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We study the evolution ofAbelianUð1Þ electromagnetic aswell as non-Abelian SUð2Þ gauge fields, in the
presence of spacetime oscillations. Analysis of the time evolution ofAbelian gauge fields shows the presence
of parametric resonance in spatial modes. A similar analysis in the case of non-Abelian gauge fields, in the
linear approximation, shows the presence of the same resonant spatial modes. The resonant modes induce
large fluctuations in physical observables including those that break theCP symmetry.We also carry out time
evolution of small random fluctuations of the gauge fields, using numerical simulations in 2þ 1 and 3þ 1

dimensions. These simulations help to study nonlinear effects in the case of non-Abelian gauge theories. Our
results show that there is an increase in energy density with the coupling, at late times. These results suggest
that gravitational waves may excite non-Abelian gauge fields more efficiently than electromagnetic fields.
Also, gravitational waves in the early Universe and from the merger of neutron stars, black holes, etc., may
enhance CP violation and generate an imbalance in chiral charge distributions, magnetic fields, etc.
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I. INTRODUCTION

The phenomenon of parametric resonance, in particle
mechanics [1], arises when parameters of the system are
oscillatory. This phenomenon finds applications in diverse
systems, ranging from parametric oscillators to particle
productions in the early Universe [2–5]. In the context of
the early Universe, entropy is generated via the mechanism
of parametric amplification, which subsequently leads to
particle production [6–8]. During the preheating stage of
the postinflationary period, an oscillatory supermassive
field leads to explosive production of particles [9–14]. In
the context of heavy-ion collisions, the parametric ampli-
fication of pion field induced by oscillatory sigma meson
field has been explored [15]. It has been found that an
oscillatory free energy [16], oscillatory trapping potential
[17–19], etc., also give rise to parametric resonance. In the
presence of gravitational waves (GWs), parametric

resonance is observed in neutrino spin and flavor oscil-
lations [20,21]. It is hypothesized that a coherently oscil-
lating axion condensate will exhibit parametric resonance
in an electromagnetic field coupled through the Chern
Simons term and which can eventually lead to radio wave
emission [22–24].
Recently, it has been shown that transversely polarized

(GWs), i.e., sustained monochromatic spacetime oscilla-
tions, induce large fluctuations in a superfluid condensate
[25]. These large fluctuations subsequently decay to
vortex-antivortex pairs, without having the system go
through a phase transition. Detailed numerical analysis,
of the momentum modes of the fields in the linear regime,
showed that they grow exponentially. In this regime, the
analysis of the time evolution equations of the field modes,
which resemble that of a parametric oscillator, confirms that
the underlying phenomenon is the parametric resonance.
The resonant growth of fieldmodes is found to be significant
also in the case of transient and nonmonochromatic GWs,
i.e., those generated during merger events of neutron stars
and/or black holes. In Ref. [26], a GW pulse modeled on the
merger event GW150914, detected by the LIGO experi-
ment, leads to an exponential growth in the fluctuations in a
fuzzy dark matter.
The source of parametric resonance in Refs. [25,26] is

oscillatory gradients in the field equations, which arise from
the coupling between the classical fields and the spacetime
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oscillations. The coupling of spacetime oscillations to gauge
fields being similar, we expect the electromagnetic, as well
as the non-Abelian gauge fieldswill also undergo parametric
resonance. We mention here that the interaction between
electromagnetic waves (EMWs) and GWs has been exten-
sively studied since Einstein’s general theory of relativity
predicted their existence [27–39]. GWs affect various
properties of EMWs and vice versa. The polarization of
EMWs gets rotated through scattering with GWs [28]. The
GWs and EMWs are known to induce fluctuations in each
other [29–31]. Further enhancement in the fluctuations of
EMWs is observedwhen nonlinear interactions are included
[32,33]. There are effects of GWs on EMWs which lead to
interesting physical consequences [34–37]. For example, in
the case of the core collapse of a presupernova star, the
production of electromagnetic waves can lead to fusion
outside of the iron core [37]. Recently, the response of
electromagnetic fields to GWs has been studied by evolving
them in the presence of oscillating background the metric. A
small oscillating background on top of flat spacetime causes
deviation in the direction of the EMW when it is
perpendicular to the GW’s direction of propagation [38].
The simultaneous electromagnetic and gravitational wave
signal detection of binary neutron star merger event
GW170817 will shed more light on the interplay between
GWs andEMWs [40]. In de Sitter space, the perturbations of
electromagnetic fields grow with conformal time. The
spacetime oscillations, around a flat spacetime background,
drive the parametric resonance of electromagnetic fields, as
a result of which theGWsget dampedwhile passing through
a medium [39]. Quantum corrections to electrodynamics,
due to inflationary gravitons in de Sitter space, have also
been studied previously [41–44].
In this work, we study the parametric resonance in

