRK, in order to exploit the equality of
the real parts of the transcendental functions under an exchange of p1 ↔ p6 or p2 ↔ p3, we
make the approximation eq. (4.31), and we make the NMRK approximation of the cross
ratios in eq. (4.70). For the A′ ordering we similarly write

2NcκΓRe [W2(σA′)] = E(t1, s35; t3, s46) + 2WA′
2 ,

2WA′
2 = UA′ + ∆WA(uA′ , wA′ , vA′).

(4.71)

where UA′ is related to UA by exchange of p4 ↔ p5.
As in section 4.1, we can write the transcendental function of the σB ordering in terms

of the one-loop factorised pieces in two different ways,

2NcκΓRe [W1(σB)] = E(t1,−s24; t3, s56) + 2WB
1 = E(t1, s35; t3,−s14) + 2WB′

1 , (4.72)

with

2WB
1 = UB + ∆WB(uB, vB, wB), 2WB′

1 = UB′ + ∆WB(vB, uB, wB) . (4.73)
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The helicity-independent functions UB and UB′ are given in eq. (4.37), and the NMRK
remainder is

∆WB(uB, vB, wB) = NcκΓ

(
log(vB) log

(
wB
uB

)
+ log(uB) log

(
wB
vB

))
. (4.74)

We note that, similar to eq. (4.38), eq. (4.74) is IR finite, symmetric under uB ↔ vB, but
does not vanish in either MRK or MRK′ limits. We emphasise that eq. (4.72) is exact, but
in the following we make the NMRK approximation (4.39) for UB or UB′ , after which the
functions UB and UB′ are related by p4 ↔ p5. We also make the NMRK approximation to
the cross ratios in eq. (4.74), after which this function is symmetric under p4 ↔ p5.

Following the procedure of section 4.1, we now wish to express the opposite-helicity
amplitude using the colour-structure basis of eq. (4.46). To this end, we apply the colour
rotation of eq. (4.42) to the sum inside the curly brackets in eq. (4.61). We find that the
structure of the kinematic coefficients is similar to the same-helicity case, motivating the
following expression for general helicities, generalising eq. (4.46),

Disp
[
M(1)
N=4 (pν4

4 ,p
ν5
5 )
]
−−−−→
NMRK

g6
S

(4π)2 s12F
a3a2c1Cg(0)

(
pν2

2 ,p
−ν2
3

) 1
t1
×

∑
σ∈S2

{
(F aσ4F aσ5 )c1c3

(
A
gg(1)
� (q1,p

νσ4
σ4 ,p

νσ5
σ5 , q3)+Agg(0)(q1,p

νσ4
σ4 ,p

νσ5
σ5 , q3)E(t1,s3σ4 ; t3,sσ56)

)

+ 1
Nc
d
c1aσ4aσ5c3
A A

gg(1)
d (q1,p

νσ4
σ4 ,p

νσ5
σ5 , q3)

}
× 1
t3
F a6a1c3Cg(0)

(
pν1

1 ,p
−ν1
6

)
. (4.75)

For the opposite-helicity case we find that the kinematic coefficient of the tree-level colour
structure is

A
gg(1)
�

(
q1,p

⊕
4 ,p
	
5 , q3

)
= 1

3

[
2Agg(0)

(
q1,p

⊕
4 ,p
	
5 , q3

)(
2WA

2 +WB
1

)
−2Agg(0)

(
q1,p

	
5 ,p
⊕
4 , q3

)(
WA′

2 −WB′
1

)
+2
(
SAuv

(
WA

1 −WA
2

)
+SAwu

(
WA

3 −WA
2

))
−
(
SA
′

uv

(
WA′

1 −WA′
2

)
+SA′wu

(
WA′

3 −WA′
2

))
−
(
SBvw

(
WB

2 −WB
1

)
+SBwu

(
WB

3 −WB
1

))]
. (4.76)

There is some freedom in how to partition the kinematic coefficient of dA as a sum over
colour orderings. Before discussing our choice of how we organise this term, let us investigate
the MRK limit of eq. (4.76). We first drop the rational terms that are power suppressed in
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this limit,

A
gg(1)
�

(
q1, p

⊕
4 , p

	
5 , q3

)
−−−→
MRK

1
3

[
Agg(0)

(
q1, p

⊕
4 , p

	
5 , q3

)
(3UMRK + 2∆WA (uA, vA, wA) + ∆WB (uB, vB, wB))

+ 2
(
SAuv

(
WA

1 −WA
2

)
+ SAwu

(
WA

3 −WA
2

))
− SBvw

(
WB

2 −WB
1

) ]
, (4.77)

where UMRK is the helicity-independent MRK limit of the central transcendental functions,
introduced in eq. (4.52). We now note that the nonvanishing terms of ∆WA and ∆WB

cancel against the MRK limits of the terms proportional to SA and SB respectively, i.e.

Agg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)
∆WA (uA, vA, wA) =

MRK
−SAuv

(
WA

1 −WA
2

)
− SAwu

(
WA

3 −WA
2

)
,

Agg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)
∆WB (uB, vB, wB) =

MRK
SBvw

(
WB

2 −WB
1

)
.

(4.78)

With this we see that the MRK limit of eq. (4.77),

A
gg(1)
�

(
q1, p

⊕
4 , p

	
5 , q3

)
−−−→
MRK

V g(0)
(
q1, p

⊕
4 , q2

) 1
t2
V g(0)

(
q2, p

	
5 , q3

)
UMRK , (4.79)

coincides with the MRK limit of the same-helicity amplitude, eq. (4.54), manifesting the
helicity independence of the MRK limit. A similar analysis shows that the MRK′ limit of
eq. (4.77),

A
gg(1)
�

(
q1, p

	
5 , p

⊕
4 , q3

)
−−−−→
MRK′

V g(0)
(
q1, p

	
5 , q

′
2

) 1
t′2
V g(0)

(
q′2, p

⊕
4 , q3

)
UMRK′ , (4.80)

coincides with the MRK′ limit of the same-helicity vertex, eq. (4.56).
Equation (4.78) also provides our motivation for writing the kinematic coefficient of

the totally symmetric colour structure as

A
gg(1)
d

(
q1, p

⊕
4 , p

	
5 , q3

)
= 2Agg(0)

(
q1, p

⊕
4 , p

	
5 , q3

) (
WA

2 −WB
1

)
+ SAuv

(
WA

1 −WA
2

)
+ SAwu

(
WA

3 −WA
2

)
+ SBvw

(
WB

2 −WB
1

)
,

(4.81)

with the aforementioned property eq. (4.66) leading to

A
gg(1)
d

(
q1, p

	
5 , p

⊕
4 , q3

)
= 2Agg(0)

(
q1, p

	
5 , p

⊕
4 , q3

) (
WA′

2 −WB′
1

)
+ SA

′
uv

(
WA′

1 −WA′
2

)
+ SA

′
wu

(
WA′

3 −WA′
2

)
+ SBwu

(
WB

3 −WB
1

)
.

(4.82)

This choice gives us the simple MRK and MRK′ limits,

A
gg(1)
d

(
q1, p

⊕
4 , p

	
5 , q3

)
−−−→
MRK

0 ,

A
gg(1)
d

(
q1, p

	
5 , p

⊕
4 , q3

)
−−−−→
MRK′

0 .
(4.83)

similar to eqs. (4.55) and (4.57).
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(a) (b) (c)

Figure 8. Three of the colour structures contributing to M(0)∗
6g Disp

[
M(1)

6g
]
using the basis of

one-loop colour structures in eq. (4.75). The remaining three colour structures can be obtained by
interchanging a4 ↔ a5. A three-gluon vertex represents the adjoint generator F , while the ⊗ symbol
represents the fully symmetric trace dA of eq. (4.44).

4.3 NLO gg → gggg squared matrix element in the central NMRK limit

Having obtained the central NMRK limit of the six-gluon one-loop amplitude in N = 4 SYM
for all leading helicity configurations, we now consider the contribution of this amplitude to
the squared matrix element for gg → gggg at NLO, i.e. the interference of this amplitude
with the tree-level amplitude given in eqs. (3.2) and (3.3), summed over all colour indices:

2Re
[
M(0)∗

6g M
(1)
6g

]
= 2Re

[
M(0)∗

6g Disp
[
M(1)

6g

]]
− 2Im

[
M(0)∗

6g Absorp
[
M(1)

6g

]]
. (4.84)

We consider these two contributions in turn.

Dispersive part. We first consider the contribution of the dispersive part of the one-loop
amplitude, eq. (4.75), to eq. (4.84). The colour structures contributing toM(0)∗

6g Disp
[
M(1)

6g
]

are depicted as interference diagrams in figure 8. For each of them, after summing over
the colour indices a2, a3 and a1, a6, the factors associated with the impact factors are
proportional to the identity in the adjoint representation, i.e.

tr
(
F c1F c̃1

)
= 2Ncδ

c1c̃1 , tr
(
F c3F c̃3

)
= 2Ncδ

c3c̃3 . (4.85)

We then see that the colour structures involving the totally symmetric tensor dA vanish
after contraction with the partially antisymmetric tree-level colour-structure:

4N2
c δ

c1c̃1δc3c̃3dc1a4a5c3
A (F a4F a5)c̃1c̃3 = −8N2

c d
c1a4a5c3
A f c1a4c̃2f c̃2a5c3 = 0. (4.86)

The coefficient Agg(1)
d of the two-gluon CEV in eq. (4.75) therefore does not contribute

to the NLO gg → 4 jet cross section, or by extension, to the N3LO dijet cross section
after phase-space integration. We emphasise that this conclusion applies to any helicity
configuration of the one-loop two-gluon CEV.

By a similar argument, the symmetric colour structure of the two-gluon CEV does
not contribute to the NNLL BFKL kernel. To see this we note that at this logarithmic
accuracy, the relevant interference, or ‘ladder’ diagrams describing an arbitrary number of
real emissions along the ladder, including precisely one instance of the one-loop two-gluon
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Figure 9. A colour structure of an interference, or ‘ladder’ diagram at NNLL accuracy, containing
one instance of the one-loop two-gluon CEV, and all other real emissions given by tree-level one-gluon
CEVs. The ⊗ symbol represents the fully symmetric trace dA of the two-gluon CEV. This colour
structure vanishes upon summing over all colour indices, as discussed in the main text.

CEV, have all other ‘rungs’ generated by the interference of tree-level impact factors and
one-gluon CEVs (those appearing in figure 1(b)). The colour structure containing dA of
such a ladder diagram is depicted in figure 9. Given that the colour structure of the
tree-level impact factors are either a fundamental generator or adjoint structure constant,
and that the colour-structure of any one-gluon CEV is simply a structure constant, it
follows that upon summing over the colour indices, the entire ladder of rungs above and
below the one-loop two-gluon CEV collapse with the result proportional the identity in the
adjoint representation (with each rung yielding an extra factor of 2Nc). At the final stage,
the contraction between dA and the structure constant yields a vanishing result, just as
in eq. (4.86).

We further note that the symmetric colour structure of the two-gluon CEV is expected
to contribute to the cross section and to the BFKL kernel at N3LL accuracy: at this
order one must consider the square of the one-loop two-gluon CEV, where the interference
involving two dA terms survives, and yields a quartic Casimir invariant.

Having seen that the symmetric trace of four generators, dA, which appears in the
two-gluon CEV, does not contribute to the cross section or the BFKL kernel at NNLL, it is
interesting to ask whether such symmetric colour structures contribute at this logarithmic
accuracy to any of the interference diagrams making up the BFKL kernel in figure 3. The
answer is negative: upon summing over colour indices, the impact factors in any of these
interference diagrams would be proportional to the identity in the adjoint representation.
This argument holds for both gluon or quark impact factors. Having contracted the impact
factors, the virtual loops and the central gluons only involve six colour vertices in total,
which cannot form a quartic Casimir in any of the contributions in figure 3. This may be
contrasted with contributions to the 2→ 2 amplitude from triple Reggeon exchange, which
do involve quartic Casimirs at NNLL accuracy [26, 66, 68].
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Absorptive part. We now consider the contribution of the absorptive part of the one-
loop amplitude to eq. (4.84). As mentioned above, for the absorptive part of the one-loop
amplitude, all signature components contribute at leading power in the NMRK limit,
although they do not have logarithmic dependence on the large invariants s34 or s56. The
four signature components are listed in eqs. (F.8)–(F.11) for ν4 = ν5 and in eqs. (F.12)–(F.15)
for ν4 = −ν5. However, the leading-power behaviour of the tree-level amplitude is given by
the (−,−) component alone, and this projects out the (−,−) component of the absorptive
one-loop amplitude inM(0)∗

6g Absorp
[
M(1)

6g
]
upon summing over the external colour indices.

For the (−,−) component of the absorptive part of the amplitude (eq. (F.8) for the ν4 = ν5
case and eq. (F.12) for the ν4 = −ν5 case), we can factor out an adjoint generator associated
to the tree-level impact factors. Upon considering the interference between these absorptive
parts and the tree-level amplitude, we therefore find that the colour factors associated with
the impact factors are identical to the dispersive case above, eq. (4.85).

To proceed and evaluate the imaginary part ofM(0)∗
6g Absorp

[
M(1)

6g
]
we now distinguish

between the same-helicity case, where the relevant absorptive part is given in eq. (F.8), and
the opposite-helicity case, where the relevant absorptive part is given in eq. (F.12). For
the former case, the colour factors which contain tr (F c1F a4F a5F c3) or tr (F c1F a5F a4F c3)
do not contribute to the absorptive interference term, due to either the vanishing of the
colour factor or the reality of its kinematic coefficient. The remaining contribution is
proportional to

tr (F c1F a5F c3F a4) (F a4F a5)c1c3
Im
[
Bgg(0)

(
q1, p

⊕
4 , p

⊕
5 , q3

)
Agg(0)∗

(
q1, p

⊕
4 , p

⊕
5 , q3

)]
+ tr (F c1F a5F c3F a4) (F a5F a4)c1c3

Im
[
Bgg(0)

(
q1, p

⊕
4 , p

⊕
5 , q3

)
Agg(0)∗

(
q1, p

⊕
5 , p

⊕
4 , q3

)]
= 0.
(4.87)

To show that this quantity is zero we first note that the two colour factors are equal, which
can be shown using the reversal-invariance property of the trace of four adjoint generators,
along with a relabelling of the indices a4 and a5. After factoring out the common colour
factor one is left with the imaginary part of a kinematic factor which can be shown to
be real using eq. (3.31). We conclude that the absorptive part of the amplitude does not
contribute to the squared matrix element for gg → gggg at NLO in the central NMRK limit
for the helicity configurations with ν4 = ν5.

