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1 Introduction

We better understand quantum gravity every time we learn quantum information theoretic

properties of holographic CFT states. This is the spirit of the “Geometry from Entangle-

ment” slogan [1, 2], and it has been borne out in numerous discoveries. At the heart of

these quantum information properties is the entanglement structure of the holographic

CFT state. Know the structure explicitly, and you can in principle compute whatever

quantum information property you want.

Hence it has been of great interest to probe this structure in any way tractable. Perhaps

the most famous probe is a region’s von Neumann entropy, whose bulk dual is simply the

area divided by 4GN of the minimal-area codimension-2 surface anchored to the boundary

of the region [3, 4]. This is the Ryu-Takayanagi (RT) formula. It is well-known that the

RT formula places strong constraints on the entanglement structure of the CFT state [5].

That said, the von Neumann entropy is a rather coarse measure of entanglement.

It works well to quantify entanglement in a bipartite pure state, but doesn’t capture all

the information about entanglement structure for bipartite mixed states or multipartite

states. Hence there is much less known about the multipartite structure of entanglement

in holography, owing both to the fact that there have been fewer probes of it and that it

is much harder to quantify (although there has been limited progress [6]).

It was in this context that a particularly powerful conjecture, which we call the

“Mostly-Bipartite Conjecture” (MBC), was made by Cui et al. in [7]. We state this con-

jecture in detail now, as we understand it.

Mostly-bipartite conjecture of [7]. Consider a state of a holographic CFT with a

gravitational dual well-described by semiclassical gravity. Let c ∼ 1
GN

represent its cen-

tral charge. Given CFT subregions A,B, and C with Hilbert spaces that each admit the

decomposition HX = HX1 ⊗HX2 ⊗HX3, the quantum state is “close” to the form

|ψ〉ABC = UA UB UC |ψ1〉A1B1
|ψ2〉A2 C1

|ψ3〉B2 C2
|ψ̃〉A3B3 C3

(1.1)
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Figure 1. The entanglement wedge of boundary subregion AB is shaded blue, while the com-

plementary entanglement wedge, corresponding to boundary subregion C, is shaded red. The RT

surface is γAB (solid line), and the minimal cross section of the entanglement wedge is EW (A : B)

(dashed line).

in the GN → 0 limit, where we demand that |ψ̃〉A3B3 C3
is ‘small’ in the sense that its

entropies are subleading in GN ,

S(A3), S(B3), S(C3) ∼ O(1) , (1.2)

while

S(A1) = S(B1) ≈
I(A : B)

2
, (1.3)

S(A2) = S(C1) ≈
I(A : C)

2
, (1.4)

S(B2) = S(C2) ≈
I(B : C)

2
, (1.5)

where the “≈” symbol means at O( 1
GN

), and the mutual information is defined as I(A :

B) ≡ S(A) + S(B)− S(AB).

We will refer to this conjectured state (1.1) as the “MBC state” from now on. We

place quotes around “close” because it is not specified in what sense the states should be

close. As we discuss in detail below, we will take this to mean close in natural distance

measures usually applied to quantum states.

The motivation for this conjecture comes from the bit threads paradigm, in which Cui

et al. found that an optimal bit thread configuration with the above bipartite structure

exists. Moreover, this simple entanglement structure is realized by random stabilizer tensor

networks (RSTNs), which are simple toy models of holography in which the RT formula is

satisfied [8, 9].

Our goal is to argue that this entanglement structure is inconsistent with two other

conjectured properties of AdS/CFT. Both of these other conjectures relate the so-called

“minimal entanglement wedge cross section” EW (A : B), of any two CFT subregions A

and B, to information theoretic quantities of the CFT. We review these quantities in detail

later, though see figure 1 for a quick visual. In the paper [10], the authors conjectured that
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EW (A : B) equals one half a quantity called the reflected entropy, SR(A : B). The evidence

for this conjecture is very strong, and we review it later. In the papers [11, 12], the authors

conjectured that EW (A : B) equals a quantity called the entanglement of purification,

EP (A : B). There is also good evidence for this conjecture [13–15]. We shall refer to these

as the SR and EP conjectures respectively.

Both SR and EP are more sensitive probes of multipartite entanglement than the von

Neumann entropy is. It is this fact that places the SR and EP conjectures in tension with

the MBC. Notably, our argument only works if either the SR or EP conjecture is true. This

is because directly computing SR and EP is difficult, so we use their respective conjectures

to compute them using the bulk.

The argument. In detail, our argument proceeds in two steps. First, we compute the

reflected entropy and entanglement of purification of the state (1.1) and find that SR equals

the mutual information — and EP half the mutual information — at leading order, O( 1
GN

).

