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Abstract

By using the solvability of Lauricella function F(K)
D

(α;β1, ..., βK ;γ ;x1, ..., xK) with nonpositive in-
teger βJ , we show that each scattering or decay process of string and D-brane states at arbitrary mass 
levels can be expressed in terms of a single Lauricella function. This result extends the previous exact 
SL(K + 3, C) symmetry of tree-level open bosonic string theory to include the D-brane.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

Motivated by the previous calculation of high energy symmetry [1,2] of string scattering am-
plitudes (SSA) [3–5], [6–10], it was shown [11] recently that all SSA of four arbitrary string states 
of the open bosonic string theory at all kinematic regimes can be expressed in terms of the D-
type Lauricella functions F (K)

D (α;β1, ..., βK ;γ ;x1, ..., xK) with associated exact SL(K +3, C)

symmetry. Here the index K counts the number of variety of the oscillators in a string state (see 
the definition of K in Eq. (3). On the other hand, a class of polarized fermion SSA (PFSSA) 
at arbitrary mass levels of the R-sector of the fermionic string theory can also be expressed in 
terms of the D-type Lauricella functions [12]. Indeed, it can be shown [11] that these Lauricella 
functions form an infinite dimensional representation of the SL(K + 3, C) symmetry group. 
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Moreover, it was demonstrated that there existed K + 2 recursion relations among the D-type 
Lauricella functions. These recursion relations can be used to reproduce the Cartan subalgebra 
and simple root system of the SL(K + 3, C) group with rank K + 2 and vice versa.

For the cases of nonpositive integer βJ (see Eq. (9)) in the D-type Lauricella functions 
which correspond to the cases of the SSA or the Lauricella SSA (LSSA) mentioned above, the 
SL(K + 3, C) group or the corresponding K + 2 stringy Ward identities among the LSSA can 
be used to solve [13] all the LSSA and express them in terms of one amplitude. These exact 
Ward identities among the exact LSSA are generalizations of the linear relations with constant 
coefficients among SSA in the hard scattering limit conjectured by Gross [1,2] in 1988 and later 
corrected and proved in [6–10].

More recently, by using the string theory extension [14], [15,16] of the field theory BCFW on-
shell recursion relations [17,18], one can show that [19] the residues of all n-point SSA including 
the Koba-Nielsen (KN) amplitudes can be expressed in terms of the Lauricella functions with 
nonpositive integer βJ . As a result, the above SL(K + 3, C) symmetry group of the 4-point 
LSSA was extended to the n-point LSSA with arbitrary n [20]. It is thus believed that the SL(K +
3, C) symmetry is the fundamental symmetry of the whole bosonic string theory, at least, tree-
level of the bosonic string theory.

To justify the conjecture of the fundamental SL(K + 3, C) symmetry of the bosonic string 
theory, one needs to collect more evidences or more SSA to support the proposed exact symmetry. 
In this paper, we will show that the scattering and decay processes of string and D-brane states 
at arbitrary mass levels can again be expressed in terms of the D-type Lauricella functions with 
nonpositive integer βJ . This result extends the previous exact SL(K + 3, C) symmetry of tree-
level open bosonic string theory to include the D-brane. This is also consistent with the previous 
results that the linear relations with constant coefficients among SSA in the hard scattering limit 
persist for the processes of D-brane scatterings [21] and decays [22] as they are all related to 
the exact SL(K + 3, C) symmetry of bosonic string theory. We will see that the calculation will 
be greatly simplified by using the solvability [13] of the Lauricella functions with nonpositive 
integer βJ .

2. Review of SL(K + 3, C) symmetry

We first review the LSSA of three tachyons and one arbitrary string states in the 26D open 
bosonic string theory and its associated SL(K + 3, C) symmetry. The general states are of the 
following form [11]∣∣∣rT

n , rP
m , rL

l

〉
=
∏
n>0

(
αT−n

)rT
n
∏
m>0

(
αP−m

)rP
m
∏
l>0

(
αL−l

)rL
l |0, k〉 (1)

where eP = 1
M2

(E2, k2, 0) = k2
M2

is the momentum polarization, eL = 1
M2

(k2, E2, 0) is the longi-

tudinal polarization and eT = (0, 0, 1) is the transverse polarization on the (2 + 1)-dimensional 
scattering plane. In addition to the mass level M2

2 = 2(N − 1) with

N =
∑

n,m,l>0
{rX

j �=0}

(
nrT

n + mrP
m + lrL

l

)
, (2)

we define another important index K for the state in Eq. (1)
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K =
∑

n,m,l>0
{rX

j �=0}

(n + m + l) (3)

where X = (T ,P,L) and we have put rT
n = rP

m = rL
l = 1 in Eq. (2) in the definition of K . 