Repeating the above analysis for the opposite-helicity case we find a non-vanishing
result. Specifically, for ν4 = ⊕ and ν5 = 	 we find that

2Im
[
M(0)∗

6g

(
p⊕4 ,p

	
5

)
Absorp

[
M(1)

6g

(
p⊕4 ,p

	
5

)]]
−−−−→
NMRK

2g8
S

αS
4π

π

2
s2

t21t
2
3

∣∣∣Cg(0)
(
pν2

2 ,p
−ν2
3

)∣∣∣2
×8N5

c

(
N2
c −1

){
Im
[(
SAuv log(vA)+SAwu log(wA)

)
Agg(0)∗

(
q1,p

⊕
4 ,p
	
5 , q3

)]
+Im

[(
SA
′

uv log(vA′)+SA′wu log(wA′)
)
Agg(0)∗

(
q1,p

	
5 ,p
⊕
4 , q3

)]
−Im

[
SBuvB

gg(0)∗
(
q1,p

⊕
4 ,p
	
5 , q3

)]
log
(
wB
uBvB

)}
×
∣∣∣Cg(0)

(
pν1

1 ,p
−ν1
6

)∣∣∣2 ,
(4.88)

which is generically non-zero.

– 44 –



J
H
E
P
0
8
(
2
0
2
2
)
2
7
1

Next we observe that the absorptive interference term for ν4 = 	 and ν5 = ⊕ is equal
to the complex conjugate of eq. (4.88). Therefore, the absorptive part of the one-loop
amplitude in NMRK does not contribute to the helicity-summed squared matrix element
for gg → gggg at NLO. Thus, the contribution of the one-loop six-gluon amplitude in the
central NMRK limit to the cross section at this logarithmic accuracy is entirely driven by
the dispersive part.

5 All-order conjectures for NLL amplitudes in a central NMRK limit

In section 4 we discussed the six-gluon N = 4 SYM amplitude to one-loop accuracy. However,
the results of section 4.1 and 4.2 are suggestive of the factorised form that amplitudes may
take in the central NMRK limit at higher orders, and potentially at higher multiplicity. In
this section we therefore make conjectures for the form that the dispersive part of amplitudes
may take at NLL accuracy, beyond one loop and beyond the six-gluon case.

The separation of the non-central E functions in eq. (4.75), multiplying the tree-level
two-gluon CEV, strongly suggests a factorised picture, analogous to eq. (2.21), for the
production of two gluons in the central NMRK limit. The one-loop two-gluon CEV extracted
this way is a component of BFKL at NNLL accuracy. As noted in ref. [88], one can place
limits on the pattern of Reggeization by requiring that the MRK limit of said CEV agrees
with the known behaviour of amplitudes in MRK. The following Reggeization ansatz for
the production of two gluons in the central NMRK limit is compatible with both the known
MRK limit and with the structure of the dispersive part of the one-loop amplitude eq. (4.75),

Disp
[
M(−,−)

6g

]
−−−−→
NMRK

s
[
gS (F a3)a2c1

Cg (pν2
2 ,p

ν3
3 )
]

×
∑
σ∈S2

{
1
t1

1
2

[(
s3σ4

τ

)α(t1)
+
(−s3σ4

τ

)α(t1)
]

×
[
g2
S (F aσ4F aσ5 )c1c3

Agg�

(
q1,p

νσ4
σ4 ,p

νσ5
σ5 , q3

)
+ 1
Nc
d
c1aσ4aσ5c3
A Aggd

(
q1,p

νσ4
σ4 ,p

νσ5
σ5 , q3

)]

× 1
t3

1
2

[(
sσ56
τ

)α(t3)
+
(−sσ56

τ

)α(t3)
]}
×
[
gS (F a6)a1c3

Cg (pν1
1 ,p

ν6
6 )
]
. (5.1)

This factorization is illustrated schematically in figure 10 (a). The first thing to note is that,
unlike amplitudes at LL, or signature-odd amplitudes at NLL, the amplitude is not fully
factorised. Rather, eq. (5.1) is a sum over two colour orderings, each of which is factorised
in the familiar form of impact factors, Reggeized gluons and a two-gluon CEV.

Further to this point are the assumptions we have made regarding the colour structure
dA beyond one-loop accuracy. In eq. (5.1) we have assumed that this totally-symmetric
colour factor couples to Reggeized gluons at higher orders in αS at NLL. Specifically,
eq. (5.1) assumes a particular form for this Reggeization, based on the partitioning of the
kinematic coefficient of dA, sections 4.1 and 4.2. While this partitioning seems natural
from the point of view of requiring compatibility with the known MRK limit, the nature
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of Reggeization of this term of course cannot be determined from the one-loop amplitude
studied in this paper. It may be constrained by taking the central NMRK limit of the
two-loop six-gluon amplitude. A similar structure is accessible through the non-central
NMRK limit of the two-loop five-gluon amplitude.

With these assumptions in mind, we may consider how eq. (5.1) may be generalised
to the case of 2 → n scattering in any of the central NMRK limits where the rapidity
separation between a pair of consecutive central gluons denoted by m and m + 1 (with
4 ≤ m ≤ n− 2) is not necessarily large, while all other rapidity separations are large. We
propose the following ansatz for an arbitrary number of legs:

Disp
[
M[8a]

ng

]
−−−−→
NMRK

s
[
gS (F a3)a2c1

Cg (pν2
2 ,p

ν3
3 )
]
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1
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2

[(
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τ

)α(ti−3)
+
(−si−1,i

τ

)α(ti−3)
][
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V g (qi−3,p
νi
i , qi−2)

])

×
∑
σ∈S2

{
1

tm−3

1
2

[(
sm−1,σm

τ

)α(tm−3)
+
(−sm−1,σm

τ

)α(tm−3)
]

×
[
g2
S (F aσmF aσm+1 )cm−3cm−1

Agg�

(
qm−3,p

νσm
σm ,p

νσm+1
σm+1 , qm−1

)
+ 1
Nc
d
cm−3aσmaσm+1cm−1
A Aggd

(
qm−3,p

νσm
σm ,p

νσm+1
σm+1 , qm−1
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× 1
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1
2
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sσm+1,m+2

τ

)α(tm−1)
+
(−sσm+1,m+2

τ

)α(tm−1)
]}

×
n−1∏

i=m+2

([
gS (F ai)ci−3ci−2

V g (qi−3,p
νi
i , qi−2)

] 1
ti−2

1
2

[(
si,i+1
τ

)α(ti−2)
+
(−si,i+1

τ

)α(ti−2)
])

×
[
gS (F an)a1cn−3

Cg (pν1
1 ,p

νn
n )
]
,

(5.2)

which is written entirely in terms of the components extracted from n ≤ 6 amplitudes. This
factorised structure is depicted schematically in figure 10(b), where real emissions that are
strongly ordered in rapidity are described in a similar way to the MRK structure depicted
in figure 4.

6 Conclusions

Taking the one-loop six-gluon amplitudes of N = 4 SYM [73, 74] into the central NMRK
limit, in this paper we have obtained the one-loop corrections to the two-gluon central-
emission vertex (CEV) in this theory, in both the same-helicity and opposite-helicity
configurations. This is a first step toward the determination of the same quantity in QCD.
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(a) (b)

Figure 10. (a) The expected factorised picture of the dispersive part of a six-gluon amplitude
in the central NMRK limit. (b) The expected factorization of an n-gluon amplitude in a central
NMRK limit. The coloured blobs represent impact factors, and one- and two gluon CEVs, defined
to all orders in perturbation theory, similarly to figure 4.

In contrast with the one-gluon CEV, we find that the two-gluon CEV, eq. (4.13),
receives one-loop corrections involving a new colour structure consisting of a fully symmetric
trace of four adjoint generators, which is not present at tree level. We find, however, that
this new structure does not contribute to the squared matrix element for gg → gggg at
NLO, so it does not enter the NNLL BFKL kernel. We note, however that this symmetric
colour structure does contribute to the squared matrix element at N3LL accuracy, where the
interference between two one-loop two-gluon CEVs gives rise to a quartic Casimir invariant.

As discussed in section 4.3, none of the NNLL contributions to the BFKL kernel, which
are described by the interference diagrams in figure 3, gives rise to a quartic Casimir. This
may be contrasted with contributions to the 2→ 2 amplitude from triple-Reggeon exchange,
which do involve quartic Casimirs at NNLL accuracy [26, 66, 68].

In addition to the new colour structure, also the kinematic dependence of the two-gluon
CEV is rather complex. In the same-helicity two-gluon CEV, which is extracted from an
MHV amplitude, dilogarithms survive in the NMRK limit, eqs. (4.30) and (4.38). The
dilogarithms depend on conformally-invariant cross ratios (3.19) and (3.33), the same
variables which characterize six-gluon amplitudes in planar N = 4 SYM [93].

Yet another layer of complexity arises in the case of the one-loop NMHV amplitude,
from which the opposite-helicity two-gluon CEV is extracted. Considering this amplitude in
central NMRK, eq. (4.75), eq. (4.76) and eq. (4.81), we find rational coefficients which are
not proportional to the tree amplitude, accompanied by different transcendental functions,
eq. (4.60). This structure involves an interplay between spurious poles of these rational
coefficients and zeroes of the transcendental functions multiplying them, see eqs. (4.61)–(4.65)
and tables 1 and 2. These features propagate into the one-loop opposite-helicity CEV.
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Another consequence of the more complicated structure of the one-loop NMHV ampli-
tude is that, in contrast with the MHV case, an absorptive part survives in the squared
matrix element for gg → gggg at NLO, after summing over colour indices, as shown in
section 4.3. However, upon summing over gluon helicities, this absorptive contribution
vanishes, and thus only the dispersive part of the one-loop six-gluon amplitude contributes
to unpolarised cross sections at NNLL.

In ref. [16], it was noted that the transcendental functions of the one-loop six-gluon
MHV amplitude can be written exactly in terms of the known one-loop Regge components,
eq. (4.26), consisting of impact factors, Reggeized gluons and Lipatov vertices, plus a
remainder term (4.30) written in terms of the conformally-invariant cross ratios (3.19).
In eqs. (4.68) and (4.70), we have shown that this holds also for the NMHV amplitude,
and thus for the whole one-loop six-gluon amplitude in N = 4 SYM. This parallels the
set-up of the two-loop six-gluon MHV amplitude in planar N = 4 SYM, which can be
expressed in terms of two-loop Regge components [102] and remainder functions depending
on conformally-invariant cross ratios (3.19), and which can be evaluated in the central
NMRK limit without any loss of generality [29, 30]. It would be interesting to extend this
analysis to the two-loop six-gluon amplitude in full N = 4 SYM.

It follows in particular that the transcendental functions making up the one-loop
two-gluon CEV can be expressed in terms of one-loop MRK components, evaluated at
NMRK kinematics, plus a remainder function. The former is independent of the helicity
configuration, eq. (4.24), while the latter has a distinct functional form for each of the two
helicity configurations.

Our one-loop analysis of the two-gluon CEV provides first hints with regards to the
factorization and exponentiation properties of the six-gluon amplitude. In eq. (5.1) we
have proposed an exponentiation pattern of the six-gluon amplitude in the central NMRK
limit in which rapidity ordering is partially linked with colour ordering. The guiding
principles have been the locality of the two-gluon CEV in rapidity, and its factorisation in
the MRK limit into two one-gluon CEVs connected by a Regge trajectory. However, the
link between rapidity and colour ordering in (5.1) is only partial, because of the presence of
a fully-symmetric colour structure, which occurs first at the one-loop level, eq. (4.75): an
evaluation of the two-loop amplitude in the NMRK limit is necessary to confirm or disprove
this factorized structure. We leave the investigation of two-loop amplitudes in the NMRK
limit to future work.

In the NLL corrections to the BFKL kernel (figure 2b), the one-loop one-gluon CEV is
multiplied by the corresponding tree-level CEV, with the gluon p4 emitted centrally along
the ladder which is integrated over its phase space. No collinear divergences are allowed in
MRK, eq. (2.7), however in the phase-space integration, the gluon p4 may become soft and
yield a pole of O(1/ε). In order to generate all the finite terms of the squared amplitude,
the one-loop one-gluon CEV must be evaluated to O(ε) in the limit that the gluon p4 is
soft [47, 48], which requires the use of one-loop soft functions to O(ε) [49]. In the NNLL
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Figure 11. Depiction of the production of four gluons of momenta pi, i = 3, 4, 5, 6, in the scattering
between two partons of momenta p1 and p2. We take all momenta to be outgoing.

corrections to the BFKL kernel, similar features are present: the one-loop two-gluon CEV
is multiplied by the corresponding tree-level CEV with the gluons p4 and p5 emitted along
the ladder, which are integrated over their phase space. In the phase-space integration,
both gluons may become soft, as well as collinear to each other, yielding poles of up to
O(1/ε3). Accordingly, the one-loop two-gluon CEV must be evaluated to O(ε3) in the limit
that gluons p4 and p5 are soft, and/or collinear to each other. To higher order in ε, the
one-loop splitting functions are known [103, 104], but the one-loop double-soft functions
are yet to be determined. We leave the analysis of the higher-order terms of the one-loop
two-gluon CEV to future work.

