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1 Introduction

Over the past few decades it has been understood that various aspects of string and M-theory
admit a convenient and elegant description in the language of generalised geometry. Notable
examples include the symmetry algebra and dynamics of the massless NS-NS string sector
in terms of “O(n, n)-generalised geometry” [1–3] (see also [4–6]) and of (the dimensional
reductions of) the massless type II and M-theoretic sector in terms of “En(n) ×R+-generalised
geometry” [7–9] (otherwise known as “exceptional generalised geometry”). The former
constitutes one part of a larger world of Courant algebroids [10], and this fact has been used
to understand and extend the phenomenon of Poisson-Lie T-duality [11–13].

In order to develop an analogous extended version in the M-theoretic case, a class of
geometric structures called exceptional algebroids was introduced and examined in [14–16].
This provided a systematic geometrical construction and direct algebraic characterisation of all
maximally supersymmetric consistent truncations to five dimensions and above, reformulating
and slightly refining earlier results of Inverso [17]. It also gives new insights into the nature of
Poisson-Lie U-duality [18–20]. Furthermore, it was shown that both Courant and exceptional
algebroids, as well as the more well-known Lie algebroids, form specific subclasses of a
more general class of structures, called G-algebroids. The letter G here represents a choice
of particular group data — for instance, in the Lie, Courant, and exceptional case this
data corresponds to the groups GL(n,R), O(p, q), and En(n) × R+, respectively. However,
somewhat unsatisfactorily, exceptional algebroids (or more generally G-algebroids) only
provide a description of the exceptional generalised geometry in the cases n < 7.
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The reason for this is as follows. The central ingredient in the definition of a G-algebroid
is a “bracket”, which encodes the algebra of symmetries of the related theory. Although by
construction the infinitesimal symmetries themselves form a Lie algebra, it is more convenient
to parametrise them in terms of sections of some vector bundle. The price to pay for this
transition is that the corresponding bracket ceases (in general) to be antisymmetric, and only
satisfies the Leibniz identity, a generalisation of the Jacobi identity to non-antisymmetric
brackets. The symmetric part of this bracket usually has a very concrete form, written in terms
of an inner product (in the O(p, q) case) or its generalisation (in the exceptional case for n < 7).
Concretely, denoting the vector bundle describing the infinitesimal symmetries by E, there
exists another vector bundle N , a vector bundle map ⟨ · , · ⟩ : E ⊗ E → N , and a differential
operator D from sections of N to sections of E, such that for every section u of E we have

[u, u] = 1
2D⟨u, u⟩.

Although this condition was first encountered in the case of Courant algebroids (where N is
the trivial line bundle), it also holds in the other cases, notably in exceptional generalised
geometry for n < 7. It, however, ceases to hold in the cases n ≥ 7.

It is thus clear that in order to incorporate exceptional groups of higher rank, a somewhat
radical shift of perspective is needed. Importantly, one notes that in the cases n ≥ 8 one
expects the classical (Leibniz) algebroid framework to break down completely, due to the
appearance of the dual graviton (cf. the works [22, 23] where various approaches are used
to bypass this problem). The remaining case is the one of n = 7, where the effect of the
dual graviton is much milder.

In this work we abandon the inner product (or its generalisation) completely and study
a new class of structures, which rely on a particular type of tensor, typically denoted Y in
the literature following [24]. For this reason we call the resulting structures Y-algebroids.
Crucially, we show that they have precisely the desired properties that are needed for the
n = 7 geometry.

The fact that the algebra of symmetries can be concisely described via a bracket featuring
Y (as in (4.5)) has been known for some time [3, 24]. One of the points of the present
work is to show that this expression can be regarded as a simple consequence of a more
innocent-looking definition of a Y-algebroid. In addition, this approach gives a useful new
handle on studying the appearance of fluxes, the phenomenon of Poisson-Lie U-duality, and
the algebraic structure of maximally supersymmetric consistent truncations.

The paper is organised as follows. We start with a short introduction into the general
framework of Leibniz algebroids, and define and discuss basic concepts such as generalised
Lie derivatives and connections. After a short linear algebra excursion we define Y-algebroids
and their classes, and we show how they recover Lie algebroids, (generalisations of) Courant
algebroids, and the previously defined exceptional algebroids for ranks n < 7. We then study
the n = 7 case in more detail, and prove the basic structural results, a local classification the-
orem, and the algebraic characterisation of maximally supersymmetric consistent truncations
(in terms of exceptional Manin pairs). We also touch lightly on the global classification issue.
We finish with the discussion of the Poisson-Lie U-duality, look at some explicit examples,
and take some steps connecting to exceptional complex geometry.
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2 Leibniz algebroids

We start by recalling the definition of a Leibniz algebroid. Although these structures are
too general for our purposes here, they provide a useful starting point for defining and
understanding notions such as generalised Lie derivatives and connections.

A Leibniz algebroid consists of a vector bundle E → M , a vector bundle map ρ : E → TM

(called the anchor),1 and an R-bilinear bracket on the space of sections of E,

[ · , · ] : Γ(E)× Γ(E) → Γ(E),

such that for all u, v, w ∈ Γ(E) and f ∈ C∞(M) we have

[u, [v, w]] = [[u, v], w] + [v, [u, w]], [u, fv] = f [u, v] + (ρ(u)f)v.

The first condition is known as the Leibniz identity.
The simplest example is given by E = TM with ρ = id and [ · , · ] the Lie bracket

(commutator) of vector fields. It is often useful to regard Leibniz algebroids as a generalisation
of this particular example.

One simple consequence of the definition of a Leibniz algebroid is the fact that the
anchor intertwines the brackets,

ρ([u, v]) = [ρ(u), ρ(v)].

The operation [u, · ] extends naturally to a generalised Lie derivative operator Lu acting
on tensors on E, that is, sections of

E∗ ⊗ · · · ⊗ E∗ ⊗ E ⊗ · · · ⊗ E.

For instance, for f ∈ C∞(M) and ξ ∈ Γ(E∗) we have

Luf = ρ(u)f, ⟨Luξ, v⟩ = ρ(u)⟨ξ, v⟩ − ⟨ξ, [u, v]⟩,

where ⟨ · , · ⟩ is the pairing between E∗ and E. A tensor t on a Leibniz algebroid is called
invariant if Lut = 0 for all u ∈ Γ(E).