Intuitively, K counts the number of variety of the αX−j oscillators in Eq. (1). For later use, we 
also define

kX
j ≡ eX · kj for X = (T ,P,L) . (4)

Note that SSA of three tachyons and one arbitrary string states with polarizations orthogonal to 
the scattering plane vanish.

Note that to achieve BRST invariance or physical state conditions in the old covariant quanti-
zation scheme for the state in Eq. (1), one needs to add polarizations and put on the Virasoro 
constraints. As an example, let’s calculate the case of symmetric spin 3 state of mass level 
M2

2 = 4. We first note that the three momentum polarizations defined on the scattering plane 
above satisfy the completeness relation

ημν =∑
α,β

eμ
α eν

βηαβ (5)

where μ, ν = 0, 1, 2 and α, β = P, L, T . Diag ημν = (−1, 1, 1). We can use Eq. (5) to trans-
form all μ, ν coordinates to coordinates α, β on the scattering plane. One gauge choice of the 
symmetric spin 3 state with Virasoro constraints can be calculated to be

εμνλα
μνλ
−1 |0, k〉 ; kμεμνλ = 0, ημνεμνλ = 0. (6)

We can then use the helicity decomposition and writing εμνλ = 	μ,ν,λe
α
μe

β
ν eδ

λuαβδ; α, β, δ =
P, L, T to get

εμνλα
μνλ
−1 |0, k〉 = [uT T L(3αT T L−1 − αLLL−1 ) + uT T T (αT T T−1 − 3αLLT−1 )] |0, k〉 . (7)

It is now easy to see from Eq. (7) that to achieve BRST invariance the spin 3 state can be written 
as a linear combination of states in Eq. (1) with coefficients uT T L and uT T T .

The 4-point LSSA of three tachyons and one string state in Eq. (1) can be calculated to be 
[11]

A4 =B

(
− t

2
− 1,− s

2
− 1

)
F

(K)
D

(
− t

2
− 1;RX

n ; u

2
+ 2 − N; Z̃X

n

)

×
∏
X

(∏
n=1

[
−(n − 1)!kX

3

]rX
n

)
(8)

where B(a, b) is the Beta function with (s, t) being the usual Mandelstam variables, kX
i is the 

momentum of the ith string state projected on the X polarization. In Eq. (8), we have defined

RX
l ≡

{
−rX

1

}1
, · · · ,

{
−rX

l

}l

with {a}n = a, a, · · · , a︸ ︷︷ ︸
n

, (9)

for the βJ in the Lauricella function and

ZX
l ≡

[
zX

1

]
, · · · ,

[
zX
l

]
with

[
zX
l

]
= zX

l0, · · · , zX
l(l−1), (10)
3
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where in Eq. (10), we have defined

zX
l =

∣∣∣∣∣∣
(

−kX
1

kX
3

) 1
k

∣∣∣∣∣∣ , zX
ll′ = zX

l e
2πil′

l , z̃X
ll′ ≡ 1 − zX

ll′ for l′ = 0, · · · , l − 1. (11)

It is important to note that all βj of F (K)
D in Eq. (8) are nonpositive integer. The D-type Lauricella 

function F (K)
D in Eq. (8) is defined to be

F
(K)
D (α;β1, ..., βK ;γ ;x1, ..., xK)

=
∞∑

n1,··· ,nK=0

(α)n1+···+nK

(γ )n1+···+nK

(β1)n1
· · · (βK)nK

n1! · · ·nK ! x
n1
1 · · ·xnK

K (12)

where (α)n = α · (α + 1) · · · (α + n − 1) is the Pochhammer symbol. The result in Eq. (8) can be 
generalized to LSSA of four arbitrary string states, and to those of n arbitrary string states (see 
Eq. (25)) below [19,20].

