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Abstract We study the particle trajectories in the recently
proposed five dimensional warped (generalized) Ellis–
Bronnikov spacetime (5D-WGEB) (which does not require
exotic matter) as well as it’s four dimensional counterpart
(4D-GEB) in detail and conduct a comparative study. Ana-
lytical approach provides conditions which determines three
types of trajectories (trapped, returning and crossing) for both
4D and 5D spacetimes. Notably in 5D geometry existence
of trapped trajectories become highly sensitive to the ini-
tial conditions. We have solved the timelike geodesic equa-
tions numerically and presented the trajectories graphically
along with corresponding geodesic potentials. We thus dis-
tinguished the roles of the so-called wormhole parameter
and the warping factor regarding their effects on the trajec-
tories and embedding as such. Interestingly, the 5D-WGEB
model shows the localization of massive particles around the
location of the brane for growing warp factor and runaway
trajectories for decaying warp factor.

1 Introduction

Wormholes are solutions of Einstein’s field equations that
connect two separate points within our world (intra-Universe
wormholes) or two distinct points of parallel Universes (inter-
Universe wormholes) [1,2]. In 1935, Einstein and Rosen
introduced the Einstein-Rosen Bridge, a regular solution that
connects two asymptotically flat regions of spacetime and is
a special case of the Schwarzschild black hole [3]. Wheeler
referred to these solutions as “wormholes” [4]. Further, it
was shown that these wormholes are non-traversable [5–8].
In general, traversable wormholes require violation of the
so-called energy conditions to prevent the collapse of it’s
throat and this can be met by threading “exotic matter” (mat-

a e-mail: svivek829@gmail.com
b e-mail: suman.ghosh@bitmesra.ac.in (corresponding author)

ter with negative energy density) at least at the throat [9].
Exotic forms of matter are popular in cosmology because of
their benefits [10], such as explaining the universe’s acceler-
ated expansion. However, it has also been pointed out that the
methods involving quantum aspects of standard model matter
is not adequate to create macroscopic wormholes [11].

Despite the facts mentioned previously, there are some
classical methods developed in order to avoid the need for
matter with negative energy density that violates energy con-
ditions [12–19]. There are alternative theories of gravity or
modified gravity theories that provide new techniques to cir-
cumvent the violation of energy conditions. A significant
number of non-exotic matter models under modified grav-
ity can be found in the literature [20–27], albeit the conver-
gence condition of null geodesics is violated in some circum-
stances. The dynamical wormhole models also provide ways
to keep wormhole throat open in the presence of a viable mat-
ter source [28–32]. The so-called f (R), f (R, T ), f (Q) and
higher order gravity theories are other popular class modified
gravity theories that involve comprehensive examination of
wormhole geometries with feasible matter sources [33–42].

Although wormholes are still considered hypothetical,
recent advances in precision measurements related to black
holes have increased the significance for testing viable worm-
hole models (as black hole mimicker) as well. Studies on
various phenomena, such as wormhole merger [43,44] or
their quasinormal modes [45,46], can be beneficial for cap-
turing wormhole signatures in the cosmos. In principle, one
can also detect them through their lensing effects, shadows,
Einstein ring etc. [47–62]. Interestingly, signatures like these
may also favour the case for modified gravity theories over
general relativity.

One of the most studied traversable wormhole geome-
try is the four dimensional Ellis–Bronnikov spacetime (4D-
EB) [63,64], which is sustained by a phantom scalar field (a
field with a negative kinetic term). Various aspects for this
spacetime has been studied in the context of general relativ-
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ity (GR) and also modified gravity theory such as- geometry
of spinning 4D-EB spacetime [65], generalized spinning of
4D-EB wormhole in scalar–tensor theory [66], hairy Ellis
wormholes solutions [67], Ellis Wormholes in Anti-De Sit-
ter Space [68], stability analysis of 4D-EB solution in higher
dimensional spacetime [69] etc. Kar et al. To avoid violation
of energy conditions [70] constructed a generalized version
of the 4D-EB wormhole (4D-GEB) by introducing a new
wormhole parameter m ≥ 2 (m = 2 case represents the
original 4D-EB model). Recently, they also looked at the
quasi-normal modes, echoes, and other aspects of this space-
time [46]. Motivated by this model we recently proposed
a model where the 4D-GEB geometry is embedded in five
dimensional warped spacetime discussed below.

The theories of extra dimensions appear in fundamental
physics quite naturally. In fact, it dates back a century, when
Kaluza (1921) and Klein (1926) attempted to merge electro-
magnetism and gravity in a 5D gravity model [71,72]. Extra
spatial dimensions were reinvented through unification mod-
els (such as superstrings) [73]. A warped extra dimension can
solve the age-old Hierarchy problem [74,75]. Extra dimen-
sions are also an essential ingredient in the octonionic theo-
ries of the standard model particle physics (and what may lay
beyond) [76–81]. The so-called ‘warped braneworld’ models
[82–84] are probably the most well-known of these higher-
dimensional models. This model posits a non-factorizable
geometry – a curved five-dimensional spacetime in which
the 4D-metric depends the extra dimension via a warping
factor (a feature unique to this class of models). Though
there are some investigations reported recently on wormholes
embedded in higher-dimensional spacetime [85–90], warped
braneworld models have not been considered as such.

