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Abstract

Radiative generation of realistic mixing in neutrino sector is studied at one-loop level in a scotogenic 
A4 × Z2 symmetric framework. A scheme of obtaining non-zero θ13 through small mass splitting in right-
handed neutrino sector is proposed. The model consists of three right-handed neutrinos, two of which were 
required to be degenerate in masses to yield the common structure of the left-handed neutrino mass matrix 
that corresponds to θ13 = 0, θ23 = π/4 and any θ0

12 in particular the choices specific to the Tribimaximal 
(TBM), Bimaximal (BM) and Golden Ratio (GR) mixings. Non-zero θ13, deviations of θ23 from maximality 
and small corrections to the solar mixing angle θ12 can be generated in one stroke by shifting from this 
degeneracy in the right-handed neutrino sector by a small amount. The lightest among the three Z2 odd 
inert SU(2)L doublet scalars present in the model can be a potential dark matter candidate.
© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Neutrino oscillation observations have clearly demonstrated the massive nature of neutrinos. 
The mass eigenstates are non-degenerate and distinct from the flavour eigenstates and are con-
nected to each other by the Pontecorvo, Maki, Nakagawa, Sakata – PMNS – matrix usually 
parametrized as:
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Table 1
θ0

12 for the different popular lepton mixings 
viz. TBM, BM, and GR mixing.

Model TBM BM GR

θ0
12 35.3◦ 45.0◦ 31.7◦

U =
⎛⎝ c12c13 s12c13 −s13e

−iδ

−c23s12 + s23s13c12e
iδ c23c12 + s23s13s12e

iδ −s23c13

−s23s12 − c23s13c12e
iδ −s23c12 + c23s13s12e

iδ c23c13

⎞⎠ , (1)

where cij = cos θij and sij = sin θij .
In 2012, the short-baseline reactor anti-neutrino experiments observed non-zero θ13, yet small 

compared to the other two mixing angles [1]. Prior to this observation, models leading to sev-
eral structures like the Tribimaximal (TBM), Bimaximal (BM) and Golden Ratio (GR) mixings 
(which we refer henceforth as popular lepton mixings) were studied all of which were constructed 
with θ13 = 0 and θ23 = π/4 and varying θ0

12 yielded the different alternatives.
Putting θ13 = 0 and θ23 = π/4 in Eq. (1) can lead to the common structure for all popular 

mixings:

U0 =

⎛⎜⎜⎜⎝
cos θ0

12 sin θ0
12 0

− sin θ0
12√

2

cos θ0
12√

2
− 1√

2

− sin θ0
12√

2

cos θ0
12√

2
1√
2

⎞⎟⎟⎟⎠ , (2)

where θ0
12 for TBM, BM and GR are listed in Table 1.

The present 3σ global fits for the three mixing angles [2,3]:

θ12 = (31.42 − 36.05)◦,
θ23 = (40.3 − 51.5)◦ ,

θ13 = (8.09 − 8.98)◦. (3)

The numbers are from NuFIT3.2 of 2018 [2].
Thus the popular mixings are in disagreement with the observed non-zero θ13. A plethora of 

activities had been taking place since this discovery to incorporate non-zero θ13 in these mixings. 
Attempts to relate the smallness of solar splitting with that of θ13 can be found in [4]. In [5], 
�m2

atmos and θ23 = π/4 were embedded in the dominant component of neutrino masses and 
mixing and the other oscillation parameters such as θ13, θ12, the deviation of θ23 from π/4, and 
�m2

solar were obtained perturbatively from a smaller see-saw [6] contribution.1 Vanishing θ13
can be induced by certain symmetries and models generating non-zero θ13 through perturbation 
to such symmetric structures are also studied [8,9].

In [10,11], discrete flavour symmetries like A4, S3 were used to devise a two-component La-
grangian formalism at tree-level to ameliorate all the popular mixing patterns in single stroke. 
The dominant contribution to the Lagrangian was obtained from Type II see-saw mechanism 
characterized by popular mixing patterns, to which corrections were obtained from a sub-
dominant Type I see-saw contribution. In [12] the same scheme was performed for the no solar 

1 Some such earlier models can be found in [7].
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mixing (NSM) case i.e., θ0
12 = 0 case with A4 symmetry.2 The basic difference between [11,12]

and earlier works with A4 [13–15] is that in the earlier works Type II see-saw was used to gen-
erate the mass matrices and obtaining TBM was the prime goal. More realistic mixings can be 
found in recent works [16,17]. In [18] scotogenic models were explored.

In this paper, we intend to generate:

1. the popular mixing structure in Eq. (2) with θ13 = 0, θ23 = π/4 and θ0
12 as listed in Table 1

2. non-zero θ13, deviations of θ23 from π/4 and small corrections to θ12

radiatively3 with A4 flavour symmetry.4 Precisely, this A4 × Z2 symmetric model will produce 
neutrino masses at one-loop level using three right-handed neutrinos that transform as a triplet 
under A4. To get Eq. (2) it is necessary that two of these right-handed neutrinos are degenerate. A 
little shift from that degeneracy will yield non-zero θ13, deviations of atmospheric mixing from 
maximality and tinker the solar mixing by a small amount in one go.

In order to accomplish this we also need to introduce a Z2 odd A4 triplet scalar field η, the 
lightest of which could be a potential dark matter candidate.