For illustration, we calculate the Lauricella functions which correspond to the LSSA for levels 
K = 1, 2. For K = 1, there are three type of LSSA (α = − t

2 − 1, γ = u
2 + 2)

(αT−1)
p1 , F

(1)
D (α,−p1, γ − p1,1), N = p1, (13)

(αP−1)
q1 , F

(1)
D (α,−q1, γ − q1,

[
z̃P

1

]
), N = q1, (14)

(αL−1)
r1 , F

(1)
D (α,−r1, γ − r1,

[
z̃L

1

]
), N = r1. (15)

For K = 2, there are six type of LSSA

(αT−1)
p1(αP−1)

q1 , F
(2)
D (α,−p1,−q1, γ − p1 − q1,1,

[
z̃P

1

]
),N = p1 + q1, (16)

(αT−1)
p1(αL−1)

r1 , F
(2)
D (α,−p1,−r1, γ − p1 − r1,1,

[
z̃L

1

]
),N = p1 + r1, (17)

(αP−1)
q1(αL−1)

r1 , F
(2)
D (α,−q1,−r1, γ − q1 − r1,

[
z̃P

1

]
,
[
z̃L

1

]
),N = q1 + r1, (18)

(αT−2)
p2 , F

(2)
D (α,−p2,−p2, γ − 2p2,1,1), N = 2p2, (19)

(αP−2)
q2 , F

(2)
D (α,−q2,−q2, γ − 2q2,1 − ZP

2 ,1 − ωZP
2 ), N = 2q2, (20)

(αL−2)
r2 , F

(2)
D (α,−r2,−r2, γ − 2r2,1 − ZL

2 ,1 − ωZL
2 ), N = 2r2. (21)

It is important to note that for a given K , there are infinite number of string states with arbitrary 
higher mass levels. Moreover, each string state was assigned a particular value of integer K , and 
its associated LSSA is a basis of the SL(K + 3, C) group representation.

To demonstrate the SL(K +3, C) symmetry of the LSSA, one first defines the basis functions 
[23]

f b1···bK
ac (α;β1, · · · , βK ;γ ;x1, · · · , xK)

= B (γ − α,α)F
(K)
D (α;β1, · · · , βK ;γ ;x1, · · · , xK)aαb

β1
1 · · ·bβK

K cγ , (22)

so that the LSSA in Eq. (8) can be rewritten as [24]

A4 = f
−(n−1)!kX

3
11

(
− t − 1;RX

n , ; u + 2 − N; Z̃X
n

)
. (23)
2 2
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One can then introduce the (K + 3)2 − 1 generators Eij of SL(K + 3, C) group [23,24][
Eij ,Ekl

]= δjkEil − δliEkj ; 1 � i, j � K + 3 (24)

to operate on the basis functions in Eq. (22). These are 1 Eα , K Eβk (k = 1, 2 · · ·K), 1 Eγ , 1
Eαγ , K Eβkγ and K Eαβkγ which sum up to 3K + 3 raising generators. There are also 3K + 3
corresponding lowering operators. In addition, there are K (K − 1) E

βk

βp
and K +2

{
Jα, Jβk

, Jγ

}
generators, the Cartan subalgebra. In sum, the total number of generators are 2(3K +3) +K(K −
1) + K + 2 = (K + 3)2 − 1 [24].

For the general 4-point LSSA, it is straightforward to calculate the operation of these genera-
tors on the basis functions and show the SL(K + 3, C) symmetry [24]. For the cases of higher 
point (n ≥ 5) LSSA, one encounters the operation on the sum of products of the Lauricella func-
tions [19]

Residue of n-point LSSA ∼
∑

coefficient
∏

(single tensor 4-point LSSA). (25)

Therefore, one needs to deal with product representations of SL(K + 3, C).
Indeed, we have recently applied the string theory extension of field theory BCFW on-shell 

recursion relations [17,18] to show that the SL(K + 3, C) symmetry group of the 4-point LSSA 
persists for general n-point SSA with arbitrary higher point couplings in string theory [20]. We 
thus have shown that the SL(K + 3, C) symmetry is an exact symmetry of the whole bosonic 
string theory, and that all n-point SSA of the bosonic string theory form an infinite dimensional 
representation of the SL(K + 3, C) group. Moreover, all residues of SSA in the string theory 
on-shell recursion prescription can be expressed in terms of the four-point LSSA.