In [91], we demonstrated that a warped GEB (5D-WGEB)
model, where a generalized version of Ellis–Bronnikov
spacetime is embedded in a 5D warped background, satis-
fies the energy conditions, even for m = 2. Therefore, in
this work also we shall focus mostly on the original E-B
geometry embedded in 5D warped background (5D-WEB).
Note that, the 5D line element we used is the well-known
thick braneworld model [92,93], in which the warp fac-
tor is a smooth function of extra spatial dimension (unlike
the Randall–Sundrum model). Hence derivative jumps and
delta functions do not occur in the curvature and connections
(which is one of the reasons to work with this model). For
a decaying warp factor, the matter source satisfies the weak
energy condition and violates the strong energy condition.
Opposite feature is observed in presence of a growing warp
factor. Thus one can say that the 5D wormhole model can
be supported by bulk normal matter field for decaying warp
factor and exotic matter field for growing warp factor. In this
article, we investigate geodesics in detail for both the 4D-
GEB and 5D-WGEB model and compare them in order to

distinguish the role of the wormhole parameter and warped
extra dimension.

This paper is organized as follows. The wormhole space-
times corresponding to our 5D model is introduced in Sect. 2.
It contains a brief description of the Wormhole character-
istics and the warping factor and embedding diagrams for
both wormhole models. In Sect. 3, through analytic approach
(wherever possible), dynamical systems analysis and embed-
ding diagrams we built intuitions about the trajectories and
corresponding effective potentials. In Sect. 4, we solve the
geodesic equations for various initial conditions numerically
and presented the geodetic potentials and particle trajecto-
ries for both 4D-GEB and 5D-WGEB geometries. Finally,
we compare the 4D and 5D models based on our key find-
ings and provide conclusion of this study with a summary of
the results in Sect. 5.

2 Wormhole-geometry

The general metric for warped 5D spacetime can be written
as,

ds2 = e2 f (y)gμν dxμ dxν + g44 dy2 (1)

where, gμν is any 4D metric and g44 can be a function of 3-
Space, time and extra spatial dimension y (−∞ ≤ y ≤ ∞),
not necessarily separable. We choose a specific metric for
our 5D-WGEB spacetime as follows,

ds2 = e2 f (y)
[

− dt2 + dl2 + r2(l)
(
dθ2 + sin2(θ) dφ2)]

+dy2 (2)

where, f (y) is the warp factor (we choose f (y) =
± log[cosh(y/y0)] that represents a thick domain wall in
the 5D bulk peaked at y = 0) and the term in the square
bracket is the 4D spherically symmetric, ultra-static worm-
hole model, called the Generalised Ellis–Bronnikov space-
time and is given by,

ds2
4D = −dt2 + dl2 + r2(l)

(
dθ2 + sin2(θ) dφ2) (3)

with r(l) = (bm0 + lm)1/m . (4)

Here l is the ‘proper radial distance’ or ‘tortoise coordinate’.
b0 is the so-called ‘throat radius’ of the wormhole and m
is the wormhole parameter that can take only even values
(m ≥ 2) (to ensure the smooth behaviour of r(l)). Note that,
metric (3) can also be written in usual radial coordinate r as

ds2 = −dt2 + dr2
(

1 − b(r)
r

) + r2(dθ2 + sin2 θdφ2), (5)
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where r and l are related through the shape function b(r) as,

dl2 = dr2
(

1 − b(r)
r

) �⇒ b(r) = r

−r (3−2m)(rm − bm0 )

(
2− 2

m

)
. (6)

One gets back the Ellis–Bronniokv geometry, for m = 2,
which is a static, spherically symmetric, geodesically com-
plete, horizonless space-time (constructed using phantom
scalar field) represented by the 4D metric as given below,

ds2 = −dt2 + dr2
(

1 − b0
r

) + r2(dθ2 + sin2 θdφ2). (7)

The Ricchi Scalar (R5D) and Kretschmann scalar (K5D) for
the metric 2 is given by

R5D = 2e−2 f
(

(2m − 3)l2m−2

(bm0 + lm)2 − 2(m − 1)lm−2

bm0 + lm

+ 1

(bm0 + lm)2/m

)
− 4(5 f ′2 + 2 f ′′), (8)

K5D = 4
[
3 f ′(y)4

+
2e−4 f (y)

(
bm0 l

m(−1 + m) + e2 f (y)l2
(
bm0 + lm

)2
f ′(y)2

)2

l4
(
bm0 + lm

)4

+ e−4 f (y)

(bm0 + lm)4/m

(
−1 + l−2+2m

bm0 + lm)2− 2
m

+ e2 f (y) (
bm0

+lm
)2/m

f ′(y)2
)2 + 4

(
f ′(y)2 + f ′′(y)

)2
]

(9)

Thus the curvature invariants of our 5D model are essen-
tially singularity free (i.e. they do not show any divergence
at any finite values of the coordinates or at the ‘throat’ as
such) unlike some models of black holes in higher dimen-
sions. Asymptotically (y → ±∞), the Ricci scalar gives
negative constant value (−20) for growing warp factor and
large positive value for decaying warp factor which says that
the asymptotic regions (along y) are not flat. However the
four dimensional wormhole passage is asymptotically (at
l → ±∞) flat. Before addressing the geodesic equations, let
us discuss the isometric embedding of the wormhole which
provides a useful perspective on the geometry of these exotic
objects.