electromagnetic [Uð1Þ] as well as non-Abelian [SUð2Þ]
gauge fields in the presence of spacetime oscillations,
using analytical methods and numerical simulations. As in
[25,26], the spacetime oscillations are considered to be
monochromatic waves, which modify the classical field
equations. In the case of Uð1Þ fields, the modes under-
going parametric resonance are obtained from the field
equations in momentum space. For SUð2Þ, the mode
equations are analyzed in the linear approximation as
different modes effectively decouple. The mode equation
for each color field becomes identical to that of Uð1Þ
gauge fields. In the numerical simulations, initial field
configurations are dynamically evolved in real time, in
2þ 1 and 3þ 1 dimensions. The initial field configura-
tions are such that the energy of the system entirely comes
from small fluctuations. These simulations are crucial to
compare the dynamics of fluctuations in SUð2Þ and Uð1Þ
gauge theories. Furthermore, the numerical simulations
are useful in Uð1Þ, even though the theory is linear, to
evolve field configurations with special boundary
conditions.

As expected, our numerical results show that, in the
linear regime, the dynamics of fluctuations in Uð1Þ and
SUð2Þ gauge theory are similar. The field modes undergo
exponential growth due to parametric resonance. In the case
of the SUð2Þ gauge theory, initially in the nonlinear regime,
the energy density starts to decrease. Subsequently, as the
fluctuations undergo sustained parametric resonance, a
larger growth is observed compared to the case of vanishing
gauge coupling. The details of decay and eventual enhance-
ment depend on the initial configuration, i.e., on the
distribution of modes. We mention here that the dynamics
of gauge fields is similar to that of fluctuations in constant
chromomagnetic fields, the so-called Nielsen-Olesen (NO)
instability [45,46]. In the latter case, along with exponen-
tially growing modes, overdamping modes are also present.
The overdamping modes’ effects are largest initially
and decrease with time [47]. Large chromoelectric fields
are also known to cause the NO instability [48]. Previous
studies in the presence of oscillatory chromomagnetic
fields show there is a subdominant growth due to
parametric resonance along with dominant NO instability
[49–51]. The above nonlinear effects suggest that GWs will
excite SUð2Þ gauge fields more efficiently than Uð1Þ
electromagnetic fields.
The exponential growth of modes leads to large fluctua-

tions in physical observables such as energy density, E · B
in Uð1Þ and trðFF̃Þ in SUð2Þ gauge theories, etc. Our
numerical simulations show that even if E ·B and trðFF̃Þ
are zero initially, they develop nonzero values and grow,
due to the presence of multiple resonant modes. SinceE · B
and trðFF̃Þ are related to the divergence of the chiral
current, they can contribute to chiral magnetic effects,
enhance instanton transitions, production of particles, etc. It
will be interesting to consider these processes in the context
of cosmology. We mention here that the resonant excitation
of fields in QCD or electroweak theory will not be possible
from the gravitational waves from merger events. This is
because of the presence of the mass scales, such as ΛQCD.
However, phase transitions in the early Universe may
generate gravitational waves which can induce parametric
resonance in QCD [52–54].
The paper is organized as follows. In Sec. II, we obtain

the parametric resonant modes of the fields due to space-
time oscillations. In Sec. III, we present the results of our
numerical simulations of Uð1Þ electromagnetic fields and
SUð2Þ non-Abelian gauge fields. The conclusion and
discussions are presented in Sec. IV.

II. PARAMETRIC RESONANCE IN THE LINEAR
APPROXIMATIONS

Spacetime oscillations are taken into account by con-
sidering a flat metric with time-dependent terms, i.e.,
gμν ¼ diagð−1; 1 − ϵ sinðωðt − zÞÞ; 1þ ϵ sinðωðt − zÞÞ; 1Þ,
with ϵ < 1 [55,56]. ω is the frequency of the
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monochromatic plane GW, propagating along the z direc-
tion. For simplicity, we ignore the backreaction on the
metric due to the gauge fields. The Lagrangian density for
SUð2Þ gauge fields is given by

L ¼ −
1

4
gαμgβνFa

αβF
a
μν: ð1Þ

The field strength tensor is defined as Fa
μν ¼ ∇μAa

ν −
∇νAa

μ þ gϵabcAb
μAc

ν, where Aa
μ denotes the four-vector

gauge field with color a. ϵabc is the Levi-Civita symbol
in color space, a, b, c ¼ 1, 2, 3. g is the gauge coupling
constant and is taken to be one in our study, otherwise
mentioned. The covariant derivative is defined as
∇μAaν ¼ ∂μAaν þ Γν