There is an interesting issue of the stringy on-shell Ward identities or decoupling of zero-norm 
states associated with the SL(K + 3, C) symmetry. For the n-point Ward identities with n ≥ 5, 
one can either write down the linear on-shell Ward identities in terms of n-point functions or, 
through reduction of stringy BCFW recursion, calculate the non-linear on-shell Ward identities 
in terms of 4-point functions. For the latter case, we conjecture that the non-linear Ward iden-
tities can be reduced to the equivalent linear 4-point Ward identities since both forms of Ward
identities are associated with the same SL(K + 3, C) group.

3. Solvability of LSSA

There exist K + 2 recurrence relations for the D-type Lauricella functions [24]. Moreover, 
these recurrence relations can be used to reproduce the Cartan subalgebra and simple root system 
of the SL(K + 3, C) group with rank K + 2 [24]. With the Cartan subalgebra and the simple 
roots, one can easily write down the whole Lie algebra of the SL(K + 3, C) group. So one can 
construct the SL(K + 3, C) Lie algebra from the recurrence relations and vice versa.

On the other hand, one can use the K + 2 recurrence relations to deduce the following key 
recurrence relation [13]

xjF
(K)
D (α;β1, ., βi − 1, .., βK ;γ ;x1, ..., xK)

− xiF
(K)
D

(
α;β1, ., βj − 1, .., βK ;γ ;x1, ..., xK

)
+ (xi − xj

)
F

(K)
D (α;β1, ..., βK ;γ ;x1, ..., xK) = 0, (26)

which, for the case of nonpositive βj , can be repeatedly used to decrease the value of K and re-

duce all the Lauricella functions F (K) in the LSSA to the Gauss hypergeometric functions F (1) =
D D

5
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2F1(α, β, γ, x). Indeed, one can repeatedly apply Eq. (26) to the Lauricella functions in Eq. (8)
and express F(K)

D (α;β1, ..., βK ;γ ;x1, ..., xK) in terms of F (K−1)
D (β1, ..βi−1, βi+1...β

′
j , ...βK)

with β ′
j = βj , βj − 1, ..., βj − |βi | or F (K−1)

D (β1, ...β ′
i , ...βj−1, βj+1, ...βK) with β ′

i = βi, βi −
1, ..., βi − ∣∣βj

∣∣ (assuming i < j ).
For example, for say K = 2, Eq. (26) reduces to

x2F
(2)
D (α;β1 − 1, β2;γ ;x1, x2) − x1F

(2)
D (α;β1, β2 − 1;γ ;x1, x2)

+ (x1 − x2)F
(2)
D (α;β1, β2;γ ;x1, x2) = 0. (27)

For say β1 = 0 and β2 = −1, we get

x2F
(2)
D (α;−1,−1;γ ;x1, x2)

= x1F
(2)
D (α;0,−2;γ ;x1, x2) − (x1 − x2)F

(2)
D (α;0,−1;γ ;x1, x2)

= x1F
(1)
D (α;−2;γ ;x2) − (x1 − x2)F

(1)
D (α;−1;γ ;x2) (28)

which express the Lauricella function with K = 2 in terms of those of K = 1. We can repeat 
similar process to decrease the value of K .

Moreover, one can further reduce the Gauss hypergeometric functions by deriving a multi-
plication theorem for them, and then solve [13] all the LSSA in terms of one single amplitude. 
This solvability is crucial to show that all scattering and decay processes of string and D-brane 
states at arbitrary mass levels can be expressed in terms of the Lauricella function and thus its 
associated SL(K + 3, C) symmetry.

4. Closed string scattered off D-brane

In this paper, we will consider scattering and decay processes of string and D-brane states 
at arbitrary mass levels. These are three classes of processes [25], [26–30]: (A). Closed string 
scattered off D-brane, (B). Closed string decays into two open strings on the brane and (C). Four 
open string scattering on the brane. The calculation of process (C) is similar to that of four open 
string scattering without D-brane, and thus can be expressed in terms of the Lauricella function.