There had been ample study [20] of neutrino mass models in the light of the discrete flavour 
symmetry A4, out of which many considers one or some of the aspects discussed above.5 A 
common practice in [20] was also to generate non-zero θ13, starting from TBM. However, the 
attempt of simultaneously addressing all the objectives mentioned above in a scotogenic frame-
work based on A4 × Z2 i.e., generating the common structure of the neutrino mass matrix that 
corresponds to θ13 = 0, θ23 = π/4 and θ0

12 of the particular values shown in Table 1 leading to 
TBM, BM and GR mixing patterns at one-loop level with particles that can be dark matter candi-
dates and using the technique of exploiting tiny mass splitting in the right-handed neutrino sector 
to generate θ13 �= 0, θ23 �= π/4 and small corrections to the solar mixing angle θ12 in one stroke 
to make the mixing angles realistic is specific to our model.

2. The model

The neutrino mass matrix in the mass basis is given by Mmass
νL = diag(m1, m2, m3). This when 

expressed in flavour basis using the common structure of U0 in Eq. (2) for the popular lepton 
mixings, leads to:

M
f lavour
νL = U0Mmass

νL U0T =
⎛⎝a c c

c b d

c d b

⎞⎠ (4)

where,

a = m1 cos2 θ0
12 + m2 sin2 θ0

12

b = 1

2

(
m1 sin2 θ0

12 + m2 cos2 θ0
12 + m3

)
2 The dominant Type II see-saw structure was kept devoid of solar splitting and degenerate perturbation theory was 

used to obtain large θ12.
3 For review of radiative neutrino mass models see [19].
4 For a brief discussion on A4 see Appendix A of the paper.
5 We have tried to include many works in this direction available in literature. Nonetheless the list in [20] is not 

completely exhaustive.
3
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c = 1

2
√

2
sin 2θ0

12(m2 − m1)

d = 1

2

(
m1 sin2 θ0

12 + m2 cos2 θ0
12 − m3

)
(5)

Equivalently,

tan 2θ0
12 = 2

√
2c

b + d − a
(6)

For non-degenerate realistic neutrino masses a, b, c and d are non-zero.
Our objective is to obtain the structure of the matrix shown in Eq. (4) at one-loop level. For 

that we assign specific A4 × Z2 charges to the scalars and fermions in our model. This model 
has three right-handed neutrino fields. As we will see in course of the discussion that in order 
to obtain the structure in Eq. (4), two of these right-handed neutrino states will require to be 
degenerate in masses. Once the structure in Eq. (4) is produced, we will exploit small relaxation 
of this degenerate feature in right-handed neutrino sector to yield the realistic neutrino mixings, 
namely non-zero θ13.

In this model, apart from the three SU(2)L lepton doublets we have three right-handed neu-
trinos, NαR , (α = 1, 2, 3) invariant under the standard model (SM) gauge group. Under A4 these 
three right-handed neutrinos transform as a triplet and so does the three SU(2)L lepton doublets. 
In the scalar sector we have two A4 symmetric triplet fields 
 and η each of which comprises 
of three SU(2)L doublet fields6 
i ≡ (φ+

i , φ0
i )T and ηj ≡ (η+

j , η0
j )

T , (i, j = 1, 2, 3). In addition 
to A4 we have an unbroken Z2 under which all the fields are even except the scalar field η and 
the right-handed neutrinos. Thus the scalars ηj do not acquire vacuum expectation value (vev) 
after spontaneous symmetry breaking (SSB), whereas the fields φi do. All the fields along with 
their quantum numbers are listed in Table 2. Here we restrict ourselves to the neutrino sector 
only.7 We work in a basis in which the charged lepton mass matrix is diagonal and the mixing is 
entirely from the neutrino sector.8

With these fields one can generate neutrino mass at one-loop level as shown in Fig. 1. The 
relevant part of the scalar potential from the four-point scalar vertex contributing to the neutrino 
mass matrix is given by9:

6 Thus the scalars involved in our model simultaneously transform both under SU(2)L and A4. Our approach is similar 
to that in [13]. This is distinctly different from the scheme adopted in [14] where SU(2)L and A4 breaking are treated 
separately. In [14], the SU(2)L is broken spontaneously when the usual doublets or triplets of SU(2)L that are invariant 
under A4 acquire their vevs. The A4 is broken when the SU(2)L singlet scalars with non-trivial A4 transformation 
behaviours called ‘flavons’ acquire vevs. However, while simultaneously connecting the fermions with these two types 
of scalars in order to construct the mass term, one ends up writing dimension-5 operators causing the theory to be an 
effective one.

7 This model differs from [21] in terms of the particle content. Unlike [21], here we consider all the popular mixings 
viz. TBM, BM and GR and also generate non-zero θ13, deviations of θ23 from maximality and small corrections to θ12
simultaneously through small mass splitting in the right-handed neutrino sector.

8 In some earlier works, the neutrino mixing matrix were taken of TBM, BM, GR mixing patterns and realistic mixings 
were yielded by applying subsequent rotations through the charged lepton mixing. Some such studies also gave rise to 
mixing sum rules [22]. Our approach is different as in our case the basis that we work in has the charged lepton mass 
matrix diagonal and the whole leptonic mixing is solely coming from the neutrino sector.

9 Note at the four-point scalar vertex, both the φ fields are annihilated and both the η fields are created. So terms of the 
scalar potential of (η†φ)(η†φ) kind will contribute to the neutrino mass matrix and are therefore relevant. For the total 
scalar potential consisting of all the allowed terms see Appendix B.
4
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Table 2
Fields and their quantum numbers. Here we are concerned 
with the neutrino sector only.