μαAaα, where Γν
μα are the Christoffel

symbols. In the Lorentz gauge, ∇ηAaη ¼ 0, the Euler-
Lagrange equation for the gauge field Aaν, is given by

∇μ∇μAaν − gλνRσλAaσ þ gfabcAbμ∇μAcν

þ gfabcAb
μð∇μAcν −∇νAcμÞ

þ g2ðAbνAb
μAaμ − AbμAaνAb

μÞ ¼ 0: ð2Þ

Here, Rσλ is Ricci tensor. Analytically, the resonant modes
can be obtained by considering linear approximation,
which can also be done by setting g ¼ 0. In this approxi-
mation, different field modes, as well as colors, effectively
decouple and their time evolution resembles that of a
parametric oscillator. Note that, for Uð1Þ, the Lagrangian
density and field equations can be obtained by setting g ¼ 0
above and dropping the color indices. Thus, the gauge
fields in SUð2Þ with g ¼ 0 and Uð1Þ gauge fields will
undergo the same dynamical evolution. The color indices,
therefore, do not play any essential role. The field equations
for Uð1Þ and for SUð2Þ in linear approximation take the
following form:

− A0;tt þ A0;zz þ
A0;xx

1 − h
þ A0;yy

1þ h

þ 2hhtA0;t − 2hhzA0;z

2ð1 − h2Þ þ RðtÞA0 − RðtÞA3 ¼ 0; ð3Þ

A1;xx

1 − h
þ A1;yy

1þ h
þ 2hhtA1;t − 2hhzA1;z

2ð1 − h2Þ − A1;tt þ A1;zz ¼ 0;

ð4Þ

A2;xx

1 − h
þ A2;yy

1þ h
þ 2hhtA2;t − 2hhzA2;z

2ð1 − h2Þ − A2;tt þ A2;zz ¼ 0;

ð5Þ

and

− A3;tt þ A3;zz þ
A3;xx

1 − h
þ A3;yy

1þ h
þ 2hhtA3;t − 2hhzA3;z

2ð1 − h2Þ
þ RðtÞA0 − RðtÞA3 ¼ 0; ð6Þ

for the fields A0, A1, A2, and A3, respectively. The second
(third) subscript represents first (second) derivatives.
h≡ hðz; tÞ ¼ ϵ sinðωðt − zÞÞ, and its derivatives with
respect to z and t are represented by the corresponding
subscripts.

RðtÞ≡ R0
0ðtÞ ¼

�
htht

4ð1 − hÞ2 þ
htht

4ð1þ hÞ2 þ
hhtt
1 − h2

�
ð7Þ

is the Ricci tensor Rμ
ν with μ ¼ ν ¼ 0.

A. The time evolution of the momentum modes

The evolution equations for the momentum modes,
aμðk; tÞ, are obtained by writing Aμðx; tÞ as

Aμðx; tÞ ¼
1

V

Z
d3kaμðk; tÞeik·x: ð8Þ

Since there are no spatial oscillations of the metric along
the z direction, it is expected that there will not be any
resonant growth of z-component momentum modes.
Therefore, we consider x ¼ ðx; yÞ and k ¼ ðkx; kyÞ and
set z ¼ 0. The time evolution equations, for the momentum
modes, are given by

−CðtÞȧ0ðk; tÞ þ ä0ðk; tÞ þ ðk2xfðtÞ þ k2yfð−tÞ − RðtÞÞa0ðk; tÞ þ RðtÞa3ðk; tÞ ¼ 0; ð9Þ

−CðtÞȧ3ðk; tÞ þ ä3ðk; tÞ þ ðk2xfðtÞ þ k2yfð−tÞ þ RðtÞÞa3ðk; tÞ − RðtÞa0ðk; tÞ ¼ 0; ð10Þ

−CðtÞȧiðk; tÞ þ äiðk; tÞ þ ðk2xfðtÞ þ k2yfð−tÞÞaiðk; tÞ ¼ 0; i ¼ 1; 2: ð11Þ

fðtÞ ¼ 1=ð1 − ϵ sinðωtÞÞ, CðtÞ ¼ ϵ2ωfðtÞfð−tÞ sinð2ωtÞ=2, and an overdot represents derivative with respect to time. Note
that Eqs. (9)–(11) are valid for SUð2Þ only in the linear approximation, i.e., when the amplitudes of the field modes are
small. In all the above equations, damping terms oscillate with frequency 2ω. In Eqs. (9) and (10), the external force in the
form of the Ricci tensor also oscillates with frequency ω. The above mode equations resemble that of a parametric oscillator
with an oscillatory damping term. It is well known that these oscillatory terms drive paramagnetic resonance in the
following momentum modes:
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kx;y ¼
nω
2