For generic gluon momenta, in order to obtain the two-gluon CEV in QCD using the
supersymmetric decomposition of one-loop amplitudes, the next step is to perform a similar
NMRK analysis of the contributions of a N = 1 multiplet and of a scalar circulating in the
loop. We also leave this analysis for the future.
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A Kinematic regions

A.1 General multi-parton kinematics

We consider the production of four partons of momenta pi, i = 3, 4, 5, 6, in the scattering
between two partons of momenta p1 and p2, as depicted in figure 11. By convention, we
consider the scattering in the unphysical region where all momenta are taken as outgoing,
and then we analytically continue to the physical region where p0

1 < 0 and p0
2 < 0. Thus

partons are incoming or outgoing depending on the sign of their energy. Since the helicity
of a positive-energy (negative-energy) massless spinor has the same (opposite) sign as its
chirality, the helicities assigned to the partons depend on whether they are incoming or
outgoing. We label outgoing (positive-energy) particles with their helicity; if they are
incoming the actual helicity and charge are reversed, e.g. an incoming left-handed parton is
labelled as an outgoing right-handed anti-parton.

Using light-cone coordinates p± = p0 ± pz, and complex transverse coordinates p⊥ =
px + ipy, with scalar product,

2p · q = p+q− + p−q+ − p⊥q∗⊥ − p∗⊥q⊥ , (A.1)

the four-momenta are,

p1 =
(
p−1
2 , 0, 0, −p

−
1

2

)
≡
(
0, p−1 ; 0, 0

)
,

p2 =
(
p+

2
2 , 0, 0, p

+
2
2

)
≡
(
p+

2 , 0; 0, 0
)
, (A.2)

pi =
(
p+
i + p−i

2 ,Re[pi⊥], Im[pi⊥], p
+
i − p

−
i

2

)
≡ |pi⊥|

(
eyi , e−yi ; cosφi, sinφi

)
,

where y is the rapidity, and 3 ≤ i ≤ 6. The first notation in eq. (A.2) is the standard
representation pµ = (p0, px, py, pz), while in the second we have the + and − light-cone
components on the left of the semicolon, and the transverse components on the right.

From momentum conservation,

0 =
6∑
i=3

pi⊥ ,

p+
2 = −

6∑
i=3

p+
i , (A.3)

p−1 = −
6∑
i=3

p−i ,

and using the scalar product eq. (A.1), the Mandelstam invariants may be written as,

s = 2p1 · p2 =
6∑

i,j=3
p+
i p
−
j

s2i = 2p2 · pi = −
6∑
j=3

p−i p
+
j
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s1i = 2p1 · pi = −
6∑
j=3

p+
i p
−
j

sik = 2pi · pk = p+
i p
−
k + p−i p

+
k − pi⊥p

∗
k⊥ − p∗i⊥pk⊥ , (A.4)

with 3 ≤ i, k ≤ 6.
For the momenta in eq. (A.2), we find the following right-handed spinor products,

〈k p〉 = u−(k)u+(p), in the notation of ref. [70],

〈pi pj〉 = pi⊥

√√√√p+
j

p+
i

− pj⊥

√√√√p+
i

p+
j

,

〈p2 pi〉 = −i

√√√√−p+
2

p+
i

pi⊥ , (A.5)

〈pi p1〉 = i
√
−p−1 p

+
i ,

〈p2 p1〉 = −
√
p+

2 p
−
1 ,

where we have used the mass-shell condition,

|pi⊥|2 = p+
i p
−
i . (A.6)

Left-handed spinor products, [k p] = u+(k)u−(p), are given by complex conjugation,

[k p] = sign
(
k0p0

)
〈p k〉∗ . (A.7)

Spinor products are antisymmetric,

〈k p〉 = −〈p k〉 , [k p] = −[p k] . (A.8)

We also use the currents, [p|γµ|k〉 and 〈p|γµ|k], which are related by charge conjugation,

[p|γµ|k〉 = 〈k|γµ|p] , (A.9)

and complex conjugation,

[p|γµ|k〉∗ = sign
(
k0p0

)
[k|γµ|p〉 . (A.10)

Through the Fierz rearrangement,

〈k|γµ|p]〈v|γµ|q] = 2〈k v〉[q p] , (A.11)

and the Gordon identity,
[p|γµ|p〉 = 〈p|γµ|p] = 2pµ , (A.12)

we obtain that

〈k|/q|p] = 〈k q〉[q p] ,

[p|/q|k〉 = [p q]〈q k〉 . (A.13)
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The phase conventions of the amplitudes studied in this paper follow from the choice
of polarisation vectors,

ε⊕µ (p, q) = − [p|γµ|q〉√
2〈p q〉

, ε	µ (p, q) = 〈p|γµ|q]√
2[p q]

, (A.14)

where q is an arbitrary lightlike reference momentum.

A.2 Multi-Regge kinematics

In multi-Regge kinematics, we require that the light-cone momenta of the gluons are strongly
ordered and have comparable transverse momentum. In the six-gluon case, we take

p+
3 � p+

4 � p+
5 � p+

6 , p−3 � p−4 � p−5 � p−6 ,

|p3⊥| ' |p4⊥| ' |p5⊥| ' |p6⊥| .
(A.15)

The strong ordering of light-cone momenta in eq. (A.15) is equivalent to requiring a
strong-ordering on the rapidities,

y3 � y4 � y5 � y6 . (A.16)

Momentum conservation in eq. (A.3) then becomes

0 =
6∑
i=3

pi⊥ ,

p+
2 ' −p

+
3 , (A.17)

p−1 ' −p
−
6 .

To leading accuracy, the Mandelstam invariants in eq. (A.4) are reduced to

s = 2p1 · p2 ' p+
3 p
−
6 ,

s2i = 2p2 · pi ' −p+
3 p
−
i , (A.18)

s1i = 2p1 · pi ' −p+
i p
−
6 ,

sij = 2pi · pj ' p+
i p
−
j ,

with 3 ≤ i, j ≤ 6, and with p+
i > p+

j , for i < j. Note that the mass-shell condition in
eq. (A.6) implies that

s |p4⊥|2|p5⊥|2 ' s34s45s56 , (A.19)

which is an example of the general multi-Regge constraint,

sij

j−1∏
k=i+1

|pk⊥|2 =
j−1∏
k=i

sk,k+1 . (A.20)
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The spinor products in eq. (A.5) become,

〈pi pj〉 ' −

√√√√p+
i

p+
j

pj⊥ for yi > yj ,

〈p2 pi〉 ' −i

√√√√p+
3
p+
i

pi⊥ , (A.21)

〈pi p1〉 ' i
√
p+
i p
−
6 ,

〈p2 p1〉 ' −
√
p+

3 p
−
6 ,

with 3 ≤ i ≤ 6. In eqs. (A.18) and (A.21) only the leading terms are displayed. Here and
henceforth, it is understood that, if so required by the computation, sub-leading terms may
need to be retained.

In the Euclidean region, where the Mandelstam invariants are taken as all negative,
the ordering in eq. (A.15) becomes

− s12 � −s123,−s345 � −s34,−s45,−s56 � −s23,−s61,−s234 . (A.22)

Introducing a parameter λ � 1, the hierarchy in eq. (A.16) above is equivalent to the
rescaling,

{s123, s345} = O(λ) , {s34, s45, s56} = O
(
λ2
)
, {s23, s61, s234} = O

(
λ3
)
. (A.23)

A.3 Central next-to-multi-Regge kinematics

We now consider the production of four partons of momenta pi, with 3 ≤ i ≤ 6, with the
new constraint that partons 4 and 5 are in the central region along the gluon ladder,

p+
3 � p+

4 ' p
+
5 � p+

6 , p−3 � p−4 ' p
−
5 � p−6 ,

|p3⊥| ' |p4⊥| ' |p5⊥| ' |p6⊥| ,
(A.24)

and hence,
y3 � y4 ' y5 � y6. (A.25)

The leading contributions to momentum conservation are the same as in eq. (A.17).
The Mandelstam invariants of eq. (A.4) become

s ' p+
3 p
−
6 ,

s2i ' −p+
3 p
−
i ,

s1i ' −p+
i p
−
6 , (A.26)

sjk ' p+
j p
−
k , j 6= 4 and k 6= 5 ,

s45 = p+
4 p
−
5 + p−4 p

+
5 − p

∗
4⊥p5⊥ − p∗5⊥p4⊥ ,
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with 3 ≤ i, j, k ≤ 6, with p+
j > p+

k for j < k. Note that the mass-shell condition in eq. (A.6)
and the Mandelstam invariants in eq. (A.26) imply that

s ' s34 s56

p−4 p
+
5

= s34 s56 p
+
4 p
−
5

|p4⊥|2|p5⊥|2
.

(A.27)

All three-particle Mandelstam invariants either simplify to a two-particle Mandelstam
invariant, or are equal to one of the following, up to an overall sign,

s123 '
(
p+

4 + p+
5

)
p−6 ,

s234 ' −|p3⊥ + p4⊥|2 − p−4 p
+
5 ,

s235 ' −|p3⊥ + p5⊥|2 − p+
4 p
−
5 ,

s345 ' p+
3

(
p−4 + p−5

)
.

(A.28)

In the Euclidean region, where the Mandelstam invariants are taken as all negative, the
ordering in eq. (A.24) becomes

− s12 � −s34,−s56,−s123,−s345 � −s23,−s45,−s61,−s234,−s235 . (A.29)

Introducing a parameter λ � 1, the hierarchy in eq. (A.24) above is equivalent to
the rescaling,

{s34, s56, s123, s345} = O(λ) , {s23, s45, s61, s234, s235} = O(λ2) . (A.30)

The spinor products in eq. (A.5) become

〈p2 p1〉 ' −
√
p+

3 p
−
6 ,

〈p2 pk〉 = −i

√√√√−p+
2

p+
k

pk⊥ ' −i

√√√√p+
3
p+
k

pk⊥ ,

〈pk p1〉 = i
√
−p−1 p

+
k ' i

√
p+
k p
−
6 , (A.31)

〈pj pk〉 = pj⊥

√√√√p+
k

p+
j

− pk⊥

√√√√p+
j

p+
k

' −pk⊥

√√√√p+
j

p+
k

, j 6= 4 and k 6= 5

〈p4 p5〉 = p4⊥

√√√√p+
5
p+

4
− p5⊥

√√√√p+
4
p+

5
,

with 3 ≤ j, k ≤ 6, with p+
j > p+

k .
The following spinor strings occur in the BCFW representation of NMHV tree-level

amplitudes. We list the spinor strings for two representative colour orderings. For the
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colour ordering {1, 2, 3, 4, 5, 6} the relevant quantities are

〈p1|/p2 + /p3|p4] ' −i|q3⊥|

√√√√p+
4
p+

6

(
q∗2⊥ + p∗4⊥

p+
5
p+

4

)
,

〈p3|/p4 + /p5|p6] ' −q∗3⊥

√√√√p+
3
p+

6
(p4⊥ + p5⊥) ,

〈p5|/p6 + /p1|p2] ' −ip5⊥

√√√√p+
3
p+

5

(
q∗2⊥ + p∗5⊥

p−4
p−5

)
,

(A.32)

while for the colour ordering {1, 4, 2, 3, 5, 6} the relevant quantities are

〈p1|/p4 + /p2|p3] ' −i|q3⊥|

√√√√p+
3
p+

6
(p∗5⊥ + q∗3⊥) ,

〈p2|/p3 + /p5|p6] ' iq∗3⊥

√√√√p+
3
p+

6
(p4⊥ + q3⊥) ,

〈p5|/p6 + /p1|p4] ' −p5⊥q
∗
2⊥

√√√√p+
4
p+

5
− p∗4⊥q′2⊥

√√√√p+
5
p+

4
.

(A.33)

B Lorentz invariant quantities in minimal coordinates

In this section we collect useful expressions for Lorentz-invariant quantities, in the central
NMRK region of appendix A.3, written in terms of the minimal set of coordinates, {w, z,X},
introduced in eqs. (3.10) and (3.11). We use the shorthand notation for spinors,

〈i j〉 = 〈pi pj〉, [i j] = [pi pj ], 〈i|k + l|j] = 〈pi|/pl + /pk|pj ]. (B.1)

Of particular importance to the central NMRK limit is the spinor product,

〈4 5〉 = −q1⊥
w +Xz

w
√
X(z − 1)

, (B.2)

which is treated exactly in this limit. The three-particle invariants of eq. (A.28) become

s123 = |q1⊥|2
p+

4
p+

6

(1 +X)|w − 1|2|z|2
X|z − 1|2|w|2 ,

s234 = −|q1⊥|2
(1 +X|z|2)
X|z − 1|2 ,

s235 = −|q1⊥|2
(|w + z − wz|2 +X|z|2)

|z − 1|2|w|2 ,

s345 = |q1⊥|2
p+

3
p+

4

(|w|2 +X|z|2)
|z − 1|2|w|2 .

(B.3)
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The lightcone-momentum dependence cancels when considering physical quantities such as
amplitudes. The spinor strings of eq. (A.32) become

〈1|2 + 3|4] = −iq∗1⊥|q1⊥|

√√√√p+
4
p+

6

|w − 1||z|
|z − 1||w|

(1 +Xz̄)
X(z̄ − 1) ,

〈3|4 + 5|6] = |q1⊥|2
√√√√p+

3
p+

6

z̄(w̄ − 1)(w − z)
|w|2|z − 1|2 ,

〈5|6 + 1|2] = −i|q1⊥|2
√√√√p+

3
p+

5

(w +X|z|2)
wX|z − 1|2 ,

(B.4)

while the spinor strings of eq. (A.33) become

〈1|4 + 2|3] = −iq∗1⊥|q1⊥|

√√√√p+
3
p+

6

|w − 1||z|
|z − 1||w|

z̄

(z̄ − 1) ,

〈2|3 + 5|6] = −i|q1⊥|2
√√√√p+

3
p+

6

z̄(w̄ − 1)(w + z − wz)
|w|2|z − 1|2 ,

〈5|6 + 1|4] = −|q1⊥|2
(w + z − wz +X|z|2)

w
√
X|z − 1|2

.