Leptons SU(2)L A4 Z2

Lp ≡
⎛⎝ νe e−

νμ μ−
ντ τ−

⎞⎠ 2 3 1

NαR ≡
⎛⎝N1R

N2R

N3R

⎞⎠ 1 3 −1

Scalars SU(2)L A4 Z2


 ≡
⎛⎜⎝φ+

1 φ0
1

φ+
2 φ0

2

φ+
3 φ0

3

⎞⎟⎠ 2 3 1

η ≡
⎛⎜⎝η+

1 η0
1

η+
2 η0

2

η+
3 η0

3

⎞⎟⎠ 2 3 −1

Fig. 1. Neutrino mass generation at one-loop level.

Vrelevant ⊃ λ1

[{
(η

†
1φ1 + η

†
2φ2 + η

†
3φ3)

2
}

+ h.c.
]

+ λ2

[{
(η

†
1φ1 + ωη

†
2φ2 + ω2η

†
3φ3)(η

†
1φ1 + ω2η

†
2φ2 + ωη

†
3φ3)

}
+ h.c.

]
+ λ3

[{
(η

†
2φ3)

2 + (η
†
3φ2)

2 + (η
†
3φ1)

2 + (η
†
1φ3)

2 + (η
†
1φ2)

2 + (η
†
2φ1)

2
}

+ h.c.
]

+ λ4

[{
(η

†
2φ3)(η

†
3φ2) + (η

†
3φ1)(η

†
1φ3) + (η

†
1φ2)(η

†
2φ1)

}
+ h.c.

]
, (7)

where all the quartic couplings λi (i = 1, 2, 3, 4) are considered to be real.
As discussed earlier, after SSB, φ0

i will get vevs whereas the η0
j will not owing to the Z2

assignments. Let 〈
i〉 = vi where (i = 1, 2, 3). In [24,25], it has been shown that for A4 sym-
5
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metric three-Higgs-doublets the four vev configurations for which the scalar potential acquires 
the global minima10 are:

〈
〉case1 = v

⎛⎝0 1
0 0
0 0

⎞⎠ , 〈
〉case2 = v

⎛⎝0 1
0 eiα

0 0

⎞⎠ ,

〈
〉case3 = v

⎛⎝0 1
0 1
0 1

⎞⎠ , 〈
〉case4 = v

⎛⎝0 1
0 ω

0 ω2

⎞⎠ . (8)

To show this the technique of geometric minimization of the scalar potential was used in [24]. 
In course of our discussion we will see, out of the four alternatives in Eq. (8), only case 3 i.e., 
v(1, 1, 1) can serve our purpose11 At this point, let us have a look at the Dirac Yukawa vertices12

in Fig. 1. The corresponding terms in the Lagrangian are given by:

LYukawa = hpβq N̄βRνpη0
q + h.c. (9)

Note that A4 symmetry forbids any two of the three indices viz. p, β and q from being equal 
for the Yukawa coupling hpβq �= 0 in Eq. (9). This can be readily inferred from Eqs. (A.2), (A.3)
and (A.4).

Our model has three right-handed neutrinos, NαR (α = 1, 2, 3). The direct mass term for the 
right-handed neutrinos allowed by the A4 × Z2 symmetry:

Lright-handed neutrinos = 1

2
M1

[
NT

1RC−1N1R + NT
2RC−1N2R + NT

3RC−1N3R

]
. (10)

This leads to the right-handed neutrino mass matrix (MNR
) proportional to identity i.e., MNR

=
M1I. In other words, we get all the three right-handed neutrinos degenerate in mass from 
Eq. (10). As we will see later it is necessary for our purpose to split this degeneracy in the right-
handed neutrino sector in such a manner that the right-handed neutrino masses will be close but 
not exactly degenerate. This can be achieved by obtaining a right-handed neutrino mass matrix 
which is diagonal but not proportional to identity by breaking A4 softly13 at the mass scale of 
the right-handed neutrinos i.e., by adding soft A4 breaking terms:

Lsof t = 1

2
κ

[
NT

2RC−1N2R

]
+ 1

2
κ ′ [NT

3RC−1N3R

]
. (11)

Here κ and κ ′ are constants with mass dimension one. If κ �= κ ′, we get the right-handed neutrino 
mass matrix as MNR

= diag(M1, M2, M3) with all three right-handed neutrinos non-degenerate 
in mass and we will consider κ �= κ ′ in our analysis. Needless to mention κ = κ ′ gives MNR

=
diag(M1, M2, M2) for which degeneracy between the masses of N2R and N3R still prevail. In 

10 In [26], it has been shown that alignment follows as a natural consequence of the discrete symmetry A4 in A4
symmetric three-Higgs-doublet model for all the four global minima configurations mentioned in Eq. (8).
11 In one of our earlier works [26], a scenario consisting of three SU(2)L doublet scalars transforming as a triplet under 
A4 i.e., A4-symmetric three-Higgs-doublet model (3HDM) was considered. The physical scalar mass square matrices 
were calculated explicitly and diagonalized to obtain the massless Goldstones modes as well as other physical scalar mass 
eigenstates for all the four global minima configurations of the vevs shown in Eq. (8). The results were in agreement with 
positivity and unitarity conditions.
12 All symmetries under consideration are preserved at each of the three vertices in Fig. 1.
13 Such soft A4 breaking terms are similar to the first term present in Eq. (16) of the pioneering work in this direc-
tion [13].
6
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course of our discussion we will see, κ = κ ′ will give the structure of the left-handed neutrino 
mass matrix shown in Eq. (4) whereas κ �= κ ′ will yield realistic mixings viz. non-zero θ13, 
deviation of θ23 from π/4 and small corrections to the solar mixing.