In this section, we first consider process (A). In [25], the calculation was done only for the 
massless string states. Here we will consider scatterings of arbitrary massive string states for the 
bosonic string. The standard propagators of the left and right moving fields are 〈Xμ (z)Xν (w)〉 =
−ημν log (z − w) , 

〈
X̃μ (z̄) X̃ν (w̄)

〉
= −ημν log (z̄ − w̄). In addition, there are nontrivial correla-

tor as well [25]〈
Xμ (z) X̃ν (w̄)

〉
= −Dμν log (z − w̄) (29)

as a result of the Dirichlet boundary condition at the real axis. The diagonal matrix D in Eq. (29)
reverses the sign for fields satisfying Dirichlet boundary condition. That is, there are p + 1 Neu-
mann and 25 − p Dirichlet for a Dp-brane. We will follow the standard notation and make the 
following replacement [25]

X̃μ (z̄) → Dμ
νX

ν (z̄) (30)

which allows us to use the standard correlators throughout our calculations. As a warm up exer-
cise, we first consider tachyon to tachyon scattering [21]
6
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Atach =
∫

d2z1d
2z2 〈V1 (z1, z̄1)V2 (z2, z̄2)〉

=
∫

d2z1d
2z2 (z1 − z̄1)

k1·D·k1 (z2 − z̄2)
k2·D·k2 |z1 − z2|2k1·k2 |z1 − z̄2|2k1·D·k2 . (31)

To fix the SL (2,R) invariance, we set z1 = iy and z2 = i and, for the contribution of the (0, 1)

interval, we obtain [21]

A
(0,1)
tach = 4 (2i)2a0

1∫
0

dy ya0 (1 − y)b0 (1 + y)c0

= 4 (2i)2a0 2−2a0−1−N

1∫
0

dx xb0 (1 − x)a0 (1 + x)a0+N . (32)

In the above calculations, we have defined

a0 = k1 · D · k1 = k2 · D · k2, (33)

b0 = 2k1 · k2 + 1, (34)

c0 = 2k1 · D · k2 + 1, (35)

so that

2a0 + b0 + c0 + 2 = 4N1 ≡ −N, (36)

and −k2
1 = M2 ≡ α′

closedM2
closed

2 = 2(N1 − 1), N1 = 0 for tachyon. The momentum conservation 
on the D-brane

D · k1 + k1 + D · k2 + k2 = 0 (37)

is crucial to get the final result Eq. (32). Similarly, for the contribution of the (1, ∞) interval, we 
end up with

A
(1,∞)
tach = 4 (2i)2a0

∞∫
1

dy ya0 (y − 1)b0 (1 + y)c0

= 4 (2i)2a0 2−2a0−1−N

1∫
0

dx xb0 (1 − x)a0+N (1 + x)a0 . (38)

For the general massive tensor to another massive tensor scattering, the calculation will be 
very complicated as there are many new contraction terms. We will use the solvability of the 
LSSA discussed above to simplify the calculation. The strategy is as follows: We can simply 
calculate a typical term of a given process. If the result turns out to be a Lauricella function with 
nonpositive βj , we can then use the solvability property to argue that the final amplitude after 
summing up all typical terms of the process is a LSSA. To do the calculation, we first define

a = k1 · D · k1 + na, (39)

b = 2k1 · k2 + 1 + nb, (40)

c = 2k1 · D · k2 + 1 + nc, (41)
7
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where na , nb and nc are integer and then define N ′ = − (2na + nb + nc), so that

2a + b + c + 2 + N ′ = 4N1 =⇒ 2a + b + c + 2 = 4N1 − N ′ ≡ −N (42)

where k2
1 = 2(N1 − 1) and N1 is the mass level of k1. It is easy to see that a typical term in the 

general tensor to tensor scattering can be calculated to be [21]

I(0,1) =
1∫

0

dt ya (1 − y)b (1 + y)c ,

= 2−2a−1−N

1∫
0

dx xb (1 − x)a (1 + x)a+N . (43)

Similarly, for the (1, ∞) interval, one gets

I(1,∞) =
∞∫

1

dy ya (y − 1)b (1 + y)c

= 2−2a−1−N

1∫
0

dx xb (1 − x)a+N (1 + x)a . (44)

