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The properties of electrically charged strange quark stars predicted by an interacting quark matter
equation of state (EoS) based on cold and dense perturbative quantum chromodynamics (pQCD) are
investigated. The stability of strange stars is analyzed considering different models for the electric charge
distribution inside the star as well as for distinct values for the total electric charge. A comparison with the
predictions derived using the MIT bag model is also presented. We show that the presence of a net electric
charge inside strange stars is implied in a larger maximum mass in comparison to their neutral counterparts.
Moreover, we demonstrate that the pQCD EoS implies larger values for the maximum mass of charged
strange stars, with very heavy charged stars being stable systems against radial oscillations. For an electric
charge distribution given by qðrÞ ¼ βr3, the pQCD EoS implies unstable configurations for large values of
the renormalization scale as well as for large values of β, in contrast to the MIT bag model predictions.
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I. INTRODUCTION

The description of matter at high densities and/or high
temperatures is one of the main challenges of the strong
interactions theory—quantum chromodynamics (QCD).
(For a recent review see, e.g., Ref. [1].) While the regime
of high temperatures and vanishing baryon density have
been explored in heavy ion collisions at the RHIC and
LHC, the QCD at high baryon densities and low temper-
atures is fundamental to determining the properties of
compact stars [2], where the density of the matter is
predicted to exceed the nuclear density matter and the
system is expected to be described in terms of deconfined
quark degrees of freedom. According to the Bodmer-Witten
hypothesis [3,4], the absolute ground state for the hadronic
matter is the strange quark matter (SQM) rather than 56Fe,
which implies the possible existence of compact stars
entirely made of deconfined up, down, and strange quarks,
usually denoted strange quark stars (SQS) [5–8]. Another
possibility is the presence of deconfined quark matter
inside neutron stars (NSs), forming hybrid stars. In this
case, SQM is expected to be formed through nucleation
processes, converting a previously hadronic star (HS) into a
SQS with the liberation of a large amount of energy that
generates a neutrino burst and an intense gravitational

waves emission. In fact, both HSs and SQSs can exist in
Nature, in the so-called two-families scenario, where
neutron stars with masses up to 1.5 M⊙ are HSs and the
those with mass above this threshold are SQSs [9]. These
distinct scenarios have been investigated in detail by several
authors over the last years. Its predictions compared with
recent experimental data constrain the equation of state
(EoS) that describes matter in NSs (for recent reviews
see, e.g., [2,9,10]). Robust astrophysical constraints on the
EoS came from the two solar mass limit of the pulsars
PSRJ1614-2230 and PSR J0348þ 0432 [11–13] and from
the LIGO/Virgo detection of gravitational waves originat-
ing from the NS merger event GW170817 [14]. In
particular, the electromagnetic and gravitational wave
information from the GW170817 event have been used
to constrain the radii R, maximum mass Mmax, and tidal
properties of NSs. In addition, a recent result [15] pointed
out that dense matter in the interior of massive NSs
(M ≈ 2 M⊙) exhibits characteristics of a deconfined quark
phase in the core of the star. Even so, the interpretation of
these recent results still is a theme of intense debate and the
existence of hybrid and/or strange quark stars remains an
open question.
As pointed out before, the discovery of pulsars with large

masses (M ≳ 2 M⊙) [16] has put strong constraints on the
equation of state (EoS) of dense stellar matter and has
challenged the description of these objects as being quark
stars, which were predicted to have smaller masses by
models based on the phenomenological MIT bag model
EoS. However, the main properties of these compact
objects strongly depend on a precise description of the
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matter that composes the star [8]. In particular, it is the EoS
that defines the magnitude of the internal pressure that
competes with gravity and, consequently, that establishes
the stability of the star. During the last years, several
phenomenological models have been proposed to describe
the EoS for the deconfined quark system, considering
different assumptions and approximations for the descrip-
tion of the interaction between quarks, as well as for the
treatment of the running quark masses and coupling
constant (see, e.g., Refs. [17–28]). In particular, in
Ref. [19], the authors have derived an EoS based on cold
and dense perturbative QCD (pQCD). They were able to
estimate the pressure at nonzero density at order α2s, where
αs is the strong coupling constant, assuming a nonzero
value of the strange quark mass. One advantage of this EoS
is that it allows one to estimate the systematic uncertainty
present in a perturbative calculation. The results presented
in Refs. [19,20] demonstrated that strange quark stars with
masses larger than 2 M⊙ can be reached for large values of
the renormalization scale.
In addition to the EoS, the maximummass of the star can