The presence of the Z2 symmetry is predictive of dark matter candidates in the model since 
discrete symmetries like Z2 are often used to prevent dark matter candidates from decaying. The 
inert SU(2)L doublet scalars ηj , (j = 1, 2, 3) and the right-handed neutrinos NαR , (α = 1, 2, 3) 
are odd under the Z2 symmetry, among which the scalars ηj are lighter than the NαR . From 
the m2

η term of the scalar potential as shown in Eq. (B.1), the ηj fields seem to be degenerate 
in masses as dictated by the A4 symmetry. However A4 is softly broken at the right-handed 
neutrino mass scale making it possible for the scalars ηj , (j = 1, 2, 3) to have non-degenerate 
masses. The lightest among the ηj fields can serve as a viable dark matter candidate.

Let ηRj and ηIj be the real and imaginary parts of η0
j respectively. Splitting among the masses 

of ηRj and ηIj is proportional to λvj and is expected to be small. Here λ stands for the quartic 
couplings λ1, λ2, λ3 and λ4 in Eq. (7). Also the mass splittings between ηj (j = 1, 2, 3) con-
stituting the A4 triplet are neglected and m0 is their common mass. The right-handed neutrino 
mass is represented by Mα . In the limit M2

α >> m2
0, the diagram in Fig. 1 leads to neutrino mass 

of the kind [23]:

(Mf lavour
νL

)ij = λ
vmvn

8π2

∑
α,k,l �=(i,j)

hiαkhjαl

Mα

[ln zα − 1] , (12)

where zα ≡ M2
α

m2
0

. The vevs of φ0
m and φ0

n are given by vm and vn respectively. The Yukawa cou-

plings hiαk and hjαl are determined by the A4 invariance which in its turn governs the structure 
of the neutrino mass matrix. As already mentioned, owing to the A4 symmetry any two of the 
three indices of the Yukawa couplings hiαk and hjαl in Eq. (12) cannot be equal. Incorporating 
all these features and choosing appropriate limits as discussed above, the expression in Eq. (12)
was obtained.14 Since the logarithm is a slowly varying function and the heavy right handed 
neutrino masses Mα (α = 1, 2, 3) are expected to be close to each other, the Mα dependence of 
zα in the RHS of Eq. (12) can be neglected. Leaving the vevs vm, vn and the quartic couplings λ, 
let us denote the contribution to left-handed neutrino mass matrix (Mflavour

νL
)ij from everything 

else in Eq. (12) by loop contributing factors rα ∝ 1
Mα

.
In terms of the right-handed neutrino loop contributing factors rα we have the contribution 

coming from right-handed neutrino sector as diag(r1, r2, r3) with r1 �= r2 �= r3 �= r1 when κ �= κ ′
in Eq. (11). Also note κ = κ ′ in Eq. (11) will correspond to r1 �= r2 = r3 = r . Using Eqs. (12)
and (7), the left-handed neutrino mass matrix that arises from Fig. 1 is given by15:

Mf lavour
νL

=
⎛⎝χ1 χ4 χ5

χ4 χ2 χ6
χ5 χ6 χ3

⎞⎠ (13)

where,

χ1 ≡ (λ1 + λ2)(r3v
2
2 + r2v

2
3) + λ3[r2(v

2
1 + v2

2) + r3(v
2
1 + v2

3)]
χ2 ≡ (λ1 + λ2)(r1v

2
3 + r3v

2
1) + λ3[r1(v

2
1 + v2

2) + r3(v
2
2 + v2

3)]

14 In [23], the loop calculations has been discussed in details for an analogous SU(2)L × U(1)Y × Z2 model.
15 All the symmetries under consideration were conserved at each of the three vertices in Fig. 1.
7
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χ3 ≡ (λ1 + λ2)(r1v
2
2 + r2v

2
1) + λ3[r2(v

2
2 + v2

3) + r1(v
2
1 + v2

3)]
χ4 ≡ r3[λ4 + 2λ1 − λ2]v1v2

χ5 ≡ r2[λ4 + 2λ1 − λ2]v1v3

χ6 ≡ r1[λ4 + 2λ1 − λ2]v2v3. (14)

In order to obtain the neutrino mass matrix of the form of Eq. (4) from Eq. (13), one will 
simultaneously require χ1 �= χ2 = χ3 and χ4 = χ5. Let us now try each of the vev configurations 
in Eq. (8) and find out the one suitable to obtain this feature along with the constraints put on to 
r1, r2 and r3.

1. Choice A: For (v1, v2, v3) = v(1, 0, 0), irrespective of the choices for r1, r2 and r3, the off-
diagonal entries in Eq. (13) will vanish and one cannot obtain mixing in the neutrino sector.

2. Choice B: For (v1, v2, v3) = v(1, eiα, 0), two of the three off-diagonal entries in Eq. (13)
will vanish for any r1, r2 and r3, and one cannot obtain the structure in Eq. (4).

3. Choice C: For (v1, v2, v3) = v(1, ω, ω2), one cannot achieve χ2 = χ3 as required to obtain 
the structure of the mass matrix in Eq. (4) from Eq. (13), whatever may be the choices for 
r1, r2, r3.