This is not true of holographic states, if either the SR or EP conjecture is correct. It is

known that 2EW (A : B)− I(A : B) can be non-zero at O( 1
GN

), which implies SR − I and

2EP − I should be non-zero at leading order as well. Therefore the MBC is in tension with

the SR and EP conjectures.

That said, it is not obvious that this tension persists under small corrections to the

MBC state. Indeed, it is conceivable that some sort of small correction to (1.1) could affect

its SR and EP at O( 1
GN

) while not affecting other quantities, such as its von Neumann

entropy, at that order. In that case, there would be no tension between these conjectures,

because at any finite GN the state would be of the MBC form up to subleading corrections

and also have the correct SR and EP . Something like this is true for Renyi entropies,

where exponentially small changes to a state can affect the Renyi entropy at O( 1
GN

) but

only change the von Neumann entropy an exponentially small amount.

The second step in our argument is to prove that SR and EP are not sensitive to such

small changes in the state. More precisely, we prove that SR and EP satisfy a Fannes-like

continuity inequality so that when the trace distance 1
2 ||ρ − σ||1 between ρ and σ is ε,

we have

|SR(A : B)ρ − SR(A : B)σ| ≤ C1

√
ε log d , (1.6)

|EP (A : B)ρ − EP (A : B)σ| ≤ C2

√
ε log d , (1.7)

where C1, C2 are O(1) constants and d is the dimension of ρ and σ. Moreover, we argue that

ε < O(1) if ρ is a holographic CFT state and σ is a state of the form eq. (1.1). (Otherwise,

ρ would not take the MBC state form when GN → 0.) So, even though log d ∼ O( 1
GN

),

the SR and EP of ρ is not different from that of σ at O( 1
GN

). Therefore, small corrections

to eq. (1.1) that vanish as GN → 0 do not resolve the tension between these conjectures.

Why trace distance? Before proceeding, let us motivate why we use the trace distance

to quantify small corrections. The trace distance is arguably the most natural distance

measure between two quantum states. If two states are close in trace distance, then all

observables computed using one will be close to those computed using the other, inlcuding
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the von Neumann entropy. Moreover, other distance measures (such as the fidelity) are

quantitatively equivalent to trace distance. There are some quantities, like the relative

entropy, that quantify the similarity of two states but are not technically distance measures.

The relative entropy would work equally well for our purposes: if the relative entropy

between two states is small, then their trace distance is small due to Pinsker’s inequality.

That said, there are some senses in which two states can be “close” without being close

in trace distance. For example, they can be “close” in the sense that some restricted class

of observables has similar values. It is this sense in which, for instance, “random states” are

close to “Perfect states.” Perfect states are 2n-partite states that are maximally entangled

accross any bipartition, for n integer [16]. We define a random state by acting a Haar

random unitary on a fiducial 2n-partite state. Such random states are “close” to Perfect

in the sense that they are nearly maximally entangled accross any bipartition. However,

they are generally far from Perfect in trace distance.1

We choose not to consider “closeness” in this weaker sense because it is arguably against

the spirit of the conjecture. Indeed, that the von Neumann entropies of holographic CFT

states match those of the MBC state was the motivation for the MBC. The conjecture

itself, as we understand it, is that the states are therefore close in some distance measure.

Inferring this stronger claim about the state from the weaker matching of entropies is what

makes the conjecture so valuable.

Organization. The paper is organized as follows. We define and analyze the SR and

EP conjectures in section 2 and 3 respectively. Also in section 2, we discuss why RSTNs

— which satisfy the RT formula — fail to satisfy the SR conjecture, which naively seems

like a simple application of RT. We briefly touch on tensor networks in section 3 as well.

Finally, we conclude with some discussion and future directions in section 4.

Notation. We will use the notation SR(A : B), EP (A : B) and I(A : B) to denote

the reflected entropy, entanglement of purification and mutual information relevant for

the partition of the state about subregions A and B. However, in other situations where

the partition is understood and we would like to make explicit the state in which these

quantities are being evaluated, we shall use the notation SR(ρAB), EP (ρAB) and I(ρAB)

interchangeably with the above notation.

2 SR conjecture vs bipartite entanglement

2.1 Background

We now define the reflected entropy SR(A : B). Consider a density matrix ρAB on the

Hilbert space H = HA ⊗ HB. One can define its “canonical purification” in a way anal-

ogous to the relationship between the thermal density matrix and the thermofield double

state [10]. There exists a natural mapping between the space of linear operators acting on

1This can be seen from a simple counting argument: there are far fewer Perfect states than the total

number of states. In the limit that the Hilbert space dimension goes to infinity, the average distance between

any given state and the nearest Perfect state tends to zero.
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a H and the space of states on a doubled Hilbert space H⊗H′ = HA ⊗HB ⊗HA′ ⊗HB′ .

