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1 Introduction

Boundary observables play especially important role in Quantum Field Theory (QFT) due
to their direct practical relevance. Indeed, scattering processes in high energy physics take
place on spacetime manifolds with asymptotic boundaries, while in condensed matter ap-
plications, any experiment involves “probing” a sample through some sort of a boundary,
so boundary phenomena are ubiquitous and directly observable. Furthermore, the math-
ematical structure of boundary observables is different from bulk observables that have,
until recently, attracted more attention in the literature, which makes them interesting
subjects to explore in mathematical physics as well.

In this paper, we study aspects of boundary operators in the 4d N = 4 super Yang-
Mills (SYM) with gauge group G, subject to half-BPS boundary conditions. A rich class of
boundary conditions preserving 3d N = 4 SUSY, and often the full superconformal sym-
metry, are known in the literature [1–3]. They are amenable to study via certain techniques
originally developed for purely three-dimensional theories with the same amount of SUSY.
More specifically, we will be looking at the supersymmetric sector in the cohomology of a
chosen supercharge, which is described by the 1d theory often referred to as a topological
quantum mechanics (TQM). The TQM is fully determined by the data of an associative
algebra of observables and a twisted trace on this algebra that determines the S1 partition
function and correlators. These encode the S3 partition functions and part of the OPE
data of the 3d theory.

Each 3d N = 4 theory has two TQMs associated to it: the Higgs and the Coulomb
sector TQMs, determined by the algebras AH , AC and twisted traces TH , TC respectively.
Such sectors were introduced and studied in [4–8], and in [9] a precise relation of the special
traces TH and TC to traces over the Verma modules of AH and AC was conjectured.
The algebras AH , AC describe equivariant, short and even quantizations of the Higgs
and Coulomb branches (the evenness can be broken by turning on the FI parameters
and masses). Additionally, AH and AC possess antilinear conjugations of degree four, in
terms of which the Hermiticity condition on the star product, implied by unitarity of the
underlying CFT, is formulated [5]. Mathematical classification of such quantizations was
recently studied in [10]. The existence of nice traces TH and TC is what endows these
quantizations with special properties listed above, and traces naturally follow from the S3

partition function decorated by operator insertions, as we review momentarily.
The existence of AH and AC sectors follows from kinematics: the 3d N = 4 SUSY

implies that cohomology spaces of specially chosen supercharges produce algebras AH and
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Figure 1. In the sphere background formulation, the 4d theory lives on HS4, the 2d protected
sector lives on a great HS2 ⊂ HS4. The boundary of HS2 is a great circle S1 ⊂ S3 with some
operator insertions.

AC . This means that the half-BPS boundary of the 4d N = 4 SYM should also carry
similar algebras AH and AC of boundary local operators, whose constructions proceed
along the same lines. The structure constants of these algebras, as well as traces on them,
are part of the dynamical data. In purely 3d case, they require studying the S3 partition
function and correlators, while the 4d setting, as we will see, is related to the partition
function and correlators on the hemisphere HS4.

In the purely 3d case, the construction based on superconformal symmetry was dis-
covered first in [4, 5], motivated by the similar construction of the chiral algebra in [11],
which we refer to as the “Q+ S” type construction. In this approach, the operators from
AH or AC live on a chosen line in spacetime. Later it was realized in [6] that the S3 SUSY
background provides a natural generalization away from conformal theories. In that case,
the algebras AH and AC live on a great circle S1 inside of S3. We will see that the AH
and AC structures at the boundary of 4d theory also admit two definitions: in terms of
“Q+S” construction, in which case the operators live on a distinguished line, and in terms
of hemisphere background HS4, in which case the operators live on a distinguished great
circle at the boundary, S1 ⊂ S3 = ∂(HS4). In addition the Omega-background [12–14]
can also be used to give a variant of the definition, as we review below.

As we will see, both 1d sectors, AH and AC , can be viewed as boundaries of certain
2d protected sectors of the 4d N = 4 SYM. These sectors are special to N = 4 SUSY
and do not occur in N = 2 theories. They again admit both “Q + S” definitions in flat
space (the protected sector lives on a plane), and definitions in terms of the S4 background
(the protected sector lives on a great two-sphere S2).1 We refer to the definition of AH
as the “electric construction” and of AC — as the “magnetic construction” for obvious
reasons: they are exchanged by the electric-magnetic duality, and the electric construction
is more manifest in the original Lagrangian description, while magnetic construction is
more manifest from the S-dual point of view.

The electric construction in the S4 formulation was first discovered long time ago:
it is the 2d constrained Yang-Mills sector discussed in [15–17]. The word “constrained”

1Note that by a conformal transformation, one can equivalently formulate the flat space construction in
such a way that the protected sector would be supported on a two-sphere embedded in flat space. We do
not do so, and prefer to have either two-plane in R4, or two-sphere in S4.
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refers to the fact that all instantonic contributions must be dropped, with the exact answer
being defined by the perturbation series. The electric construction with boundary was also
recently considered in [18–20] from the spherical background point of view, and indeed these
papers address questions closely related to our subject of study. On HS4 we, therefore,
have a distinguished locus given by a great 2d hemisphere HS2, with the constrained 2d
Yang-Mills (electric or magnetic) in the bulk, and either AH or AC TQM at the boundary,
see figure 1 for an illustration. Calling the 2d Yang Mills electric or magnetic means that
the emergent 2d gauge field in the cohomology has a simple relation to either the electric
or the magnetic variables of the 4d SYM theory.

In this paper, we determine the boundary correlators data, — algebras AH , AC and
their twisted traces TH , TC , — for a large class of boundary conditions. In the last section,
we also provide some preliminary remarks on interfaces, which are the subject of a separate
publication. We emphasize the algebraic approach to the problem: once, say, the algebra
AH is known, the twisted trace property of TH , which reads

TH(xy) = TH
((

(−1)FHe−2π`m · y
)
x
)
, x, y ∈ AH , (1.1)

can be thought of as a set of Ward identities, which often considerably simplify the problem
of computing TH . Here (−1)FH is a Z2 grading on AH that originates in the SU(2)H R-
charge of the 3d N = 4 SUSY, ` is the sphere radius, and m stands for various boundary
masses that appear as twist parameters in the trace TH . In the case of AC and TC , the
analogous property is very similar, except that FH is replaced by FC related to the SU(2)C
R-charge, and the boundary masses m are replaced by the boundary FI parameters. Also,
the 4d AH and AC have antilinear degree-four conjugations, in terms of which the traces
TH and TC obey Hermiticity implied by unitarity, just like in the 3d [5, 10]. We do not
emphasize this property throughout the text. We now provide a more detailed summary.