A connection on a Leibniz algebroid E is an R-bilinear map ∇ : Γ(E)× Γ(E) → Γ(E),
denoted u ⊗ v 7→ ∇uv, such that for all u, v ∈ Γ(E) and f ∈ C∞(M) we have

∇fuv = f∇uv, ∇u(fv) = f∇uv + (ρ(u)f)v. (2.1)

Again, ∇u extends to an action on all tensors in E. Note that given a conventional vector
bundle connection D : Γ(TM)× Γ(E) → Γ(E) one can always define an associated algebroid
connection ∇(D) via ∇(D)

u v := Dρ(u)v for all u, v ∈ Γ(E). A connection ∇ is called t-
compatible if ∇t = 0.

Finally, we will use ρ∗ : T ∗M → E∗ to denote the transpose/dual map of the anchor, i.e.

⟨ρ∗(α), u⟩ = ⟨α, ρ(u)⟩ u ∈ Γ(E), α ∈ Ω1(M).
1Vector bundle map means that at every point m ∈ M we have a linear map on the fibres, Em → TmM .

This in particular induces a map (also denoted ρ) on the sections Γ(E) → Γ(T M), satisfying ρ(fu) = fρ(u)
for any f ∈ C∞(M) and u ∈ Γ(E).
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3 Y-algebroids

Let us now proceed to the main protagonist of the present article, the Y-algebroid. We first
give the definition and then discuss some examples.

3.1 Definition

We start with a brief discussion of some linear algebra. We will be interested in studying
pairs (R, y) of a real vector space R and a linear map

y : R∗ ⊗ R → R∗ ⊗ R,

seen as a tensor on R. Two simple examples are given by y = 0 and by taking the transpose of
an endomorphism (w.r.t. some fixed inner product). It is shown below that these correspond
to Lie and (a generalisation of) Courant algebroids, respectively. For any (R, y) we define
Aut(y) as the subgroup of GL(R) which preserves y. If we choose a basis eα of R, we can
denote the components of y by

yαβ
γδ := ⟨y(eα ⊗ eγ), eδ ⊗ eβ⟩.

Finally, we will say that a subspace V ⊂ R is coisotropic if

y αβ
(γδ)ξαζβ = 0 ξ, ζ ∈ V ◦,

where V ◦ := {ξ ∈ R∗ : ξ|V = 0} ⊂ R∗ is the annihilator of V .

Definition 3.1. A Y-algebroid is a Leibniz algebroid (E, [ · , · ], ρ), together with an invariant
tensor

Y : E∗ ⊗ E → E∗ ⊗ E,

such that there exists a Y -compatible connection ∇ satisfying

[u, u] = Y (∇u)u, ∀u ∈ Γ(E). (3.1)

Note that, dropping the invariance and compatibility requirements in this definition, one
recovers the anti-commutable Leibniz algebroid of [25] (for related previous works see [26, 27]).
Notice also that the data necessary to define a Y-algebroid consists only of a Leibniz algebroid
and a particular tensor Y , and there is typically no concrete or natural connection associated
with such an algebroid.

We will be interested in cases where Y “is the same” everywhere on the manifold. To
make this formal, let R be a vector space and y : R∗ ⊗ R → R∗ ⊗ R a fixed tensor. A
Y-algebroid is said to be of class (R, y) if there is a linear isomorphism from each fiber to R

such that Y is mapped to y. Note that looking at all possible identifications of the fibres
of E with R which carry Y to y we obtain a principal Aut(y)-bundle.2

Proposition 3.2. For any Y-algebroid the kernel of ρ is coisotropic at every point.
Equivalently,

T ∗M ⊗ E ⊗ E
ρ̌−→ E

ρ−→ TM → 0, (3.2)

with ρ̌(ξ ⊗ u ⊗ v) := Y (ρ∗ξ ⊗ u)v + Y (ρ∗ξ ⊗ v)u, is a chain complex.
2Here we assume Aut(y) ⊂ GL(R) is closed.
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Proof. Applying ρ to [u, u] = Y (∇u)u we get 0 = ρ(Y (∇u)u) for any u ∈ Γ(E). In particular,
for any f ∈ C∞(M) we have 0 = ρ(Y (∇fu)fu)− f2ρ(Y (∇u)u) = fρ(Y (ρ∗df ⊗ u)u), which
implies that ρρ̌(df⊗u⊗u) = 0. Since any element of the fibre T ∗

mM can be extended to an exact
1-form, it follows that (3.2) is a chain complex. Looking at a fibre of a fixed point and noticing
that im ρ∗ = (ker ρ)◦, we can rewrite ρ(Y (im ρ∗⊗u)u) = 0 as ⟨Y ((ker ρ)◦⊗u)u, (ker ρ)◦⟩ = 0,
which finishes the proof.

Importantly, if (3.2) is an exact sequence, we say that the Y-algebroid is exact. As seen
below, it is precisely exact Y-algebroids that provide a natural setup for many string and
M-theoretic applications. However, when dealing with Poisson-Lie-type dualities, it is crucial
to regard exact Y-algebroids as a very special sector of a larger class of all Y-algebroids.3 This
has been understood originally in the works of Ševera [12, 13], which describe Poisson-Lie
T-duality [11] using (exact as well as non-exact) Courant algebroids.

3.2 Group data and G-algebroids

The pairs (R, y) that arise in string and M-theory come from group representations via the
following construction: suppose R is a faithful representation of a Lie group G and

π : R∗ ⊗ R → R∗ ⊗ R

is an equivariant map with im π = g in the representation R. We then set y := id−π.
Although by construction we always have G ⊂ Aut(y), the two groups are in general

not equal, and indeed they will not be for the cases of interest to use (see below). For
example, for the E7(7) × R+ case, they differ slightly in their global structure: E7(7) × R+

vs (Z2 ⋉ E7(7)) × R+.
On a related note, it is instructive to compare Y-algebroids with the previously defined

G-algebroids [14]. As shown below, these two notions essentially coincide in the case of
exceptional groups of low rank (up to 6). Interestingly, not only do Y-algebroids allow one
also to capture the case n = 7, but their definition seems simpler. This is due to the fact
that it only relies on the notion of the tensor Y (or y) — one then recovers the group by
studying maps preserving this tensor. The interaction between the bracket and the group
is then ensured by the requirement that Y is invariant.