2.1 Isometric-embedding

Embedding of lower dimensional space-time in a flat space of
higher dimension can be significant for various reasons, e.g.,
to visualise the ‘shape’ of any general-space-time. In gen-
eral, a d-dimensional Riemannian-space can be immersed
in a flat space of d(d+1)

2 dimension. Such a d-dimensional
Riemannian-metric is said to be of ‘embedding class p’, if

and only if, it can be be embedded in a flat space of (lowest
possible) dimension d + p. it is well known that the general
spherically symmetric space-time is of ‘class two’ but, if any
spherical symmetric space-time will satisfy the ‘Karmarkar
condition’ (KMC) then it is of class one [94,95] as such.
KMc for any general 4D spherically symmetric spacetime is
given by,

R1414 = R1212R3434 + R1224R1334

R2323
(10)

where, R2323 	= 0. One can easily check that the condition
mentioned above is satisfied for 4D-GEB wormhole geome-
try 5. The 2D spatial slice (t = constant, θ = π

2 ) for 4D-GEB
spacetime is given by,

ds2 = dl2 + (bm0 + lm)2/mdφ2. (11)

One may immerse this 2D geometry in a 3D Euclidean space.
Since Eq. (11) possesses axial symmetry, we take a 3D line-
element of flat space in cylindrical coordinate (ζ, ψ, z) given
by,

dσ 2 = dζ 2 + ζ 2dψ2 + dZ2. (12)

Then we identify, ψ = φ, ζ = ζ(l) and Z = Z(l) by com-
paring Eqs. (11) and (12) which implies,

dσ 2 =
[(dζ

dl

)2 +
(dZ
dl

)2]
dl2 + ζ 2dφ2 (13)

where ζ(l) = (bm0 + lm)1/m (14)

and
dZ

dl
=

(
1 − l−2+2m(

bm0 + lm
)−2+ 2

m
)1/2

. (15)

Note that the right hand side of the Eq. (18) goes to zero as
l → ±∞. We integrate Eq. (15) numerically with b0 = 1
and for m = 2, 4 and 8. Figure 1 is a parametric plot of Z(l)
vs ζ(l) showing isometric embedding diagrams for different
choice of wormhole parameter m. Throat radius (l = 0),
lie on surface Z = 0. The GEB wormhole geometry differs
for different values of m. The ‘neck length’ of wormhole
increases (or it becomes steeper) with increasingm. Rotating
these Z(l) vs ζ(l) plots around the Z axis, as illustrated in
Fig. 2, we get a so-called embedded surface visualisation as
such.

It is well known that shape of the geometry corresponding
to m = 2 (EB) embedded in 3D Euclidean-space is that
of a catenoid (minimal surface; the surface with zero mean
curvature) formed by rotation of catenary (mathematically
catenary is a graph of the hyperbolic cosine function) about Z
axis. Note that higher order diagrams are different compared
to the m = 2 case essentially because at the throat, dn Z

dln

vanishes for n = 0, 2, . . . ,m.
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Fig. 1 Embedding of 4D-GEB wormhole geometry for different
choice of “m” with b0 = 1, where cases; m = 2, 4, 8 are represented
by dotted-red, dashed-green and solid-blue curves, respectively

2.2 Embedding of 5D-WGEB model

Similarly, we can construct an embedding for our 5D-WGEB
model (using counterpart of Eq. (15)) as well. The 2D spa-
tial slice (for t = y = constant, θ = π

2 ) for 5D-WGEB
spacetime is,

ds2 = e2 f (y)
(
dl2 + (bm0 + lm)2/mdφ2

)
. (16)

We write ψ = φ, ζ = ζ(l) and Z = Z(l)as before. Compar-
ing the Eqs. (13) and (16) we get,

ζ(l) = e f (y)(bm0 + lm)1/m (17)

dZ

dl
= e f (y)

(
1 − l−2+2m(

bm0 + lm
)−2+ 2

m
)1/2

(18)

Note that, the rate of change of Z(l) increases (decreases), for
growing warp-factor (for decaying warp factor), with increas-
ing y (i.e. as one moves farther away into the extra dimen-
sion). As before, we integrate the Eq. (18), numerically, for
finite value of y = y0 = 1 say (for both growing and decay-
ing warp factors) and for m = 2, 4, 8. The parametric plots
of Z(l) vs ζ(l) are presented in Fig. 3. It is clear that the
presence of warp factor affect the neck length of wormholes
considerably. Compared to the 4D case, the neck-length in
general increases (decreases) for growing (decaying) warp
factor. Away from y = 0, with increasing y, the neck-length
is larger for growing warp-factor compared to the same in
presence of the decaying warp-factor.