1.1 Technical summary

One of the best understood examples here is the case of Dirichlet boundary conditions in
a theory with gauge algebra g. While the AC algebra is just C, the Higgs algebra is given
by the universal enveloping algebra of the complexification of g,

AH = U(gC). (1.2)

This example already makes manifest one crucial distinction between the AH , AC algebras
in purely 3d theories and those in bulk-boundary systems. The 3d algebras describe quan-
tizations of the 3d N = 4 branches of supersymmetric vacua, which are hyper-Kähler cones
or their resolutions/deformations. The algebra U(gC), on the other hand, is a quantization
of a complex Poisson manifold g∗C (with its canonical Lie-Poisson structure), which is not
symplectic (Poisson structure is not invertible). This is a general feature: the analog of
moduli spaces of vacua in the bulk-boundary system with 8 conserved supercharges is not
hyper-Kähler, but rather complex Poisson, and our algebras AH , AC quantize the “Higgs”
and “Coulomb” branches of such moduli spaces. In fact, we basically derive the result (1.2)
by quantizing g∗C: the constrained 2d Yang-Mills on HS2 can be reformulated as a per-
turbative calculation in the BF theory on a disk with boundary insertions of B, which
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precisely gives such a quantization according to [21]. A similar occurrence of the univer-
sal enveloping algebra at the boundary of BF theory can be found in [22], who basically
applied the techniques of [21].

We also determine the trace on U(gC). When the twist parameters (i.e., boundary
masses) are turned off, the Ward identities (i.e., trace relations mentioned above) imply
that TH is fully determined by its value on the center Z[U(gC)]. The latter can then be
found if we start turning on boundary masses and differentiating with respect to them.
Indeed, the untwisted trace Tm=0

H and the twisted trace TH are related, roughly, by the
insertion of a moment map for gC,

TH(. . . ) = Tm=0
H (. . . e−2πm·B), (1.3)

where B ∈ gC. The details are given in section 3.2. We also provide an explicit expres-
sion (3.31) for the trace TH as a continuous linear combination of traces on Verma modules
of U(gC), thereby generalizing the conjecture of [9] to the case of bulk-boundary systems.
One important distinction of (3.31) is that the linear combination is continuous, while in [9]
it is discrete, with the Verma modules being in correspondence with the massive vacua of
the 3d theory.

We also emphasize the role of an algebra of bulk operators BH , which can be described
as local gauge-invariant operators in the 2d Yang-Mills. This algebra is commutative, and
is isomorphic to the center of U(gC): the bulk operators are simply given by gauge-invariant
polynomials in curvature of the constrained 2d Yang-Mills. Such operators can be identified
with g-invariant polynomials on g, or Weyl-invariant polynomials on t,

BH = C[g]g = C[t]W . (1.4)

There is an important map, called the bulk-boundary map, which is obtained by
colliding operators from BH with the boundary. The image of the bulk-boundary map is
always in the center of AH : indeed, we can always move such operators into the bulk and
commute them past anything on the boundary. This map, denoted by

ρH : BH → Z[AH ] ⊂ AH , where Z means the center, (1.5)

in the case when AH = U(gC), is a non-trivial isomorphism of commutative algebras,
known as the Harish-Chandra isomorphism [23]. It identifies C[t]W with the center of
U(gC), and this identification is not trivial: the Harish-Chandra map encodes the physics
of the bulk-boundary map for the Dirichlet boundary conditions.

Next we study the Neumann boundary conditions enriched by a boundary theory T .
This case is relatively straightforward: given the algebras AH(T ) and AC(T ) of the 3d
theory, we show that the boundary algebra AH is given by the g-invariants:

AH = (AH(T ))g , (1.6)

while the AC algebra is obtained as a central extension, where the mass parameters of
AC(T ) at the boundary are promoted to dynamical fields:

0 −→ C[t]W −→ AC −→ AC(T ) −→ 0. (1.7)
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The bulk-boundary map is very simple for AC : it is given by the injective arrow in the
above short exact sequence, which identifies the bulk operators C[t]W with polynomials
in the mass parameters of AC(T ). For AH , the bulk-boundary map can be described as
follows: if µ ∈ AH(T ) is the moment map for the action of gC on AH(T ), it determines a
homomorphism

U(gC)→ AH(T ), (1.8)

which then gives the homomorphism BH → Z[U(gC)] → (AH(T ))g, where the first arrow
is again the Harish-Chandra map. In sections 4.1.1 and 4.1.2 we also describe the traces
on AH and AC in terms of traces on AH(T ) and AC(T ), and then proceed to check the
basic S-duality example of the Dirichlet boundary conditions and the Neumann boundary
conditions enriched by T [G]. In the end, we also comment on how to go back from AH ,
AC to AH(T ) and AC(T ).

After that we study the Nahm pole boundary conditions, which present several new
challenges. In this case AC = C, so we only focus on AH . In section 5.1 we explain that
the R-symmetry mixes with part of the gauge symmetry at the boundary. This happens
because the Nahm pole breaks both the SU(2)H R-symmetry of the 3d N = 4 SUSY,
and some of the boundary symmetries present in the Dirichlet case (which is the limiting
case of a trivial Nahm pole, % = 0). A certain combination of broken symmetries remains
preserved and plays the role of “boundary R-symmetry”. Using this property, we identify
the boundary operators at the Nahm pole in section 5.2. It turns out that the space of
boundary operators is isomorphic to the space of regular functions on the Slodowy slice at
t+, where t+ ∈ gC is the nilpotent element associated to the embedding % : su(2)→ g.

The latter observation motivates our conjecture that the algebra AH of boundary op-
erators at the Nahm pole is isomorphic to the finite W-algebra W(gC, t+). We provide
a few checks of this conjecture in section 5.3, and also write the trace on AH as a con-
tinuous linear combinations of traces on the Verma modules of W(gC, t+), similar to the
Dirichlet case.