3.3 Examples

(a) Lie algebroids. Take R = Rn and G = GL(n,R), with π = id. We have y = 0,
Aut(y) = GL(n,R), and the corresponding algebroid has [u, u] = 0. Y-algebroids of class
(Rn, 0) thus coincide with Lie algebroids of rank n. Furthermore, exact Y-algebroids of this
class correspond to tangent Lie algebroids E = TM with dimM = n.

(b) Beyond Courant algebroids. Take R = Rn to be the vector space with the inner
product η of signature (p, n − p), forming the vector representation of G = O(p, n − p), with
π(A) = A − AT . This implies y(A) = AT , which we can write as

y = η ⊗ η−1 ∈ R∗ ⊗ R∗ ⊗ R ⊗ R.

3Or at least of a larger class of transitive Y-algebroids, i.e. those with ρ surjective.
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In this case Aut(y) is the group

{A ∈ GL(n,R) | ATηA = λη for some λ ∈ R}.

Note that by Sylvester’s law, λ < 0 is only possible if η has split signature. Thus

Aut(y) =

(Z2 ⋉ O(n
2 , n

2 ))× R+ if η has split signature,
O(p, n − p)× R+ if not.

To define the action of the Z2 factor, choose a basis {e+
i , e−i } such that η =

∑
i(e+

i ⊗ e+
i −

e−i ⊗ e−i ). The group Z2 is generated by the flip e±i 7→ e∓i . Note that A = − id is contained
within O(p, n − p). Finally, notice that if we see y as a map

ŷ : R ⊗ R → R ⊗ R,

then dim(im ŷ) = 1.
For any Y-algebroid of class (Rn, η⊗η−1) we thus obtain a line bundle N := im Ŷ ⊂ E⊗E,

and Ŷ can be seen as a line-bundle-valued inner product (·, ·) : E ⊗ E → N . One easily
checks that, when acting on Γ(N), the generalised Lie derivative satisfies Lfu = fLu for
all f ∈ C∞(M), u ∈ Γ(E), i.e. it defines a (Leibniz algebroid) connection ∇N on N . The
invariance of Y then means

∇N
u (v, w) = ([u, v], w) + (v, [u, w]).

On the other hand, the condition (3.1) translates to

[u, u] = 1
2 Tr∇

N (u, u),

where Tr is understood as the contraction on E∗ ⊗ N ⊂ E∗ ⊗ E ⊗ E.
Y-algebroids of this class are thus closely related (though not equivalent) to the structures

introduced in [28–30], which generalise Courant algebroids [10].

(c) En-algebroids. We now restrict our attention to the groups En(n) and representations
which appear in exceptional generalised geometry. For the sake of simplicity we focus on
the case n > 3, while for conceptual reasons (discussed later in the text) we consider the
upper bound n < 8. En(n) are real Lie groups whose Lie algebras are split real forms of
the corresponding complex simple Lie algebras.4 We list them below, together with their
Dynkin diagrams, and a chosen representation R, which is always fundamental, corresponding
to the marked black node.

E7(7) E6(6) E5(5) = Spin(5, 5) E4(4) = SL(5,R)

56 27 16 10

4Or, in the case of lower rank, “extrapolations” thereof, via the Dynkin diagram pattern.
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As is usual, we extend the group En(n) to G := En(n) × R+, with the second factor acting on
R with weight 1. In each case, we take the projection onto the Lie algebra [9]

π = α πad − β πR, (3.3)

where πad and πR are the projections onto en(n) and R, respectively, in the representation R,
α is twice the Dynkin index of R, and β = dim R

9−n . Specifically one has

n 7 6 5 4

α 12 6 4 3
β 28 9 4 2

One can derive (3.3) from an even simpler expression [31, 32]

π = ta ⊗ ta + [1− (Λ,Λ)]1⊗ 1,

where ta are the generators of en(n), Λ is the dominant integral weight associated to R, and
we used the normalisation of the Killing form under which the long roots have length 2.

An En-algebroid is short for a Y-algebroid of class (R, y) for these R and y (both
depending on n).

Let us now show how this notion relates to the previously defined exceptional alge-
broids [14] for 4 ≤ n ≤ 6. More concretely, we show that locally the two constructions
coincide.5 First, let us show that

aut(y) ∼= en(n) ⊕ R. (3.4)

In order to do this, note that any element A ∈ Aut(y) ⊂ GL(R) preserves the image of
π = id−y in R∗ ⊗ R, i.e. the subspace en(n) ⊕ R ⊂ R∗ ⊗ R. In other words,

A(en(n) ⊕ R)A−1 ⊂ en(n) ⊕ R.

Since A[x, y]A−1 = [AxA−1, AyA−1] and conjugation acts trivially on the second summand
of en(n) ⊕ R, the assignment A 7→ A( · )A−1 gives a map to Lie algebra automorphisms,

Aut(y) → Aut(en(n)).

Schur’s lemma implies that the kernel of this map is R∗. Since Lie(Aut(en(n))) ∼= en(n) (due
to simplicity), we obtain the identification (3.4). Notice however that the relation between
the Lie groups Aut(y) and En(n) × R+ is more complicated due to the presence of outer
automorphisms (note that the Dynkin diagrams for n ∈ {4, 5, 6} possess a Z2 symmetry).

Second, for n < 7, y is symmetric both in its upper and lower indices, similar to the case
of conformal Courant algebroids. Furthermore, defining ŷ : R ⊗ R → R ⊗ R to be its partial
dual, we have that R′ := im ŷ ⊂ R ⊗ R is a particular subrepresentation:

n 6 5 4

R′ 27′ 10 5′

5Note that there are local classification results [14–16] related to G-algebroids. Because of the correspondence
between the two notions, we automatically obtain analogous local classifications of En-algebroids for n < 7.
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If now E is an En-algebroid for n < 7, and we define the subbundles

N := im Ŷ ⊂ E ⊗ E, N∗ := im Ŷ ∗ ⊂ E∗ ⊗ E∗,

we get symmetric maps E ⊗E → N and E∗ ⊗E∗ → N∗ (or equivalently N → E ⊗E). Then

Y (∇u)u = 1
2 Tr∇(Ŷ (u ⊗ u)),

where again Tr denotes the contraction on E∗ ⊗ N ⊂ E∗ ⊗ E ⊗ E. We thus obtain an
exceptional algebroid [14], with Dn = Tr∇n.6 Conversely, starting with an exceptional
algebroid we define Ŷ to be the composition E ⊗ E → N → E ⊗ E. Similarly, it is not
difficult to see that one can always extend D to a Y -compatible connection ∇ such that
Tr∇n = Dn. This establishes the correspondence between the two notions.