The sum of the two channels gives [21]

I = 2−2a−2−N
N∑

m=0

[
1 + (−1)m

](N

m

)
· (a + 1)

(
b+1

2 + m
2

)

(
a + b+3

2 + m
2

)

= 2−2a−1−N
(a + 1)

(
b+1

2

)

(
a + b+3

2

)
[

N
2

]∑
n=0

(
N

2n

) (
b+1

2

)
n(

a + b+3
2

)
n

= 2−2a−1−N · B
(

a + 1,
b + 1

2

)
· 3F2

(
b + 1

2
,−
[
N

2

]
,

1

2
−
[

N

2

]
;a + b + 3

2
,

1

2
;1

)
(45)

where 3F2 is a generalized hypergeometric function. For the special arguments of 3F2 in Eq. (45), 
the hypergeometric function terminates to a finite sum and, as a result, the whole scattering 
amplitudes consistently reduce to the usual beta function. In calculating Eq. (45), we have used 
the identity[

N
2

]∑
n=0

(
N

2n

)
(A)n

(C)n
= 3F2

(
A,−

[
N

2

]
,

1

2
−
[
N

2

]
;C,

1

2
;1

)
, (46)

which can be easily proved.
At this point, one might think that the amplitude calculated in Eq. (45) is not a LSSA, and 

the SL(K + 3, C) group may be just a subgroup of an unknown larger symmetry group G ⊇
SL(K + 3, C) of the bosonic string theory. However, we will see that this is not the case. To 
show that 3F2 in the amplitude Eq. (45) is a LSSA, we first do a change of variable y = x2 to get
8
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I = 2−2a−1−N

1∫
0

dx xb (1 − x)a (1 + x)a
[
(1 + x)N + (1 − x)N

]

= 2−2a−1−N

1∫
0

dy y
b−1

2 (1 − y)a G(y) (47)

where

G(y) = G
(
x2
)

= 1

2

[
(1 + x)N + (1 − x)N

]
. (48)

We can solve

G
(
x2
)

= 1

2

[
(1 + x)N + (1 − x)N

]
= 0 (49)

to get

x = xk = (−1)
1
N − 1

(−1)
1
N + 1

= wN,k − 1

wN,k + 1
= i tan

θk

2
(50)

where

wN,k = e
iπ
N

+ 2iπk
N = eiθk , θk = π

N
+ 2πk

N
,k = 1,2 · · · ,N. (51)

We can now do the following factorization

G
(
x2
)

=
N∏

k=1

(
1 − x

xk

)
=

[
N
2

]∏
k=1

(
1 − x

xk

)(
1 − x

x̄k

)
=

[
N
2

]∏
k=1

(
1 −

(
x

xk

+ x

x̄k

)
+ x2

xkx̄k

)

=

[
N
2

]∏
k=1

(
1 + x2

xkx̄k

)
=

[
N
2

]∏
k=1

(
1 − x2

x2
k

)
(52)

to obtain

G(y) =

[
N
2

]∏
k=1

(
1 − y

x2
k

)
=

[
N
2

]∏
k=1

⎛
⎜⎝1 + y(

tan θk

2

)2

⎞
⎟⎠=

[
N
2

]∏
k=1

(
1 + y(

tan
(

π
2N

+ πk
N

))2
)

. (53)

Finally, we can use

1∫
0

dy y
b−1

2 (1 − y)a G(y)

=
1∫
dy y

b−1
2 (1 − y)a

[
N
2

]∏
k=1

(
1 − y

x2
k

)

0

9
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= B

(
a + 1,

b + 1

2

)
· F

([
N
2

])
D

⎛
⎜⎜⎜⎝b + 1

2
;−1, ...,−1︸ ︷︷ ︸[

N
2

] ;a + b + 3

2
; 1

x2
1

, ...,
1

x2[
N
2

]

⎞
⎟⎟⎟⎠ (54)

to obtain the identification

3F2

(
b + 1

2
,−
[
N

2

]
,

1

2
−
[
N

2

]
;a + b + 3

2
,

1

2
;1

)