Note that the extra dimension do effect the topology of
the wormhole as the wormhole geometry is now five dimen-
sional. In the 4D-EB or 4D-GEB scenario, the boundary or
the asymptotic regions are topologically trivial i.e. geometri-
cally flat whereas in our 5D-WEB model, due to the warping
factor, flat boundary regions are absent as discussed above.
In the 4D scenarios, on a spatial slice, the radius of the throat
is given by r = b0 or l = 0 which essentially is a 2-sphere
S2. In our 5D model, this 4D wormhole is embedded in a 5D
bulk and the point l = 0 represent a S2 ⊗R1 space. However,
the particles that are confined near y = 0, experiences the
same throat radius. The volume of the ‘throat’ of an effective
4D wormhole passage is scaled by e2 f (y) as a result of warp-
ing. Let us now go on to the detailed analysis of the timelike
geodesics.

Fig. 2 Surface of revolution of embedding for 4D-GEB model
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Fig. 3 Embedding diagrams of 5D-WGEB wormhole with growing (left) and decaying (right) warp-factor for m = 2, 4, 8 represented by the
dotted, dashed and continuous curves, respectively

3 Geodesics

The free-falling test particles obey the geodesic equations
given by,

d2xμ

dλ2 + 
μ
ρσ

dxρ

dλ

dxσ

dλ
= 0 (19)

where, xμ are coordinates, λ is the affine parameter and 

μ
ρσ

are the affine connections. The geodesic equations for the 4D
GEB spacetimes are given by,

d2t

dλ2 = 0 (20)

d2l

dλ2 − l−1+m (
bm0 + lm

)−1+ 2
m

[(dθ

dλ

)2 + sin2 θ
(dφ

dλ

)2]

= 0 (21)

d2θ

dλ2 + 2l−1+m
(
bm0 + lm

) dl

dλ

dθ

dλ
− sin θ cos θ

(dφ

dλ

)2 = 0 (22)

d2φ

dλ2 + 2 cot θ
dθ

dλ

dφ

dλ
+ 2l−1+m

(
bm0 + lm

) dl

dλ

dφ

dλ
= 0 (23)

The corresponding equation for the 5D-WGEB model are
as follows.

d2t

dλ2 + 2 f ′(y) dt

dλ

dy

dλ
= 0 (24)

d2l

dλ2 + 2 f ′(y) dl

dλ

dy

dλ
− l−1+m (

bm0 + lm
)−1+ 2

m
[(dθ

dλ

)2

+ sin2 θ
(dφ

dλ

)2] = 0 (25)

d2θ

dλ2 + 2 f ′(y) dθ

dλ

dy

dλ
+ 2l−1+m

(bm0 + lm)

dθ

dλ

dl

dλ

− sin θ cos θ
(dφ

dλ

)2 = 0 (26)

d2φ

dλ2 + 2 f ′(y) dφ

dλ

dy

dλ
+ 2 cot θ

dθ

dλ

dφ

dλ

+ 2l−1+m
(
bm0 + lm

) dl

dλ

dφ

dλ
= 0 (27)

d2y

dλ2 + f ′(y) e2 f (y)
[( dt

dλ

)2 −
( dl

dλ

)2

−(bm0 + lm)2/m
[(dθ

dλ

)2 + sin2 θ
(dφ

dλ

)2]] = 0 (28)

At a glance, the difference between 4D and 5D geodesic
equations is that there are extra terms involving ẏ on the
right hand side of Eqs. (24–27) and an extra geodesic equa-
tion for motion along the fifth dimension y. Given the diffi-
culty in solving the full geodesic equations analytically, we
shall use various analytic approximation as well as numeri-
cal approaches to understand the complete behaviour of the
geodesics, which will be discussed in the subsequent sec-
tions.

3.1 Analytical approach

Using the constants of the motion and the geodesic constraint
one can reduce the highly coupled geodesic equations in sim-
pler form in order to investigate key aspects of particle tra-
jectories in the context of both the 4D GEB and 5D WGEB
models. The geodesic constraint is essentially,

gμνu
μuν = ε, (29)

where uμ represents a four-velocity vector field and ε =
−1, 0 and 1 for the timelike, lightlike and spacelike trajecto-
ries respectively.