(d) Other generalised geometries. There are also further interesting classes of geometries.
Two of those arise as a straightforward generalisation of the cases E4(4) ×R+ and E5(5) ×R+,
and are given by the following diagrams:

The first one is given by the two-form representation of SL(n,R) × R+ [33, 34] and plays
an important role in the description of Freund-Rubin compactifications and their consistent
truncations [34–36]. The second one, introduced and studied in [37], corresponds to the
spinor representation of Spin(n, n) × R+.

Another intriguing class of geometries [38] with non-split real forms of Lie groups arises
from the study of magical supergravities [39–41]. This in particular includes the so-called type
e7 setups, describing reductions to 4 dimensions. The relevant groups and representations
in this case are

(Sp(6,R)×R+, 14), (SU(3, 3)×R+, 20), (SO∗(12)×R+, 32), (E7(−25)×R+, 56). (3.5)

Similarly to the above E7(7) × R+-case, the tensor y is not symmetric in the upper/lower
indices. Hence the corresponding geometries do not admit a G-algebroid description. However,
just as the E7(7) × R+ case, they fit well in the framework of Y-algebroids.

4 The n = 7 case

Let us now turn to the main focus of the paper, namely the application of Y-algebroids
in the case of E7(7).

6The principal bundle, which is required in the definition of an exceptional algebroid, corresponds locally
to the Aut(y)-principal bundle which we obtain from the Y-algebroid E. Furthermore, E can be seen as the
associated bundle for the representation R.
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4.1 General M-exact E7-algebroids

Let us start with some algebraic preliminaries, used to define the group E7(7) and the
automorphisms of the y tensor. Set R := ∧2 R8 ⊕ ∧2(R8)∗. One can then define the following
symplectic and quartic forms on R:

ω((x, y), (x′, y′)) = Trxy′ − Trx′y, q(x, y) = Tr(xy)2 − 1
4(Trxy)2 + 4(Pf x + Pf y).

The group E7(7) is defined as the subgroup of GL(R) which preserves ω and q.
The y tensor takes the form [24]:

yαβ
γδ = 12ωαϵωβζqϵζγδ + δ(α

γ δ
β)
δ + 1

2(ω
−1)αβωγδ. (4.1)

The subgroup Aut(y) ⊂ GL(R) which preserves y is, however, slightly larger than E7(7) ×R+,
and can be found via the following argument. First, note that Aut(y) has to preserve
separately the symmetric and antisymmetric (in pairs of lower and upper indices) parts
of y. The antisymmetric part is proportional to ω ⊗ ω−1, which implies that Aut(y) is a
subgroup of conformal symplectic transformations

{A ∈ GL(R) | AT ωA = λω for some λ ∈ R} ∼= (Z2 ⋉ Sp(56,R))× R+.

The Z2 factor here can be identified with the subgroup of GL(R) generated by the flip

R ∋ (x, y) 7→ (−x, y),

or equivalently with the subgroup generated by any other element of GL(R) related to
this flip by an Sp(56,R)-conjugation. (We will see in a moment how to interpret the flip.)
For the symmetric part of y, the second term in (4.1) is automatically invariant under the
entire GL(R), while the first term is invariant w.r.t. the scaling, the flip, and the part of
Sp(56,R) preserving q. Hence

Aut(y) = (Z2 ⋉ E7(7))× R+, aut(y) = e7(7) ⊕ R.

Let us now set some basic nomenclature which we will use in the case of E7-algebroids.
First, a coisotropic subspace of R is said to be of type M when it has codimension 7. Using
the same approach as in [14], one can show that all subspaces of type M are related by an
action of E7(7), i.e. they form a single orbit. Explicitly, using the formulas from [9], we have
the following decompositions under the subgroup GL+(7,R) ⊂ E7(7) × R+:

R = T ⊕ ∧2 T ∗ ⊕ ∧5 T ∗ ⊕ (T ∗ ⊗ ∧7 T ∗), (4.2)
e7(7) ⊕ R = R⊕ (T ∗ ⊗ T )⊕ ∧3 T ∗ ⊕ ∧6 T ∗ ⊕ ∧3 T ⊕ ∧6 T, (4.3)

where T := R7. The subspace ∧2 T ∗ ⊕ ∧5 T ∗ ⊕ (T ∗ ⊗ ∧7 T ∗) ⊂ R is then of type M. Note
that of the GL(7,R) action on T , only the set of elements with positive determinant is a
subgroup of E7(7) × R+. However, the Z2 flip symmetry (x, y) → (−x, y) acts as − id on
T and ∧5 T ∗ and trivially on the other summands in (4.2), and so it corresponds to the
action of − id ∈ GL(7,R). Thus Aut(y) is precisely the extension of E7(7) × R+ required
to include the full GL(7,R) action on R.

An E7-algebroid is called M-exact if any one of the following equivalent conditions
are satisfied:
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◦ the sequence (3.2) is exact and the base is 7-dimensional

◦ ρ is surjective and ker ρ is of type M everywhere

◦ ρ is surjective and the base is 7-dimensional.

Finally, note the following important fact, which holds for subspaces V ⊂ R in the n = 7
case (and trivially also for n < 7):

y αβ
(γδ)ξαζβ = 0 ∀ξ, ζ ∈ V ◦ =⇒ yαβ

γδ ξαζβ = 0 ∀ξ, ζ ∈ V ◦. (4.4)

We will use this property in subsection 4.2 when performing the algebraic characterisation
of consistent truncations.