(B.5)

The spurious surfaces listed in eqs. (3.21) and (3.39) can be recognised from eqs. (B.4)
and (B.5) respectively.

B.1 Cross ratios in the NMRK limit

In general kinematics, the finite, dual conformally invariant part of the six-gluon amplitude
in planar N = 4 SYM can be written in terms of multiple polylogarithms with the following
9-letter alphabet,

{u, v, w, 1− u, 1− v, 1− w, yu, yv, yw}. (B.6)

The cross ratios u, v and w for the canonical ordering are given in eq. (3.19), although we
appended a further A subscript to distinguish this from the other colour orderings that are
relevant away from the planar limit. The remaining letters can be constructed from the
cross ratios. For x ∈ {u, v, w}, yx is defined by

yx ≡
x− z+
x− z−

, (B.7)

with
z± ≡

1
2(u+ v + w − 1±

√
∆), ∆ ≡ (1− u− v − w)2 − 4uvw. (B.8)

In this section we investigate these quantities for the two representative colour orderings
used throughout this paper, namely σA and σB of eq. (4.10). The corresponding quantities
for σA′ can be obtained using the relations given in eq. (3.27).
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Permutation σA. The cross ratios for this colour ordering, uA, vA and wA, are given in
eq. (3.19). In NMRK they lie in the range [0, 1]. In the central NMRK region we list the
other six letters,

1− uA = X|w − z|2

(1 +X)(|w|2 +X|z|2) ,

1− vA = |1 +Xz|2

(1 +X|z|2)(1 +X) ,

1− wA = |w +X|z|2|2

(|w|2 +X|z|2)(1 +X|z|2) ,

(B.9)

yuA = (w +Xz)(1 +Xz̄)(w̄ +X|z|2)
(w̄ +Xz̄)(1 +Xz)(w +X|z|2) ,

yvA = (w̄ − z̄)(z − 1)(w +X|z|2)
(w − z)(z̄ − 1)(w̄ +X|z|2) ,

ywA = z̄(w̄ − 1)(w − z)(1 +Xz)
z(w − 1)(w̄ − z̄)(1 +Xz̄) .

(B.10)

We note that eq. (B.10) are complex phases, which results from the quantity,

√
∆A = ±

X
(
(|w|2 −X|z|2)(z − z̄)− |z|2(1−X)(w − w̄) + (1−X|z|2)(wz̄ − w̄z)

)
(1 +X)(1 +X|z|2)(|w|2 +X|z|2) ,

(B.11)
being purely imaginary. Thus its square is negative, ∆A < 0. One can get from any 2→ 4
scattering kinematics to NMRK by a dual conformal transformation [29, 30]. Since ∆A is
dual conformally invariant, this means that ∆A < 0 for any nonsingular 2→ 4 scattering
configuration. We further note that the minimal variables, introduced in section 3.1,
rationalise

√
∆A.

Permutation σB. The cross ratios for this colour ordering, uB , vB and wB , are given in
eq. (3.33), which in NMRK lie in the range [0, 1]. In the central NMRK region we list the
other six letters,

1− uB = |w + z − wz|2

(|w + z − wz|2 +X|z|2) ,

1− vB = X|z|2

(1 +X|z|2) ,

1− wB = |w + z − wz +X|z|2|2

(1 +X|z|2)(|w + z − wz|2 +X|z|2) ,

(B.12)

yuB = w + z − wz +X|z|2

w̄ + z̄ − w̄z̄ +X|z|2
,

yvB = (w + z − wz)(w̄ + z̄ − w̄z̄ +X|z|2)
(w̄ + z̄ − w̄z̄)(w + z − wz +X|z|2) ,

ywB = (w − 1)(z − 1)(w̄ + z̄ − w̄z̄)
(w̄ − 1)(z̄ − 1)(w + z − wz) .

(B.13)
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(a) (b) (c)

Figure 12. Six of the NMHV helicity configurations that are power suppressed in the central
NMRK limit. The remaining six power-suppressed NMHV configurations can be obtained by flipping
all helicities. The labelling of the gluons follows figure 11.

Again we find that eq. (B.13) are phases which is a result of

√
∆B = ±

X|z|2
(
(w̄ + z̄ − w̄z̄)− (w + z − wz)

)
(1 +X|z|2)(|w + z − wz|2 +X|z|2) , (B.14)

being purely imaginary. We note that as in eq. (B.11), the minimal variables rationalise
this quantity.

C The power-suppressed helicity configurations

The tree-level six gluon amplitude (3.2) describes a total of 50 helicity configurations. How-
ever, the helicity-flip impact factors Cg(0)(p±2 , p±3 ) and Cg(0)(p±1 , p±6 ) are power suppressed
in t1/s and t3/s, respectively. Of the 20 NMHV configurations described by eq. (3.2), 12
are power suppressed in this manner, owing to one or two helicity-flip impact factors, as
depicted in figure 12. Similarly, of the 30 MHV configurations described by eq. (3.2), 22 are
power suppressed due to one or two helicity-flip impact factors and are depicted in figure 13.

The remaining 16 helicity configurations of eq. (3.2) are all associated to amplitudes
which do not have a helicity-flip impact factor, and these are the only configurations that
we consider in this paper.

D NMHV amplitudes in general kinematics

In this appendix we list the tree-level and one-loop six-gluon amplitudes in N = 4 SYM
which are used in the main text to obtain the two-gluon opposite-helicity CEV. For these
amplitudes we use the shorthand notation for spinors listed in eq. (B.1).
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(a) (b) (c)

(d) (e) (f)

Figure 13. Eleven of the MHV helicity configurations that are power suppressed in the central
NMRK limit. The remaining eleven power suppressed MHV configurations can be obtained by
flipping all helicities. The labelling of the gluons follows figure 11.

D.1 Tree-level six-gluon NMHV amplitudes

Here we list a representation of the tree-level six-gluon NMHV colour-ordered amplitudes
obtained through the BCFW on-shell recursion relations [89, 90],

M (0)
(
p	1 , p

	
2 , p

	
3 , p

⊕
4 , p

⊕
5 , p

⊕
6

)
= 〈1|2 + 3|4]4

D∗2
+ 〈3|4 + 5|6]4

D3
, (D.1)

M (0)
(
p	1 , p

	
2 , p

⊕
3 , p

	
4 , p

⊕
5 , p

⊕
6

)
= 〈4|1 + 2|3]4

D∗1
+ 〈2 4〉4[5 6]4

D2
+ 〈1 2〉4[3 5]4

D∗3
, (D.2)

M (0)
(
p	1 , p

⊕
2 , p

	
3 , p

⊕
4 , p

	
5 , p

⊕
6

)
= 〈1 3〉4[4 6]4

D1
+ [2 4]4〈1 5〉4

D∗2
+ [2 6]4〈3 5〉4

D3
. (D.3)

The functions in the denominators are

D1(1, 2, 3, 4, 5, 6) = −〈1 2〉〈2 3〉 [4 5] [5 6] s123〈1|2 + 3|4]〈3|4 + 5|6] , (D.4)

and cyclic permutations thereof. We use the shorthand notation

Di(σ) = Di(σi, σi+1, σi+2, σi+3, σi+4, σi+5), (D.5)

where for the amplitudes in this section it is assumed — and left implicit — that the ordering
σ is always taken to be that of the parent M (0), i.e. {1, 2, 3, 4, 5, 6}. Di+1(σ) is obtained
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from Di(σ) by replacing σi → σi+1 in the latter, with all indices taken modulo 6. However,
there are only three independent cyclic orderings due to the relation Di+3(σ) = D∗i (σ).

We will see that the individual rational terms that occur in eqs. (D.1)–(D.3) will appear
also in the one-loop amplitudes listed in the following subsection. The coefficient of the
ε−2 pole of these one-loop amplitudes must be proportional to the tree-level amplitude,
thus, using the one-loop amplitudes, we obtain an alternative set of representations for the
tree-level amplitudes:

M (0)
(
p	1 , p

	
2 , p

	
3 , p

⊕
4 , p

⊕
5 , p

⊕
6

)
= (s123)4

D∗1
+ 〈2 3〉4[5 6]4

D2
+ 〈1 2〉4[4 5]4

D∗3
, (D.6)

M (0)
(
p	1 , p

	
2 , p

⊕
3 , p

	
4 , p

⊕
5 , p

⊕
6

)
= 〈1 2〉4[5 6]4

D1
+ 〈1|2 + 4|3]4

D∗2
+ 〈4|1 + 2|6]4

D3
, (D.7)

M (0)
(
p	1 , p

⊕
2 , p

	
3 , p

⊕
4 , p

	
5 , p

⊕
6

)
= 〈5|1 + 3|2]4

D∗1
+ 〈3|2 + 4|6]4

D2
+ 〈1|2 + 6|4]4

D∗3
. (D.8)

The representations eqs. (D.1)–(D.3) are complementary to the representations eqs. (D.6)–
(D.8) in the sense that where the NMRK limit of the rational terms of the former give rise
directly to RIxy (defined in eqs. (3.23) and (3.35)), the rational terms of the latter give rise
to RIx̄ȳ (defined in eqs. (3.25) and (3.37)), and vice versa.

D.2 One-loop six-gluon NMHV amplitudes in N = 4 SYM

We will need to study the NMRK limit of the colour-ordered amplitudes derived in
ref. [74], namely:

(4π)2

κΓ
M

(1)
N=4

(
p	1 , p

	
2 , p

	
3 , p

⊕
4 , p

⊕
5 , p

⊕
6

)
=
(

(s123)4

D∗1

)
W1

+
(
〈1|2 + 3|4]4

D∗2
+ 〈2 3〉4[5 6]4

D2

)
W2

+
(
〈3|4 + 5|6]4

D3
+ 〈1 2〉4[4 5]4

D∗3

)
W3 ,

(D.9)

(4π)2

κΓ
M

(1)
N=4

(
p	1 , p

	
2 , p

⊕
3 , p

	
4 , p

⊕
5 , p

⊕
6

)
=
(
〈4|1 + 2|3]4

D∗1
+ 〈1 2〉4[5 6]4

D1

)
W1

+
(
〈1|2 + 4|3]4

D∗2
+ 〈2 4〉4[5 6]4

D2

)
W2

+
(
〈4|1 + 2|6]4

D3
+ 〈1 2〉4[3 5]4

D∗3

)
W3 ,

(D.10)
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(4π)2

κΓ
M

(1)
N=4

(
p	1 , p

⊕
2 , p

	
3 , p

⊕
4 , p

	
5 , p

⊕
6

)
=
(
〈1 3〉4[4 6]4

D1
+ 〈5|1 + 3|2]4

D∗1

)
W1

+
(

[2 4]4〈1 5〉4
D∗2

+ 〈3|2 + 4|6]4
D2

)
W2

+
(

[2 6]4〈3 5〉4
D3

+ 〈1|2 + 6|4]4
D∗3

)
W3 .

(D.11)

The transcendental functions are given by

Wi(σ) = − 1
2ε2

6∑
j=1

 µ2

−t[2]
j

ε − log
(
−t[3]

i

−t[2]
i

)
log

 −t[3]
i

−t[2]
i+1

− log

 −t[3]
i

−t[2]
i+3

 log

 −t[3]
i

−t[2]
i+4


+ log

 −t[3]
i

−t[2]
i+2

 log

 −t[3]
i

−t[2]
i+5

+ 1
2 log

 −t[2]
i

−t[2]
i+3

 log

−t[2]
i+1

−t[2]
i+4


+ 1

2 log

−t[2]
i+5

−t[2]
i

 log

−t[2]
i+1

−t[2]
i+2

+ 1
2 log

−t[2]
i+2

−t[2]
i+3

 log

−t[2]
i+4

−t[2]
i+5

+ π2

3 ,

(D.12)

where we use the same notation for the arguments and cyclic permutations as for the
function Di, discussed below eq. (D.4). While in eqs. (D.9)–(D.11) the ordering argument is
left implicit, it is useful to display the ordering explicitly when the transcendental functions
of different colour orderings appear in the same expression, e.g. in eq. (4.60). We note
that the function Wi has cyclic symmetry in the form Wi+3 = Wi so there are only three
independent cyclic permutations. In eq. (D.12) we use the compact notation for Mandelstam
invariants introduced in eq. (4.19), and we use the prescription of eq. (4.20). We emphasise
that the function Wi does not depend on the individual helicities of the particles.

E Additional forms of the opposite-helicity central-emission vertex

In ref. [60] an alternative form of the opposite-helicity two-gluon central-emission vertex
was found by using the CSW rules [91],

Agg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
4

=
√
x4
x5

|q1⊥|2 x4p
3
5⊥

〈4 5〉
(
x5 |p4⊥|2 + x4 |p5⊥|2

)
p4⊥ (p4⊥ + p5⊥)

+
√
x4
x5

q∗1⊥x4 (q3⊥ + p5⊥)3(
q3⊥

√
x4
x5
− 〈4 5〉

) (
x5 |p4⊥|2 + x4 |q2⊥|2

)
p4⊥

+ q1⊥q3⊥
√
x4x5x5

〈4 5〉 (x5p4⊥ − x4q2⊥) −
√
x4
x5

q∗1⊥q3⊥x4
(p4⊥ + p5⊥) [4 5] .

(E.1)
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In the minimal variables of section 3.1 this is

Agg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
4

= − w̄z3|1− z|2X2

(w − z)(w +Xz)(|w|2 +X|z|2) + X2z3(1− z̄)
(1 +Xz)(1 +X|z|2)

+ (1− w)(1− z)zX
(1 +X)(1 +Xz)(w +Xz) + (1− w)(1− z̄)w̄zX2

(1 +X)(w − z)(w̄ +Xz̄) ,

(E.2)

which has the expected physical singularities of eqs. (3.14) and (3.15), and also spurious
poles at PuA = 0 and P̄vA = 0.