In the last section, we present a few computations of algebras on interfaces engineered
by a single D5 or NS5 brane intersecting a stack of D3 branes on which our 4d theory lives.
The cases where some of the D3 branes terminate on the fivebrane are also considered. In
these examples, the answers for AH and AC are always simple and given by centers of the
universal enveloping algebras (or two copies of those). The derivations are not completely
trivial, and are in fact instructive exercises. In the case of N D3 branes intersecting a D5,
with additional k D3 branes terminating on the right, the computation involves finding the
glN -invariant subspace in the finite W-algebra W(glN+k, t+), and serves as an additional
check of the finite W-algebra conjecture of section 5.

2 General constructions

Maximal Super Yang-Mills (MSYM) in four dimensions has a rich class of well-known
superconformal half-BPS boundary conditions and interfaces [1–3]. Being invariant under
a large 3d N = 4 superconformal symmetry, they borrow a lot of their properties from pure
three-dimensional theories with the same amount of supersymmetry, which were recently
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explored in great detail. The structures most relevant to us here are those of associative
algebras with traces, encoding correlation functions of Higgs and Coulomb branch operators
in these theories [4–8].

The algebras themselves can be identified either in the SCFT context [4, 5], or us-
ing the Omega-background [12–14] applied to 3d N = 4 theories [24–28] (which uses
Omega-deformations of the A and B models [24, 29, 30]), or from the S3 supersymmetric
background [6–8]. For some recent progress on the latter approach see [9, 31–38]. In prin-
ciple, this list may continue, as any background that is “equivariant” in the appropriate
sense can be used for this purpose: for example, the 1d sector construction was recently
extended to other backgrounds, such as S2 × S1, see [39]. The structure of twisted traces
is most manifest in the S3 description (for recent mathematical constructions of traces,
see [40]). Below we will rely on results obtained using various combinations of these de-
scriptions. We will briefly review the necessary facts about the 4d and 3d theories, and
introduce our main players, — half-BPS boundaries and interfaces in four dimensions, and
their protected algebras.

From the geometric point of view relevant to this work, one of the main differences
between such objects and those in purely three-dimensional theories is that the analogs
of Higgs and Coulomb branches are no longer hyper-Kähler manifolds, but rather com-
plex Poisson. The corresponding associative algebras are quantizations of these complex
Poisson manifolds.

2.1 Half-BPS boundary conditions: a reminder

Consider 4d MSYM with gauge group G on a half-space:

R3
x1,x2,x3 × R+

y , (2.1)

where the R3 is parametrized by x1, x2, x3, and the half-line R+ — by y ≥ 0. At y = 0 we
impose some half-BPS superconformal boundary condition following [1]. The R-symmetry
algebra su(4) of the 4d MSYM is broken at the boundary down to su(2)H ⊕ su(2)C . The
six scalars of the 4d vector multiplet, valued in the 6 irrep of su(4), split into two groups,
which are traditionally denoted by ~X and ~Y . They are acted on by su(2)H and su(2)C
respectively, that is we fix the following convention:

(X1, X2, X3) form a triplet of su(2)H ,
(Y1, Y2, Y3) form a triplet of su(2)C . (2.2)

This is related to a convention we choose to follow in this paper (that slightly differs
from [1]): at the boundary, we always preserve the same 3d N = 4 subalgebra of the 4d
N = 4. Under this subalgebra, gauge fields restricted to the boundary, together with ~Y

and the appropriate fermions, transform as the 3d N = 4 vector multiplet. Restriction of
the normal component Ay of the gauge field, together with ~X and the remaining fermions,
form a boundary hypermultiplet. For convenience, we will use the now standard notation

O
∣∣ (2.3)

for the bulk field or operator O restricted to the boundary.
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The various boundary conditions are constructed, roughly, by imposing restrictions
on one of these boundary multiplets as a whole. For example, the Neumann boundary
condition basically eliminates the boundary hypermultiplet, leaving behind the boundary
vector multiplet. Similarly, what is known as the Dirichlet boundary condition, eliminates
the boundary vector multiplet, leaving the boundary hypermultiplet dynamical. The name
Neumann and Dirichlet reflect the boundary conditions on gauge fields:

Neumann: Fiy
∣∣ = 0, i = 1, 2, 3,

Dirichlet: Ai
∣∣ = 0, i = 1, 2, 3. (2.4)

SUSY implies the following boundary conditions on scalars in these two cases:

Neumann: ~X
∣∣ = 0, Dy

~Y
∣∣ = 0, (2.5)

Dirichlet: ~Y
∣∣ = 0,

(
Dy

~X − i

2[ ~X × ~X]
) ∣∣∣∣ = 0, (2.6)

where [ ~X × ~X] stands for the commutator on the gauge indices and the vector product on
the R-symmetry indices. Notice that the last boundary condition has the form of Nahm’s
equations [41], which are ubiquitous in extended SUSY in diverse dimensions (and also
show up for the codimension-two defects, see e.g. [42, 43]).

Both Neumann and Dirichlet boundary conditions admit non-trivial modifications. For
Neumann, they are given by placing extra boundary degrees of freedom that have a global
G symmetry gauged by the 3d N = 4 vector multiplet formed by the boundary restrictions
of the bulk fields. Such modification shifts the Dirichlet boundary conditions on ~X:

~X
∣∣ = −~µ+ ~r, (2.7)

where ~µ is the hyper-Kähler moment map of the boundary matter, and we also included
the possibility of the “boundary FI term” given by ~r ∈ c(g)⊗ R3, where c(g) is the center
of g. This ~r or course explicitly breaks conformal symmetry.