= F

([
N
2

])
D

⎛
⎜⎜⎜⎝b + 1

2
;−1, ...,−1︸ ︷︷ ︸[

N
2

] ;a + b + 3

2
; 1

x2
1

, ...,
1

x2[
N
2

]

⎞
⎟⎟⎟⎠ (55)

where xk is defined in Eq. (50). We believe that the identity in Eq. (55) derived from string 
theory was not known previously in the literature [31]. In conclusion, we have shown that each 
amplitude of process (A) can be expressed in terms of a single Lauricella function with nonpos-
itive integer βj and thus is a LSSA. As a result, all scattering of string at arbitrary mass levels 
from D-brane calculated in (A) form a part of an infinite dimensional representation of the exact 
SL(K + 3, C) symmetry of the bosonic string theory.

5. Closed string decays into two open string

In this section, we consider process (B), namely, closed string decays into two open strings 
on the brane. We will adapt the same strategy used in the last section and calculate only a typical 
term of a given process. We begin with the kinematics of the decay process. The momentum 
conservation on the D-brane reads

1

2
(kc + D · kc) + k1 + k2 = 0 (56)

where kc is the momentum of the closed string state. In the usual three-point amplitudes, mo-
mentum conservation completely constrains the kinematics. In the presence of D-brane, the 
non-conservation of momentum in the directions transverse to the D-brane gives precisely one 
kinematic variable which can be defined to be

t = − (k1 + k2)
2 . (57)

By using Eq. (56) and Eq. (57), one easily gets

k1 · kc = k1 · D · kc = t + M2
1 − M2

2

2
,

k2 · kc = k2 · D · kc = t + M2
2 − M2

1

2
, (58)

which give

t = k1 · kc + k2 · D · kc = k2 · kc + k1 · D · kc. (59)

We first calculate the amplitude of a closed string tachyon to decay into two open string 
tachyons
10
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Atach =
∫

dx1dx2d
2z
〈
eik1·X(x1)eik2·X(x2)eikc·X(z)eikc·X̄(z̄)

〉
=
∫

dx1dx2d
2z · (x1 − x2)

k1·k2 (z − z̄)kc·D·kc (x1 − z)k1·kc

· (x1 − z̄)k1·D·kc (x2 − z)k2·kc (x2 − z̄)k2·D·kc . (60)

The next step is to use {z1, z2, z3, z̄3} = {−x, x, i, −i} to fix the SL (2,R) invariance and obtain

Atach =
∫

dx xk1·k2 (x + i)k1·kc+k2·D·kc (x − i)k2·kc+k1·D·kc

=
∫

dx xk1·k2 (x + i)t (x − i)t

=
∫

dx xb0
(

1 + x2
)a0

(61)

where we have used Eq. (59) and defined

a0 = t, b0 = k1 · k2. (62)

We now turn to the general mass level case. We will again use the solvability of the LSSA 
discussed above to simplify the calculation as before. A typical term of an arbitrary massive 
closed string state decays into two arbitrary massive open string states can be written as

A =
∫

dx xk1·k2+nb (x + i)t+na (x − i)t+nc (63)

where na , nb and nc are related to mass levels of kc, k1 and k2. At this point, we expect after 
summing up all terms in the calculation, a real amplitude will be obtained. So we are going to 
calculate only the real part of A

A + Ā =
+∞∫

−∞
dx xk1·k2+nb

(
x2 + 1

)t [
(x + i)na (x − i)nc + (x − i)na (x + i)nc

]

=
+∞∫

−∞
dx xk1·k2+nb+N

(
x2 + 1

)t+min{na,nc}
[(

1 − i

x

)N

+
(

1 + i

x

)N
]

(64)

where N ≡ |nc − na|, and see whether the final answer is a Lauricella function. Eq. (64) can be 
further reduced to

A + Ā =
+∞∫

−∞
dx xb

(
x2 + 1

)a
N∑

m=0

(
N

m

)[
1 + (−1)m

]( i

x

)m

= 2

[
N
2

]∑
n=0

(
N

2n

)
(−1)n

+∞∫
−∞

dx xb−2n
(
x2 + 1

)a

(65)

where we have defined

a = t + min {na,nc} ,

b = k1 · k2 + nb + N, (66)
11
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which are higher mass level generalization of Eq. (62). We can use the change of variable y =
x2

x2+1
to perform the integral in Eq. (65)