; ð12Þ

where n ¼ 1; 2; 3…. In the linear approximation in SUð2Þ,
which is valid when the fluctuations are small, the different
modes of the gauge fields decouple. So, initially, the modes
which satisfy Eq. (12) will undergo resonance. Once the
field modes grow beyond the linear regime, the interaction
between gauge fields of different colors will be necessary.
In this situation, evolution can be studied only by using
numerical simulations.

B. Effect of spacetime oscillations on FF̃

The resonant growth of modes induces large fluctuations
in the field strength tensor. In the following, we analyze the
time evolution of FμνF̃μν ðE ·BÞ in Uð1Þ and Fa

μνF̃aμν

ðtrðFF̃ÞÞ, in SUð2Þ gauge theories, using the above
mode equations. In the linear approximation, the color
indices can be ignored. The electric fields E ¼ E⃗ and
magnetic fields B ¼ B⃗ can be written in terms of the
momentum modes, as

E⃗ðx⃗; tÞ ¼ 1

V

Z
d2k½−fikxa0ðk; tÞ þ ȧ1ðk; tÞgî − fikya0ðk; tÞ þ ȧ2ðk; tÞgĵ − ȧ3ðk; tÞk̂�eik⃗·x⃗;

B⃗ðx⃗; tÞ ¼ 1

V

Z
d2k½ikya3ðk; tÞî − ikxa3ðk; tÞĵþ fikxa2ðk; tÞ − ikya1ðk; tÞgk̂�eik⃗·x⃗; ð13Þ

respectively. The condition E⃗ · B⃗ ¼ 0 leads to the following equation:

ikxfȧ2ðk; tÞa3ðk; tÞ − a2ðk; tÞȧ3ðk; tÞg þ ikyfa1ðk; tÞȧ3ðk; tÞ − ȧ1ðk; tÞa3ðk; tÞg ¼ 0 ð14Þ

in terms of the gauge field modes. In order that E · B
remains zero at later times, the following equation must be
satisfied:

ȧiðk; tÞ
aiðk; tÞ

¼ ȧ3ðk; tÞ
a3ðk; tÞ

; i ¼ 1; 2: ð15Þ

This condition requires that the modes a1ðk; tÞ, a2ðk; tÞ,
and a3ðk; tÞ grow in sync, which is not ensured by
evolution equations (10) and (11). Even with E · B ¼ 0
initially, large values can be generated subsequently via
parametric resonance. In the numerical simulations, we also
consider the time evolution of gauge fields starting with
zero E · B, for both Abelian and non-Abelian cases.

III. NUMERICAL SIMULATIONS

In this section, we describe numerical simulations of the
field equations and the results, for Uð1Þ and SUð2Þ gauge
theories. In 3þ 1 dimensions, spacetime oscillations
propagating in the z direction result in adjacent z planes
oscillating with a finite phase difference. As a consequence,
fields in different z planes evolve differently and, thus,
generate kz modes even if they are not present initially.
Furthermore, in the case of SUð2Þ, kz modes will also get
excited due to nonlinear interactions. For simplicity, we
assume the fields are uniform along the z direction and
carry out numerical simulations in 2þ 1 dimensions. We
also consider simulations in 3þ 1 dimensions, to see the
effect of z modes on the overall resonant growth of the

fluctuations. The results of 3þ 1 studies are discussed at
the end of Sec. III A.
In the simulations, the two-dimensional (x, y) plane of

area L2 is discretized as a ðN × NÞ lattice. We consider
N ¼ 200 for most of our simulations. The lattice constants
are taken to be the same in both x and y directions, i.e.,
Δx ¼ Δy ¼ L=N ¼ 0.01Λ−1. The time is also discretized
with time spacing Δt. Stability in the numerical evolution
requires Δt < Δx=

ffiffiffi
2

p
, so we take Δt ¼ 0.005Λ−1. Note

that in Uð1Þ gauge theory there is no natural scale.
The same is true for the SUð2Þ gauge theory at the
classical level. In this situation, we take the Λ scale to
be the same as the inverse of the time period of the
spacetime oscillations. For most of the simulations, we
take ω ¼ 50Λ and ϵ ¼ 0.4. For a few simulations, to check
the effect of discretization, we consider ω ¼ 16πΛ and
Δx < 0.01Λ−1. This choice of frequency satisfies periodic
boundary conditions and is suitable for studying discre-
tization effects.
The field equations are discretized using a second-order