This mapping is sometimes labelled the channel-state duality. The inner product on this

doubled Hilbert space is defined by

〈ρ|σ〉ABA′B′ = trAB(ρ†σ) . (2.1)

Thus, the operator
√
ρAB can be mapped to a state |√ρAB〉ABA′B′ , which is named the

canonical purification of ρAB (and is also known as the GNS state). This state easily can

be checked to reduce to the original density matrix ρAB upon tracing out the subregions

A′ and B′. Given the above setup, then

Definition 2.1. The reflected entropy SR(A : B) is defined as

SR(A : B) = S(AA′)√ρAB
= S(BB′)√ρAB

, (2.2)

where S(AA′)√ρAB
is the von Neumann entropy of the reduced density matrix on the sub-

region AA′ in the state |√ρAB〉.

In [10], it was conjectured that in AdS/CFT,

2EW (A : B) = SR(A : B) , (2.3)

where EW (A : B) is the area of the “entanglement wedge cross-section,” i.e. the minimal-

area surface that divides the entanglement wedge of AB into two halves, one homologous

to A and the other to B. This conjecture is intuitive: the reduced density matrix of AB is

unchanged, and A′B′ has the same reduced density matrix. One can solve the equations

of motion inwards from this data local to the boundary to conclude that a viable bulk

solution is the one that is simply two copies of the AB entanglement wedge glued together

across the extremal surface that bounds it. (The subtleties of gluing across this extremal

surface were discussed in [17].) Applying the RT formula to the AA′ region of this doubled

bulk implies that S(AA′)√ρAB
equals the area of a minimal surface dividing AA′ from BB′.

The symmetry between the entanglement wedges of AB and A′B′ implies that this minimal

surface has area 2EW .2

2.2 SR of the bipartite entangled state

We now compute the reflected entropy in the MBC state eq. (1.1) and show that it ap-

proximately equals the mutual information,

SR(A : B) ≈ I(A : B) . (2.4)

This, we will argue, is incompatible with AdS/CFT. Two properties of the reflected entropy

will be useful to us. First, it is an additive quantity under tensor products:

SR(ρ1 ⊗ ρ2) = SR(ρ1) + SR(ρ2) . (2.5)

2Evidence for the conjecture in a time-dependent situation was provided in [18, 19].
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Figure 2. Subregion AB at the threshold of a mutual information phase transition. There are two

competing RT surfaces, denoted by solid and dashed black lines. The area of the dashed lines is

equal to the area of the solid lines. EW (A : B) before the transition is denoted by a solid orange

line, while it vanishes after the transition.

This is because the canonical purification of a tensor product density matrix ρ1 ⊗ ρ2 is

given by the tensor product state |√ρ1〉⊗ |
√
ρ2〉. Second, the reflected entropy is invariant

under unitaries local to A or B, since this is equivalent to local unitaries on A, A′, B and

B′ in the purified state. Hence the reflected entropy of the MBC state is the same as for

the state

U †AU
†
BρABUAUB = ρA1B1 ⊗ ρA2 ⊗ ρB2 ⊗ ρA3B3 , (2.6)

where e.g. ρA2 = trC1 |ψ2〉 〈ψ2|A2C1
. Thus, the calculation of SR splits into an individual

calculation for each factor. First consider ρA1B1 = |ψ1〉 〈ψ1|A1B1
. The canonical purifica-

tion is simply a product state of two copies of |ψ1〉, and therefore

SR (ρA1B1) = 2S(ρA1) = I(A1 : B1)ρA1B1
≈ I(ρAB) . (2.7)

Because the state ρA2 only has support on A, its canonical purification is given by an

entangled state shared between A andA′ whileB andB′ remain trivial. The same argument

can be applied to ρB2 as well. Therefore their reflected entropies vanish,

SR (ρA2) = 0 and SR(ρB2) = 0 . (2.8)

Although we have not specified any details of the state |ψ̃〉A3B3 C3
, we can use the general

inequality

SR(ρA3B3) ≤ 2 min{S(ρA3), S(ρB3)} = O(1) (2.9)

to put an upper bound on the contribution to SR from ρA3B3 . It is a positive O(1) number,

at most. Putting everything together, we find that the reflected entropy equals

SR(ρAB) = SR(ρA1B1) + SR(ρA2) + SR(ρB2) + SR(ρA3B3)

= I(ρAB) +O(1) .
(2.10)

Hence in the GN → 0 limit, SR(A : B) = I(A : B) for the MBC state.

AdS/CFT conflict. We now argue that this is in conflict with SR(A : B) = 2EW (A : B)

in AdS/CFT. The idea is that EW (A : B) can be larger than I(A : B) at O( 1
GN

). This is

true in many generic cases, but we now provide a sharp example in which this is especially

clear, from [20].
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Consider the setup in figure 2. As one varies the distance between subregions A and B

of a fixed size, one encounters a phase transition in the RT surfaces. At the phase transition,

both I(A : B) and EW (A : B) vanish. However, at slightly shorter separations the two are

quite different. While the mutual information continuously shrinks to zero as the separation

is increased, the cross-section remains O( 1
GN

) until exactly at the phase transition, where

it discontinuously jumps to zero. Therefore, given SR(A : B) = 2EW (A : B), we must

conclude that the MBC state is incompatible with AdS/CFT.