4. Choice D: For (v1, v2, v3) = v(1, 1, 1), note first that r1 = r2 = r3 implies all the diagonal 
terms to be equal to each other and the off-diagonal entries are equal among themselves. 
This leads to two left-handed degenerate states and only TBM is admissible. We will not 
consider that choice. However the form in Eq. (4) starting from Eq. (13) is achieved for 
r1 �= r2 = r3 = r when (v1, v2, v3) = v(1, 1, 1), which we refer to as choice D from now 
onwards. This choice allows all three mixings viz. TBM, BM, GR and all three left-handed 
neutrinos to be non-degenerate. Hence we will consider this case for further analysis. As 
already mentioned, such choice of r1 �= r2 = r3 = r is achieved when κ = κ ′ in Eq. (11) i.e., 
the right-handed neutrinos N2R and N3R are degenerate in masses.

Putting choice D i.e., v1 = v2 = v3 = v and r1 �= r2 = r3 = r in Eq. (13) one gets the following 
form of the left-handed neutrino mass matrix in the flavour basis:

Mf lavour
νL

=
⎛⎝λ123(2rv2) λ124rv

2 λ124rv
2

λ124rv
2 λ123(r + r1)v

2 λ124r1v
2

λ124rv
2 λ124r1v

2 λ123(r + r1)v
2

⎞⎠ (15)

where, λ123 = λ1 + λ2 + 2λ3 and λ124 = λ4 + 2λ1 − λ2. Thus the neutrino mass matrix gener-
ated at one-loop level as shown in Fig. 1 can produce the form of Mflavour

νL
as in Eq. (4) that 

corresponds to θ13 = 0, θ23 = π/4 and θ0
12 of the popular mixing alternatives, with the vevs and 

right-handed neutrino masses as specified in choice D. This follows from the identifications:

a ≡ λ123(2r2v
2) = (λ1 + λ2 + 2λ3)(2r2v

2)

b ≡ λ123(r + r1)v
2 = (λ1 + λ2 + 2λ3)(r + r1)v

2

c ≡ λ124rv
2 = (λ4 + 2λ1 − λ2)rv

2

d ≡ λ124r1v
2 = (λ4 + 2λ1 − λ2)r1v

2 (16)

Having achieved this, next we concentrate on generation of realistic neutrino mixing i.e., non-
zero θ13, deviations of θ23 from maximality and small corrections in the solar mixing θ12. For 
that one has to deviate from the rα (α = 1, 2, 3) of choice D. Being more specific, one has to shift 
8
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from the choice κ = κ ′ in Eq. (11) and consider the more general scenario of κ �= κ ′ in place of 
it. Thus now we have to split the degeneracy in masses of the right handed neutrinos N2R and 
N3R by a small amount ε i.e., consider r3 = r2 + ε and r1 �= r2 �= r3 �= r1, keeping the vevs still 
to be v1 = v2 = v3 = v. With such a choice one is expected to get a dominant contribution of 
the form of Mf lavour

νL
as was achieved in Eq. (15), say M0, together with small shift from it, M ′, 

proportional to ε. Thus,

Mf lavour
νL

= M0 + M ′ (17)

where,

M0 =
⎛⎝λ123(2r2v

2) λ124r2v
2 λ124r2v

2

λ124r2v
2 λ123(r1 + r2)v

2 λ124r1v
2

λ124r2v
2 λ124r1v

2 λ123(r1 + r2)v
2

⎞⎠ andM ′ = ε

⎛⎝x y 0
y x 0
0 0 0

⎞⎠
(18)

where x = λ123v
2 and y = λ124v

2. Here M0 is the form of the Mf lavour
νL

required for θ13 = 0, 
θ23 = π/4 and θ0

12 of the popular mixings. Thus in analogy to Eq. (16), one can identify the 
followings16:

a′ ≡ λ123(2r2v
2) = (λ1 + λ2 + 2λ3)(2r2v

2)

b′ ≡ λ123(r1 + r2)v
2 = (λ1 + λ2 + 2λ3)(r1 + r2)v

2

c′ ≡ λ124r2v
2 = (λ4 + 2λ1 − λ2)r2v

2

d ′ ≡ λ124r1v
2 = (λ4 + 2λ1 − λ2)r1v

2 (19)

It is straightforward to incorporate the corrections offered by M ′ to M0 using the non-degenerate 
perturbation theory. Columns of U0 in Eq. (2) is the unperturbed flavour basis. From Eq. (19)
one can define:

γ ≡ (b′ − 3d ′ − a′) and ρ ≡
√

a′2 + b′2 + 8c′2 + d ′2 − 2a′b′ − 2a′d ′ + 2b′d ′ (20)

The third first order corrected ket is then given by:

|ψ3〉 =

⎛⎜⎜⎝
ε

γ 2−ρ2

[
ρ(

√
2y cos 2θ0

12 − x sin 2θ0
12) − γ

√
2y

]
− 1√

2
[1 + ξε]

1√
2
[1 − ξε]

⎞⎟⎟⎠ , (21)

where,

ξ ≡ [γ x + ρ(x cos 2θ0
12 + √

2y sin 2θ0
12)]/(γ 2 − ρ2). (22)

Thus one can write17:

sin θ13 = ε

γ 2 − ρ2

[
ρ(

√
2y cos 2θ0

12 − x sin 2θ0
12) − γ

√
2y

]
. (23)

Using Eqs. (19), (20) and (23), one can easily read off non-zero θ13 in terms of the model param-
eters, namely, ε, the quartic couplings and the vevs. Throughout our discussion we have assumed 

16 To distinguish from r2 = r3 case, let us use a primed notation.
17 Here we restrict ourselves to no CP-violation.
9
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rα (α = 1, 2, 3) are real and restricted ourselves to a CP-conserving scenario. In principle, the 
right-handed neutrino masses can have Majorana phases causing these rα to be complex. Then 
one can have a complex ε, from which one can generate CP-violation in the lepton sector.