leap-frog algorithm [57]. Since the field equations are
second order, the evolution requires fields at two different
times initially, i.e., at t ¼ 0 and Δt. At both these times, the
gauge fields are taken to be the same, but at each lattice
point on the two-dimensional lattice, Aμðn1; n2Þ, are chosen
randomly with uniform probability in the range ½−γ; γ�with
γ ¼ 0.005Λ. For some simulations with specific initial
conditions for E ·B studies, larger lattices are considered.
This is useful to avoid boundary effects up to larger
times. With the above choice of parameters, the initial
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distributions of E2 and B2 are as small as Oð1Þ in the case
of Abelian gauge fields. Because of spacetime oscillations
(ω ¼ 50Λ), fluctuations of the gauge fields grow exponen-
tially in time. As a consequence, both the electric and
magnetic fields also grow. In Figs. 1 and 2, E2 and B2 in
units of Λ4 are plotted at t ¼ 4Λ−1. It can be seen that
within time interval 4Λ−1, these distributions have grown
by about a factor of Oð103Þ.
In the case of non-Abelian gauge fields, we compute the

gauge invariant observables

E2
SUð2Þ ¼

X
i;a

Fa;0iFa;0i; B2
SUð2Þ ¼

X
a;i≠j

Fa;ijFa;ij; ð16Þ

where spatial (i, j) and color indices are summed over. The
results for E2

SUð2Þ and B2
SUð2Þ at t ¼ 4Λ−1 are shown in

Figs. 3 and 4. At initial time, the distributions of E2
SUð2Þ and

B2
SUð2Þ are of the order of Oð10−1ÞΛ and Oð1ÞΛ, respec-

tively. In time duration, 4Λ−1, their distributions grow by a
factor of Oð104Þ and Oð103Þ, respectively, due to para-
metric resonance.

A. Parametric resonance: Uð1Þ vs SUð2Þ
To study the effect of interaction in SUð2Þ gauge theory,

we compute the spatial average of energy density, ρE for
g ¼ 0, 1. We considered ten different random initial
configurations and evolved them with both g ¼ 1 and

FIG. 1. E2 at t ¼ 4Λ−1 for initial configuration with random
fluctuations.

FIG. 2. B2 at t ¼ 4Λ−1 for initial configuration with random
fluctuations.

FIG. 3. E2
SUð2Þ at t ¼ 4Λ−1 for initial configuration with random

fluctuations.

FIG. 4. B2
SUð2Þ at t ¼ 4Λ−1 for initial configuration with random

fluctuations.
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g ¼ 0. In half of these initial configurations, in the non-
linear regime, self-interaction resulted in higher growth of
energy density compared to the g ¼ 0 case. In Fig. 5, we
show the difference in the energy density between g ¼ 1
and g ¼ 0, i.e., ΔρE1−0

, for one of these cases. ΔρE1−0
starts

out very small during initial times, fluctuating around zero,
which seems to be due to the presence of large momentum
modes in the initial configuration. The behavior of ΔρE1−0

for other configurations is similar at initial times, but,
subsequently, the trough of the fluctuations in ΔρE1−0

goes
further below zero with time. In some cases, the entire
curve remains below zero up to some time, as shown in
Fig. 6(a). For all ten cases, ΔρE1−0

remains positive and
increases exponentially for larger times, as seen in Figs. 5
and 6(b). Similar to NO instability, we observe an increase
in ρE with the increase in coupling constant. These results
suggest that nonlinear dynamics eventually enhance the
growth of fluctuations. A detailed study of the power
distribution in momentum space will provide a better
understanding, which we plan to carry out in the future.
With time evolution, the growing field perturbations will

propagate in space, as shown later in Figs. 19 and 21. Since
we are using periodic boundary conditions, these pertur-
bations will cross the boundary and return to the region of
origin. Thus, the resonant growth is reliable up to the time
the perturbations take to cross the entire lattice, i.e., 2Λ−1

for the simulations presented above. Until up to t ¼ 2Λ−1,
we clearly see resonant growth of the fluctuations. To
ascertain that the evolution beyond this time is not a
numerical artifact, we consider larger lattices for the same
lattice spacing. To remove the possibility of boundary
effects affecting the growth, we take the same initial
configuration as in Fig. 5 at the center of the lattice of
size L ¼ 8Λ−1. The field is set to zero over the rest of the
lattice. As a result, the distribution of the resonant modes
for L ¼ 2Λ−1 and L ¼ 8Λ−1 are similar apart from an
overall factor. Since the evolution is dominated by the
resonant modes, it is expected that the growth of fluctua-
tions in both cases will be similar. The time evolution of
ΔρE1−0