2.3 Small corrections

So far, we have not ruled out that the SR conjecture is consistent with the MBC state

with small corrections. One might imagine that the reflected entropy, being non-linear in

the state, could receive large corrections from terms that are subleading in GN to those

in eq. (1.1).3 Then there would be no tension between the SR conjecture and MBC: For

any finite GN , the holographic CFT state could take the form of the MBC state up to

subleading terms, but its reflected entropy could be different at O( 1
GN

). For comparison,

this is how Renyi entropies work. Renyi entropies are also non-linear in the state, and can

change at O( 1
GN

) under non-perturbatively small changes to the state.

We quantify corrections to the state in terms of the natural distance measure, trace

distance, defined as

T (ρ, σ) =
1

2
||ρ− σ||1 , (2.11)

where ρ, σ are two density matrices, and ||A||1 = tr(
√
A†A) is the Schatten 1-norm or

L1 norm. It can take values T (ρ, σ) ∈ [0, 1], and when the trace distance is close to 0

then all observables are close between the states. If the trace distance is exactly zero,

then the two states are identically equal. If two states admit a GN expansion, like ρ =

ρ0 +GNρ1 +O(G2
N ), then the trace distance between them does as well:

T (ρ, σ) = T0(ρ, σ) +GNT1(ρ, σ) +O(G2
N ) . (2.12)

We say that two states are the same at leading order if T0 = 0, i.e. T (ρ, σ) ∼ O(GN ).4 For

our purposes, we could equally-well use other distance measures between states, such as

the fidelity, or similarity measures like the relative entropy.

We interpret the MBC as the statement the trace distance vanishes at leading order in

GN between a holographic CFT state ρ and some state σ of the form eq. (1.1). This is for

two reasons. First, as stated above, so that ρ and σ become the same in the GN → 0 limit.

Second, because this would give a satisfactory reason for the von Neumann entropies to

match at leading order (even at finite GN ). (After all, this was essentially the motivation

for the conjecture in the first place!) This is due to Fannes inequality [21], which states

|S(ρ)− S(σ)| ≤ 2T (ρ, σ) log d− 2T (ρ, σ) log(2T (ρ, σ)) , (2.13)

3We would like to thank Matt Headrick for discussions related to this.
4In fact, for the purpose of our analysis T (ρ, σ) ∼ O(Ga

N ) with any a > 0 works.
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where d is the dimension of ρ and σ. For holographic CFTs, log d ∼ O( 1
GN

), and thus if

T (ρ, σ) . O(GN ), the von Neumann entropies will be guaranteed to match at O( 1
GN

).

So, we are interested in whether the reflected entropy can differ at O( 1
GN

) between the

MBC state σ and a holographic CFT state ρ that differs from it only at O(GN ) and higher,

T (ρ, σ) ∼ O(GN ) . (2.14)

We now prove this is, in fact, not possible; the reflected entropy satisfies a continuity

inequality similar to Fannes inequality for the von Neumann entropy.

Theorem 2.1 (Continuity of the Reflected Entropy). Given two density matrices ρAB
and σAB defined on a Hilbert space H = HA ⊗ HB of dimension d = dA dB, such that

TAB = T (ρAB, σAB) ≤ ε, then

|SR(ρAB)− SR(σAB)| ≤ 4
√

2TAB log(min{dA, dB})− 2
√

2TAB log(TAB)

for ε ≤ 1
8e2

.

Proof. In order to prove the above statement, we first consider the fidelity between the

respective purified states |√ρAB〉ABA′B′ and |√σAB〉ABA′B′ , which is given by

FABA′B′ = | 〈√ρAB|
√
σAB〉 | . (2.15)

The inner product on the canonically purified states can equivalently be computed using

the original density matrices by using eq. (2.1),

〈√ρAB|
√
σAB〉 = tr(

√
ρAB
√
σAB) (2.16)

= Q1/2(ρAB, σAB), (2.17)

where Q1/2(ρAB, σAB) is defined by the above equation and is the non-commutative gen-

eralization of the Bhattacharya coefficient.5 Now we can use the inequality [22]

Q1/2(ρAB, σAB) ≥ 1− TAB (2.18)

=⇒ FABA′B′ = Q1/2(ρAB, σAB) ≥ 1− TAB . (2.19)

This is essentially equivalent to the well known Powers-Stormer inequality. Upon tracing

out B and B′, the fidelity monotonically increases giving us

FAA′ ≥ FABA′B′ ≥ 1− TAB . (2.20)