From Eq. (21) the deviation of atmospheric mixing from maximality is given by:

tanϕ ≡ tan(θ23 − π/4) = ξε. (24)

Similarly, one can obtain small corrections to θ12 from the corrections of the first and second 
kets. The solar mixing angle after receiving first order corrections is given by:

tan θ12 = sin θ0
12 + εζ cos θ0

12

cos θ0
12 − εζ sin θ0

12

(25)

where,

ζ ≡
[

y√
2

cos 2θ0
12 + x

4 sin 2θ0
12

]
ρ

(26)

The corrections to the solar mixing and deviations of atmospheric mixing from θ23 in Eq. (25)
and (24) respectively can be expressed in terms of the model parameters using Eqs. (19), (20), 
(22) and (26).

From Eqs. (22), (23), (24), (25) and (26), the following interrelationships between the mixing 
angles emerge:

sin θ13 = tan(θ23 − π/4)

[
ρ(

√
2y cos 2θ0

12 − x sin 2θ0
12) − γ

√
2y

γ x + ρ(x cos 2θ0
12 + √

2y sin 2θ0
12)

]
(27)

and

tan θ12 = tan(θ0
12 + σ̃ ) (28)

where,

tan σ̃ ≡ 1

2ρ2

[
sin θ13(γ

2 − ρ2) + ε

(
3

2
xρ sin 2θ0

12 + γ
√

2y

)]
. (29)

In order to illustrate the above interrelationships between the mixing angles, θ13 has been plotted 
as a function of the atmospheric mixing angle θ23 using Eq. (27) for normal (inverted) ordering 
in left (right) panel of Fig. 2 when the best fit values of the solar and atmospheric mass splittings 
[2] were taken as input. The pink, brown and green curves of all kinds represent TBM, BM 
and GR mixing patterns respectively. Two representative values of the lightest neutrino mass 
(m0) have been taken into account viz. 5 × 10−5 eV and 0.2 eV denoted by solid and dashed 
lines respectively. The dotted horizontal lines mark the 3σ range of θ13 in all the plots. The line 
conventions for all the plots in both the left and right panels are same.

For a particular ordering of neutrino masses, the values of γ and ρ are completely determined 
for a specific value of m0 for a given value18 of θ0

12. It was found that the variation of γ and 
ρ for a given m0 for all the three mixing patterns for both the orderings were very small. As a 
result the slopes of the straight lines resulting from Eq. (27) in Fig. 2 are very close causing the 
lines to overlap often. This is clearly demonstrated in the left panel by the lines for m0 = 0.2

18 For different mixing patterns θ0 is given in Table 1.
12
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Fig. 2. In the left (right) panel θ13 is plotted as a function of θ23 for normal (inverted) ordering. The solid and dotted lines 
are for m0 = 5 × 10−5 eV and 0.2 eV respectively. The pink, brown and green lines of all types represent TBM, BM and 
GR mixing scenarios respectively. The line conventions in all the plots are the same. The red dot in the left panel marks 
maximal atmospheric mixing and θ13 = 0. The dotted horizontal line gives the 3σ range of θ13 allowed by the data in all 
the plots. For normal ordering, this 3σ range of θ13 has been shown in the inset of the left panel only for TBM mixing to 
achieve a magnified view. In the right panel θ13 -vs- θ23 plots for the observed 3σ range of θ13 are shown for inverted 
ordering for all the three mixing patterns. (For interpretation of the colours in the figure(s), the reader is referred to the 
web version of this article.)

eV where the lines resulting from the three mixing patterns viz. TBM, BM and GR are almost 
indistinguishable. The relevant part of the θ13-vs-θ23 plane allowed by our model consistent with 
the data corresponds to the region marked by the dotted horizontal lines denoting the observed 
3σ range of θ13. Thus this region has been magnified and plotted in the inset of the left panel 
for both the values of m0 viz. 5 × 10−5 eV and 0.2 eV only for TBM. As already noted, since 
the lines for the three mixing patterns significantly overlap, the other two mixing patterns are not 
shown in the inset. It is worth noting that from Eq. (27), it immediately follows that for any value 
of m0 when atmospheric mixing is maximal, θ13 = 0 irrespective of the mixing pattern and nature 
of the ordering of neutrino mass. As a result all the lines pass through the point corresponding 
to vanishing θ13 and maximal θ23, marked by the red dot in the left panel of Fig. 2. The lines 
resulting from Eq. (27) for inverted ordering have been plotted in the right panel of Fig. 2 for all 
three mixing patterns. Since the lines for the different mixing scenarios, for both the values of 
m0 immensely overlap and are practically inseparable, only the region allowed by 3σ range of 
θ13 has been considered for a magnified view for all the three mixing scenarios.

Neutrino mass models with μ − τ symmetry are extensively studied in literature. The μ − τ

symmetry leads to θ23 = π/4. Therefore, deviation from the μ − τ symmetry can yield non-zero 
(θ23 − 45◦) that can be related to non-zero θ13 which have been presented in scatter plots in [27]. 
However, the one to one correspondence of these two mixing angles viz. θ13 and θ23 with m0 and 
θ0

12 for a particular mass ordering as presented in Fig. (2) is specific to our model.