is shown in Fig. 7. We see resonant growth in ρE for
both g ¼ 0, 1 for L ¼ 8Λ−1. For comparison, we include
the results for L ¼ 2Λ−1 scaled by a factor of 1=25.
We also consider a different random initial configuration

for L ¼ 8Λ−1 lattice. Note that, since the initial configu-
ration is random, it is difficult to maintain the same
distribution of spatial modes, as in L ¼ 2Λ−1. The same
is true for the relative strength of the different resonant
modes. In the simulation, we consider a slightly larger
amplitude for the fluctuations, i.e., γ ¼ 0.08Λ. Figure 8
shows ΔρE1−0

in time. The dashed straight line is plotted for
reference. If the range of fluctuations is kept the same as
before, one observes only damping similar to Fig. 6(a),
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104

 1  1.4  1.8  2.2  2.6  3  3.4  3.8

��
E 1

-0

t

FIG. 5. ΔρE1−0
for random fluctuations.

FIG. 6. ΔρE1−0
for random fluctuations.
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 1  1.4  1.8  2.2  2.6  3  3.4  3.8

��
E 1
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L = 2 �-1

L = 8 �-1

FIG. 7. ΔρE1−0
for L ¼ 8Λ−1 and scaled L ¼ 2Λ−1 results.
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FIG. 8. ΔρE1−0
for L ¼ 8Λ−1 with random fluctuations.
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whereas Fig. 8 shows positive and increasing behavior of
ΔρE1−0

as seen in Fig. 5. Note that the damping effects, such
as in Fig. 6(a), can also be seen relative to the reference line.
The results shown in Figs. 7 and 8 suggest that perturbative
feedback effects, due to periodic boundary conditions, are
not significant.
In the above simulations, the observed resonant modes

agreewith those obtained analytically in Sec. II A.However,
it is important to check that numerical errors due to the
discretization of space and time do not affect the evolution of
fields. For this purpose, we evolved an initial configura-
tion for different values of Δx, i.e., Δx ¼ 0.01Λ−1,
0.005Λ−1, and 0.0025Λ−1. To maintain the same amplitude
of the resonant mode at the initial time, it is necessary
that the initial configuration is regular rather than a
random field configuration like in the above studies. For
simplicity, the initial configuration is considered to have a
single resonant momentum mode along the “x” direction,
e.g., Aa

μ ¼ γ sinðκaμxÞ. κ1μ ≡ ðω=2;ω=2;ω=2;ω=2Þ, κ2μ ≡
ð−ω=2;−ω;ω; 0Þ, and κ3μ ≡ ð0;ω;−ω;−ω=2Þ with
ω ¼ 16πΛ. This particular configuration choice is made
as it satisfies the periodic boundary condition, i.e.,
Aa
μðx ¼ 0Þ ¼ Aa

μðx ¼ LÞ, with L ¼ 2Λ−1. Note that κ0
has nothing to do with temporal variations of the gauge
field, but it represents the momentum mode of Aa

0 in the x
direction. The evolutions of ρE are shown in Fig. 9, for three
different choices of lattice spacing. At late times, the
evolution of the difference in energy density for Δx ¼
0.005Λ−1 and Δx ¼ 0.0025Λ−1 is much smaller compared
to that forΔx ¼ 0.01Λ−1 andΔx ¼ 0.005Λ−1. Furthermore,
the time evolution of this configuration shows that the
energy density does not vary significantly with the gauge
coupling g. However, the evolution of the energy density of
each color, ρaE, depends on g. This suggests that there is an
exchange of energy density between different colors. This
exchange of energy density persists for higher g we studied
in our simulations.
The above results show that discretization errors do not

significantly affect the evolution of the fields. However, it is
not practical to specify a field configuration with only one

mode on a discrete lattice. A continuous function
discretized on the lattice will always have a nonzero
overlap with other modes. In a follow-up simulation, we
considered the initial configuration with only one color,
Aa
μ ¼ δa;1γ sinðκaμxÞ, i.e., the Abelian case, with all com-