We also list a compact representation we have found

Agg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
5

= Xz(w̄ − 1)(Xz + w + z − 1)
(X + 1)(w +Xz) − Xw̄(w − 1)(w̄ +X)z

(w̄ +Xz̄)(w − z)(X + 1)

+ Xw̄(z − 1)z2(Xz + |w|2)
(|w|2 +X|z|2)(w − z)(w +Xz) + Xz2

X|z|2 + 1 , (E.3)

which has only a single spurious pole at PuA = 0. We finally list a representation which is
compact when expressed in terms of light-cone coordinates, which was obtained by partial
fractioning the third term of eq. (3.24),

Agg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
6

= x5 − y5
|q1⊥|2

p4⊥p
∗
5⊥
− q∗1⊥(q1⊥ − p4⊥)2

p4⊥s234
− x5p

∗
4⊥(q1⊥ − p4⊥)
x4s234

+ q∗1⊥
p4⊥〈4 5〉∗x4

√
x4
x5

(y4q1⊥ − p4⊥) + q1⊥
p∗5⊥〈4 5〉x5

√
x5
x4

(y5q
∗
1⊥ − p∗5⊥) . (E.4)

E.1 BCFW representation for the ordering σA′

In this appendix we present the BCFW representations of the opposite-helicity vertex for
the ordering σA′ . These expressions can be obtained from the results for the ordering σA in
section 3.3 by applying the rules listed in eq. (3.27).

For the σA′ = {1, 2, 3, 5, 4, 6} ordering we list the NMRK limits of the cross ratios,

uA′ = uA,

vA′ = s23s46
s235s123

−−−−→
NMRK

|w|2|z − 1|2X
(1 +X)(|w + z − wz|2 +X|z|2) ,

wA′ = s35s61
s345s235

−−−−→
NMRK

|z|4|w − 1|2X
(|w|2 +X|z|2)(|w + z − wz|2 +X|z|2) .

(E.5)

From the BCFW representations of the NMHV amplitudes of eqs. (D.1), (D.3), (D.7) we
obtain the opposite-helicity central-emission vertex,

Agg(0)
(
q1, p

	
5 , p

⊕
4 , q3

)
= RA

′
uv +RA

′
vw +RA

′
wu , (E.6)
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with

RA
′

uv = |w − 1|2w̄X2|z|2(z̄ − 1)
(w̄ +Xz̄)(X + 1)(w − z)(w̄ + z̄ − w̄z̄ +Xz̄) ,

RA
′

vw = wz(w − 1)(z − 1)(w̄ + z̄ − w̄z̄)4

z̄(|w + z − wz|2 +X|z|2)(w̄ + z̄ − w̄z̄ +Xz̄)(w(w̄ + z̄ − w̄z̄) +X|z|2) ,

RA
′

wu = − (w̄ − 1)|w|2X2|z − 1|2z2|z|2

(w +Xz)(|w|2 +X|z|2)(w(w̄ + z̄ − w̄z̄) +X|z|2)(w − z) .

(E.7)

Instead starting from the BCFW representations of eqs. (D.2), (D.6), (D.8), we obtain the
representation,

Agg(0)
(
q1, p

	
5 , p

⊕
4 , q3

)
= RA

′
ūv̄ +RA

′
v̄w̄ +RA

′
w̄ū , (E.8)

with

RA
′

ūv̄ = |w − 1|2w(z − 1)|z|2
(X + 1)(w̄ − z̄)(w +Xz)(w + z − wz +Xz) ,

RA
′

v̄w̄ = w̄(w̄ − 1)(z̄ − 1)z2|z|2X2

(|w + z − wz|2 +X|z|2)(w + z − wz +Xz)(w̄(w + z − wz) +X|z|2) ,

RA
′

w̄ū = − (w − 1)|w|2w̄4|z − 1|2z
z̄(|w|2 +X|z|2)(w̄ +Xz̄)(w̄(w + z − wz) +X|z|2)(w̄ − z̄) .

(E.9)

The physical-singularity surfaces of this ordering are

〈4 5〉 = 0 ↔ p4⊥

√
p+

4
p+

5
− p5⊥

√
p+

5
p+

4
= 0 ↔ w +Xz = 0 ,

s123 = 0 ↔ p+
4 + p+

5 = 0 ↔ 1 +X = 0 ,
s235 = 0 ↔ |q′2⊥|2 + p+

4 p
−
5 = 0 ↔ |w + z − wz|2 +X|z|2 = 0 ,

s354 = 0 ↔ p−4 + p−5 = 0 ↔ |w|2 +X|z|2 = 0 ,

(E.10)

while the unphysical-singularity surfaces are

〈1|2+3|5] = 0 ↔ PA
′

v = 0 ↔ q′∗2⊥−p∗5⊥
p+

4
p+

5
= 0 ↔ w̄+z̄−w̄z̄+Xz̄= 0 ,

〈3|5+4|6] = 0 ↔ PA
′

u = 0 ↔ p4⊥+p5⊥= 0 ↔ w−z= 0 ,

〈4|6+1|2] = 0 ↔ PA
′

w = 0 ↔ q′∗2⊥+p∗5⊥
p5⊥
p4⊥

p+
4
p+

5
= 0 ↔ w(w̄+z̄−w̄z̄)+X|z|2 = 0 .

(E.11)
We note that

RAxy ↔
p4↔p5

(
RA

′
x̄ȳ

)∗
. (E.12)
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F Absorptive part of the one-loop six-gluon amplitude in NMRK

In eq. (4.12) we decomposed the N = 4 SYM one-loop six-gluon amplitude in NMRK into
a basis of symmetric (+) or antisymmetric (−) representations exchanged in the t1 and t3
channels. For one-loop amplitudes where an adjoint representation is circulating in the
loop, the (−,−) component is given by eq. (4.13). We list here analogous expressions for
the remaining components:

M(1)(+,+) =
g6

S

4

{
tr ({F a2 ,F a3}F a4F a5{F a6 ,F a1})

(
M (1)(σA)+M (1)

(
↔
σA

)
+M (1)

(
σA
↔

)
+M (1)

(
↔
σA
↔

))
+tr ({F a2 ,F a3}F a5F a4{F a6 ,F a1})

(
M (1)(σA′)+M (1)

(
↔
σA′

)
+M (1)

(
σA′
↔

)
+M (1)

(
↔
σA′
↔

))
+tr ({F a2 ,F a3}F a4{F a6 ,F a1}F a5)

(
M (1)(σB)+M (1)

(
↔
σB

)
+M (1)

(
σB
↔

)
+M (1)

(
↔
σB
↔

))}
.

(F.1)
M(1)(+,−) =
g6

S

4

{
tr ({F a2 ,F a3}F a4F a5 [F a6 ,F a1 ])

(
M (1)(σA)+M (1)

(
↔
σA

)
−M (1)

(
σA
↔

)
−M (1)

(
↔
σA
↔

))
+tr ({F a2 ,F a3}F a5F a4 [F a6 ,F a1 ])

(
M (1)(σA′)+M (1)

(
↔
σA′

)
−M (1)

(
σA′
↔

)
−M (1)

(
↔
σA′
↔

))
+tr ({F a2 ,F a3}F a4 [F a6 ,F a1 ]F a5)

(
M (1)(σB)+M (1)

(
↔
σB

)
−M (1)

(
σB
↔

)
−M (1)

(
↔
σB
↔

))}
.

(F.2)
M(1)(−,+) =
g6

S

4

{
tr ([F a2 ,F a3 ]F a4F a5{F a6 ,F a1})

(
M (1)(σA)−M (1)

(
↔
σA

)
+M (1)

(
σA
↔

)
−M (1)

(
↔
σA
↔

))
+tr ([F a2 ,F a3 ]F a5F a4{F a6 ,F a1})

(
M (1)(σA′)−M (1)

(
↔
σA′

)
+M (1)

(
σA′
↔

)
−M (1)

(
↔
σA′
↔

))
+tr ([F a2 ,F a3 ]F a4{F a6 ,F a1}F a5)

(
M (1)(σB)−M (1)

(
↔
σB

)
+M (1)

(
σB
↔

)
−M (1)

(
↔
σB
↔

))}
.

(F.3)

In section 4 we found that in the central NMRK, the dispersive amplitude received a
contribution from the (−,−) component alone. The same is not true for the absorptive
part of the amplitude, which is the object of study of this appendix. To this end we list
the NMRK limit of the imaginary parts of the transcendental functions eq. (4.18) and
eq. (D.12), for the 12 colour orderings that appear in eqs. (F.1)–(F.3). We begin by giving
the results for the σA orderings:

Im [V6 (σA)] = 2Im [W2 (σA)] −−−−→
NMRK

− 4π
ε

+ π log
(
t1p
−
4 s45p

+
5 t3

(µ2)4

)
,
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Im
[
V6
(↔
σA
)]

= 2Im
[
W2

(↔
σA
)]
−−−−→
NMRK

− 2π
ε

+ π log
(
p−4 s45p

+
5 t3

t1 (µ2)2

)
,

Im
[
V6

(
σA
↔

)]
= 2Im

[
W2

(
σA
↔

)]
−−−−→
NMRK

− 2π
ε

+ π log
(
t1p
−
4 s45p

+
5

t3 (µ2)2

)
,

Im
[
V6

(
↔
σA
↔

)]
−−−−→
NMRK

− 2π
ε

+ π log
(
t1p
−
4 p

+
5 t3

s45 (µ2)2

)
+ 2π log

(
uA

1− uA

)
,

2Im
[
W2

(
↔
σA
↔

)]
−−−−→
NMRK

− 2π
ε

+ π log
(
t1p
−
4 p

+
5 t3

s45 (µ2)2

)
− 2π log

(
vAwA
uA

)
.

(F.4)

We provide the results for W1 and W3 as differences from those for W2. Interestingly,
↔
σA
↔

is
the only ordering which leads to differing imaginary parts for different cyclic permutations
of Wi:

Im [W1 (σA)−W2 (σA)] = 0 , Im [W3 (σA)−W2 (σA)] = 0 ,

Im
[
W1

(↔
σA
)
−W2

(↔
σA
)]

= 0 , Im
[
W3

(↔
σA
)
−W2

(↔
σA
)]

= 0 ,

Im
[
W1

(
σA
↔

)
−W2

(
σA
↔

)]
= 0 , Im

[
W3

(
σA
↔

)
−W2

(
σA
↔

)]
= 0 ,

Im
[
W1

(
↔
σA
↔

)
−W2

(
↔
σA
↔

)]
= 2π log (vA) , Im

[
W3

(
↔
σA
↔

)
−W2

(
↔
σA
↔

)]
= 2π log (wA) .

(F.5)
We further note that only for the ordering ↔

σA
↔

does the analytic continuation of the
dilogarithms in eq. (4.18) to our physical region produce an imaginary part. For this colour
ordering, the cross ratio

s63s45
s632s245

,

which is related to uA by interchange of p1 ↔ p6 and p2 ↔ p3, has two positive invariants in
the numerator and two negative invariants in the denominator. The analytic continuation
of the dilogarithm that depends on this cross ratio leads to factor of iπ log(1− uA) which
is related to the factorisation breaking term discovered in ref. [16]. The interpretation
of this quantity is different in our paper; ref. [16] considers the single planar colour
ordering of the amplitude, analytically continued to the physical region where s12, s45 > 0,
s23, s34, s56, s61, s234, s345 < 0, while we consider a certain colour-ordered amplitude in the
physical region where s12, s34, s45, s56, s345 > 0, s23, s61, s234 < 0. However, the consequence
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is the same, namely that this term is not compatible with Regge-pole factorisation of the
amplitude, which only applies to its dispersive part. Instead it contributes to a Regge cut.

Expressions for the σA′ orderings are related by an interchange of p4 ↔ p5.

For the σB orderings we obtain

Im [V6 (σB)] = 2Im [W1 (σB)] −−−−→
NMRK

− 2π
ε

+ π log
(
t1p

+
5 p
−
5 t3

p+
4 p
−
4 (µ2)2

)
,

Im
[
V6
(↔
σB
)]
−−−−→
NMRK

− 2π
ε

+ π log
(
t1p

+
4 p
−
5 t3

p−4 p
+
5 (µ2)2

)
+ 2π log

(
vB

1− vB

)
,

2Im
[
W1

(↔
σB
)]
−−−−→
NMRK

− 2π
ε

+ π log
(
t1p

+
4 p
−
5 t3

p−4 p
+
5 (µ2)2

)
+ 2π log

(
uBvB
wB

)
,

Im
[
V6

(
σB
↔

)]
−−−−→
NMRK

− 2π
ε

+ π log
(
t1p
−
4 p

+
5 t3

p+
4 p
−
5 (µ2)2

)
+ 2π log

(
uB

1− uB

)
,

2Im
[
W1

(
σB
↔

)]
−−−−→
NMRK

− 2π
ε

+ π log
(
t1p
−
4 p

+
5 t3

p+
4 p
−
5 (µ2)2

)
+ 2π log

(
uBvB
wB

)
,

Im
[
V6

(
↔
σB
↔

)]
= 2Im

[
W1

(
↔
σB
↔

)]
−−−−→
NMRK

− 2π
ε

+ π log
(
t1p

+
4 p
−
4 t3

p+
5 p
−
5 (µ2)2

)
.

(F.6)

Again the orderings that lead to imaginary contributions from the dilogarithms (namely ↔σB ,
σB
↔

) are the same orderings for which the imaginary parts of the distinct cyclic permutations
of Wi differ:

Im[W2 (σB)−W1 (σB)] = 0 , Im[W3 (σB)−W1 (σB)] = 0 ,

Im
[
W2

(↔
σB
)
−W1

(↔
σB
)]

= 2π log
(
wB
uB

)
, Im

[
W3

(↔
σB
)
−W1

(↔
σB
)]

= −2π log(uB) ,

Im
[
W2

(
σB
↔

)
−W1

(
σB
↔

)]
= −2π log(vB) , Im

[
W3

(
σB
↔

)
−W1

(
σB
↔

)]
= 2π log

(
wB
vB

)
,

Im
[
W2

(
↔
σB
↔

)
−W1

(
↔
σB
↔

)]
= 0 , Im

[
W3

(
↔
σB
↔

)
−W1

(
↔
σB
↔

)]
= 0 .