Example: exceptional tangent bundle. Motivated by (4.2), for any 7-dimensional
manifold M we can define the exceptional tangent bundle

TM := TM ⊕ ∧2 T ∗M ⊕ ∧5 T ∗M ⊕ (T ∗M ⊗ ∧7 T ∗M),

with ρ being the projection onto TM , the bracket

[X + σ2 + σ5 + τ, X ′ + σ′
2 + σ′

5 + τ ′]0
= LXX ′ + (LXσ′

2 − iX′dσ2) + (LXσ′
5 − iX′dσ5 − σ′

2 ∧ dσ2)
+ (LXτ ′ − jσ′

5 ∧ dσ2 − jσ′
2 ∧ dσ5),

and the Y -tensor given by (3.3) (or explicitly by (4.1)). Here j is the map

∧p T ∗ ⊗ ∧8−p T ∗ → T ∗ ⊗ ∧7 T ∗,

defined by

(jα ∧ β)(X) = (iXα) ∧ β ∈ ∧7 T ∗, X ∈ T.

In order to see that this defines a Y-algebroid, we note that the above bracket can be
written more concisely as follows. Let D be any torsion-free conventional connection on TM .
This naturally extends to a conventional connection on TM and hence defines an associated
algebroid connection ∇(D). By definition DY = 0 and hence ∇(D)Y = 0. Using the fact that,
since D is torsion-free, LXX ′ = DXX ′ − DX′X, dσ2 = dDσ2, etc., one can rewrite [9]

[u, v]0 = ∇(D)
u v − (1− Y )(∇(D)u)v = ∇(D)

u v −∇(D)
v u + Y (∇(D)u)v, (4.5)

independent of the choice of D. We then immediately see that the last axiom for a Y-
algebroid is satisfied for the connection ∇(D).
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Classification. Two M-exact E7-algebroids E and E′ over M are equivalent if there exists
a vector bundle isomorphism ϕ : E → E′ that is compatible with the brackets, has ϕ∗(Y ) = Y ′

and commutes with the anchor maps. We can then consider classifying general M-exact
E7-algebroids up to equivalence, both locally and globally.

Starting with the local problem, suppose that E → M is a general M-exact E7-algebroid.
One can check — again by repeating the calculation from [14] — that locally (over a
contractible open set U) there exists a vector bundle isomorphism E → TU which maps the
Y -tensor on E to that on TU and commutes with the anchors, i.e. it makes the following
diagram commute

E TU

TU
ρ ρ

However, such a map is not unique, since we can compose it with any vector bundle
automorphism of TU which preserves Y and ρ. Such automorphisms are parametrised by
maps U → S, where S is the Lie group with Lie algebra

s = R′ ⊕ ∧3 T ∗ ⊕ ∧6 T ∗ ⊂ e7(7) ⊕ R,

with R′ being the particular combination of the two R’s in (4.3),

R′ ⊂ R⊕ R ⊂ R⊕ (T ∗ ⊗ T ) ⊂ e7(7) ⊕ R,

that fixes elements of T ⊂ R. In other words, infinitesimal automorphisms are given by
an arbitrary function, 3-form, and a 6-form.

Using one such local identification E ∼= TU , we see that any M-exact E7-algebroid
can be locally written as

T U ⊕ ∧2 T ∗U ⊕ ∧5 T ∗U ⊕ (T ∗U ⊗ ∧7 T ∗U),

with Y and ρ having the same form as on TU . What remains is to determine the possible
form of the bracket on TU . The definition of a Y-algebroid requires the following behaviour
of the bracket [ · , · ] under the multiplication of the arguments by a function:

[u, fv]− f [u, v] = (ρ(u)f)v, [fu, v]− f [u, v] = (Y − 1)(ρ∗df ⊗ u)v.

We know that TU can be endowed with the bracket [ · , · ]0 and connection ∇(D), associated
to a torsion-free conventional connection D on U , as discussed in the preceding example.
Since the bracket [ · , · ]0 on TU does satisfy these properties, the most general bracket on
TU has to differ from it by a purely tensorial quantity, i.e.

[u, v] = [u, v]0 + A(u)v,

for some vector bundle map A : TU → (e7(7) ⊕R)×U . In addition, since the same anchor on
TU intertwines both [ · , · ] and [ · , · ]0 with vector fields on U , we have that ρ(A(u)v) = 0, i.e.

A : TU → s× U .
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Similarly, any connection can be written as ∇u = ∇(D)
u + B(u), for some

B : TU → (e7(7) ⊕ R)× U .

The last axiom in the definition of a Y-algebroid now imposes the condition that there exists
such a B solving the tensor equation

A(u)u = Y (B( · )u)u, ∀u ∈ TU .

An explicit calculation reveals that the only A admitting a solution have the form

A(X + σ2 + σ5 + τ) = iXF1 + (iXF4 − F1 ∧ σ2) + (iXF7 − F4 ∧ σ2 − 2F1 ∧ σ5),

for some F1 ∈ Ω1(U), F4 ∈ Ω4(U), and F7 ∈ Ω7(U). Finally, imposing the Leibniz identity
for the bracket produces the Bianchi identities

dF1 = 0, dF4 + F1 ∧ F4 = 0. (4.6)

Note that there is no Bianchi for F7 as we are on a 7-dimensional manifold. Physically,
the forms F1, F4, and F7 can be associated with the field strengths of the fields present
in the reduction of M-theory, namely the scalar warp factor, the 3-form potential, and the
dual 6-form potential, respectively.

We have now determined that the most general bracket has (locally) a very specific form,
parametrised only by a set of fluxes F1, F4, F7. Changing the identification E ∼= TU by
a map U → S preserves this form, up to a change in the fluxes. At the infinitesimal level,
acting with c0 ∈ Ω0(U), c3 ∈ Ω3(U), and c6 ∈ Ω6(U) results in

c0 : δF1 = −dc0, δF4 = c0F4, δF7 = 2c0F7,

c3 : δF1 = 0, δF4 = −dc3 − F1 ∧ c3, δF7 = F4 ∧ c3,

c6 : δF1 = 0, δF4 = 0, δF7 = −dc6 − 2F1 ∧ c6,

respectively. In particular, any set of fluxes satisfying (4.6) can be locally removed by these
transformations. This establishes the following result.