For Dirichlet, one modification is the boundary mass given by a commuting triple ~m:

~Y
∣∣ = ~m, (2.8)

which similarly breaks the conformal symmetry. A more interesting modification is the
Nahm pole. Namely, part of the Dirichlet boundary conditions imposes (2.6) on the fields
~X. The usual Dirichlet boundary conditions in addition require that all fields be regular
at the boundary. The Nahm pole modification consists of choosing a homomorphism
% : su(2)→ G, and demanding instead a fixed singular behavior compatible with (2.6),

~X ∼
~t

y
, as y → 0, (2.9)

where (t1, t2, t3) are images of the standard su(2) generators under the homomorphism %.
We also use alternative notations for the sl2 triple:

t1 + it2 = t+, t1 − it2 = t−, t3. (2.10)

– 7 –
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We sometimes denote the image of su(2) under % as

%(su2), (2.11)

to avoid excessive nested parentheses.
Notice also that the unmodified Dirichlet boundary conditions fully break the gauge

symmetry at the boundary, leaving behind the boundary global symmetry G. Boundary
masses can break G global symmetry to a centralizer of ~m. Likewise, the Nahm pole breaks
this global symmetry to the centralizer of %: the unbroken boundary global symmetry is
CG(%(su2)), a subgroup of G that commutes with %(su2). One can simultaneously have
both the Nahm pole % and the boundary mass valued in the Lie algebra of CG(%(su2)).

The most general boundary conditions are constructed as follows. We pick a subgroup
H ⊂ G that we wish to preserve as a gauge symmetry at the boundary. We give Neumann
boundary conditions to the vector multiplets valued in h = Lie(H), and couple them to
some boundary theory T that has an H global symmetry. We may also include a boundary
FI term for the abelian part of H. For the gauge fields valued in h⊥ ⊂ g, (where the
orthogonal complemet is taken with respect to the Killing form on g,) we impose Dirichlet
boundary conditions, possibly modified by the Nahm pole % : su(2)→ g, such that %(su2)
commutes with H, and by the boundary mass commuting both with H and %.

Via the folding trick, these constructions admit an obvious generalization to interfaces.

2.2 Protected sectors in the bulk

There is a number of constructions of lower-dimensional theories emerging as sectors in su-
persymmetric quantum field theories in higher dimensions. They rely on a choice of equiv-
ariant supercharge that squares to a space-time rotation plus, possibly, an R-symmetry
transformation. Passing to its cohmology localizes us to the fixed point locus of the said
rotation, effectively reducing the number of spacetime dimensions.

In four-dimensional case, the fixed locus can either be zero-dimensional or two-
dimensional. In the former case, it suggests that the theory localizes on a 0d QFT, i.e. a
matrix model, and Pestun’s localization result [44] is essentially an example of this (see
also [45]). The appearance of two-dimensional fixed point locus is best known in the con-
text of connection to integrable systems [46], and for the chiral algebra construction in
4d N = 2 SCFTs [11] (see [47] for a recent review of the latter). This clearly applies to
4d MSYM, whose chiral algebra is quite rich. Interestingly, the 4d MSYM admits other
constructions with the two-dimensional fixed point locus, which we will now describe.

It often happens that generic supersymmetric theories admit a holomorphic twist,
while passing to the extended SUSY introduces new structures, such as topological twists,
holomorphic-topological twists and Omega-deformations thereof (see, e.g., [48, 49] for a
general study of twists, [50, 51] for a recent study of holomorphic twists, [52] for the
first example of holomorphic twist, [53, 54] for studies on holomorphic and holomorphic-
topological theories in 4d, and [55, 56] for other examples of mixed twists). A morally
similar phenomenon occurs in two-dimensional protected sectors in 4d SCFTs. While
N = 2 theories only possess 2d holomorphic sectors (i.e. chiral algebras), passing to N = 4
introduces a new possibility: a 2d sector that is topological (or quasi-topological, as we
will explain in a moment).
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To be more precise, recall that the 2d holomorphic sector of [11] originates from
the topological-holomorphic twist of 4d N = 2 theories [57] admitting a specific Omega-
deformation along the topological plane [27, 28]. As it turns out, our 2d quasi-topological
sector in 4d N = 4 can be seen as originating from the Omega-deformation of the Kapustin-
Witten [58] (also known as Marcus [59]) twist. This statement, however, simply refers to
the choice of a supercharge, not the background: indeed, we will work with the flat space
and the “physical” four-sphere background, not the topological one. It would be interest-
ing to explore possible connections to the topologically twisted theory more systematically,
but below we take a more hands-on approach and simply write down the corresponding
supercharges that define the 2d sector.

This quasi-topological 2d sector comes in two guises: an “electric” one and a “mag-
netic” one. In fact, this sector has first appeared in the literature over a decade ago. Curi-
ously, while the chiral algebra construction was first discovered in flat space (the “Q+ S”
construction of [11]), and only later reformulated using the spherical backgrounds [60, 61]
(see also [62] for partial results on S4), the 2d quasi-topological sector of 4d MSYM was
first discovered in the context of localization on S4. As some readers might have guessed
by now, we are talking about the sector described by the 2d constrained Yang-Mills (cYM),
as first conjectured in [15, 17] and then derived in [16] from localization. This is also the
reason we call it quasi-topological: the 2d Yang-Mills (and cYM is no different) is known
to depend on the underlying geometry of space-time only through the 2d area. Correla-
tors of Wilson loops are also only sensitive to area they enclose, while local operators do
not feel the metric. See [63–72] for some original references on 2d Yang-Mills and [73] for
the review.

Here we also give the “Q+ S” style definition of the 2d quasi-topological sector, as it
is useful to have several approaches at hand. Furthermore, as we will see later, this quasi-
topological sector agrees with topological sector at the boundary (the one described by the
associative algebra with a trace, as we mentioned before). This means that they are defined
by the same supercharge in the bulk-boundary system. Indeed, this observation was the
basis for the recent work [18–20] on localization in 4d/3d systems. A related Ω-deformation
perspective lies behind the AAB-twisted topological string construction employed in [22].

The 4d N = 4 superconformal algebra has Poincare supercharges QAα , Q̃Aα̇ transform-
ing in the 4 and 4, and conformal supercharges SAα, S̃Aα̇ transforming in the 4 and 4 of
the R-symmetry group Spin(6) = SU(4) respectively. The (real anti-symmetric) genera-
tors of the latter are denoted RIJ , I, J = 1 . . . 6. The details on our conventions and the
anti-commutation relations are given in the appendix A.