be modified by the presence of electric charge in its interior.
Neutron stars, such as SQSs, are electrically neutral.
However, to achieve electrical neutrality in quark matter
one must allow the possibility of leptons being present.
In particular, for the latter, the presence of electrons is
necessary to form a chemically equilibrated system, where
β equilibrium is achieved. Such electrons are distributed in
a layer on the surface of the star, which is separated from
strange matter by several hundred Fermi. These two
systems interact through electrostatic force, resulting in a
charge distribution inside the star. In general, stars can
remain in equilibrium under their own gravity and electric
repulsion, with the Coulombian force acting in addition to
the gradient pressure to counterbalance the gravitational
attraction, which implies that the charged SQS can be more
stable than the neutral one. As pointed out in Refs. [29–31],
the surface of a SQS has a high electric field, which can
reach about 1×1021V=m. The results presented in [30–32]
using the massless version of the MIT bag model and a
nonlinear EoS, respectively, have demonstrated that
charged stars are heavier than their neutral counterparts,
with the increasing in the maximum mass being dependent
of the magnitude of the electric charge. As a consequence,
the presence of the electric charge can modify the star
compactness, given by the ratio between its mass and radii
(M=R), which determines tidal deformability. Such prop-
erty has been determined using the recent data for the
GW170817 event, which have also been used to constrain
the EoS (see e.g., Refs. [33–35]).
Our goal in this paper is to present, for the first time, the

predictions from pQCD for charged SQSs. In particular, we
will investigate the hydrostatic equilibrium considering the
interacting quark matter EoS derived in Refs. [19,20] and
different models for the electric charge distribution inside

the star, as well as for different values of the total charge.
In addition, we will investigate the impact of radial
oscillations on the stability of charged SQS. Our study
is strongly motivated by the possibility to use its pre-
dictions and experimental tests to improve our under-
standing of the inner structure of compact objects as well
as to constrain the EoS of the system (see e.g., Ref. [36]).
Previous calculations for radial modes in neutral and
charged SQS were performed in Refs. [30,31,37–39]
considering different models for the EoS. Our aim is to
investigate the dependence on the EoS of the dynamical
stability of charged SQS against radial perturbations
considering different assumptions for the electric charge
distribution.
This paper is organized as follows. In the next section,

we will present a brief review of the formalism used to
describe charged SQSs and their radial oscillations. The
different models used to describe the charge distribution in
the star will be discussed and the pQCD EoS presented. In
Sec. III, we present our results for the mass-radius profile
and for the fundamental mode of oscillation considering the
pQCD EoS and distinct models for the treatment of charge
inside the star. The predictions derived using the MIT bag
model considering massive quarks are also presented,
which improve the analysis performed in Ref. [31] and
allow a detailed comparison with the pQCD results. Finally,
in Sec. IV we summarize our main conclusions. In what
follows, we use the units c ¼ 1 ¼ G.

II. FORMALISM

The presence of charge in a SQS implies that the system
should be described by the Einstein-Maxwell field equa-
tions, with the energy density associated to the electric field
being present in the energy-momentum tensor. One has that
due to the high value of the electric field on the surface
of the star; the electric energy density is of the same order
as the energy density of the strange quark matter. As a
consequence, the high electric field expected on the surface
of a SQS, affects the space-time metric and the associated
energy density contributes to its own gravitational mass.
Moreover, the presence of the Coulomb interaction modi-
fies the structure equations that describe the relativistic
hydrostatic equilibrium (see Ref. [38]). In order to describe
a spherically symmetric static charged star, we will assume
a line element given by

ds2 ¼ e2νðrÞdt2 − e2λðrÞdr2 − r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where λ and ν are known as the metric functions. Such
metric implies that a charged star constituted by a perfect
fluid will satisfy the following stellar structure equations:

dq
dr

¼ 4πr2ρeeλ; ð2Þ
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dm
dr

¼ 4πr2ϵþ q
r
dq
dr

; ð3Þ

dP
dr

¼ −ðϵþ PÞ
�
4πrPþ m

r2
−
q2

r3

�
e2λ þ q

4πr4
dq
dr

; ð4Þ

dν
dr

¼ −
1

ϵþ P

�
dP
dr

−
q

4πr4
dq
dr

�
; ð5Þ

where ρeðrÞ is the electric charge density, qðrÞ and mðrÞ
represent the charge and mass within radius r, respectively.
The metric potential e−2λ has the Reisser-Nordström form

e−2λðrÞ ¼ 1 −
2mðrÞ

r
þ qðrÞ2

r2
: ð6Þ

For neutral stars one has that qðrÞ ¼ 0 and Eq. (4) reduces
to the usual Tolman-Oppenheimer-Volkoff equation. To
solve such a system of equations, one needs to establish
the boundary conditions. At the center of the star we
assume that

qð0Þ ¼ mð0Þ ¼ 0; ϵð0Þ ¼ ϵc; νð0Þ ¼ νc: ð7Þ

Moreover, we assume that the solutions on the surface of
the star (r ¼ R) satisfy the following conditions:

pðRÞ ¼ 0; ð8Þ

mðRÞ ¼ M; ð9Þ

qðRÞ ¼ Q; ð10Þ

νðRÞ ¼ −λðRÞ; ð11Þ

whereM andQ are the total mass and electric charge of the
stellar system, respectively.
In order to investigate the stability of the charged SQS

against radial oscillations, we will consider the approach
proposed by Chandrasekhar [40] many years ago, which
demonstrated that perturbing the fluid and space-time
variables in a manner that maintains the spherical symmetry
of the system, it is possible to derive an equation for
infinitesimal radial oscillations of a spherical object: the
pulsation equation. Such equation is given by

d
dr

�
P
du
dr

�
þ ½Qþ ω2W�u ¼ 0 ð12Þ

where u is the renormalized displacement function and for a
charged star we have that [38]

P ¼ eλþ3νr−2γP; ð13Þ

Q ¼ ðϵþ PÞr−2eλþ3ν½ν0ðν0 − 4r−1Þ − ð8πPþ r−4q2Þe2λ�;
ð14Þ

W ¼ e3λþνr−2ðϵþ PÞ; ð15Þ

where γ is the adiabatic index. The pulsation equation
constitutes a Sturm-Liouville eigenvalue problem, which
allows one to obtain the eigenvalues and eigenfunctions
of the radial perturbation. Defining the auxiliary variable
η≡ Pdu=dr we can transform the above second-order
differential equation into two first order differential equa-
tions given by

du
dr

¼ η

P
; ð16Þ

and

dη
dr

¼ −½Qþ ω2W�u: ð17Þ

In Ref. [36], the authors demonstrated that for ηð0Þ ¼ 1 one
has uð0Þ ¼ r3=ð3Pð0ÞÞ, which are the initial conditions
for the integration of the equations from the origin to the
surface of the star. As in Refs. [31,36] we will use the
shooting method to obtain the values of ω2 that satisfies
the boundary condition given by

du
dr

����
r¼R

¼ ηðRÞ ¼ 0: ð18Þ

The structure equations are solved using a Runge-Kutta-
Cash-Karp method with adaptive step size. Starting from a
trial value for ω2, we obtained the values that satisfy the
boundary conditions using the Newton-Raphson method.
These values are the eigenfrequencies of the pulsation
equation. One important aspect is that for charged SQS the
condition ∂M=∂ϵc > 0 is not sufficient to determine the
stability of the star [31]. Therefore, in order to investigate
the stability of such objects, one has to perform the analysis
of its radial perturbation modes. Since Q is real, the next
eigenfrequency is always larger than the previous one, i.e.,

ω2
0 < ω2

1 < ω2
2 � � � < ω2

n < � � � :