3.1.1 4D-GEB model

The geodesic constraint equation for the 4D GEB wormhole
geometry leads to,

− ṫ2 + l̇2 + (bm0 + lm)2/m(
θ̇2 + sin2 θ φ̇2) − ε = 0, (30)
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where an overdot denotes derivative with respect to the
affine parameter λ. From the metric itself, one can derive
the constants of the motion using the corresponding Euler-
Lagrange’s equations. The constants of the motion corre-
sponding to the cyclic coordinates (t and φ) for the metric
(3) are, say,

ṫ = k and sin2 θ (bm0 + lm)2/m φ̇ = h, (31)

where k and h are integration constant. These constants can
be thought of as conserved energy and angular momentum
for lightlike particles, and conserved energy and angular
momentum per unit mass of the particle for timelike particles.
To simplify the geodesic equation we look at the equatorial
plane where θ = π/2. Using Eqs. (30–31) we get the fol-
lowing relation

( dl

dφ

)2 =
(bm0 +lm)2/m

[
(bm0 +lm)2/m(k2+ε)−h2

]

h2 . (32)

Clearly there exist trajectories for which l̇ = dl
dφ

= 0 at
certain value of l = lc (say), then this so-called point of
return lc is given by,

l(4D)
c =

[( h√
k2 + ε

)m − bm0

]1/m
(33)

In the 4D GEB wormhole, depending on whether l(4D)
c = 0,

positive or imaginary, one can characterise three types of
trajectories: trapped at the throat, returns before reaching the
throat and ones that cross the throat and reaches the other side.
These trajectories correspond to the following three condi-
tions respectively,

hm = (b0

√
k2 + ε)m �⇒ Trapped trajectories

hm > (b0

√
k2 + ε)m �⇒ Returning trajectories

hm < (b0

√
k2 + ε)m �⇒ Crossing trajectories (34)

Note that in certain class of models [98] (where there is some
asymmetry between the two Universes) another kind of tra-
jectory is possible where a particle crosses to the other side
but eventually returns back. However, for the class of models
we are discussing here, no such behaviour is found (as further
confirmed by the phase-space analysis discussed later).

3.1.2 5D-WGEB model

The metric constraint in 5D-WGEB spacetime is given by,

e2 f (y)[ − ṫ2 + l̇2 + (bm0 + lm)2/m (
θ̇2 + sin2 θ φ̇2)]

+ẏ2 − ε = 0, (35)

The constants of motion are

e2 f (y) ṫ = T, (36)

e2 f (y) sin2 θ (bm0 + lm)2/m φ̇ = H, (37)

where T (T 2 is the kinetic energy term) and H (angular
momentum per unit mass) are integration constants. At θ =
π/2, Eqs. (35 – 37) leads to

( dl

dφ

)2 =
(bm0 + lm )2/m

[
(bm0 + lm )2/m (T 2 + ε e2 f (y)) − H2

]
− H2

e2 f (y)

(
dy
dφ

)2

H2

.(38)

The point of return or the critical length l(5D)
c for the 5D-

WGEB spacetime is then

l(5D)
c =

⎡
⎣

⎛
⎝ H√

T 2 − e2 f (y)
(
ẏ2 − ε

)

⎞
⎠

m

− bm0

⎤
⎦

1/m

. (39)

Similar to the 4D-case, Eq. (39) also suggests the three types
of trajectories: trapped, returning and crossing which corre-
spond to the following three conditions respectively:

Hm = (b0

√
T 2 − e2 f (y) (ẏ2 − ε)m �⇒ Trapped

Hm > (b0

√
T 2 − e2 f (y) (ẏ2 − ε)m �⇒ Returning

Hm < (b0

√
T 2 − e2 f (y) (ẏ2 − ε)m �⇒ Crossing (40)

Note the appearance of the y-dependent terms which con-
siderably changes the critical length and the determining
conditions for various types of geodesics compared to the
4D model. Note that the second term in the square root
(e2 f (y) (ẏ2 −ε)) evolves with the affine parameter unlike the
4D conditions. Suppose a particle satisfies the ‘trapped’ con-
dition at a given time (or λ) and moving towards the throat.
However, in case of decaying warp factor (as we will see in
the next section), the right hand side will eventually become
greater than the left hand side and we shall have a returning
trajectory at the end. Below we discuss the geodetic poten-
tials to have another perspective on the geodesics.

3.2 Effective potential

The concept of the effective potential comes from the fact that
typically potential of any field explicitly depends on position
with respect to source, and so, if one is free to write the energy
of any kind in terms of distance with respect to source then it
can be treated as potential (called effective potential). Using
the general form of the constraint and constants of the motion,
one may get the expression of effective geodesic potential for
any space-time in general theory of relativity. Thus for the
case of 4D-GEB wormhole, the effective geodetic potential
corresponding to motion along l (at θ = π/2) is given by
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V (4)
l (λ) = −1

2
l̇2 = −1

2

[
k2 − h2

(bn0 + ln)2/n
+ ε

]
(41)

Similarly, the effective geodetic potentials for our 5D-WGEB
wormhole corresponding to motion along l and y, are given
by

V (5)
l (λ) = − 1

2e2 f (y)

[
ε + 1

e2 f (y)

(
T 2 − H2

(bm0 + lm)2/m

)
− ẏ2

]
,

(42)

Vy(λ) = − 1

2

[
ε + 1

e2 f (y)

(
T 2 − H2

(bm0 + lm)2/m

)
− e2 f (y) l̇2

]
(43)

The distinguishing features of effective potentials for the 4D
and 5D cases are essentially the y and ẏ dependent terms
on the right hand side of the above equations. To investigate
these potentials further, we make parametric plots for Vl(λ)

vs l(λ) (for both the cases; 4D and 5D) and Vy(λ) vs y(λ)

where l(λ) and y(λ) can be found by numerically solving cor-
responding geodesic equations. Before doing so let us look
at the following dynamical system analysis of the geodesic
equations in 4D.