Theorem 4.1. Every M-exact E7-algebroid locally has the form of the untwisted exceptional
tangent bundle.

We can extend this to also characterise the global classification of M-exact E7-algebroids.
From the above transformations it follows that the automorphisms (i.e. bundle isomorphisms
preserving the brackets, anchors, and Y tensors) of the untwisted exceptional tangent bundle
TU form a group G(U) whose Lie algebra is given by elements of the form

{c0 + c3 + c6 ∈ Ω0(U)⊕ Ω3(U)⊕ Ω6(U) | dc0 = dc3 = dc6 = 0},

with the bracket

[c0 + c3 + c6, c′0 + c′3 + c′6] = (c0c′3 − c′0c3) + (2c0c′6 − 2c′0c6 − c3 ∧ c′3).
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Note that this holds for any open set U ⊂ M , not just for contractible ones. We thus obtain
a sheaf G of non-abelian groups, with G(U) being the group of automorphisms of TU .

Theorem 4.1 implies that for any M-exact E7-algebroid E → M we can find an open
cover {Uα} of M such that on each Uα have an isomorphism φα between the untwisted
exceptional tangent bundle TUα and E. On overlaps Uα ∩ Uβ we thus get automorphisms

gαβ := φ−1
β ◦ φα

of the untwisted exceptional tangent bundle T(Uα ∩ Uβ), i.e. gαβ ∈ G(Uα ∩ Uβ). On triple
overlaps Uα ∩ Uβ ∩ Uγ this satisfies

gαγ = gβγgαβ ,

and so we obtain a Čech 1-cocycle with values in the sheaf G. Changing the identifications on
Uα from φα to φαhα, the cocycle {gαβ} changes to {h−1

β gαβhα}. The M-exact E7-algebroids
over M are thus classified by the Čech cohomology7

Ȟ1(M,G).

We leave the question of rewriting this cohomology in terms of more standard geometric
structures to a future work.

4.2 Consistent truncations and Poissson-Lie U-duality

It has been shown in [34, 35] that consistent truncations to maximally supersymmetric
(11− n)-dimensional theories correspond to Leibniz parallelisations, i.e. global frames eα of
the (possibly twisted) exceptional tangent bundle with Y αβ

γδ and cγ
αβ constant, where the

latter are the structure coefficients defined by [eα, eβ] = cγ
αβeγ and physically correspond

to the embedding tensor of the lower-dimensional theory. Let us reformulate this in the
present language, for the case of an E7-algebroid.

Exceptional Manin pairs. Suppose we start with a Leibniz parallelisation of an M-exact
E7-algebroid E over a compact connected base M , with ∇ satisfying (3.1). This induces
a trivialisation of the bundle,

E ∼= M × a,

with the vector space a inheriting a well-defined Leibniz bracket and an invariant tensor
Y ; the basis of a gives the global frame eα of E. Although ∇ does not necessarily descend
to a, we can always replace it by one which does, due to the following argument. First,
note that the trivialisation gives Γ(E) ∼= C∞(M) ⊗ a, and consequently induces a second
connection ∇̂uv := ρ(u)v satisfying ∇̂Y = 0. We set B := ∇− ∇̂. Seeing x ∈ a as a constant
section of E (i.e. ∇̂x = 0), we then have

[x, x] = Y (B( · )x)x.

7Note that when constructing an algebroid by gluing together smaller pieces, we can use a partition of
unity to get a suitable globally defined connection.
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Note that the l.h.s. is constant by assumption. Hence, for any two points m, m′ ∈ M we have

Y ((B( · )m − B( · )m′)x)x = 0

for all x ∈ a. Consequently, we can fix some m ∈ M and replace the connection ∇ = ∇̂+B( · )
by ∇̂+B( · )m, which still satisfies (3.1), but also maps constant sections to constant sections.

The Leibniz algebra a thus inherits a connection (given simply by Bm) and becomes
an E7-algebroid over a point base (with ρ = 0),

a → {∗}.

Although a is not a Lie algebra in general, we can form a Lie algebra aLie out of it by modding
out by the ideal i spanned by elements of the form [u, u] for u ∈ a,

aLie := a/i.

The anchor map of E translates to an action of a on M , i.e. to a homomorphism
a → Γ(TM). Since the anchor is surjective (because the algebroid is M-exact) and i is
in its kernel, the homomorphism descends to a transitive action of aLie on M . Using the
compactness of M we then have that M ∼= ALie/BLie, where ALie is the unique connected and
simply connected Lie group integrating aLie, and BLie ⊂ ALie is a subgroup corresponding
to a Lie subalgebra bLie ⊂ aLie. Finally, we take b ⊂ a to be the preimage of bLie under
a → a/i. Note that b is a subalgebra containing i. Looking at the coset of the identity,
[1] ∈ ALie/BLie ∼= M , we see that the kernel of the anchor coincides precisely with b, and
so b has to be a type M subspace.

Summarising, any M-exact Leibniz parallelisable E7-algebroid (over a compact connected
base) produces a pair of

◦ an E7-algebroid a → {∗}

◦ a type M subalgebra b ⊂ a containing the ideal i.

We call such data an exceptional Manin pair. Furthermore, it follows from the axioms of a Y-
algebroid that the original M-exact E7-algebroid is uniquely determined in terms of this data.

Let us now show the converse, namely that any exceptional Manin pair comes from
an M-exact E7-algebroid. Starting from b ⊂ a, we take a corresponding pair of groups
BLie ⊂ ALie and construct the trivial vector bundle a× ALie/BLie → ALie/BLie.8 We equip
this bundle with a Y -tensor coming from a, and with an anchor map coming from the action
of a on ALie/BLie. Finally, understanding the sections of the vector bundle as functions on
M valued in a, we define the bracket by

[u, v] = ρ(u)v − ρ(v)u + Y (ρ∗du)v + [u, v]a,

8There is a small subtlety here in that BLie needs to be a closed subgroup, in order to get a well-behaved
quotient. Also, for a given pair of b ⊂ a there exist in general multiple possible subgroups BLie ⊂ ALie,
differing by their number of connected components. We ignore these technicalities.
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where the last term is the bracket on a. One easily sees that this structure in general satisfies
all the axioms of an M-exact E7-algebroid apart from the Leibniz identity. Furthermore, one
easily checks that for arbitrary (not necessarily constant) sections u, v we have

ρ([u, v])− [ρ(u), ρ(v)] = ρ(Y (ρ∗du)v),

which vanishes due to the coisotropy of b and the property (4.4) of Y . We now use a
trick, employed in [14].