Let us also pick an osp(4|4) subalgebra, that is a 3d N = 4 superconformal subal-
gebra, that will remain unbroken once we include a boundary in later subsections. The
R-symmetry generators of this subalgebra are:

R12, R13, R23 generate su(2)C , with the chosen Cartan generator RC = iR31,

R45, R46, R56 generate su(2)H , with the chosen Cartan generator RH = iR56. (2.12)

Like [11], we choose special linear combinations of supercharges denoted QH1 , QH2 ∈ osp(4|4),
and Q C1 , Q C2 ∈ osp(4|4), which define the electric and the magnetic constructions respec-
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tively. From the point of view of the boundary 3d N = 4 SUSY, these are the supercharges
that define the Higgs and Coulmb branch constructions of [4–8]. Below we describe them
in our conventions, detailed in the appendix A.

2.2.1 Electric construction in the bulk

The defining supercharge is QH = QH1 + QH2 , where

Q
H
1 = Q2

1 − Q̃41̇ + ζ(S31 + S̃1
1̇), Q

H
2 = Q3

2 + Q̃12̇ + ζ(S22 − S̃4
2̇), (2.13)

where ζ is a parameter of mass dimension one, which is related to the sphere radius ` by

ζ = 1
2` . (2.14)

These supercharges are nilpotent, and their anti-commutator is

{QH1 , QH2 } = 8iζ(M12 + iR12). (2.15)

Here M12 generates rotations in the (x1, x2) plane. The equivariant cohomology (on the
space of local operators) of the QH1 + QH2 supercharge is supported at x1 = x2 = 0. This is
the plane parametrized by (x3, y), and we also sometimes write y = x4 for the uniformity
of notations. Define “twisted translations” in the (x3, x4) plane:

P̂3 = P3 + 2ζ(R45 + iR46), P̂4 = P4 + 2ζ(R35 + iR36). (2.16)

Their most important property is that

{QH1 , Q4
2 − Q̃22̇} = {QH2 ,−Q1

1 − Q̃31̇} = −2P̂3,

{QH1 , Q4
2 + Q̃22̇} = {QH2 , Q1

1 − Q̃31̇} = 2iP̂4, (2.17)

that is both twisted translations are exact, implying that the sector of local operators in
the cohomology of QH1,2 is topological.

Local observables in the cohomology of QH1,2 are constructed as gauge-invariant poly-
nomials in a “twisted-translated” scalar operator, which is given by a linear combination:

φH(x3, x4) = X+ + ix3
`
X3 + x2

3 + x2
4

4`2 X− −
ix4
`
Y1 = e−ix3P̂3−ix4P̂4X+e

ix3P̂3+ix4P̂4 , (2.18)

where we used the notation2

X± = X1 ± iX2. (2.19)

Notice that at the origin we simply have:

φH(0, 0) = X+. (2.20)
2If we use the six scalars Φ1,2,3,4,5,6 as in the appendix A.3, such that Φ1,2,3 are acted on by SU(2)C , and

Φ4,5,6 are acted on by SU(2)H , then X1 = Φ5, X2 = −Φ6, X3 = −Φ4 and Y1 = Φ3, Y2 = −Φ1, Y3 = −Φ2.
The above formulas for observables are written in flat space, while those in the appendix A.3 are given on
S4, so comparison involves multiplication by a Weyl factor 1 + x2

4`2 .
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There are also the following complexified gauge fields in the cohomology:

A H
3 = A3 − iY1 + 2ix4(x4Y1 − x3X3 − 2`X2)

4`2 + x2
3 + x2

4
,

A H
4 = A4 − iX3 −

2ix3(x4Y1 − x3X3 − 2`X2)
4`2 + x2

3 + x2
4

, (2.21)

where Aµ denotes the 4d gauge field. This A H
i can be used to construct arbitrary shape

Wilson lines in the (x3, x4) plane. The corresponding gauge field strength is not indepen-
dent, and is in fact cohomologous to φH defined above (see appendix A.3.1),

FH
34 = 1

`
φH + {QH , . . . }. (2.22)

Additionally, we identify the following angular gauge field in the cohomology:

A H
τ = x1(A2 − iY2)− x2(A1 + iY3) = Aτ − i(x1Y2 + x2Y3), (2.23)

which is QH -closed for all values of x1, x2, x3, x4. It can be used to construct Wilson loops
linking the (x3, x4) plane:

WH
R = TrR Pexp

[
i

∮
A H
τ dτ

]
, (2.24)

where τ parameterizes the circle x2
1 +x2

2 = const, x3 = const, x4 = const. Furthermore, we
will see that there also exists a QH1,2-closed ’t Hooft loop with the same support as (2.24).

All these observables are nothing else but those of the 2d Yang-Mills sector of the 4d
MSYM, which was discovered in [15–17], and recently considered in [18, 19]. In particular,
the ’t Hooft operators mentioned in the previous paragraph are familiar from [17], and are
seen as instanton contributions in the 2d Yang-Mills.

2.2.2 Magnetic construction in the bulk

The dual construction goes along the same lines. We define the supercharges3

Q
C
1 = 1

2(Q1
1 − iQ2

1 + iQ3
1 −Q4

1 + iQ̃11̇ + Q̃21̇ + Q̃31̇ + iQ̃41̇)

+ ζ

2(S11 − iS21 + iS31 − S41 + iS̃1
1̇ + S̃2

1̇ + S̃3
1̇ + iS̃4

1̇),

Q
C
2 = 1

2(Q1
2 + iQ2

2 − iQ3
2 −Q4

2 − iQ̃12̇ + Q̃22̇ + Q̃32̇ − iQ̃42̇)

+ ζ

2(S12 + iS22 − iS32 − S42 − iS̃1
2̇ + S̃2

2̇ + S̃3
2̇ − iS̃

4
2̇), (2.25)

which are also nilpotent, with the anti-commutator given by

{Q C1 , Q C2 } = 8iζ(M12 + iR46). (2.26)
3There is a family of possible pairs Q

C
1,2, and we chose those belonging to the same subalgebra as

Q
H
1,2 that remains unbroken once we put our theory on HS4 with half-BPS boundary. If we only studied

the magnetic construction, we could use a simpler expression, e.g. QC1 = Q4
1 − Q̃21̇ + ζ(S31 + S̃1