3.3 Dynamical systems analysis

Note that the geodesic equations (20–23) for the 4D-GEB
model, on equatorial plane, can be written as a set of first
coupled differential equations as given below,

ṫ = k (44)

φ̇ = h

(bm0 + lm)2/m
(45)

l̇ = Q and Q̇ = l−1+mh2

(bm0 + lm)1+ 2
m

(46)

Note that the equation for the tortoise coordinate decouples
from the other equations and forms a set of two coupled first
order differential equations as given by Eq. (46). For m ≥
2, these equations in general, represent non-linear coupled
systems. However, for m = 2, these equations are linear in l
in the limit l → 0 and given by

l̇ = Q, Q̇ = l, where h2 = 1 = b2
0, m = 2 (47)

The solutions for this system are the so-called ‘exponential-
like solutions’ given by

{
l = c1eλ + c2e−λ

Q = c1eλ − c2e−λ

}
. (48)

The linearised system (l̇, Q̇) = (Q, l) can be treated as an
representation of a vector field on (l, Q) plane (the ‘phase

plane’ or ‘solution space’). The solution space then shows
collection of solutions with all possible initial conditions [96,
97]. The phase space portraits for both m = 2 and 4 are
shown in Fig. 4. In general, we see that, for m = 4, test
particles will spend more time as they get closer to the throat
than the case m = 2. We also found that for large values of
l, both cases show similar pattern. However near the throat
l = 0 trajectories are less similar. Below we discuss the
implications of these phase plots in detail.

Let us first look at the solution space of the linearised
system for m = 2. Where, The point (l, Q) = (0, 0) is a
saddle point since the eigenvalues are real and product of
the eigenvalues is negative. The trajectories on the straight
line l + Q = 0 will end up at (l, Q) = (0, 0) with an ever-
decreasing velocity (trapped trajectories), but the trajectories
on the straight line l − Q = 0 will fly out to infinity from
the point (l, Q) = (0, 0) with an ever-increasing velocity.
This suggests instability under perturbation for the trapped
trajectories at or near the throat. These two straight lines
(l + Q = 0 and l − Q = 0) can be used to divide the
phase plane into four quadrants; (l + Q > 0, l − Q < 0:
top quadrant), (l + Q < 0, l − Q > 0: bottom quadrant),
(l + Q > 0, l − Q > 0: right quadrant) and (l + Q < 0,
l − Q < 0: left quadrant). The trajectories corresponding
to the first two quadrants will cross the throat (in opposite
direction) at some point of time depending on their initial
conditions– these are the crossing trajectories. The trajec-
tories corresponding to the remaining quadrants will never
cross the throat radius though they may come arbitrarily close
depending on their initial conditions (returning trajectories).
Thus, the dynamical systems analysis shows the presence of
three types of trajectories (trapped, crossing and returning
trajectories) for 4D-EB wormhole geometry, this analysis is
difficult to perform for our 5D-WGEB model because the
geodesic equations become highly coupled as such. So we
solved the geodesic equations numerically for 5D-WGEB
models and compare with that of 4D-GEB scenario in the
next section.

4 Numerical evaluations of the geodesic equations

We numerically solved (using MATHEMATICA) the full
geodesic equations (20–28) for both the 4D-GEB and 5D-
WGEB (with growing and decaying warp-factor) wormhole
geometries for the timelike trajectories (ε = −1). For 5D
scenario, our focus will be on m = 2 case (5D-WEB). We
have presented the trajectories and the corresponding effec-
tive geodetic potentials graphically, in the Figs. 5, 6, 7, 8,
9, 10, 11. The boundary conditions, satisfying geodesic con-
straints and the conditions (34) and (40), used are listed in
the Appendices.
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Fig. 4 Phase-space-plot for the coupled system corresponding to geodesic equation Eq. (46) for m = 2, 4). Here, we are considering b0 = 1 and
h = 1

4.1 4D-GEB model

Figures 5, 6, 7 show that for any value of the wormhole
parameter m, there are three different class of geodesics that
correspond to various boundary conditions (different ener-
gies and angular momentums as such). All the trajectories
invariably slow down at the throat or near the point of return.
The effective potentials, Vl(λ), as m is increased, flatten out
at or around the throat (l = 0), implying that the tidal effect
on the test particles will be reduced at or near the throat.
This further suggests higher stability of particle trajectories
for higher m. The consistency between the plots of the effec-
tive potential and the corresponding trajectory implies the
accuracy of the numerical evaluation. The so-called trapped
trajectories are really trapped because at l = 0 both l̇ and l̈
are zero. In other words, particles with angular momentum
corresponding to trapped trajectories will take an indefinite
time to spiral onto the throat. This can be seen be seen in
the above figures (the red/dotted curves) as well. Thus full
numerical analysis validates the three types of timelike tra-
jectories: trapped, returning, and crossing trajectories for the
4D-GEB model as suggested by the analytic calculations in
the previous section.