Let m(0)
1 , m(0)

2 , m(0)
3 be the unperturbed mass eigenvalues of M0 shown in Eq. (18), the sum 

of which is given by the trace of the unperturbed mass matrix M0 in Eq. (18). In terms of the 
model parameters it can be expressed as:

s(0) ≡ m
(0)
1 + m

(0)
2 + m

(0)
3 = λ123v

2(2r1 + 4r2) (30)

where, λ123 = λ1 + λ2 + 2λ3 as mentioned earlier.
Using M ′ in Eq. (18) one can calculate the first order corrections to the mass eigenvalues viz. 

m
(1), m(1) and m(1) by applying non-degenerate perturbation theory:
1 2 3

11
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m
(1)
1 = ε

[
x

2
+ x

2
cos2 θ0

12 − y√
2

sin 2θ0
12

]
m

(1)
2 = ε

[
x

2
+ x

2
sin2 θ0

12 + y√
2

sin 2θ0
12

]
m

(1)
3 = εx

2
(31)

with x = λ123v
2 and y = λ124v

2 as defined earlier. Thus,

s(1) ≡ m
(1)
1 + m

(1)
2 + m

(1)
3 = 2εx (32)

Needless to mention that s(1) in Eq. (32) is the trace of M ′ in Eq. (18).
Thus, the sum of the neutrino masses (�m) in terms of the model parameters is given by:

�m = s(0) + s(1) = λ123v
2[(2r1 + 4r2) + 2ε] (33)

It is noteworthy that �m is independent of θ0
12 i.e., the particular mixing pattern such as TBM, 

BM, GR.19

Before concluding, let us have a brief discussion about the flavour violation in the charged 
lepton sector. The Yukawa term in the Lagrangian that can give rise to charged lepton flavour 
violation (LFV) at tree level, can be written in analogy to Eq. (9) as:

LLFV = hpβq N̄βRl−p η+
q + h.c., (34)

where, l−p = e−, μ−, τ− for p = 1, 2, 3 respectively. At one-loop, LFV decays can arise through 
processes as shown in Fig. 3. It can be seen from Eq. (34), the kinematically feasible processes 
μ− → e−γ , τ− → μ−γ and τ− → e−γ at one-loop as shown in Fig. 3 are prohibited owing 
to the A4 symmetry in the model. This is because the properties of the A4 group as shown in 
Eqs. (A.2), (A.3) and (A.4) will compel the Yukawa coupling hpβq to vanish if any of the two 
indices among p, q and β are equal. The same ηq and NβR that couples to l−p at one of the 
Yukawa vertices in Fig. 3 cannot couple to l−

p′ at the other Yukawa vertex.20 Hence at one-loop 

LFV decays as in Fig. 3 are forbidden in the model due to the A4 symmetry.21

Summing up, a scotogenic A4 × Z2 symmetric model of radiatively obtaining realistic neu-
trino mixing is proposed. Among others, the model comprises of three gauge singlet right-handed 
neutrino fields NαR , (α = 1, 2, 3). If N2R and N3R are degenerate in masses, one can obtain the 
common structure of the left-handed neutrino mass matrix required by θ13 = 0, θ23 = π/4 and 
θ0

12 of the particular choices leading to popular lepton mixing scenarios viz. TBM, BM, GR at 
one-loop level. A slight shift from this degeneracy of right-handed neutrino masses could gener-
ate realistic mixing viz. non-zero θ13, deviations of θ23 from π/4 and also tweak θ12 by a small 
amount. The model has three inert SU(2)L doublet scalars η, odd under the unbroken Z2, the 
lightest of which can be a dark matter candidate.

19 The model parameters in Eq. (33) can be suitably adjusted to satisfy cosmological bounds on �m. A detailed analysis 
is beyond the scope of this paper.
20 Note for LFV decays, p �= p′ .
21 W boson mediated LFV processes are negligible due to the smallness of the neutrino mass.
12
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Fig. 3. Flavour violating charged lepton decay processes at one-loop level. For p, p′ = 1, 2, 3 we have l−p = e−, μ−, τ−
respectively. Charged lepton flavour violation (LFV) occurs when p �= p′ . Though only μ− → e−γ , τ− → μ−γ and 
τ− → e−γ can take place kinematically, at one-loop level all these LFV decays are forbidden by the A4 symmetry in 
this model.
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Appendix A. The discrete group A4

A4 being the group of even permutations of four objects has 12 elements. The group A4
has two generators S and T . These generators satisfy S2 = T 3 = (ST )3 = I. The inequivalent 
irreducible representations for A4 are four in number out of which three are 1-dimensional viz. 
1, 1′ and 1′′ and one is 3-dimensional. The 1-dimensional representations transform as 1, ω, and 
ω2 under22 T but are invariant under S. Thus, 1′ × 1′′ = 1. The generators are represented by,

S =
⎛⎝1 0 0

0 −1 0
0 0 −1

⎞⎠ and T =
⎛⎝0 1 0

0 0 1
1 0 0

⎞⎠ . (A.1)

Below is the combination rule for two A4 triplets:

22 Here ω is a cube root of 1.
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3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3 ⊕ 3 . (A.2)

Let us have two A4 triplet fields, 3a ≡ ai and 3b ≡ bi , where i = 1, 2, 3, and combine them 
according to Eq. (A.2). The triplets that we get can be written as 3c ≡ ci and 3d ≡ di where,

ci =
(

a2b3 + a3b2

2
,
a3b1 + a1b3

2
,
a1b2 + a2b1

2

)
, or, ci ≡ αijkaj bk ,

di =
(

a2b3 − a3b2

2
,
a3b1 − a1b3

2
,
a1b2 − a2b1

2

)
, or, di ≡ βijkaj bk ,

(i, j, k, are cyclic) . (A.3)

The 1, 1′ and 1′′ in this case are:

1 = a1b1 + a2b2 + a3b3 ≡ ρ1ij aibj ,

1′ = a1b1 + ω2a2b2 + ωa3b3 ≡ ρ3ij aibj ,

1′′ = a1b1 + ωa2b2 + ω2a3b3 ≡ ρ2ij aibj . (A.4)

The group was studied in context of neutrino mass and mixings in the pioneering works [13,14].