Now, we can use another well-known inequality relating fidelity to trace distance [22],

giving us

T (ρAA′ , σAA′) ≤
√

1− F 2
AA′ ≤

√
2TAB , (2.21)

5Note that Q1/2 is a real quantity, which can be proven using cyclicity of trace and the fact that density

matrices are Hermitian.
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where e.g., ρAA′ is the density matrix obtained by tracing out BB′ from the purified state

|√ρAB〉. The second inequality in eq. (2.21) follows from eq. (2.20). Thus, starting from ρ

and σ being ε-close in trace distance on subregion AB, we have shown that their canonical

purifications are
√
ε-close in trace distance on subregion AA′. Finally, we use Fannes

inequality [21] to show that

|SR(A : B)ρ − SR(A : B)σ| = |S(ρAA′)− S(σAA′)|
≤ 2TAA′ log(dAA′)− 2TAA′ log(2TAA′)

≤ 4
√

2TAB log(dA)− 2
√

2TAB log(TAB),

(2.22)

where TAA′ = T (ρAA′ , σAA′).6 This inequality holds for TAA′ ≤ 1
2e , which is ensured by the

bound ε ≤ 1
8e2

. The entire analysis above was perfectly symmetric between A and B, and

from eq. (2.2) we also have

|SR(A : B)ρ − SR(A : B)σ| ≤ 4
√

2TAB log(dB)− 2
√

2TAB log(TAB). (2.23)

Thus, combining eq. (2.22) and eq. (2.23), we get the strengthened inequality

|SR(A : B)ρ − SR(A : B)σ| ≤ 4
√

2TAB log(min{dA, dB})− 2
√

2TAB log(TAB) , (2.24)

which proves Theorem 2.1.

Note that it was crucial that we considered the canonical purification in order for

e.g. |S(ρAA′) − S(σAA′)| to have such a bound. An arbitrary purification on ABA′B′ can

be arbitrarily far in trace distance. For example, different Bell pairs purify a maximally

mixed density matrix and have trace distance 1. The canonical purification ensures this

redundancy in basis of purification doesn’t play a role here.

We also emphasize that we have not found any examples where the inequality in

Theorem 2.1 is saturated, despite the fact that it is easy to saturate all the individ-

ual inequalities required in proving it. Our preliminary numerical analysis suggests that

|SR(ρ) − SR(σ)| ∼ O(ε) in all the examples that we tested, instead of the O(
√
ε) allowed

by Theorem 2.1. This leaves open the possibility that a tighter bound exists. We haven’t

pursued a systematic numerical analysis of the above, but it would be interesting to probe

this question in future.

Implication for AdS/CFT. Theorem 2.1 renders it impossible for two states ρAB, σAB
to have reflected entropy different at O( 1

GN
) unless

√
TAB log dAB is also O( 1

GN
). In a

holographic CFT, log dAB ∼ O( 1
GN

). So, the trace distance would need to be non-zero at

leading order, TAB ∼ O(1).

However, this is not consistent with the MBC. Suppose σABC represents the density

matrix corresponding to the MBC state, and ρABC represents the actual density matrix of

a holographic CFT. As we argued above, the MBC requires they should be close in the

sense that TABC ≡ T (ρABC , σABC) ∼ O(GN ). Trace distances decrease under tracing out

6This result can be further tightened by using the Audenaart version of the inequality [23].
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subregions, so TAB ≤ TABC ∼ O(GN ). Therefore, TAB is too small for σ and ρ to have

different reflected entropy at O( 1
GN

).

Said differently, Theorem 2.1 states that if TABC is indeed O(GN ), then

|SR(ρAB)− SR(σAB))| = |2EW (A : B)− I(A : B)| . O
(

1√
GN

)
, (2.25)

where we have used the SR conjecture in the equality and Theorem 2.1 in the inequality.

This contradicts the fact that there exist examples in AdS/CFT where |2EW (A : B)−I(A :

B)| ∼ O( 1
GN

), e.g. the situation in figure 2. Thus, we see that even small corrections to

the MBC state are incapable of making it compatible with the SR conjecture.

2.4 Tensor networks

We now resolve a conundrum that our results seem to create in tensor networks. Tensor

networks have provided good toy models of holography, illustrating properties such as

subregion duality and the RT formula. In particular, a network made of perfect tensors

can be shown to satisfy the RT formula under certain reasonable assumptions [16]. Much

more generally, it was shown that networks made from Haar random tensors also satisfy

the RT formula [8].