In Fig. 8 we show the crossing geodesics for m = 2 and
m = 4 in 4D-GEB geometries using the embedding diagrams
discussed earlier. The curves at the bottom are the projections
on z = const. surfaces. In what follows, we shall not present
such embedding diagrams for all the cases as we do not get
any extra physical insight except aesthetically pleasant per-
spective. Below we present the solutions of the full geodesic
equations for our 5D model.

4.2 5D-WGEB model

In general, for the 5D-WEB models, we get all three types
of trajectories. The effective potentials, Vl(λ) have similar
profile for 4D and 5D models (with growing warp-factor)
corresponding to all type of trajectories. However, as men-
tioned earlier, the existence of trapped trajectories is sensitive
to the initial or boundary conditions in presence of the decay-
ing warp-factor – particularly the choice of y(λ) at λ = 0.
In 5D scenario, we also have the effective potential Vy(λ)

corresponding to the motion along the extra dimension as
well. Note that here we only consider m = 2 case as advan-
tages of m > 2 is provided by the warped extra dimension
as demonstrated in [91].

Figure 9 shows that in presence of the growing warp factor
we have all three types of geodesics as per motion along
l is considered. Further, the trajectories are also confined
near the location of the brane y = 0 (as expected from the
potentialVy(λ) that looks like a potential for simple harmonic
oscillator).

On the other hand, we have runaway trajectories with
decaying warp-factor as shown in Fig. 10). Here, given the
boundary conditions we have used (see Appendix B), the
trapped trajectories are absent. However, trapped trajecto-
ries exist even in the presence decaying warped factor very
specific boundary condition.

Figure 11 shows that all three types of geodesics exist
with suitably chosen boundary conditions. We set the value
of H = b0

√
T 2 − 1 (which corresponds the condition for

trapped trajectories in 4D or at y = 0) and solve the geodesic
equations for various values of y(0). We find trapped trajec-
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Fig. 5 Effective potential and geodesics for 4D-GEB wormhole (m = 2): dotted-red, dashed-green, and continuous-blue curves representing –
Trapped, Returning and Crossing geodesics respectively

Fig. 6 Effective potential and geodesics for 4D-GEB wormhole (m = 4): dotted-red, dashed-green, and continuous-blue curves representing –
Trapped, Returning and Crossing geodesics respectively

Fig. 7 Effective potential and geodesics for 4D-GEB wormhole (m = 6): dotted-red, dashed-green, and continuous-blue curves representing –
Trapped, Returning and Crossing geodesics respectively

tories corresponding to y(0) = 0 for both types of warp
factors. Remarkably only returning and crossing trajectories
exist corresponding to all other y(0) values for growing (e.g.
y(0) = 0.881374, 1.01) and decaying (e.g. y(0) = 0.1, 0.3)
warp factors (see Appendix C for details of initial values
used).

5 Discussion

Wormholes necessitate the presence of exotic matter source
(matter with a negative energy density), which is difficult to
envisage on a macroscopic scale. To counter this problem,
various models are proposed in the context of modified the-
ories of gravity. Earlier we introduced a model where the
(generalised) Ellis–Bronnikov wormhole is embedded in a
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Fig. 8 Crossing geodesics in m = 2 and m = 4 4D-GEB geometries

Fig. 9 Geodesics and effective potential for 5D-WEB model with growing warp factor: dotted-red, dashed-green, and continuous-blue curves
representing – Trapped, Returning and Crossing geodesics

5D warped thick braneworld background and showed that
corresponding energy conditions are satisfied. In this work,
we have explored the timelike particle trajectories in consid-
erable detail, for both the 4D-GEB wormhole and 5D-WEB
wormhole geometry. The results that reveal the effects of the

wormhole parameter and the warping factor on the trajecto-
ries and are summarised below in a systematic manner.

• The embedding diagrams of the 4D-GEB geometry show
that neck-length increases with increasing m. Notably,
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Fig. 10 Geodesics and effective potential for 5D-WEB model with decaying warp factor: dashed-green, and continuous-blue curves representing
– Returning and Crossing geodesics respectively

Fig. 11 Geodesics for 5D-WGEB model with growing (left) and decaying (right) warp factor. Here, T = √
3, H = √

2, m = 2, b0 = 1 and the
dotted, continuous and dashed curves representing cases corresponding to three different initial values of y(0) as mentioned in Appendix C

for 5D-WGEB model, in presence of the growing warp
factor the neck length also increases with increasing y,
whereas for decaying warp factor opposite effect is seen.
The embedding diagrams also reveal the asymptotic flat-
ness of both models.