Appendix B. The potential

The model contains three SU(2)L doublet scalars, 
i ≡ (φ+
i , φ0

i )T , (i = 1, 2, 3) as well as 
three inert SU(2)L doublet scalars, ηj ≡ (η+

j , η0
j )

T , (j = 1, 2, 3) denoted by 
 and η respec-
tively. Both 
 and η transform as a triplet under A4. Under Z2, 
 is even and η is odd. Hence 
after SSB, φ0

i obtain vev vi , (i = 1, 2, 3) but η0
j do not. The scalar content of the model is shown 

in Table 2. Allowing all terms in the scalar potential that conserves the SM gauge symmetry and 
the A4 × Z2 symmetry we get:

Vtotal = m2



(



†
1
1 + 


†
2
2 + 


†
3
3

)
+ m2

η

(
η

†
1η1 + η

†
2η2 + η

†
3η3

)
+ λ̃1

2

(



†
1
1 + 


†
2
2 + 


†
3
3

)2 + λ̃2

2

(
η

†
1η1 + η

†
2η2 + η

†
3η3

)2

+ λ̃3

2

[(



†
1
1 + ω


†
2
2 + ω2


†
3
3

)(



†
1
1 + ω2


†
2
2 + ω


†
3
3

)]
+ λ̃4

2

[(
η

†
1η1 + ωη

†
2η2 + ω2η

†
3η3

)(
η

†
1η1 + ω2η

†
2η2 + ωη

†
3η3

)]
+ λ̃5

2

[(



†
1
1 + 


†
2
2 + 


†
3
3

)(
η

†
1η1 + η

†
2η2 + η

†
3η3

)]
+ λ̃6

[{(



†
1
1 + ω


†
2
2 + ω2


†
3
3

)(
η

†
1η1 + ω2η

†
2η2 + ωη

†
3η3

)}
+ h.c.

]
+ λ̃7

2

[(



†
2
3

)2 +
(



†
3
2

)2 +
(



†
3
1

)2 +
(



†
1
3

)2 +
(



†
1
2

)2 +
(



†
2
1

)2

+
{(



†
2
3

)(



†
3
2

)}
+

{(



†
1
3

)(



†
3
1

)}
+

{(



†
1
2

)(



†
2
1

)}]
+ λ̃8

2

[(
η

†
2η3

)2 +
(
η

†
3η2

)2 +
(
η

†
3η1

)2 +
(
η

†
1η3

)2 +
(
η

†
1η2

)2 +
(
η

†
2η1

)2

+
{(

η
†
η3

)(
η

†
η2

)}
+

{(
η

†
η3

)(
η

†
η1

)}
+

{(
η

†
η2

)(
η

†
η1

)}]

2 3 1 3 1 2
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+ λ̃9

2

[{(



†
2
3

)(
η

†
2η3

)}
+

{(



†
3
2

)(
η

†
3η2

)}
+

{(



†
3
1

)(
η

†
3η1

)}
+

{(



†
1
3

)(
η

†
1η3

)}
+

{(



†
1
2

)(
η

†
1η2

)}
+

{(



†
2
1

)(
η

†
2η1

)}]
+ λ̃10

2

[{(



†
2
3

)(
η

†
3η2

)}
+

{(



†
3
2

)(
η

†
2η3

)}
+

{(



†
3
1

)(
η

†
1η3

)}
+

{(



†
1
3

)(
η

†
3η1

)}
+

{(



†
1
2

)(
η

†
2η1

)}
+

{(



†
2
1

)(
η

†
1η2

)}]
+ Vrelevant . (B.1)

Here,

Vrelevant = λ1

[{
(η

†
1φ1 + η

†
2φ2 + η

†
3φ3)

2
}

+ h.c.
]

+ λ2

[{
(η

†
1φ1 + ωη

†
2φ2 + ω2η

†
3φ3)(η

†
1φ1 + ω2η

†
2φ2 + ωη

†
3φ3)

}
+ h.c.

]
+ λ3

[{
(η

†
2φ3)

2 + (η
†
3φ2)

2 + (η
†
3φ1)

2 + (η
†
1φ3)

2 + (η
†
1φ2)

2 + (η
†
2φ1)

2
}

+ h.c.
]

+ λ4

[{
(η

†
2φ3)(η

†
3φ2) + (η

†
3φ1)(η

†
1φ3) + (η

†
1φ2)(η

†
2φ1)

}
+ h.c.

]
. (B.2)

At the scalar four point vertex of Fig. 1, two η are created and two φ are annihilated. Thus for the 
neutrino mass matrix only the (η†φ)(η†φ) terms are relevant. These terms are given by Vrelevant

in Eq. (B.2). The quartic couplings λi , (i = 1, 2, 3, 4), in Eq. (B.2) are real.
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