It was also emphasized in [8] that Haar randomness was overkill, and the RT formula

followed simply from choosing random tensors from a 2-design ensemble, i.e. one that agrees

with the first two moments of the Haar measure. A particularly nice choice of 2-design

ensemble is provided by stabilizer tensors of dimension D = pN in the limit of large N ,

where p is a prime number. Such random stabilizer tensor networks (RSTN) were further

studied in [9], where it was proven that their states always take the form

|ψ〉ABC = U †AU
†
BU
†
C |φ

+〉⊗n1

A1B1
|φ+〉⊗n2

A2 C1
|φ+〉⊗n3

B2 C2
|GHZ〉⊗ng

A3B3 C3
(2.26)

where |φ+〉 denotes a p-dimensional Bell pair shared between the two parties, e.g.

|φ+〉A1B1
≡ 1
√
p

p−1∑
i=0

|i〉A1
|i〉B1

, (2.27)

and |GHZ〉 denotes a shared p-dimensional GHZ state,

|GHZ〉A3B3C3
=

1
√
p

p−1∑
i=0

|i〉A3
|i〉B3

|i〉C3
. (2.28)

Neither of these states scale with N ; they are elementary units of entanglement. The

exponents, however, can indeed have N -dependence. That N -dependence was discovered

in [9], where it was shown that in the large N limit, n1, n2 and n3 grow linearly with N ,

whereas ng remains O(1). Note that N here is analogous to 1
GN

in AdS/CFT.

This is exactly an MBC state like that in eq. (1.1). Our result in section 2 shows that

this is incompatible with the conjecture SR = 2EW . This is startling at first: the SR
conjecture was motivated by the RT formula, which RSTN satisfy. So, naively, we would

expect RSTN to satisfy SR = 2EW .
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Figure 3. A random stabilizer tensor network with subregion AB in the connected phase. The

green dotted line represents the RT surface for subregion AB, while the yellow dotted lines represent

the RT surface of A and B respectively. The red dotted line represents EW (A : B).

We now compute SR(A : B) in RSTN to explain why they, in fact, do not. The upshot

will be that while the canonical purification of a state ρAB is indeed given by a doubled

version of its entanglement wedge (just like in AdS/CFT), the doubled entanglement wedge

network does not itself satisfy RT in the naive way!

Consider the tensor network in figure 3. In order to restrict to ρAB, we can use the

fact that there is an isometry from the boundary legs of subregion C to the in-plane legs

cut by the RT surface of subregion AB. This gives us an effective tensor network restricted

to the entanglement wedge of AB. In order to compute the density matrix ρAB, we can

glue together two copies of this tensor network as in figure 4. The density matrix ρAB has

a flat entanglement spectrum as can be seen from eq. (2.26). Thus, it can be shown that

the operator
√
ρAB, and hence the canonically purified state |√ρAB〉ABA′B′ is represented

by the same doubled tensor network TN’ depicted in figure 4 up to normalization.

TN’ geometrically resembles the bulk saddle geometry obtained in the holographic

construction discussed in [10]. If TN’ were to satisfy the RT formula, one would indeed

be led to the claim that the entropy of subregion AA′ is computed by the minimal cross

section in this effective tensor network. The RT surface in TN’ is indeed just twice the

original entanglement wedge cross section, and thus, we would have the conjectured result,

SR(A : B) = 2EW (A : B).

However, this naive argument doesn’t carry through because TN’ has certain special

properties that distinguish it from a completely random stabilizer tensor network. Impor-

tantly, the set of tensors used in Copy 2 in TN’ are precisely correlated with the tensors

in Copy 1. E.g., in figure 4, one can see T †1 and T1 placed at equivalent positions in ei-
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Figure 4. (Left): A reduced tensor network corresponding to the entanglement wedge of AB

is obtained by using the isometry from the boundary legs of subregion C to the legs at the RT

surface (denoted black and green dotted lines). Two copies of this RSTN glued as shown prepare

the canonically purified state. We call this doubled network TN’. (Right): Geometrically, this

resembles the AdS/CFT construction discussed in [10, 17, 24]. If the RT formula holds, then

SR(A : B) = 2EW (A : B).

ther copy. The derivation of the RT formula depended on having completely uncorrelated

tensors on both copies of the TN.

That this correlation spoils the RT formula is made manifest by the form of the state

|ψ〉ABC in eq. (2.26). After applying the local unitaries, which depend sensitively on the

choice of tensors in the network, one gets a drastically simplified network as seen in figure 5.

The canonical purification then takes a simple form, and computing S(AA′) in this simple

network gives us

SR(A : B) = 2n1 log p = I(A : B) . (2.29)

We see that RSTN do not satisfy SR = 2EW because having correlated tensors precludes

the application of the RT formula.

Indeed, the RT formula in the original RSTN only required the tensors be 2-designs.

We expect that having the tensors agree with even higher moments of the Haar measure

is sufficient for the network to continue to satisfy the RT formula, even when the network

is built out of many copies of itself. If true, then the random tensor networks of [8] should

– 12 –
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.