(F.7)

Absorptive part of the same-helicity amplitude. From the above lists of imaginary
parts we can now assemble the absorptive parts of the colour-dressed amplitude for the
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case where ν4 = ν5 = ⊕:

Absorp
[
M(1)(−,−)
N=4

(
p⊕4 ,p

⊕
5

)]
−−−−→
NMRK

π

2 g
6
S

κΓ

(4π)2 s12F
a3a2c1Cg(0)

(
pν2

2 ,p
−ν2
3

) 1
t1

×
{
tr (F c1F a4F a5F c3)Agg(0)

(
q1,p

⊕
4 ,p
⊕
5 , q3

)−5
ε

+log

 t1s45
(
p−4 p

+
5

)2
t3

(µ2)5
uA

1−uA




+tr (F c1F a5F a4F c3)Agg(0)
(
q1,p

⊕
5 ,p
⊕
4 , q3

)−5
ε

+log

 t1s45
(
p+

4 p
−
5

)2
t3

(µ2)5
uA′

1−uA′




+tr (F c1F a5F c3F a4)Bgg(0)
(
q1,p

⊕
4 ,p
⊕
5 , q3

)(−4
ε

+log
(
t21t

2
3

(µ2)4
vB

1−vB
uB

1−uB

))}

× 1
t3
F a6a1c3Cg(0)

(
pν1

1 ,p
−ν1
6

)
,

(F.8)

Absorp
[
M(1)(+,−)
N=4

(
p⊕4 ,p

⊕
5

)]
−−−−→
NMRK

π

2 g
6
S

κΓ

(4π)2 s12C
g(0)

(
pν2

2 ,p
−ν2
3

) 1
t1

1
t3
Cg(0)

(
pν1

1 ,p
−ν1
6

)
×
{
tr ({F a2 ,F a3}F a4F a5 [F a6 ,F a1 ])Agg(0)

(
q1,p

⊕
4 ,p
⊕
5 , q3

)(−1
ε

+log
(
t3s45
t1µ2

1−uA
uA

))

+tr ({F a2 ,F a3}F a5F a4 [F a6 ,F a1 ])Agg(0)
(
q1,p

⊕
5 ,p
⊕
4 , q3

)(−1
ε

+log
(
t3s45
t1µ2

1−uA′
uA′

))

+tr ({F a2 ,F a3}F a4 [F a6 ,F a1 ]F a5)Bgg(0)
(
q1,p

⊕
4 ,p
⊕
5 , q3

)
log

(p−5
p+

4

)2 1−uB
uB

vB
1−vB

} ,
(F.9)

Absorp
[
M(1)(−,+)
N=4

(
p⊕4 ,p

⊕
5

)]
−−−−→
NMRK

π

2 g
6
S

κΓ

(4π)2 s12C
g(0)

(
pν2

2 ,p
−ν2
3

) 1
t1

1
t3
Cg(0)

(
pν1

1 ,p
−ν1
6

)
×
{
tr ([F a2 ,F a3 ]F a4F a5 {F a6 ,F a1})Agg(0)

(
q1,p

⊕
4 ,p
⊕
5 , q3

)(−1
ε

+log
(
t1s45
t3µ2

1−uA
uA

))

+tr ([F a2 ,F a3 ]F a5F a4 {F a6 ,F a1})Agg(0)
(
q1,p

⊕
5 ,p
⊕
4 , q3

)(−1
ε

+log
(
t1s45
t3µ2

1−uA′
uA′

))

+tr ([F a2 ,F a3 ]F a4 {F a6 ,F a1}F a5)Bgg(0)
(
q1,p

⊕
4 ,p
⊕
5 , q3

)
log

(p+
5
p−4

)2
uB

1−uB
1−vB
vB

} ,
(F.10)
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Absorp
[
M(1)(+,+)
N=4

(
p⊕4 ,p

⊕
5

)]
−−−−→
NMRK

π

2 g
6
S

κΓ

(4π)2 s12C
g(0)

(
pν2

2 ,p
−ν2
3

) 1
t1

1
t3
Cg(0)

(
pν1

1 ,p
−ν1
6

)
×
{
tr ({F a2 ,F a3}F a4F a5 {F a6 ,F a1})Agg(0)

(
q1,p

⊕
4 ,p
⊕
5 , q3

)(−1
ε

+log
(
t1t3
s45µ2

uA
1−uA

))

+tr ({F a2 ,F a3}F a5F a4 {F a6 ,F a1})Agg(0)
(
q1,p

⊕
5 ,p
⊕
4 , q3

)(−1
ε

+log
(
t1t3
s45µ2

uA′

1−uA′

))

+tr ({F a2 ,F a3}F a4 {F a6 ,F a1}F a5)Bgg(0)
(
q1,p

⊕
4 ,p
⊕
5 , q3

)
log
(1−uB

uB

1−vB
vB

)}
.

(F.11)

In section 4.3 we show that the absorptive parts listed in eqs. (F.8)–(F.11) do not contribute
to the NLO gg → gggg squared matrix element. These terms will only contribute to the
squared matrix element at higher orders in the coupling.

Absorptive part of the opposite-helicity amplitude. Here we similarly list the
absorptive parts of the colour-dressed amplitude for the case where ν4 = −ν5 = ⊕:

Absorp
[
M(1)(−,−)
N=4

(
p⊕4 , p

	
5

)]
−−−−→
NMRK

g6
S

κΓ

(4π)2 s12F
a3a2c1Cg(0)

(
p	2 , p

⊕
3

) 1
t1

× π

2

{
tr (F c1F a4F a5F c3)

[
Agg(0)

(
q1, p

⊕
4 , p

	
5 , q3

)−5
ε

+ log

 t1s45
(
p−4 p

+
5

)2
t3

(µ2)5
uA
vAwA




+ SAuv log (vA) + SAwu log (wA)
]

+ tr (F c1F a5F a4F c3)
[
Agg(0)

(
q1, p

	
5 , p

⊕
4 , q3

)−5
ε

+ log

 t1s45
(
p+

4 p
−
5

)2
t3

(µ2)5
uA′

vA′wA′




+ SA
′

uv log (vA′) + SA
′

wu log (wA′)
]

+ tr (F c1F a5F c3F a4)
[
Bgg(0)

(
q1, p

⊕
4 , p

	
5 , q3

)(−4
ε

+ log
(
t21t

2
3

(µ2)4

))

− SBuv log
(
wB
uBvB

)]}
× 1
t3
F a6a1c3Cg(0)

(
p⊕6 , p

	
1

)
,

(F.12)
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Absorp
[
M(1)(+,−)
N=4

(
p⊕4 ,p

	
5
)]
−−−−→
NMRK

π

2 g
6
S

κΓ

(4π)2 s12C
g(0) (pν2

2 ,p
−ν2
3
) 1
t1

1
t3
Cg(0) (pν1

1 ,p
−ν1
6
)

×

{
tr ({F a2 ,F a3}F a4F a5 [F a6 ,F a1 ])

×
[
Agg(0) (q1,p

⊕
4 ,p
	
5 , q3

)(−1
ε

+log
(
t3s45

t1µ2
vAwA
uA

))
−SAuv log(vA)−SAwu log(wA)

]
+tr ({F a2 ,F a3}F a5F a4 [F a6 ,F a1 ])

×
[
Agg(0) (q1,p

	
5 ,p
⊕
4 , q3

)(−1
ε

+log
(
t3s45

t1µ2
vA′wA′

uA′

))
−SA

′

uv log(vA′)−SA
′

wu log(wA′)
]

+tr ({F a2 ,F a3}F a4 [F a6 ,F a1 ]F a5)

×
[
2Bgg(0) (q1,p

⊕
4 ,p
	
5 , q3

)
log
(
p−5
p+

4

)
+SBvw log

(
uB

vBwB

)
−SBwu log

(
vB

wBuB

)]}
, (F.13)

Absorp
[
M(1)(−,+)
N=4

(
p⊕4 ,p

	
5
)]
−−−−→
NMRK

π

2 g
6
S

κΓ

(4π)2 s12C
g(0) (pν2

2 ,p
−ν2
3
) 1
t1

1
t3
Cg(0) (pν1

1 ,p
−ν1
6
)

×

{
tr ([F a2 ,F a3 ]F a4F a5 {F a6 ,F a1})

×
[
Agg(0) (q1,p

⊕
4 ,p
	
5 , q3

)(−1
ε

+log
(
t1s45

t3µ2
vAwA
uA

))
−SAuv log(vA)−SAwu log(wA)

]
+tr ([F a2 ,F a3 ]F a5F a4 {F a6 ,F a1})

×
[
Agg(0) (q1,p

	
5 ,p
⊕
4 , q3

)(−1
ε

+log
(
t1s45

t3µ2
vA′wA′

uA′

))
−SA

′

uv log(vA′)−SA
′

wu log(wA′)
]

+tr ([F a2 ,F a3 ]F a4 {F a6 ,F a1}F a5)

×
[
2Bgg(0) (q1,p

⊕
4 ,p
	
5 , q3

)
log
(
p−5
p+

4

)
−SBvw log

(
uB

vBwB

)
+SBwu log

(
vB

wBuB

)]}
, (F.14)

Absorp
[
M(1)(+,+)
N=4

(
p⊕4 ,p

	
5
)]
−−−−→
NMRK

π

2 g
6
S

κΓ

(4π)2 s12C
g(0) (pν2

2 ,p
−ν2
3
) 1
t1

1
t3
Cg(0) (pν1

1 ,p
−ν1
6
)

×

{
tr ({F a2 ,F a3}F a4F a5 {F a6 ,F a1})

×
[
Agg(0) (q1,p

⊕
4 ,p
	
5 , q3

)(−1
ε

+log
(
t1t3
s45µ2

uA
vAwA

))
+SAuv log(vA)+SAwu log(wA)

]
+tr ({F a2 ,F a3}F a5F a4 {F a6 ,F a1})

×
[
Agg(0) (q1,p

	
5 ,p
⊕
4 , q3

)(−1
ε

+log
(
t1t3
s45µ2

uA′

vA′wA′

))
+SA

′

uv log(vA′)+SA
′

wu log(wA′)
]

+tr ({F a2 ,F a3}F a4 {F a6 ,F a1}F a5)×
[
SBuv log

(
wB
uBvB

)]}
. (F.15)
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In section 4.3 we show that at the level of the NLO gg → gggg squared matrix element,
eq. (F.12) is the only absorptive component of the amplitude which can contribute for a
specific helicity configuration. This contribution vanishes in the sum over helicities ν4 and
ν5. All components eq. (F.8)–(F.15) will contribute at higher orders in the coupling.

G Kinematic limits of the two-gluon central-emission vertex

Starting from the central NMRK region, it is possible to take further kinematic limits to
regions which are contained within NMRK. In these more restricted kinematic regions
further simplifications occur. A key example are the regions where we additionally require
p+

4 � p+
5 or p+

5 � p+
4 which we refer to as the MRK and MRK′ limits respectively. These

limits of the two-gluon CEV are studied in appendix G.1. From the central NMRK region
we may alternatively take the limit where one of the central gluons becomes soft, which is
the subject of appendix G.2, or the limit where the two central gluons become collinear to
each other, which is the subject of appendix G.3. These further limits act as checks on the
results presented in this paper, and also provide intuition for the kinematic dependence of
the cross ratios and the two-gluon CEV. One may also investigate the limits where both of
the central gluons become soft, but this is not pursued in this appendix.

G.1 MRK limit

Recall that the MRK (MRK′) limit is obtained by taking X →∞ (X → 0). In the MRK
or MRK′ limit, the tree-level two-gluon CEV factorises into a product of Lipatov vertices
times a t-channel pole. This factorization property applies for any helicity configuration,
for example, for opposite helicities

Agg(0)(q1, p
⊕
4 , p

	
5 , q3)

∣∣∣
MRK

= V g(0)(q1, p
⊕
4 , q2) 1

t2
V g(0)(q2, p

	
5 , q3)

= z

z̄
(w̄ − 1)(z̄ − 1),

(G.1)

Agg(0)
(
q1, p

	
5 , p

⊕
4 , q3

)∣∣∣
MRK′

= V g(0)
(
q1, p

	
5 , q

′
2

) 1
t′2
V g(0)

(
q′2, p

⊕
4 , q3

)
= z

z̄

(w̄ (z̄ − 1)− z̄)
(w (z − 1)− z) (w − 1) (z − 1) ,

(G.2)

with Lipatov vertex V g(0) in eq. (2.9). Considering the opposite helicity configuration at
one loop, we saw in section 4.2 that different transcendental terms multiply rational terms
which are not simply the tree amplitudes. This prompts an analysis of these individual
rational terms in the MRK and MRK′ limits. As a consistency check on the MRK and
MRK′ limits of these individual rational terms, the relevant sums of these rational terms
given in eq. (3.22), eq. (3.24), eq. (E.6) and eq. (E.8) should reproduce the limits eq. (G.1)
and eq. (G.2).
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For the σA ordering in the MRK, from eqs. (3.23) and (3.25) we obtain

RAuv −−−→MRK

w − 1
w − z

Agg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
MRK

RAv̄w̄ −−−→MRK
Agg(0)

(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
MRK

RAwu −−−→MRK
− z − 1
w − z

Agg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
MRK

(G.3)

while RAūv̄, RAvw and RAw̄ū vanish in this limit. All six of these rational terms vanish in
the MRK′ limit. The limits listed in eq. (G.3) can be used to show eq. (G.1), starting
from either of the representations eq. (3.22) or eq. (3.24). On the other hand, for the σA′
permutation, all rational terms vanish in MRK. In MRK′, RA′uv, RA

′
v̄w̄ and RA′wu vanish, while

the remaining terms tend to

RA
′

ūv̄ −−−−→MRK′
− (w̄ − 1) z̄2

(w̄ − z̄) (w̄ (z̄ − 1)− z̄) A
gg(0)

(
q1, p

	
5 , p

⊕
4 , q3

)∣∣∣
MRK′

RA
′

vw −−−−→MRK′
Agg(0)

(
q1, p

	
5 , p

⊕
4 , q3

)∣∣∣
MRK′

RA
′

w̄ū −−−−→MRK′
w̄2 (z̄ − 1)

(w̄ − z̄) (w̄ (z̄ − 1)− z̄) A
gg(0)

(
q1, p

	
5 , p

⊕
4 , q3

)∣∣∣
MRK′

.