We start by noting that in subsection 4.1, when performing the classification of M-exact
E7-algebroids, we have only used the Leibniz identity at the very end, when deriving the
Bianchi identities. Up to that point, we only used the other Y-algebroid axioms, together
with the fact that ρ([u, v]) = [ρ(u), ρ(v)]. Since the structure that we just constructed over
ALie/BLie does satisfy these properties, we know that the bracket locally needs to have
the form of the exceptional tangent bundle twisted by some F1, F4, F7 — it is however
not clear in general whether these fluxes satisfy the relevant Bianchi identities. Still, it is
straightforward to check that even when the fluxes do not satisfy the Bianchi identities,
the corresponding Jacobiator

J(u, v, w) := [u, [v, w]]− [[u, v], w]− [v, [u, w]]

is always a tensor. Now since a is a Y-algebroid, its corresponding Jacobiator vanishes. This
implies that the Jacobiator necessarily vanishes on the constant sections of a × ALie/BLie,
and hence — due to tensoriality — has to be identically zero, implying that we indeed obtain
a Y-algebroid. We have thus established both directions of:

Theorem 4.2 (Classification of maximally supersymmetric consistent truncations). Leibniz
parallelisations of M-exact E7-algebroids correspond to exceptional Manin pairs.9

As for the classification theorem [14–16] for n ≤ 6, this is consistent with an earlier result
of Inverso [17] derived using different techniques. We also note that the explicit structure
of the corresponding Leibniz algebras and global frames, including the n = 7 case, was
recently expanded upon in [42].

Poisson-Lie U-duality. Sometimes it is possible to find distinct exceptional Manin pairs
which share the same a. The corresponding Leibniz parallelisable spaces are then Poisson-Lie
U-dual [18–20], for the following reason.

Recall that a generalised metric is a reduction of the structure group from E7(7) ×R+ to
its maximally compact subgroup SU(8)/Z2. On an M-exact E7-algebroid, such a reduction
parametrises the bosonic field content of the 11-dimensional supergravity restricted to a
7-dimensional warped compactification manifold. It is then possible to generalise the standard
construction of Levi-Civita connections and define a generalisation of the Ricci tensor, whose
vanishing corresponds to the equations of motion of the supergravity [9].

Suppose now that we have two Manin pairs (a, b), (a, b′), leading to Leibniz parallelisations
of M-exact E7-algebroids over spaces ALie/BLie and ALie/B′

Lie, respectively. Equipping a

with a generalised metric, we obtain induced generalised metrics on this pair of algebroids.
9The correspondence is one-to-one, up to the technicalities mentioned in the previous footnote.
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Because of the relation of the brackets on these algebroids with the one on a, it is easy to see
(cf. [14]) that the equations of motion hold on ALie/BLie if and only if they hold on ALie/B′

Lie.

4.3 Examples

We now briefly discuss some standard examples of Leibniz parallelisations and Poisson-Lie
U-duality in this language.

(a) Tori and U-duality. The simplest case comes from taking a = R56 to be abelian and
b an arbitrary type M subspace. This gives rise to a Leibniz parallelisation of the torus T 7.
Note that different type M subspaces are obtained via the action of E7(7) × R+; Poisson-Lie
U-duality in this case reduces to ordinary U-duality.

(b) Groups and generalised Yang-Baxter deformations. Let K be a 7-dimensional
Lie group. Then the exceptional tangent bundle TK has a natural Leibniz parallelisation,
induced by left invariant tensor fields. The corresponding exceptional Manin pair is given by

a = k⊕ ∧2 k∗ ⊕ ∧5 k∗ ⊕ (k∗ ⊗ ∧7 k∗), b = ∧2 k∗ ⊕ ∧5 k∗ ⊕ (k∗ ⊗ ∧7 k∗),

with the bracket obtained from [ · , · ]0 by making the replacement

Lie derivative → (co)adjoint action, de Rham differential → Chevalley-Eilenberg differential.

This bracket can be twisted by any set of invariant forms F1, F4, F7 satisfying the Bianchi
identities. One can also try to study Poisson-Lie U-dual setups. In particular, requiring that
the new b′ be transverse to k ⊂ a corresponds to generalised Yang-Baxter deformations, cf. [15].

(c) 7-sphere. Take a := so(8)⊕ 28 and b := so(7)⊕ 28. The bracket is defined by

[(x, a), (y, b)] = ([x, y]so(8), x · b),

where · is the action of so(8) on 28. The Y -tensor comes from the action of E7(7) × R+ on
a, which corresponds to the decomposition R = ∧2 R8 ⊕ ∧2 (R8)∗ from subsection 4.1. This
results in the Leibniz parallelisation of the exceptional tangent bundle over S7, twisted by
F7 = 6vol(S7), corresponding to the consistent truncation found in [43]. The individual
summands so(8) and 28 produce trivialisations of TS7 ⊕ ∧5 T ∗S7 and ∧2 T ∗S7 ⊕ (T ∗S7 ⊗
∧7 T ∗S7), respectively.

5 Alternative approaches, E8 and exceptional complex geometry

Let use briefly discuss some possible extensions of and concepts related to the Y-algebroid
formulation presented here.

There exists an alternative (and in general inequivalent) approach to Y-algebroids, which
makes the connection to the formulas (4.5) more immediate, while moves away slightly from
Courant and G-algebroids. In this approach, we can define the Y-algebroids′ (prime is used
to distinguish them from Y-algebroids) as the tuple consisting of

◦ a vector bundle E → M
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◦ an anchor map ρ : E → TM

◦ a tensor Y : E∗ ⊗ E → E∗ ⊗ E

◦ a map (connection) ∇ : Γ(E)× Γ(E) → Γ(E) satisfying (2.1) and preserving Y ,

such that the bracket defined by

[u, v] := ∇uv −∇vu + Y (∇u)v (5.1)

satisfies the Leibniz identity and LuY = 0 for all u ∈ Γ(E).
One can drop some of the conditions from this definition, provided suitable further

constraints on the form of Y are assumed (cf. the constraints in [24]). It is possible to work
with this definition and derive most of the previous results of this paper in this context,
including the local classification and the algebraic characterisation of consistent truncations.