ponents being κ1μ ≡ ðκ; κ; κ; κÞ for κ ¼ 8πΛðω=2Þ and
16πΛðωÞ. The evolution of ρE for κ ¼ 16πΛ is shown in
Fig. 10. ρE is small initially, up to t ∼ 8Λ−1, but subsequent
evolution is similar to the κ ¼ 8πΛ case. For comparison,
ρE corresponding to κ ¼ 8πΛ is shifted in time (here
by ≃7.625Λ−1). This indicates that the κ ¼ 8πΛ mode is
initially present, due to the discretization of the κ ¼ 16πΛ
mode. Though the amplitude is small, eventually, it
dominates due to parametric resonance. This result sug-
gests that the lowest resonant mode always dominates the
evolution. In the following, we discuss our numerical
simulations in 3þ 1 dimensions.
In this section, so far, the fields are considered to be

independent of z. However, since the spacetime oscillations
are propagating along the z direction, the metric depends on
z along with time t. Thus, in 3þ 1 dimensions, even in the
linear regime, there is coupling between momentum
modes that differ by Δkz ¼ �ω. In the case of SUð2Þ,
the kz modes will also get excited due to nonlinear
interactions.
In order to understand the effect of kz modes, we carry

out simulations in 3þ 1 dimensions for both Uð1Þ and
SUð2Þ. We consider the three-dimensional cubic system
with size ð5Λ−1Þ having the same range of fluctuations, as
in 2þ 1-dimensional simulations, ½−γ; γ� with γ ¼ 0.005Λ.
Here, considered lattice constants are Δx ¼ Δy ¼ 2Δz ¼
0.05Λ−1. The discrete time step is taken to be Δt ¼
0.005Λ−1. In Fig. 11, we show the time evolution of the
surface energy density, i.e., σEðz; tÞ, for three neighboring
planes for nz ¼ 1, 2, 3 and also for nz ¼ 31, 121, 191. One
can see that the time dependence of σE is similar to that of
the 2þ 1 case, i.e., exponentially increases in time with an
additional oscillatory component. The growth of fluctua-
tions in 2þ 1 is found to be stronger than in 3þ 1. It is
found that the exponent growth(η) of σEðz; tÞ varies mildly
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FIG. 9. ρE vs t in continuum.

5.0�102

1.0�103

1.5�103

2.0�103

2.5�103

3.0�103

 8  8.5  9  9.5  10

� E

t

�=16��
�=8��(shifted)
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with z, i.e., η ¼ 2.8� 0.4. As a consequence, the average
energy density ρE also grows with a similar exponent,
shown in Fig. 12. Note that the evolution shown here is for
time up to t ¼ 4Λ−1, which is smaller compared to the size
of the system, to exclude possible effects of the periodic
boundary conditions.
In Fig. 13, we plot the energy difference between the

energy density between SUð2Þ and Uð1Þ. The results show
that the growth of energy density in SUð2Þ still dominates
over Uð1Þ due to the color factor.

B. CP violations due to spacetime oscillations

In the following, we present our results for the evolution
of the distribution ρ1 ¼ E ·B and ρ2 ¼ Ea ·Ba in Uð1Þ
and SUð2Þ, respectively. The initial value of ρ1 is about
Oð10−1Þ. In Figs. 14 and 15, ρ1 is shown at time t ¼ 3Λ−1

and t ¼ 4Λ−1, respectively. These figures show that over
the lattice ρ1 is distributed around zero. Within a time span
ofΛ−1, the highest (lowest) value increases (decreases) by a
factor of ∼20.
Figures 16 and 17 show ρ2 at t ¼ 3Λ−1 and t ¼ 4Λ−1,

respectively. Initially, the distribution of ρ2 is within
½−0.5; 0.5�Λ4. This range grows to ∼½−17; 18�Λ4 and
∼½−1200; 1300�Λ4, at 3Λ−1 and 4Λ−1, respectively.
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FIG. 13. ΔρE between SUð2Þ and Uð1Þ.

FIG. 14. ρ1 at t ¼ 3Λ−1 for initial configuration with random
fluctuations.
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FIG. 15. ρ1 at t ¼ 4Λ−1 for initial configuration with random
fluctuations.
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The initial distribution of ρ1 and ρ2, in the above
simulations, is nonzero. We have also checked evolution
of configurations for which ρ1 and ρ2 vanish at initial times.
An initial condition with vanishing ρ1 and ρ2 is difficult to
achieve, with random fluctuations of the gauge fields. Thus,
we considered gauge fields such that ρ1 ¼ 0 ¼ ρ2, while
the field strength tensors were nonzero in a localized
region. Note that the initial configuration needs to have
nonzero (preferably resonant) modes, in order to couple to
the spacetime oscillations. Hence, we considered a
Gaussian form for the gauge fields for Uð1Þ, i.e.,

Aðt ¼ 0Þ ¼ −βΔte−αðx2þy2Þk̂; A0ðt ¼ 0Þ ¼ 0;