Figure 5. After applying local unitaries, the RSTN drastically simplifies to a combination of Bell

pairs shared by the three parties. The Bell pairs then lead to a simple canonically purified state.

satisfy the SR conjecture, and highly random tensors — rather than e.g. 2-designs — would

be better models of holography. This is the subject of ongoing work [25].

3 EP conjecture vs bipartite entanglement

There is a tension between the EP conjecture and the MBC that is qualitatively the same

as that between the SR conjecture and the MBC. Given a density matrix ρAB, one can

define its entanglement of purification as [26]

EP (A : B) = min
|ψ〉

S(AA′) , (3.1)

where the minimization is over all states |ψ〉ABA′B′ that are pure and consistent with the

reduced density matrix ρAB. In [11, 12], it was conjectured that in AdS/CFT

EP (A : B) = EW (A : B). (3.2)

This conjecture was motivated by the surface-state correspondence, wherein similar to

tensor networks, a holographic state can be defined on any convex surface in the bulk [27–

30]. Further, since the minimization over all possible purifications is a computationally
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intractable problem, it was assumed that minimizing over geometric purifications was suf-

ficient (for discussions of this point, see [31]). This conjecture, along with its multipartite

generalizations, has received a lot of attention recently, although proofs or related compu-

tations have generally required various strong assumptions [13–15, 32–39].

To argue that the EP conjecture is incompatible with the MBC, we review results that

are essentially known in the literature. This distinguishes this argument from the one in

section 2, which involved our Theorem 2.1 that was completely new.

In order to compute EP (A : B) in the MBC state, we first note that EP is a sub-

additive quantity under tensor products [40]. In fact, additivity holds for pure states, ρAB =

|ψ〉AB 〈ψ|AB, and completely decoupled states, ρAB = ρA ⊗ ρB, but not in general [41].

Using this property, we find for the MBC state

EP (ρAB) ≤ EP (ρA1B1) + EP (ρA2) + EP (ρB2) + EP (ρA3B3). (3.3)

The first term on the right hand side gives EP (ρA1B1) = S(ρA1) = 1
2I(A1 : B1), because

ρA1B1 is a pure state. The second and third terms involve only one of either A or B and

thus give EP (ρA2) = EP (ρB2) = 0. The fourth term can be bounded using the known

inequalities for EP to obtain

0 ≤EP (ρA3B3) ≤ 2 min{S(ρA3), S(ρB3)}, (3.4)

and thus, EP (ρA3B3) is an O(1) positive quantity. Putting these results together and using

known inequalities, we find that

1

2
I(A : B) ≤ EP (ρAB) ≤ 1

2
I(A : B) +O(1). (3.5)

Thus, for GN → 0, we obtain EP (A : B) ≈ 1
2I(A : B), where “ ≈′′ denotes matching at

O( 1
GN

). Similar to the result in section 2.2, we find that the MBC state is incompatible

with the EP conjecture.

Small corrections. One might again worry that small corrections to the MBC state

might make it compatible with the EP conjecture. However, this too can be ruled out by

the following theorem.

Theorem 3.1 (Continuity of the Entanglement of Purification). Given two density matri-

ces ρAB and σAB defined on a Hilbert space H = HA ⊗HB of dimension d = dA dB, such

that TAB = T (ρAB, σAB) ≤ ε, then

|EP (ρAB)− EP (σAB)| ≤ 40
√
TAB log(d)− 4

√
TAB log(4

√
TAB)

for ε ≤ 1
4e2

.

Proof. This proof essentially follows from Theorem 1 of [26], where it was shown that

|EP (ρAB)− EP (σAB)| ≤ 20D(ρAB, σAB) log(d)−D(ρAB, σAB) log(D(ρAB, σAB)) (3.6)

where D(ρAB, σAB) = 2
√

1− FAB is the Bures distance. Using the inequality

1− TAB ≤ FAB =⇒ D(ρAB, σAB) ≤ 2
√
TAB, (3.7)

we obtain the desired result.
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Using Theorem 3.1, we conclude that a slightly-corrected MBC state is still incompat-

ible with the EP conjecture, by a similar argument to the one made in section 2.3.

Tensor networks. EP is a difficult quantity to compute in general, and hence it is much

harder to understand the tensor network story analogous to that in section 2.4. However,

in the case of RSTNs, the simplified network (obtained by applying local unitaries, as in

figure 5) has an EP that can easily be calculated to give 1
2I(A : B) at leading order in GN .

It is important to note that the EP conjecture was originally motivated by restricting

to geometric purifications and computing the optimal RT surface anchored to the entan-

glement wedge. An important insight we gain here is that non-geometric tensor networks

like the simplified network were crucial for the minimization in computing EP , at least for

RSTNs. It would be interesting to understand if this is more generally true [31].