However, in the present paper we have chosen to focus on Y-algebroids (instead of
Y-algebroids′) since we believe that these provide a more conceptual explanation of the origin
of the well-known formulas (4.5) or (5.1). Y-algebroids also connect more directly to the
previous definitions of Courant algebroids and G-algebroids.

It is very natural to ask how the present results might be extended to the case of
E8(8), where the relevant representation is R = 248. The conceptual issue here is that
the “untwisted bracket”, given by the formula (4.5), ceases to satisfy the Leibniz identity,
i.e. it no longer defines a Leibniz algebroid. There are known approaches to bypass this
problem [22, 23], but they seem to inevitably lead beyond the realm of Leibniz algebroids.
This breakdown is not totally unexpected, since in the case of E8 a proper treatment of the
dual graviton becomes unavoidable, which in turn suggests that the required constructions
might be radically different from the standard ones.

Finally we note how the E7 exceptional complex geometry [44] fits in the present
framework. First, decompose Ŷ : E ⊗ E → E ⊗ E into a symmetric and antisymmetric part,
Ŷ = Ŝ + Â, and recall that rank(im Â) = 1.

An exceptional Dirac structure on an E7-algebroid is a subbundle F ⊂ E which is

◦ maximally isotropic, i.e. Ŝ|F = 0 and rankF = 7

◦ involutive, i.e. [Γ(F ),Γ(F )] ⊂ Γ(F ).

A complex exceptional Dirac structure is a subbundle F ⊂ E⊗C satisfying the same conditions
(with complexified bracket and Y ). An exceptional complex structure is a complex exceptional
Dirac structure, which in addition satisfies F ∩ F̄ = 0 and h(u, v) := iÂ(u, v̄) descends to a
definite hermitian inner product on F (valued in the line bundle im(Â) ⊗ C).

Introduced and analysed in [44, 45], these structures provide a convenient framework
for investigating various features of general Minkowski N = 1 D = 4 flux compactifications
in string theory.

6 Conclusions and outlook

In this paper, we introduced the framework of Y-algebroids, a particular subclass of Leibniz
algebroids, that capture the symmetry structures of warped compactifications of M-theory

– 17 –



J
H
E
P
0
3
(
2
0
2
4
)
0
3
4

and type II string theory down to D ≥ 4 dimensions, as manifested in the O(d, d)- and
En(n) × R+-generalised geometries for n ≤ 7. Moreover, Y-algebroids lead to a compact
description of consistent truncations to maximal gauged supergravities in D ≥ 4 dimensions,
of Poisson-Lie U-duality [18–20], and of exceptional complex structures [44].

Our concept of Y-algebroids is inspired by the previous notion of G-algebroids [14], which
was constructed around a specific group G and included the Leibniz algebroids arising in
En(n) × R+-generalised geometries for n ≤ 6, relevant to warped compactifications to D ≥ 5
dimensions. G-algebroids themselves arose as a generalisation of Courant algebroids, replacing
the Courant algebroid inner product by a symmetric bilinear map valued in (a vector bundle
associated to) a representation of the group G. This close resemblance to the Courant case
enabled a relatively straightforward analysis and simple proofs of various facts related to
dualities and consistent truncations. However, the structure proved to not be general enough
to capture the E7(7) × R+ exceptional geometry.

In contrast, Y-algebroids directly use, as one of their defining features, the tensor

Y : E∗ ⊗ E → E∗ ⊗ E,

employed in the description of symmetries of exceptional geometry [24]. Although it makes
more immediate the connection to the known explicit formulas for the bracket on TM , it
leads to a rather radical change of perspective from the viewpoint of Courant or G-algebroid
geometry and, in particular, increases the computational difficulty of the subsequent analysis.
Still, as we demonstrate in the present work, it can be conveniently used to describe the
E7(7) × R+ geometry and to generalise the structural results known from the n < 7 setups.
This is made possible by the fact that no symmetry of Y is assumed, thus allowing it to
include the antisymmetric component relevant to the E7(7) group, as well as the setups (3.5).
In addition, Y-algebroids recover naturally the cases n < 7 as well as various other instances
of G-algebroids, with G corresponding to the automorphism group of the tensor Y .

We have also shown that M-exact E7-algebroids can be classified using a set of fluxes
F1, F4, F7 satisfying Bianchi identities that allow us to identify them with M-theory fluxes
on the 7-dimensional compactification. In particular this leads to a global classification
in terms of Čech cohomology. This is similar to the classification of Courant algebroids
in terms of H3(M), although the M-exact E7 case is more subtle due to multiple fluxes
appearing with nested Bianchi identities.

Several interesting questions follow from this work. Perhaps the most obvious is how
to extend this construction to the E8 case, which no longer fits in the framework of Leibniz
algebroids [22, 23], or indeed, to try and push to the infinite-dimensional cases such as E9 [31].
Going beyond the En and O(p, n − p) series, it would be interesting to understand the space
of Y-algebroids more generally. In the string and M-theory cases, the relevant Y-algebroids
seem to always be of class (R, y), such that the Y -tensor “looks the same” everywhere on M .
What is the physics of Y-algebroids that go beyond this? An interesting observation here is
that in the string and M-theory cases, the condition (4.4) always holds. This is an important
property, used in the algebraic characterisation of consistent truncations, suggesting that in
general one may wish to restrict to only those Y-algebroids satisfying (4.4).

– 18 –



J
H
E
P
0
3
(
2
0
2
4
)
0
3
4

There are many other questions. What is the global structure of the groups G(U)
that arise in the global classification? How do we calculate Ȟ(M,G), e.g. can we express
it in terms of ordinary cohomology classes on the base manifold M , as in the analogous
Courant case [12, 46]? We described how our framework captures Poisson-Lie U-duality
and exceptional complex structures. Can this be used to find new Poisson-Lie U-dual pairs,
of which currently only few examples are known [47–49]? Similarly, can our framework be
used to gain insights into the global structure of exceptional complex structures? We leave
these questions for future work.
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