Aðt ¼ ΔtÞ ¼ 0; A0ðt ¼ ΔtÞ ¼ 0: ð17Þ

α is taken to be the time period of one spacetime oscillation.
This makes sure that the initial configuration has nonzero
resonant mode.
In SUð2Þ, when two of the three color fields are zero, the

evolution of the nonzero field is similar to the Uð1Þ case.
Hence, we consider configurations for which the gauge
fields are nonzero for at least two colors. Also, nonlinear
evolution requires that field strength and coupling constant
should be large enough; e.g., here, βΔt ∼ 0.1Λ and g ¼ 1.5.
Note that even with smaller β values the evolution will be
nonlinear at later times. The localized configurations
corresponding to Eq. (17) spread quickly during evolution.
Once the fluctuations reach the boundary of the lattice, they
lead to systematic errors in evolution.
Figures 18 and 19 show the distributions of ρ1 at

t ¼ 0.10Λ−1 and t ¼ 0.60Λ−1, respectively. The results

FIG. 17. ρ2 at t ¼ 4Λ−1 for initial configuration with random
fluctuations. FIG. 19. ρ1 at t ¼ 0.60Λ−1.

FIG. 16. ρ2 at t ¼ 3Λ−1 for initial configuration with random
fluctuations.

FIG. 18. ρ1 at t ¼ 0.10Λ−1.
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for ρ2 are shown in Figs. 20 and 21 for t ¼ 0.10Λ−1 and
t ¼ 0.60Λ−1, respectively. These results clearly show that
ρ1 and ρ2 can be excited starting from zero through
spacetime oscillations. Furthermore, the effect of spacetime
oscillations is larger on ρ2 due to nonlinear interaction
between the gauge fields. Note that the persistent expo-
nential increase observed in CP for both Uð1Þ and SUð2Þ
will saturate due to the turbulent cascade mechanism
studied in Ref. [58].

IV. DISCUSSION AND CONCLUSION

We have studied the evolution of Abelian Uð1Þ and
non-Abelian SUð2Þ gauge fields in the presence of mono-
chromatic spacetime oscillations, using analytical and

numerical simulations. Our results show that spacetime
oscillations induce parametric resonance in the modes of
gauge fields. The fields’ modes undergoing parametric
resonance are obtained from field equations for Uð1Þ and
that for SUð2Þ in linear approximation in Fourier space. We
also carry out numerical simulations in 2þ 1 and 3þ 1
dimensions. These simulations are useful for studying the
evolution of localized initial field configurations in Uð1Þ.
In the case of SUð2Þ gauge fields, they are essential to study
field dynamics beyond the linear regime. The numerical
simulations also enable us to compare the dynamical
evolution in the Uð1Þ and SUð2Þ gauge theory, in other
words, effect of gauge coupling.
In 2þ 1 dimensions, the process of the parametric

resonance of the gauge field modes generates large fluc-
tuations in physical observables. These observables include
FμνF̃μν and Fa

μνF̃aμν in Uð1Þ and SUð2Þ gauge theory,
respectively, which break the CP symmetry. Apart from the
color factor, the evolution of gauge fields is similar in both
theories, when the fluctuations are small. At later times
when the gauge field fluctuations grow, the effects of
nonlinear interactions in SUð2Þ become important.
The nonlinear interactions drive larger growth in the
fluctuations, beyond the conventional exponential growth
expected in linear theories. The dynamics of the non-
Abelian gauge fields were found to be similar to that in the
case of NO instability due to chromoelectric and magnetic
fields. Our results also show that in both the Uð1Þ and
SUð2Þ cases the dynamics of the evolution are dominated
by the lowest resonant mode, i.e., k ¼ ω=2 mode. In 3þ 1
dimensions simulations, also we see resonant growth of
fluctuations. However, the exponent of growth of the
energy density is found to be smaller compared to the
case of 2þ 1 dimensions.
Our numerical simulations suggest that gravitational

waves also will lead to parametric resonance in gauge
fields. The gravitational waves will be dampened more
efficiently due to the color factor. Furthermore, the
gravitational waves can induce large fluctuations in
CP-violating physical observables. These observables
can subsequently lead to a large-scale imbalance in local
chiral charge distributions. Also, a large nonzero E · B can
enhance production of axions. The gravitational waves in
the early Universe also have the potential to generate
large-scale magnetic fields, corresponding to resonant
modes.
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FIG. 20. ρ2 at t ¼ 0.10Λ−1.

FIG. 21. ρ2 at t ¼ 0.60Λ−1.
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