1̇), QC2 =
Q3

2 +Q̃12̇ +ζ(S42− S̃2
2̇). However, one would not be able to preserve such Q

C
1,2 together with Q

H
1,2 from (2.13)

on HS4. The choices in (2.13) and (2.25) agree with those in the appendix A.2 of referemce [7].
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The equivariant cohomology of local operators with respect to Q C1 + Q C2 is supported at
x1 = x2 = 0. The “twisted translations” in the (x3, x4) plane are now defined according to

P̂3 = P3 + 2ζ(R23 − iR12), P̂4 = P4 − 2ζ(R35 + iR15). (2.27)

As before, they are both exact:

{Q C1 , iQ1
2 −Q2

2 −Q3
2 + iQ4

2 − Q̃12̇ − iQ̃22̇ + iQ̃32̇ + Q̃42̇}
= {Q C2 ,−iQ1

1 −Q2
1 −Q3

1 − iQ4
1 − Q̃11̇ + iQ̃21̇ − iQ̃31̇ + Q̃41̇} = −4P̂3,

{Q C1 , iQ1
2 −Q2

2 −Q3
2 + iQ4

2 + Q̃12̇ + iQ̃22̇ − iQ̃32̇ − Q̃42̇}
= {Q C2 , iQ1

1 +Q2
1 +Q3

1 + iQ4
1 − Q̃11̇ + iQ̃21̇ − iQ̃31̇ + Q̃41̇} = 4iP̂4, (2.28)

implying that the sector of local operators in the cohomology of Q C1,2 is topological.
Local observables in the cohomology are similarly gauge-invariant polynomials in

φC(x3, x4) = Y+ + ix3
`
Y3 + x2

3 + x2
4

4`2 Y− −
ix4
`
X1 = e−ix3P̂3−ix4P̂4Y+e

ix3P̂3+ix4P̂4 , (2.29)

where
Y± = Y1 ± iY2. (2.30)

It appears that cohomology has no gauge field in the (x3, x4) plane, unlike in the QH1,2 case.
This is misleading: S-duality implies that there actually must be one, since we found an
emergent gauge field in the QH1,2, or “electric” construction, and the Q C1,2 construction is
simply related to it by S-duality. Therefore, we expect its magnetic dual, a 2d gauge field

A C
3 , A C

4 , (2.31)

which is expressed through the magnetic gauge field of the 4d theory and scalars, to be in the
cohomology. The magnetic gauge field is not manifest in the Lagrangian formulation, which
is why naively we could not find the corresponding gauge field in the cohomology. However,
Wilson lines built from the A C

3,4, which are allowed line operators in the cohomology, do
have a familiar description in the electric variables: they are the ’t Hoofts operators. Thus
the magnetic sector admits arbitrary shape ’t Hooft lines supported on the (x3, x4) plane.

We still easily find the angular Q C1,2-closed gauge field, though,

A C
τ = x1A2 − x2A1 + x3Y3 − x4X1 − i`Y+ − i

x2
1 + x2

2 + x2
3 + x2

4
4` Y−, (2.32)

which can be used to construct circular Wilson loops linking the (x3, x4) plane. Because
we find such Wilson loops both in the QH1,2 and Q C1,2 cohomology, S-duality implies that
there also must exist ’t Hooft loops with the same circular support there, as we claimed
earlier. All these observables correspond to the magnetic dual version of the 2d Yang-Mills
sector. It would be interesting to understand whether one can derive any of its properties
via direct localization, but we do not take this route here.
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2.3 Protected sectors at the boundary

In the presence of the boundary, we also have two S-dual constructions:

1. The electric construction, as defined by the cohomology of QH1,2. We will sometimes
call it the H construction. At the boundary, this is the familiar 1d sector of Higgs
branch operators [6], and it is coupled to the 2d constrained Yang-Mills in the QH1,2
cohomology of the 4d MSYM in the bulk. Some aspects of this 2d/1d coupled system
were recently considered in [18, 19].

2. The magnetic construction in the cohomology of Q C1,2. We sometimes call it the
C construction. At the boundary, this defines the 1d protected sector of Coulomb
branch operators like in [7, 8], and it is coupled to the magnetic version of the 2d
constrained Yang-Mills in the Q C1,2 cohomoloyg of the 4d MSYM in the bulk. Such
a 2d/1d coupled system has not been considered before, and it would be somewhat
interesting to perform its direct localization, but we do not address it here. Instead,
we will use other methods, and sometimes study the magnetic construction using
the electric construction in the dual 4d Yang-Mills (at the dual value of the 4d
coupling constant).

Our main focus in this work are boundary or interface local operators in the context
of the above constructions. (We refer to them as boundary operators for brevity.) Their
correlators are topological for familiar reason: the twisted-translation generator P̂3 is Q-
exact and unbroken at the boundary. The boundary operators form certain interesting
associative algebras, and their correlation functions are encoded in (twisted) traces on
those algebras. We denote the boundary algebras in the H and C constructions by

AH and AC . (2.33)

Precise identification of the boundary operators of course depends on the boundary
conditions. Yet, there are certain universal features, which we can address now. For one,
boundary limits of the bulk operators in the cohomology, when non-zero, are also in the
cohomology, and form the center of the boundary algebra. Let us call the bulk algebras
BH and BC . They are commutative and represented by gauge-invariant polynomials in φH
and φC respectively. When we can take Tr(φH)n and Tr(φC)n as the generating sets of
such polynomials, we simply have:

BH ∼= C[TrφH ,Tr(φH)2, . . . ,Tr(φH)r], BC ∼= C[TrφC ,Tr(φC)2, . . . ,Tr(φC)r]. (2.34)

More generally, we write4

BH ∼= C[g]G ∼= C[t]W , BC ∼= C[g]G ∼= C[t]W , (2.35)

where W is the Weyl group of G. There exist natural homomorphisms from the bulk to
boundary algebras defined via collision of the bulk operators with the boundary:

ρH : BH → AH , ρC : BC → AC . (2.36)
4As a field, φH is a map to g. As an operator, it is an element of the dual space, which is why we find

polynomial functions on g, denoted as C[g], rather than C[g∗].
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The elements of ρH(BH) are necessarily in the center Z(AH) of AH : any such local ob-
servable can be moved slightly into the bulk, and commuted past any other boundary
observable without collisions. The same is true for ρC(BC). We actually conjecture that

ρH(BH) ∼= Z(AH), ρC(BC) ∼= Z(AC). (2.37)

We will see in the examples that such isomorphisms can be non-trivial: e.g., for the Dirichlet
boundary conditions, ρH(BH) ∼= Z(AH) is essentially the Harish-Chandra isomorphism.