(G.4)

Using the representation eq. (E.6) or eq. (E.8) we see that these limits are consistent with
the limit of the tree-level amplitude eq. (G.2). Finally for the B configurations, we get
terms that survive in the MRK limit,

RBuv −−−→MRK
−(w − 1) (z − 1)
w (z − 1)− z Agg(0)

(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
MRK

RBūv̄ −−−→MRK
0

RBvw −−−→MRK
0

RBv̄w̄ −−−→MRK
−Agg(0)

(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
MRK

RBwu −−−→MRK

1
w (z − 1)− z A

gg(0)
(
q1, p

⊕
4 , p

	
5 , q3

)∣∣∣
MRK

RBw̄ū −−−→MRK
0,

(G.5)

and also terms that survive in the MRK′ limit,

RBuv −−−−→MRK′
−(w̄ − 1) (z̄ − 1)
w̄ (z̄ − 1)− z̄ Agg(0)

(
q1, p

	
5 , p

⊕
4 , q3

)∣∣∣
MRK′

RBūv̄ −−−−→MRK′
0

RBvw −−−−→MRK′
1

w̄ (z̄ − 1)− z̄ A
gg(0)

(
q1, p

	
5 , p

⊕
4 , q3

)∣∣∣
MRK′

RBv̄w̄ −−−−→MRK′
0

RBwu −−−−→MRK′
0

RBw̄ū −−−−→MRK′
− Agg(0)

(
q1, p

	
5 , p

⊕
4 , q3

)∣∣∣
MRK′

.

(G.6)
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The MRK and MRK′ limits of the one-loop two gluon CEV in N = 4 SYM are discussed
in section 4. The notation introduced in that section makes it trivial to obtain the MRK
and MRK′ limits of the transcendental terms, with the exception of terms that can be
compactly described in terms of the cross ratios of eqs. (3.19), (E.5) and (3.33). To facilitate
the investigation of these latter transcendental functions, we list the cross ratios in the
MRK and MRK′ limits:

uA −−−→MRK
1, vA −−−→MRK

(−t1)p+
5

(−t2)p+
4
, wA −−−→MRK

(−t3)p−4
(−t2)p−5

,

uA′ −−−−→
MRK′

1, vA′ −−−−→
MRK′

(−t1)p+
4

(−t′2)p+
5
, wA′ −−−−→

MRK′
(−t1)p−5
(−t′2)p−4

,

uB −−−→MRK
1, vB −−−→MRK

p−4 p
+
5

(−t2) , wB −−−→MRK
(−t1)(−t3)
(−t2)p+

4 p
−
5
,

uB −−−−→
MRK′

p+
4 p
−
5

(−t′2) , vB −−−−→
MRK′

1, wB −−−−→
MRK′

(−t1)(−t3)
(−t′2)p−4 p

+
5
.

(G.7)

G.2 Soft limits

In the limit that either of the gluons of the tree two-gluon CEV become soft, p4 → 0 or
p5 → 0, the amplitude given in eq. (3.3) is singular. It factorises into an eikonal factor,
which behaves like 1/p4 or 1/p5, and a five-gluon amplitude in MRK. For example, taking
the limit where all components of p4 tend to zero at the same rate, eq. (3.3) factorises as

M
(0)
6g (pν1

1 , p
ν2
2 , p

ν3
3 , p

ν4
4 , p

ν5
5 , p

ν6
6 )
∣∣∣
NMRK

−−−→
p4→0

[
Soft(0)(p3, p

ν4
4 , p5)

]
NMRK

[
M

(0)
5g (pν1

1 , p
ν2
2 , p

ν3
3 , p

ν5
5 , p

ν6
6 )
]

MRK
, (G.8)

where the five-gluon amplitude in MRK is

M
(0)
5g (pν1

1 , p
ν2
2 , p

ν3
3 , p

ν5
5 , p

ν6
6 )
∣∣∣
MRK

= sCg(0)(pν2
2 , p

ν3
3 ) 1

t1
V g(0)(q1, p

ν5
5 , q3) 1

t3
Cg(0)(pν1

1 , p
ν6
6 ) ,
(G.9)

with q3 = q1 − p5 and V g(0) given in eq. (2.9). In eq. (G.8), the positive-helicity soft factor,
or eikonal factor is

Soft(0)(p3, p
⊕
4 , p5) = 〈3 5〉

〈3 4〉〈4 5〉 . (G.10)

Note that this eikonal factor does not depend on the helicities of particles 3 and 5, and in
fact not even on their parton flavour. The negative-helicity eikonal factor is obtained by
complex conjugation. In the NMRK limit the positive-helicity eikonal factor becomes

Soft(0)
(
p3, p

⊕
4 , p5

)∣∣∣
NMRK

= Soft(0)
A

(
p⊕4 , p5

)
= p5⊥
p4⊥

√√√√p+
4
p+

5

1
〈4 5〉 , (G.11)

where in the first equality we have introduced a notation which makes it clear that this
function no longer depends on p3 once we have taken the NMRK limit. Using this notation,
eq. (G.8) implies that the two-gluon CEV factorises as

Agg(0) (q1, p
ν4
4 , p

ν5
5 , q3) −−−→

p4→0
Soft(0)

A (pν4
4 , p5) V g(0) (q1, p

ν5
5 , q3) . (G.12)
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For the equal-helicity vertex eq. (3.4), which comes from a MHV amplitude, this limit is
straightforward to verify. In fact, for such an MHV amplitude, the relation at the amplitude
level, eq. (G.8), holds exactly in general kinematics without even requiring that p4 → 0. For
the opposite-helicity vertex, in order to check eq. (G.12) we have found it most convenient
to use the representation in eq. (3.22).

As a step towards obtaining the soft limit of the one-loop amplitude, we first consider
the rational coefficients. Specifically, for the limit where all components of p4 tend to zero
at the same rate, the minimal variables of eq. (3.10) and eq. (3.11) satisfy

X → 0, z → − q1⊥
p4⊥

, w → q1⊥
p5⊥

, Xz → finite. (G.13)

In this limit RAuv, RAvw and RAw̄ū tend to zero. The others are given by

RAwu →
Xz2(w̄ − 1)
w +Xz

,

RAūv̄ → −
Xz2|w − 1|2

(1 +Xz)(w +Xz) ,

RAv̄w̄ →
Xz2(w̄ − 1)

1 +Xz
.

(G.14)

Therefore RAuv+RAvw+RAwu and RAūv̄+RAv̄w̄+RAw̄ū tend to the same limit (that of eq. (G.12)).
The results for the A′ ordering are no longer related to these by p4 ↔ p5 because the specific
choice of taking p4 → 0 breaks the symmetry. We therefore list them here. The rational
coefficients RA′uv, RA

′
v̄w̄ and RA′w̄ū tend to zero. The remaining non-zero coefficients are

RA
′

ūv̄ → −
wz(1− w̄)
w +Xz

,

RA
′

vw →
wz(1− w̄)2

ww̄ − w −Xz
,

RA
′

wu →
ww̄Xz2(1− w̄)

(w +Xz)(ww̄ − w −Xz) ,

(G.15)

such that again RA′uv +RA
′

vw +RA
′

wu and RA′ūv̄ +RA
′

v̄w̄ +RA
′

w̄ū give the expected tree-level limit:

−wz (1− w̄)
w +Xz

= Soft(0)
A′ (pν4

4 , p5) V g(0)
(
q1, p

	
5 , q3

)
, (G.16)

where, analogous to eq. (G.11), we have introduced the notation

Soft(0)
(
p5, p

⊕
4 , p6

)∣∣∣
NMRK

= Soft(0)
A′ (pν4

4 , p5) = −

√√√√p+
5
p+

4

1
〈4 5〉 . (G.17)

Finally, for the B colour ordering RBūv̄, RBvw and RBwu tend to zero, leaving

RBuv → −(w̄ − 1)z,

RBv̄w̄ → −
Xz2(w̄ − 1)
1 +Xz − w̄

,

RBw̄ū → −
z(w̄ − 1)2

w̄ −Xz − 1 .

(G.18)
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These then lead to the expected tree-level result where RBuv+RBvw+RBwu and RBūv̄+RBv̄w̄+RBw̄ū
both sum to

−(w̄ − 1)z = Soft(0)
B (p4)V g(0)

(
q1, p

	
5 , q3

)
, (G.19)

where as for the other colour orderings we have introduced

Soft(0)
(
p1, p

⊕
4 , p2

)∣∣∣
NMRK

= Soft(0)
B (p4) = 1

p4⊥
, (G.20)

which does not even depend on the helicity of the soft particle. The three relevant eikonal
functions in the NMRK obey

Soft(0)
A (pν4

4 , p5) + Soft(0)
A′ (pν4

4 , p5) + Soft(0)
B (p4) = 0, (G.21)

consistent with the more general eq. (3.31), and the eikonal identity.
We now turn to the colour-ordered amplitudes at one-loop. Beginning with the same-

helicity vertex, taking the limit p4 → 0 in eqs. (4.26), (4.32) and (4.35), we find

NcκΓRe [V6 (σA)|NMRK] −−−→
p4→0

E (t1, s35; t3, s56) + vg(1)
(
t1, |p5⊥|2, t3

)
+Nc s

(1)
A (pν4

4 , p5)

NcκΓRe [V6 (σA′)|NMRK] −−−→
p4→0

E (t1, s35; t3, s56) + vg(1)
(
t1, |p5⊥|2, t3

)
+ Nc s

(1)
A′ (p4, p5) ,

NcκΓRe [V6 (σB)|NMRK] −−−→
p4→0

E (t1, s35; t3, s56) + vg(1)
(
t1, |p5⊥|2, t3

)
+Nc s

(1)
B (p4) ,

(G.22)

where E(t1, s35; t3, s56) is the natural collection of impact factors and Regge trajectories
in the absence of p4 and vg(1) is the one-loop Lipatov vertex correction given in eq. (4.15).
The one-loop soft factor [49] is

s(1)(p3, p
ν4
4 , p5) = −κΓ

(
µ2(−s35)

(−s34)(−s45)

)ε( 1
ε2

+ π2

6

)
+O

(
ε2
)
, (G.23)

which must first be analytically continued to our physical region, discussed in section A.1,
and then taken in the NMRK limit. In eq. (G.22) we have used the notation

s
(1)
A (p4, p5) = Re

[
s(1)(p3, p4, p5)

∣∣∣
NMRK

]
, (G.24)

s
(1)
A′ (p4, p5) = Re

[
s(1)(p4, p5, p6)

∣∣∣
NMRK

]
, (G.25)

s
(1)
B (p4) = Re

[
s(1)(p1, p4, p2)

∣∣∣
NMRK

]
, (G.26)

which, as for the analogous tree-level functions, more clearly indicate the simpler kinematic
dependence of these one-loop soft functions in the NMRK limit.

Eq. (G.22) exactly matches the expected sum of the one-loop corrections to the non-
central pieces, the Lipatov vertex for the single emission of p5 and the one-loop soft function.
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From eq. (4.23), these are multiplied by the soft limit of the corresponding tree-level
amplitude for that ordering.

Turning now to the opposite-helicity case in eq. (4.61), and starting with the A colour
ordering, we find

SAwu −−−→
p4→0

Soft(0)
A (pν4

4 , p5)V g(0)
(
q1, p

	
5 , q3

)
,

Re [W1(σA)−W2(σA)] −−−→
p4→0

0,

Re [W3(σA)−W2(σA)] −−−→
p4→0

log
(
s34t3
s35t1

)
log

(
|p5⊥|2

s45

)
.

(G.27)

This allows us to extract a common factor of the tree amplitude multiplying

Re [2W2(σA) + (W3(σA)−W2(σA))].

Using eqs. (4.68) and (4.69), we find

Re [2W2(σA) + (W3(σA)−W2(σA))]|NMRK

= Re [V6(σA)−∆VA(uA, vA, wA) + ∆WA(uA, vA, wA) + (W3(σA)−W2(σA))]|NMRK

−−−→
p4→0

Re [V6(σA)]|NMRK, p4→0 ,

(G.28)

where the cancellation in the last line arises from the soft limit of eqs. (4.30), (4.70)
and (G.27). Eq. (G.22) then immediately gives the expected one-loop structure which
equals that found for the same-helicity vertex. The helicity-dependence in the soft limit is
contained only in the tree-level factors.

Similarly for the A′-ordering we find

SA
′

uv −−−→
p4→0

Soft(0)
A′ (pν4

4 , p5)V g(0)
(
q1, p

	
5 , q3

)
,

Re [W1 (σA′)−W2 (σA′)]|NMRK −−−→p4→0
log

(
s46t1
s56t3

)
log

(
|p5⊥|2

s45

)
,

Re [W3 (σA′)−W2 (σA′)]|NMRK −−−→p4→0
0.