Consequently, to determine the stability of the star it is
sufficient to analyze the sign of the fundamental mode. For
ω2
0 < 0 the star is unstable.
In order to solve the structure equations, we must specify

the charge distribution and the EoS that describes the matter
inside the star. In our analysis, motivated by the studies
performed in Refs. [31,41], we will consider the following
models to describe the charge in the SQS:

(i) model A: the charge is proportional to the third
power of the radial coordinate as follows:
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qðrÞ ¼ Q

�
r
R

�
3 ≡ βr3; ð19Þ

where β≡Q=R3;
(ii) model B: the charge density is proportional to the

energy density, i.e.,

ρe ¼ αϵ; ð20Þ

where, in geometric units, α is a dimensionless
proportionality constant;

(iii) model C: the star has a fixed total charge Q.
The main difference between models A and B is associated
to the region inside the star where the charge is expected to
be larger. In model A, the charge is almost totally con-
centrated on the surface of the star. While in model B there
is a relevant amount of charge in the intermediate region
between the center of the star and its surface. In contrast,
model C is independent of the model assumed for the
electric charge distribution inside the star.
Regarding the EoS, the simplest model and the one more

frequently used to describe the interior of a quark star is the
MIT bag model [42], which characterizes a degenerate
Fermi gas of up, down, and strange quarks. In such a
model, the main properties only depend on the bag constant
B. However, the MIT bag model is a naive approximation,
which is not sufficiently powerful to characterize a system
with interacting quarks or more complex structures. In our
analysis, we will consider the pQCD EoS calculated in
Ref. [19] at order α2s and a nonzero value of the strange
quark mass. This description was put in a simple to use
formula in Ref. [20], being given by

P ¼ PSBðμBÞ
�
c1 −

aðXÞ
μB − bðXÞ

�
; ð21Þ

where

PSBðμBÞ ¼
3

4π2

�
μB
3

�
4

ð22Þ

corresponds to the pressure of a gas composed by three
massless noninteracting quarks, also called a Stephan-
Boltzmann (SB) gas, and the functions aðXÞ and bðXÞ
are auxiliary functions (for details, see Ref. [20]). The
dimensionless parameter X is proportional to the renorm-
alization scale parameter Λ̄ that arises in the perturbative
expansion and is expressed as X ¼ 3Λ̄=μB. Fixing X, the
energy density comes from the following relation:

ϵ ¼ −Pþ μBnB; ð23Þ

where nB is the baryon number density obtained from the
thermodynamical relation

nB ¼ ∂P
∂μB :

In the next section, we will present our predictions for the
mass-radius profile of the SQS as well as for the funda-
mental mode considering the pQCD EoS and the distinct
models for the distribution of charge discussed above.

III. RESULTS

In Fig. 1(a), we present a comparison between the EoSs
for the quark matter predicted by the MIT bag model and
by the cold and dense pQCD calculation performed in
Ref. [19]. For comparison, we present the MIT bag model
predictions derived assuming that the bag pressure is
60 MeV fm−3 and that the strange quark has a mass of
ms ¼ 150 MeV. For the pQCD EoS we present the
predictions derived assuming different values for the
renormalization scale X. We have that the pQCD EoS is
strongly dependent on the renormalization scale, with the
band representing the uncertainty associated to this scale.

(a) (b) (c)

FIG. 1. (a) Comparison between the MIT bag model EoS and the pQCD one considering different values of the renormalization scale
X. (b) Mass-radius profile. (c) Linear fundamental frequency for a neutral SQS derived assuming the MIT bag model and pQCD EoS’s.
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For completeness, let us initially solve the structure
equations for neutral SQS, in which qðrÞ ¼ 0, for the
distinct EoSs discussed above. Our results for the mass-
radius profile are presented in Fig. 1(b). We can see that the
SQSs maximum masses depend strongly on the value of X,
increasing with X and reaching values larger than 2 M⊙ for
X ≳ 3 [20]. We have verified that the MIT bag model
predictions are similar to those derived using the pQCD
EoS for X ≈ 2.8, which predicts values of maximum SQS
masses smaller than 2 M⊙. As already pointed out in