4 Discussion

We have provided two pieces of evidence that suggest that holographic states require a large

amount of tripartite entanglement: Having little tripartite entanglement is inconsistent

with both the strongly-supported conjectures that SR = 2EW and EP = EW . We now

focus on some of the caveats, implications, and interesting future directions stemming from

this work.

Trace distance. We have demonstrated that holographic CFT states cannot be close in

trace distance to the MBC state. It is still possible that they are “close” in another sense.

Being close in trace distance is a strong criterion that ensures closeness in all observable

quantities and is a standard measure of similarity of states in quantum information. If

we allow weaker conditions of closeness on the state, such as closeness in a restricted class

of observable quantities, it might be possible to make the MBC state consistent with the

SR and EP conjectures. However, we do not see any evidence for other quantities that

may be reproduced by assuming an MBC state, and in particular, measures of multipartite

entanglement are in conflict with the conjectured state. It would be interesting to see if

other weaker forms of closeness can lead to a version of the MBC that is both useful and

compatible with the other two conjectures.

Limitation on tensor networks. This analysis also illuminates limitations of tensor

networks as toy models of holography. Since the von Neumann entropy is a reasonably

coarse grained quantity, even 2-design tensor networks such as random stabilizer tensor

networks were able to reproduce the RT formula. However, stabilizers are a very special

class of tensors, and are generically far in trace distance from Haar random tensors (owing

to the fact that there are many more Haar random tensors than stabilizers). Hence,

properties from any such tensor networks should be considered carefully, because they may

not agree with actual holographic answers.

In fact, specific tensor network models have previously been used to model “mostly

bipartite” entanglement that arises in certain regions of moduli space of multiboundary
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wormholes [42, 43]. It would be interesting to explore whether more refined tensor net-

work models can capture the right form of multipartite entanglement employed by holo-

graphic states.

It is interesting to note that the tensor network in [44, 45] is close in trace distance to

the holographic state, by construction. Certain classes of their tensor networks require the

EP = EW conjecture, so it would be interesting to repeat the above analysis in their case.

Entanglement measures. As we saw in our analysis in section 2, the reflected entropy

SR(A : B) is a much more fine-grained entanglement measure than individual entanglement

entropies, for mixed density matrices. This quantity is very naturally motivated from

holography and hasn’t yet been studied in the quantum information literature. In this

sense, it is similar to the refined Renyi entropies which is also a very natural quantity

in holography, but hasn’t been analyzed in quantum information [46–49]. It would be

interesting to understand its properties and generic behaviour in quantum systems.

There is, in fact, a zoo of quantities that measure multipartite entanglement and there

is not a clear understanding of a canonically best choice. Owing to this fact, there have

been many proposals in holography for such quantities including, among many others, the

entanglement negativity and odd entropy [20, 50–52]. Similarly, higher party versions of

the reflected entropy have also been proposed, motivated by AdS/CFT [53–55]. It would

be interesting to understand each of these quantities in the context of holography, or even

toy models such as tensor networks. If the program of understanding quantum gravity

by understanding quantum information is to progress, it is crucial that we obtain a more

refined understanding of multipartite entanglement measures.

Applications for reflected entropy continuity. Our new bound in Theorem 2.1 has

many interesting applications. For example, it might be useful in proving inequalities about

SR that were conjectured in [10]. Indeed, those inequalities might be easier to prove for

e.g. the fixed-area states defined in [47, 48]. Holographic CFT states are generally close in

trace distance to one fixed-area state. So, bounds on the reflected entropy of one translate

to bounds on the reflected entropy of the other. It would be interesting to find other uses

for this theorem.

GHZ isn’t enough. While we have demonstrated that tripartite entanglement is nec-

essary for the SR and EP conjectures, we have not emphasized what type of tripartite

entanglement is required. In fact, GHZ entanglement — even a lot of it — does not help.

One can show that GHZ entanglement also satisfies SR(A : B) = I(A : B). (Note that

this problem is also not resolved by adding superselection sectors, similar to the α blocks

in operator-algebra quantum error correction [47, 48, 56, 57]. These results strongly sug-

gest that the “stabilizerness” of holographic states is very low, which will be discussed in

upcoming work [58].7)

Beyond this, there is little we can say. It is difficult to pinpoint what type of entangle-

ment must be present, because there are many inequivalent forms of tripartite entangle-

ment, and the classification is not well understood in general. In the case of three qubits,

7We thank Brian Swingle for discussions related to this.
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there are just two inequivalent forms of entanglement: GHZ and W [59]. For A,B two of the

three qubits in a W-state, SR(A : B) = 1.49 log 2 while I(A : B) = 0.92 log 2, and therefore

W-entanglement might be used to alleviate the gap between the MBC (and RSTNs) and

holography. Similarly, numerical analyses suggest that EP (A : B) 6= 1
2I(A : B) for such

states [26, 41]. It would be interesting understand better the particular kind of tripartite

entanglement that is crucial for holography.
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