As we will see, the boundary can also support other, non-commutative operators,
such as non-gauge invariant polynomials in φH for the Dirichlet boundary conditions, or
operators coming from the boundary matter in the Neumann case.

Because our bulk/boundary system is superconformal (to the extent it is possible with
the boundary), it is quite convenient to use the usual unitarity bounds of the superconfor-
mal theories to identify the boundary operators in the cohomology. The relevant bounds
have precisely the same form as in the purely 3d case of [4, 5]. If we denote the scaling
dimension of the boundary operator inserted at the origin 0 by E, then

E ≥ RH +RC , (2.38)

and in particular (since E is the same throughout the SU(2)H and SU(2)C multiplets),

E ≥ RH , E ≥ RC , (2.39)

where RH and RC are its su(2)H and su(2)C charges. The boundary operators in the QH1,2
cohomology, when inserted at the origin 0, are precisely those saturating the first bound:

E = RH , (2.40)

which also shows that they are su(2)H -highest weights. They must also be neutral under
the su(2)C . Similarly, operators in the Q C1,2 cohomology are su(2)H neutral, and su(2)C
highest weights saturating the other bound when inserted at the origin:

E = RC . (2.41)

Both types of operators are Lorentz scalars. This characterization will be quite useful when
we discuss the Nahm pole boundary conditions.

Mathematically, characterizing the cohomology classes via (2.40) or (2.41) is just the
familiar statement of Hodge theory. Indeed, the representatives obeying (2.40) or (2.41)
are analogous to harmonic representatives in the de Rham cohomology.

As an example, we have seen before that

X+(0) (2.42)

is in the QH1,2 cohomology (whenever non-zero), and indeed it has RC = 0, E = RH = 1.
Similarly,

Y+(0), (2.43)

when non-zero, is in the Q C1,2 cohomology, and it has RH = 0, and E = RC = 1.
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2.3.1 Special features of the AH

The electric boundary algebra AH , in general, has a more direct description. Indeed, it
is related to the Higgs sector at the boundary, which does not require non-perturbative
correction, and is often straightforward to describe in the electric variables.

With little work, we will understand in the later sections how to describe boundary
algebras for Dirichlet and Nahm pole boundary conditions. Inclusion of extra boundary
matter also has an elegant algebraic interpretation in terms of quantum Hamiltonian re-
duction. Description of traces requires slightly more work, as we will see.

There are a few possible generalization involving extended operators that we do not
address here in any details. In the case of electric construction, we can have bulk supersym-
metric Wilson loops ending on the boundary. Their endpoints are charged and can be left
un-screened for Dirichlet boundary conditions. For Neumann boundary conditions, gauge
invariance forces us to place charged boundary operators there so that he total charge is
zero. Another generalization would involve inserting circular Wilson and ’t Hooft loops
linking the 2d Yang-Mills plane in the bulk. Such insertions do not affect AH , but are
expected to modify the trace on AH (to be introduced soon). Surface operators are also
possible [18] but not studied here, while codimention-1 objects (interfaces and boundaries)
are possible, and of course are the main subject in this work.

Another important potential modification involves half-BPS line defects placed along
the 1d locus in the boundary/interface. These modify directly AH or AC [74], depending
on the type of line defect. Topological correlators supported on Wilson lines of the bulk
2d cYM, in the electric case, were also explored in [75–77].

2.3.2 Special features of the AC algebra

From the general point of view, the boundary algebra AC can be seen as more challenging,
for the same reason that the Coulomb branch is more challenging in 3d theories: it can
have non-perturbative corrections in the form of monopole operators. In parctice, however,
quite often we do not have to work too much. Local monopole operators that can appear
are only those charged under gauge fields living at the boundary, not the restrictions of bulk
fields. Bulk gauge fields cannot have “boundary monopole operators” in four dimensions
(unlike in 3d [78, 79]).

This essentially reduces the problem to a hard but solved one: description of the
Coulomb branch algebra AC in pure 3d theories [25, 80, 81] (see also [8] for traces on
such algebras). Masses enter this algebra as parameters. We claim that the AC algebra
for enriched Neumann boundary conditions is obtained from the AC algebra for the 3d
boundary degrees of freedom by promoting their masses to dynamical fields identified with
restrictions of the bulk scalars. This statement generalizes in a simple way to more general
boundary conditions. Writing traces on this algebra is also straightforward once traces of
the 3d algebras are known.

Again, there are generalizations involving extended operators that we do not explore
here. We could include an open ’t Hooft line in the (x3, x4) plane with both of its ends
supported at the boundary. These endpoints look like monopole operators on the boundary.
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We could also include boundary line defects modifying AC [74], circular Wilson and ’t
Hooft loops linking the (x3, x4) plane resulting in different traces on AC , and could also
study surface operators in the cohomology. Our focus is on local operators supported on
boundaries and interfaces only.

2.4 Sphere partition function and the twisted trace

So far, we have discussed theories in flat space. It has been realized in [6] that it is useful
to put 3d N = 4 theories on S3 to study the protected correlators on S1 ⊂ S3. The 4d
constructions of [15–17] were also formulated in terms of MSYM on a sphere, the round
four-sphere in that case. Fusing these two ideas, we should study the correlators of the
4d/3d system by putting it on a hemisphere HS4, as was recently explored in [18, 19].
Since the system is superconformal, there is a canonical way to define it on the spherical
background, — indeed, HS4 is related to a flat half-space by a Weyl transformation.

The protected S3 correlators of [6] were fully encoded in a certain (twisted) trace on
the algebra of operators in the cohomology. More specifically, the two such algebras, — AH
of Higgs operators and AC of Coulomb operators, — come with a trace on each of them
canonically determined by the theory. These traces play a prominent role in the conjecture
of [9], where it was proposed that in the special case of a 3d theory that can be made fully
massive, they are given by specific linear combinations of traces over the Verma modules
of AH and AC , which are in one-to-one correspondence with massive vacua.