Ref. [39], only values of X in the range between 3 and 3.2
satisfy simultaneously the GW170817 constraints of mass
and radius [14]. The studies performed in Refs. [43–45]
suggested that the upper limit on the neutron star mass is
2.17 M⊙ (90% credibility).
We present in Fig. 1(c) the comparison between the

fundamental eigenfrequencies obtained from pQCD (for
different values of X) and the MIT bag model as a function
of the central energy density. For convenience, we are
presenting results for the linear frequency associated to the

FIG. 2. Predictions from the MIT bag model (left panels) and pQCD (right panels) EoSs for the total gravitational mass as a function of
the central energy density (upper panels) and radius (central panels), as well as for the linear fundamental frequency as a function of the
mass (lower panels) considering model A and different values of β, where β ¼ 0 (black solid line) corresponds to a neutral strange star.
The full squares represent the configurations for which ω2

0 ¼ 0 and the full circles represent the maximum mass configurations.
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eigenfrequency by f ¼ ω=2π. The results indicate that the
configurations for the distinct values of X are stable against
radial oscillations (ω2

0 > 0), in agreement with the results
presented in Ref. [39].
In what follows, we will present our results for charged

SQS considering the pQCD EoS for X ¼ 3, which satisfies
the GW170817 constraints, and the distinct models for the
electric charge distribution discussed above. For compari-
son, we will also present the predictions derived using the

massive MIT bag model EoS with B ¼ 60 MeV fm−3 for
the bag pressure. First, we present in Fig. 2 our predictions
for model A, in which the charge distribution charge is
given by qðrÞ ¼ βr3, assuming different values of β, with
β ¼ 0 corresponding to the neutral SQS. Our results show
that for both EoSs the presence of charge increases the
maximummass and radius of the star in comparison to their
neutral counterpart. Such result agrees with those derived in
Ref. [30], which pointed out that increasing the charge

FIG. 3. Predictions from the MIT bag model (left panels) and pQCD (right panels) EoSs for the total gravitational mass as a function of
the central energy density (upper panels) and radius (central panels), as well as for the linear fundamental frequency as a function of the
mass (lower panels) considering model B and different values of α, where α ¼ 0 (black solid line) corresponds to a neutral strange star.
The full squares represent configurations for which ω2

0 ¼ 0 and the full circles represent the maximum mass configurations.
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allows the star to sustain larger masses. However, the
predictions derived using the pQCD EoS are even more
sensitive to the presence of charge in the star, since the same
variation of β leads to a considerable larger modification in
the mass and radius of the respective stellar configurations in
comparison to the MIT bag model predictions. The full
circles and squares in the figures indicate, respectively, the
points where the maximum mass configuration occurs and
where the fundamental eigenfrequency is zero. For β ¼ 0we

have that these two points coincide. Therefore, for neutral
SQS, ∂M=∂ϵc > 0 is a necessary and sufficient condition to
determine the configurations of stable equilibrium [31].
In contrast, for charged SQS, these two points are not
coincident, with the zero eigenfrequency configuration
occurring for larger central densities. Consequently, in order
to determine the stability of a charged SQS the signal of the
fundamental mode should also be analyzed [31]. In our
analysis, using the MIT bag model EoS, we have obtained

FIG. 4. Predictions from the MIT bag model (left panels) and pQCD (right panels) EoSs for the total gravitational mass as a function of
the central energy density (upper panels) and the radius (central panels), as well as for the linear fundamental frequency as a function of
the mass (lower panels) considering model C and different values of the total chargeQ, where Q ¼ 0 (black solid line) corresponds to a
neutral strange star. The full squares represent the configurations for which ω2

0 ¼ 0 and the full circles represent the maximum mass
configurations.
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that increasing β up to 9 × 10−4 M⊙ km−3 always produces
stable configurations in which ∂M=∂ϵc > 0 and ω2