(G.29)

Extracting a common coefficient of the tree amplitude leaves

Re [2W2(σA′) + (W1(σA′)−W2(σA′))]|NMRK −−−→p4→0
Re [V6(σA′)]|NMRK, p4→0 , (G.30)

as expected. Finally for the B ordering,

SBvw + SBwu −−−→
p4→0

Soft(0)
B (p4)V g(0)(q1, p

	
5 , q3),

Re [W2(σB)−W1(σB)]|NMRK −−−→p4→0
log

(
s24s56
s12t1

)
log

(
s14s35
s12t3

)
,

Re [W3(σB)−W1(σB)]|NMRK −−−→p4→0
log

(
s24s56
s12t1

)
log

(
s14s35
s12t3

)
.

(G.31)
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As the final two limits are equal, one again factors out the tree amplitude leaving

Re [2W1(σB) + (W2(σB)−W1(σB))]|NMRK −−−→p4→0
Re [V6(σB)]|NMRK, p4→0 . (G.32)

Finally, performing the change of basis of colour structures in eq. (4.42), we collect the
results of this appendix in the following expression for general helicities,

Disp[M(1)
N=4(pν4

4 , p
ν5
5 )] −−−−−−−−−→

NMRK, p4→0

g6
S

(4π)2 s12F
a3a2c1Cg(0)(pν2

2 , p
−ν2
3 ) 1

t1
V g(0)(q1, p

ν5
5 , q3)×{

(F a4F a5)c1c3

[
SoftA (pν4

4 , p5)
(

3 vg(1)
(
t1, |p5⊥|2, t3

)
+Nc

(
2s(1)
A (p4, p5) + s

(1)
B (p4)

)
+ 3E (t1, s35; t3, s56)

)
+NcSoftA′ (pν4

4 , p5)
(
s

(1)
A′ (p4, p5)− s(1)

B (p4)
)]

+ (F a5F a4)c1c3

[
SoftA′ (pν4

4 , p5)
(

3 vg(1)
(
t1, |p5⊥|2, t3

)
+Nc

(
2s(1)
A′ (p4, p5) + s

(1)
B (p4)

)
+ 3E (t1, s35; t3, s56)

)
+NcSoftA (pν4

4 , p5)
(
s

(1)
A (p4, p5)− s(1)

B (p4)
)]

+ d
c1aσ4aσ5c3
A

[
SoftA (pν4

4 , p5)
(
s

(1)
A (p4, p5)− s(1)

B (p4)
)

+ SoftA′ (pν4
4 , p5)

(
s

(1)
A′ (p4, p5)− s(1)

B (p4)
)]}
× 1
t3
F a6a1c3Cg(0)(pν1

1 , p
−ν1
6 ) .

(G.33)

G.3 Collinear limits

In this appendix we investigate the behaviour of the one-loop amplitude eq. (4.75) in the
collinear limit,

p4 → z4P , p5 → z5P , z4 + z5 = 1 . (G.34)

We begin by recalling the collinear limit of the colour ordered six-gluon tree-level amplitude
in general kinematics. It factorises into a divergent splitting amplitude, which behaves like
1/〈45〉 or 1/[45], and a five-gluon amplitude,

M
(0)
6g (pν1

1 , p
ν2
2 , p

ν3
3 , p

ν4
4 , p

ν5
5 , p

ν6
6 ) p4||p5−−−→

∑
ν=±

Split(0)
−ν(pν4

4 , p
ν5
5 )M (0)

5g (pν1
1 , p

ν2
2 , p

ν3
3 , P

ν , pν6
6 ),

(G.35)
where we sum over the helicities of the intermediate state P ν . For an equal-helicity pair,
the tree-level splitting amplitudes are

Split(0)
	

(
p⊕4 , p

⊕
5

)
= 1
√
z4z5〈4 5〉 , Split(0)

⊕

(
p⊕4 , p

⊕
5

)
= 0 , (G.36)

while for an opposite-helicity pair, they are

Split(0)
⊕

(
p⊕4 , p

	
5

)
= z2

5√
z4z5〈4 5〉 , Split(0)

	

(
p⊕4 , p

	
5

)
= − z2

4√
z4z5[4 5] . (G.37)
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In the central NMRK limit, eq. (G.35) becomes

M
(0)
6g (pν1

1 , p
ν2
2 , p

ν3
3 , p

ν4
4 , p

ν5
5 , p

ν6
6 )
∣∣∣
NMRK

p4||p5−−−→
∑
ν=±

Split(0)
−ν(pν4

4 , p
ν5
5 ) M (0)

5g (pν1
1 , p

ν2
2 , p

ν3
3 , P

ν , pν6
6 )
∣∣∣
MRK

, (G.38)

where the five-gluon amplitude in MRK is given in eq. (G.9), with q3 = q1−P . In particular,
the two-gluon CEV factorises as

Agg(0)(q1, p
ν4
4 , p

ν5
5 , q3) p4||p5=

∑
ν=±

Split(0)
−ν(pν4

4 , p
ν5
5 )V g(0)(q1, P

ν , q3) . (G.39)

For the equal-helicity vertex eq. (3.4), it is straightforward to verify eq. (G.39). For the
opposite-helicity vertex, we have found it more convenient to check eq. (G.39) by starting
from eq. (3.22) or eq. (3.24) rather than eq. (3.5), where as we have mentioned in section 3.2,
the BCFW representations make clear the collinear singularity structure of the amplitudes.
Working in the minimal variables, the collinear limit can be expressed as

w −−−→
p4||p5

−z4
z5
z ,

X −−−→
p4||p5

z4
z5
.

(G.40)

For the σA ordering we find that four of the six rational terms factorise into a splitting
function and Lipatov vertex, while two of the rational terms do not diverge in this limit
(unless we move to the further soft-collinear limits of z4 → 0 or z4 → 1),

RAuv −−−→
p4||p5

V g(0) (q1, P
⊕, q3

)
Split(0)

	

(
p⊕4 , p

	
5

)
,

RAūv̄ −−−→
p4||p5

V g(0) (q1, P
	, q3

)
Split(0)

⊕

(
p⊕4 , p

	
5

)
,

RAvw −−−→
p4||p5

− (z − 1) (zz4 + z5) z5
(z̄ − 1) (z̄z4 + z5) (|z|2z4 + z5) ,

RAv̄w̄ −−−→
p4||p5

− z4z2
4 (z̄ − 1) (z̄z4 + z5)

z5 (z − 1) (zz4 + z5) (|z|2z4 + z5) ,

RAwu −−−→
p4||p5

V g(0) (q1, P
	, q3

)
Split(0)

⊕

(
p⊕4 , p

	
5

)
,

RAw̄ū −−−→
p4||p5

V g(0) (q1, P
⊕, q3

)
Split(0)

	

(
p⊕4 , p

	
5

)
.

(G.41)

Analogous results for the σA′ ordering can be found by exchanging p4 ↔ p5 and taking the
complex conjugate, as in eq. (E.12). For the σB ordering, as expected, none of the rational
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terms diverge in this limit,

RBuv −−−→
p4||p5

|z − 1|2|zz4 + z5|2

z5((z − 1)z4 + z5)z̄ ,

RBūv̄ −−−→
p4||p5

0,

RBvw −−−→
p4||p5

z5(z − 1)(zz4 + z5)
z̄(|z|2z4 + z5)((z + z̄ − 1)z4 + z5) ,

RBv̄w̄ −−−→
p4||p5

z3z2
4(z̄ − 1)(z̄z4 + z5)

z5(|z|2z4 + z5)((z + z̄ − 1)z4 + z5) ,

RBwu −−−→
p4||p5

z5z
2
4(z̄ − 1)(z̄z4 + z5)

((z − 1)z4 + z5)((z + z̄ − 1)z4 + z5) (|z5 + (z − 1)z4|2 + z4z5) ,

RBw̄ū −−−→
p4||p5

(z − 1)(zz4 + z5)((z̄ − 1)z4 + z5)3

z5((z + z̄ − 1)z4 + z5) (|z5 + (z − 1)z4|2 + z4z5) .

(G.42)

From these lists of rational terms we can immediately verify that the divergent pieces satisfy
the condition in eq. (G.39) from the representations eq. (3.22) or eq. (3.24). We note that
in this limit the divergent pieces also satisfy

Agg(0)(q1, p
ν4
4 , p

ν5
5 , q3)

∣∣∣
p4||p5

= − Agg(0)(q1, p
ν5
5 , p

ν4
4 , q3)

∣∣∣
p4||p5

. (G.43)

In addition to eq. (G.34), the amplitude in eq. (3.3) is divergent in the collinear regions
p3⊥ = −q1⊥ → 0 or p6⊥ = q3⊥ → 0. In those regions, eq. (3.3) must not diverge more
rapidly than 1/|qi⊥|, with i = 1, 3, in order for the related cross section not to diverge
more than logarithmically. Since eq. (3.3) displays poles as |q1⊥|2 and |q3⊥|2 go to zero, the
central-emission vertex must be at least linear in |qi⊥| as |qi⊥| → 0,

Agg(0)(q1, p
ν4
4 , p

ν5
5 , q3) |qi⊥|→0= O(|qi⊥|) , (G.44)

with i = 1, 3, which is indeed fulfilled by eq. (3.5).
Let us now consider the collinear limit of the one-loop amplitudes in N = 4 SYM in

the NMRK limit. It is most convenient if we work at the level of colour-ordered amplitudes,
where in general kinematics the colour-ordered one-loop six gluon amplitude has the collinear
limit [73],

M
(1)
6g (pν2

2 , p
ν3
3 , p

ν4
4 , p

ν5
5 , p

ν6
6 , p

ν1
1 ) p4||p5−−−→

∑
ν=±

(
Split(0)

−ν(pν4
4 , p

ν5
5 )M (1)

5g (pν2
2 , p

ν3
3 , P

ν , pν6
6 , p

ν1
1 )

+ Split(1)
−ν(pν4

4 , p
ν5
5 )M (0)

5g (pν2
2 , p

ν3
3 , P

ν , pν6
6 , p

ν1
1 )
)
,

(G.45)

where the one-loop splitting functions were obtained in [73]. In N = 4 SYM, these splitting
functions are proportional to the tree-level splitting function,

Split(1)
−ν(pν4

4 , p
ν5
5 ) = κΓ Split(0)

−ν(pν4
4 , p

ν5
5 ) rSUSY

S (z4, s45), (G.46)
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where the loop factor,

rSUSY
S (z4, s45) = − 1

ε2

(
µ2

z4(1− z4)(−s45)

)ε
+ 2 log(z4) log(1− z4)− π2

6 , (G.47)

is independent of the helicities. In the central NMRK limit we expect to obtain

M
(1)
6g (pν2

2 , p
ν3
3 , p

ν4
4 , p

ν5
5 , p

ν6
6 , p

ν1
1 )
∣∣∣
NMRK

p4||p5−−−→∑
ν=±

(
Split(0)

−ν(pν4
4 , p

ν5
5 ) M (1)

5g (pν2
2 , p

ν3
3 , P

ν , pν6
6 , p

ν1
1 )
∣∣∣
MRK

+ Split(1)
−ν(pν4

4 , p
ν5
5 ) M (0)

5g (pν2
2 , p

ν3
3 , P

ν , pν6
6 , p

ν1
1 )
∣∣∣
MRK

)
.

(G.48)

Let us check this first for the same-helicity case. As we are working at the level of colour-
ordered amplitudes, we consider the three representative orderings of eq. (4.23). For the σA
colour ordering, we find

s234 −−−→
p4||p5

z5t1 + z4t3 , (G.49)

so that in the collinear limit,
vA + wA −−−→

p4||p5
1 . (G.50)

In particular, this allows us to use the identity,

Li2 (1− x) + Li2 (x) = π2

6 − log (1− x) log (x) . (G.51)

to write

∆VA(uA, vA, wA) −−−→
p4||p5

NcκΓ

(
− 1

4 log2
(
s45
|P⊥|2

)
− 1

2 log
(
s45
|P⊥|2

)
log

(
t1t3z4z5
s2

234

)
+ log

(
z4t3
s234

)
log

(
z5t1
s234

))
.

(G.52)

For the full transcendental function of this colour ordering we find

NcκΓRe [V6(σA)|NMRK] −−−→
p4||p5

E
(
t1, p

+
3 P
−; t3, P+p−6

)
+ v

g(1)
N=4

(
t1, |P⊥|2, t3

)
+NcRe

[
rSUSY(z4, s45)

]
,

(G.53)

which is invariant under p4 ↔ p5. After manipulating the colour factors to obtain the
natural association of one adjoint generator with each three-point tree-level factor, we obtain

Re
[
M(1)
N=4

(
p⊕4 , p

⊕
5

)]
−−−−−−−−→
NMRK, p4||p5

g6
S

(4π)2κΓs12
[
F a3a2c1Cg(0)

(
pν2

2 , p
−ν2
3

)] 1
t1

×
[
F c1c3c2V g(0) (q1, P

⊕, q3
)] [

F c2a5a4Split(0)
	

(
p⊕4 , p

⊕
5

)]
× 1
t3

[
F a6a1c3Cg(0)

(
pν1

1 , p
−ν1
6

)]
×
{
Nc Re [V6(σA)]|NMRK, p4||p5

}
.

(G.54)
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The opposite-helicity case proceeds similarly. From eq. (G.41) we see that in the collinear
limit, both SAuv and SAwu are equal to the tree-level amplitude, and these terms combine
with the ∆WA term to play the same role as ∆VA in this limit,

Agg(0)
(
q1, p

⊕
4 , p

	
4 , q3

)
∆WA(uA, vA, wA) + SAuv log(vA)

(
wA
uA

)
+ SAwu log(wA)

(
vA
uA

)
−−−→
p4||p5

(∑
ν=±

V g(0)(q1, P
ν , q3)Split(0)

−ν

(
p⊕4 , p

	
5

))
∆VA(uA, vA, wA)|p4||p5

(G.55)

This means we can straightforwardly write
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× 1
t3

[
F a6a1c3Cg(0)

(
pν1

1 , p
−ν1
6

)]
×
{
Nc Re [V6(σA)]|NMRK, p4||p5

}
.
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