• The analytic approach reveals three possible types of par-
ticle trajectories for both 4D-GEB and 5D-WGEB worm-
hole models namely the trapped, returning and crossing
trajectories given conditions (34) and (40) are satisfied.
The general formula for the point of return lc is derived
analytically. The amount of time the particle spends near
the throat, depends on the value of lc, which increases
as lc decreases. A dynamical system analysis of the 4D

geometry also provided confirmation for the existence of
these trajectories.

• In the case of trapped orbit– a test particle begins free
falling from infinity and spirals in asymptotically to the
throat. These particles essentially orbit the throat for
eternity. For returning trajectories– freely falling test
particles spirals in from infinity, never reach the throat
l = 0 but return back to infinity from lc. For crossing
trajectories– a test particle begins free falling from infin-
ity on one side (l → ∞), crosses the wormhole throat
(may be after orbiting the throat multiple times depend-
ing on initial angular momentum), and then flies out to
infinity on the other side (l → −∞).
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• The geodetic potentials and all three types of particle
trajectories for various boundary conditions are found
through numerical evaluation and presented graphically.
However, trapped geodesics are rare in presence of the
decaying warp factor. The ‘neck-length’ for the worm-
hole increases in presence of a growing warp factor
whereas it decreases for a decaying warp factor as one
moves further away from y = 0.

• In case of 5D-WGEB geometry, the effective potential
Vy(λ) is of oscillatory nature, for growing warp fac-
tor, implying that particles will be confined indefinitely
around the location of the thick brane (y = 0). Whereas
runaway trajectories (that disappears farther into the
bulk) are observed in the case of decaying warp factor.

It will be interesting to investigate the congruence of time-
like and null geodesics for these class of models and compare
them to further understand the roles of the wormhole param-
eter and the warped extra dimension. The potential of WEB
models as black hole mimickers would be an essential aspect
to analyse. Stability of such wormhole geometry is an impor-
tant issue to be addressed as well. One can further investigate
the other astrophysical properties like deflection angle, lens-
ing effect, photon sphere etc. We plan to report on these and
more in future communications.
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6 Appendix

Appendix A

See Table 1.

Table 1 Boundary values used for Figs. 5, 6, 7

Boundary conditions used for geodesics in 4D-GEB spacetime
with m = 2, 4, 6

Variables Trapped (0 ≤
λ ≤ λmax )

Returning
(−∞ ≤
λ ≤ 0)

Crossing
(−∞ ≤ λ ≤
∞)

t (0) 0, 0, 0 ±31, ±12,
±12

0, 0, 0

l(0) 10, 10, 10 ±25, ±10,
±10

0, 0, 0

θ(0) π
2 , π

2 , π
2

π
2 , π

2 , π
2

π
2 , π

2 , π
2

φ(0) 0, 0, 0 0, 0, 0 0, 0, 0

ṫ(0)
√

3,
√

3,
√

3
√

3,
√

3,
√

3
√

3,
√

3,
√

3

l̇(0) is calculated from the geodesic constraint

θ̇ (0) 0, 0, 0 0, 0, 0 0, 0, 0

φ̇(0) 0.0140021,
0.0141414,
0.0141421

0.00319489,
0.019999,
0.02

1, 1, 1

Appendix B

See Table 2.

Table 2 Boundary values used for Figs. 9 and 10

Boundary conditions used for geodesics in 5D-WEB (grow-
ing,decaying) spacetime

Variables Trapped Returning Crossing

t (0) 0 ±13, ±3 13,±14

l(0) 10 ±10, ±10 ±10, 10

θ(0) π
2

π
2 , π

2
π
2 , π

2

φ(0) 0 0, 0 0, 0

y(0) 0.1 0.1, 0.1 0.1, 0.1

ṫ(0) 1.71485 1.71485,
1.74943

1.71485, 1.74943

l̇(0) is calculated from the geodesic constraint

θ̇ (0) 0 0, 0 0, 0

φ̇(0) 0.0138282 0.019556,
0.0200503

0.00977802, 0.0100251

ẏ(0) 0 0, 0 0, 0
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Appendix C

See Table 3.

Table 3 Boundary values used for Fig. 11

Boundary conditions for geodesics with various values of y(0)

(growing,decaying)

Variables (Dotted-
curves)

(Continuous-
curves)

(Dashed-curves)

t (0) 0, 0 ±18.3, 16 ±23.3, 14

l(0) 10, 10 ±10, 10 ±10, −10

θ(0) π
2 , π

2
π
2 , π

2
π
2 , π

2

φ(0) 0, 0 0, 0 0, 0

y(0) 0, 0 0.881374, 0.1 1.01, 0.3

ṫ(0)
√

3,
√

3 0.866025,
1.74943

0.716391, 1.89267

l̇(0) is calculated from the geodesic constraint

θ̇ (0) 0, 0 0, 0 0, 0

φ̇(0) 0.0140021,
0.0140021

0.00700105,
0.0141426

0.00579139, 0.0153006

ẏ(0) 0, 0 0, 0 0, 0
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