0 > 0. In
contrast, for the pQCD EoS, the largest value of β consid-
ered, β ¼ 9 × 10−4 M⊙ km−3, gives an unstable solution
for all values of ϵc. This explains why the associated
predictions are not presented in the right panels of Fig. 2.
It is important to emphasize that we have verified that a
similar instability occurs in the MIT bag model predictions
for β ≳ 5 × 10−3 M⊙ km−3.
In Fig. 3, we present our predictions using model B, in

which the charge density is proportional to the energy
density ρe ¼ αϵ, considering different values for the
dimensionless constant α. Similarly to the results obtained
for model A, the charge density proportional to the energy
density also implies in SQSs with larger masses and radii.
Again, the impact of increasing the values of α is larger on
the pQCD EoS. The main difference between models A
and B is associated to the fact that model B is stable for all
values of α under analysis, independently of the EoS being
considered. In particular, for large values of α, model B
predicts stable configurations with very high masses and
radii. This difference occurs because, in model B, the
changes in mass and charge depend on the energy density,
which implies that the increasing of the electric field
throughout the star is exactly counterbalanced by gravity.
In contrast, in model A, the increasing of the electric field is
very fast near to the surface of the star. At large values of
the electric charge, the outward pressure associated to the
electric field cannot be sustained by gravity, and the
associated configuration is unstable. Even though stable
charged SQSs with very large masses and radii are
predicted by model B, it is important to emphasize that
the largest mass pulsar ever observed has a mass of
2.14þ0.10

−0.09 M⊙ for the 68.3% credibility interval and
2.14þ0.20

−0.18 M⊙ for the 95.4% credibility interval [16].
Therefore, charged SQSs with highest mass values pre-
dicted by model B, although mathematically stable, prob-
ably do not exist in Nature.
Finally, let us consider model C, in which we assume a

star with a fixed total charge Q. From Gauss’s law for
electric fields, we have that such assumption implies that the
predictions are independent of the charge distribution inside
the star. Our results are presented in Fig. 4 for different
values of the total charge Q. As in the previous models,
model C also predicts that the presence of charge increases
the maximum mass of the star. Our results also indicate that
the point where the configuration with maximum mass
occurs is slightly distinct from the position where the
frequency of the fundamental mode is zero, with the distance
between these points increasing with the value of the total
charge Q, in contrast with the results obtained in Ref. [31].
Two comments are in order. First, in our analysis, we

only have presented the predictions derived using the
pQCD EoS for X ¼ 3. However, we also have performed

the analysis for other values of X. For values of X < 3,
the results are similar to those presented above, with the
main difference being that the predicted values of the
maximum masses of the neutral and charged SQS are
smaller. On the other hand, for X ¼ 4 and using model A
for the electric charge distribution, we have found that the
presence of charge is implied in unstable configurations,
independent of the value of β. We have verified that for
β ¼ 5 × 10−4 M⊙ km−3, the configurations outside the
equilibrium start to appear when X ≥ 3.6. Such result
demonstrates the strong dependence of the predictions
for the charged SQS on the EoS considered. Second, we
have estimated the compactness (M=R) of the star for the
different values of the charge Q and verified that it
increases for larger values of Q. The increasing is expected
to modify the tidal deformability of the star and, therefore,
can be used to discriminate between the neutral and
charged scenarios. Such a result motivates a more detailed
study, which we intend to perform in the near future.

IV. SUMMARY

In this paper we have investigated, for the first time, the
equilibrium and stability of charged strange stars consid-
ering the EoS derived in Ref. [19], which takes into
account the interaction between quarks, and that have
been derived using cold and dense perturbative QCD. The
predictions from the pQCD EoS for SQSs are expected to
be more realistic in comparison to those derived e.g.,
using the MIT bag model, because it takes into account
quark interactions in a more systematic way. We have
considered three models for the treatment of charge in the
SQS and have performed a detailed comparison between
the predictions derived using the pQCD and MIT bag
model EoSs. For both EoSs, we have verified that the
presence of a net electric charge is implied in SQSs with
larger maximum masses in comparison to their neutral
counterparts. However, the pQCD EoS leads to larger
values for the maximum mass of the charged SQS, with
very heavy charged stars being stable systems against
radial oscillations. In addition, our results also demon-
strated that for a distribution of electric charge inside the
star given by qðrÞ ¼ βr3, the pQCD EoS implies unstable
configurations for large values of the renormalization
scale X as well as for large values of β, in contrast to
the MIT bag model predictions.
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