+∞∫
−∞

dx xb
(

1 + x2
)a

= 1

2

[
1 + (−1)b

] 1∫
0

dy y
b
2 − 1

2 (1 − y)−a− b
2 − 3

2

= 1

2

[
1 + (−1)b

] 
(

b
2 + 1

2

)

(−a − b

2 − 1
2

)
(−a)

. (67)

Finally, we obtain

A + Ā = 2

[
N
2

]∑
n=0

(
N

2n

)
(−1)n

1

2

[
1 + (−1)b

] 
(

b
2 + 1

2 + n
)

(−a − b

2 − 1
2 − n

)
(−a)

. (68)

To derive a Lauricella function in Eq. (68), we note that


(

b
2 + 1

2 + n
)

(−a − b

2 − 1
2 − n

)
(−a)

=
(

b
2 + 1

2

)
n

(

b
2 + 1

2

)

(−a − b

2 − 1
2

)
(−1)n

(
a + b

2 + 3
2

)
n
 (−a)

. (69)

So Eq. (68) can be written as

A + Ā = 2
[
1 + (−1)b

] 
(

b
2 + 1

2

)

(−a − b

2 − 1
2

)
(−a)

[
N
2

]∑
n=0

(
N

2n

) (
b
2 + 1

2

)
n(

a + b
2 + 3

2

)
n

= 2
[
1 + (−1)b

]
B

(
−a − b + 1

2
,
b + 1

2

)

×3 F2

(
b + 1

2
,−
[
N

2

]
,

1

2
−
[
N

2

]
;a + b + 3

2
; 1

2
;1

)

= 2
[
1 + (−1)b

]
B

(
−a − b + 1

2
,
b + 1

2

)

× F

([
N
2

])
D

⎛
⎜⎜⎜⎝b + 1

2
;−1, ...,−1︸ ︷︷ ︸[

N
2

] ;a + b + 3

2
; 1

x2
1

, ...,
1

x2[
N
2

]

⎞
⎟⎟⎟⎠ (70)

where we have used the identities in Eq. (46) and Eq. (55). Finally, we can use the solvability 

property of F
(
[

N
2

]
)

D with nonpositive βj to argue that the final amplitude after summing up all 
typical terms of the decay process is a LSSA.

Incidentally, we note that the factor in the first line of Eq. (70)

1

2

[
1 + (−1)b

] 
(

b
2 + 1

2

)

(−a − b

2 − 1
2

)
(−a)

=
+∞∫

dx xb
(

1 + x2
)a

(71)
−∞

12
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with a = 2t − 1, b = −2t can be calculated to be

1

2

[
1 + (1)−t

] 
(−t + 1

2

)

(−2t + 1 + t − 1

2

)
(−2t + 1)

= 2
(−t + 1

2

)
(−2t + 1)

. (72)

By using the duplication formula for the gamma function



(
−t + 1

2

)
= 21+2t

√
π(−2t)

 (−t)
, (73)

the result in Eq. (72) can be further reduced to

2
(−t + 1

2

)
(−2t + 1)

= 22+4tπ (−2t)

−2t2 (−t)
= 4 · 16t tπ (−2t)

−2 (−t (−t))2 = −2t · 16t π (−2t)

2 (−t + 1)
. (74)

The factor (−2t)

2(−t+1)
can also be found in [25,27] for the massless string/D-brane decay process.

6. Conclusion

In conclusion, in this paper we have shown that each amplitude of processes (A) and (B) for 
arbitrary massive string/D-brane states can be expressed in terms of a single Lauricella function 
with nonpositive integer βj and thus is a LSSA. To obtain the final results, we have used the 
solvability of the LSSA with nonpositive integer βj to simplify the calculation.

In addition to the scattering processes calculated in (A), all decay amplitudes of string/D-
brane states at arbitrary mass levels calculated in (B) also form a part of an infinite dimensional 
representation of the exact SL(K + 3, C) symmetry of the bosonic string theory. The results in 
this paper extends the previous exact SL(K + 3, C) symmetry of tree-level open bosonic string 
theory to include the D-brane.
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