Similarly, the protected HS4 boundary correlators determine (and are encoded in)
the (twisted) traces on the algebras of boundary operators in the H and C constructions.
If we study interfaces, rather than boundaries, then the right setting is the full S4 with
an interface at the equator. The algebras of boundary (or interface) local operators in
the electric and magnetic constructions were also denoted by AH and AC in the previous
subsection. Let the corresponding twisted traces be

TH : AH → C, TC : AC → C. (2.44)

Recall that the word “twisted” refers to the fact that the trace property is twisted by an
automorphism g ∈ Aut(AH), that is:

TH(xy) = TH(g(y)x), ∀x, y ∈ AH , (2.45)

and similarly for AC . We will return to the nature of this twist in a moment.
As said previously, the (twisted) trace determines correlation functions. For example,

if Oi ∈ AH are the boundary operators in the electric construction, the relation between
the HS4 correlators and the trace, as mentioned in the introduction, is simply

〈O1(ϕ1) . . .On(ϕn)〉HS4 = TH(O1 . . .On), ϕ1 > ϕ2 · · · > ϕn, (2.46)

where on the right, the operators are multiplied as elements of the associative algebra AH .
Here the correlators are not normalized, that is TH(1) is the S3 partition function.
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The twistedness, i.e. the choice of g in (2.45) is determined by masses in the AH case,
and by FI parameters in the AC case.5 More precisely, we can have two types of masses
and FI parameters that determine the relevant automorphism g. Suppose the boundary
conditions are defined by coupling to some boundary degrees of freedom with a flavor
symmetry F ×G, out of which G is gauged by the bulk vector multiplet. Then we can still
turn on the 3d twisted mass mF ∈ f = Lie(F ) for F at the boundary. This mF is going
to act on AH as an automorphism, and appear in the twisted trace relations roughly as
follows (assuming no other masses are turned on),

TH (xy) = TH
((

(−1)FHe−2π`mF · y
)
x
)
, x, y ∈ AH . (2.47)

Here (−1)FH is the center of the SU(2)H R-symmetry, which twists the trace even when
mF = 0. One way to understand the action by e−2π`mF is that the 3d mass mF is reflected
in the 1d localized sector of [6] living on S1 ⊂ S3 as a holonomy mF of the global symmetry
F around a circle, which precisely implements such a twist in correlators.

Another kind of mass we can turn on is the “boundary mass”, that was reviewed in
section 2.1, see equation (2.8). It can appear in situations when the bulk gauge symmetry
is broken down to a global symmetry at the boundary, which happens when we impose
Dirichlet boundary conditions on the bulk gauge multiplet. In this case we may turn on
a mass at the boundary, which simply corresponds to deforming the boundary conditions
according to (2.8). Only one of the three masses is compatible with the supercharges QH1,2,
Q C1,2, which corresponds to choosing6

Y1
∣∣ = m, Y2

∣∣ = Y3
∣∣ = 0. (2.48)

The same remark also holds for the purely three-dimensional masses: only one real com-
ponent out of the three is allowed.

The situation is very similar for the FI terms. If we couple the bulk theory to some
boundary degrees of freedom that include abelian 3d N = 4 gauge multiplets, we can turn
on their FI parameters (only one parameter in the su(2)H -triplet of FI terms is consistent
with SUSY on the S3, see [6]). Also, as explained in the equation (2.7), when we impose
Neumann boundary conditions on the bulk gauge multiplet, we can turn on the boundary
FI parameter for abelian factors of the gauge group. Only one FI term is allowed; for
example, in the case of pure Neumann boundary conditions, we can have:

X1
∣∣ = r, X2

∣∣ = X3
∣∣ = 0. (2.49)

Both pure 3d and boundary FI parameters appear as twist parameters in the trace on AC .
We sometimes refer to (2.45) as the Ward identities for the correlation functions. The

space of solutions of these Ward identities is interesting. In general, we expect that 3d
algebras AH or AC should always have a finite-dimensional space of solutions of the Ward

5A big advantage of sphere backgrounds is that it is possible to turn on masses and FI parameters
without breaking Q

H
1,2 and Q

C
1,2 [6]. Doing so in the flat space description would break these supercharges.

6The component of ~Y that can have a vev on the sphere is Y1 = Φ3, since it commutes with R12 appearing
in (2.15). Likewise, X1 = Φ5 is the component of ~X that commutes with R46 appearing in (2.26).
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identities, so that the infinite collection of protected S3 correlators should be determined
algebraically in terms of a finite generating collection. For AC in standard gauge theories,
this expectation is part of the quantum Hikita conjecture [82].

Because of the large center in the 3d/4d case, the characterization of twisted traces is
a bit more complicated. We will still see, though, how the infinite collection of protected
HS4 correlators can be reduced algebraically to a matrix integral.

2.4.1 Reduction of AC to 3d

Consider a 4d N = 4 theory on the cylinder S3× I, where I = [0, ε] is an interval. Suppose
at y = 0 ∈ I we impose our boundary conditions B of interest, and study the algebra
AC [B]. At the opposite end y = ε ∈ I, let us impose the Dirichlet boundary conditions
with some generic boundary mass (2.48). Let this system flow to the IR. In the limit, we
will land at the 3d theory TB

3d, whose algebra AC [TB
3d] will be given by the central quotient:

AC [TB
3d] ∼= AC [B]/I, (2.50)

where I is the ideal generated by the center Z(AC [B]) if boundary masses vanish, m = 0.
For non-zero masses, we take the natural deformation of this ideal, which basically sets
Y3 = m.

This happens because the Dirichlet boundary conditions fix vevs of the bulk oper-
ators, and those belong to the center of the boundary algebra. Now the trace on the
quotient (2.50), according to the conjecture of [9], is a linear combination of finitely many
traces over the Verma modules. If we denote such m-dependent trace by

TmC : AC [B]/I → C, (2.51)

then the trace on the full algebra AC [B] is given by gluing the cylinder to the hemisphere.
The resulting trace on the full algebra can be written as

TC(O) = 1
|W|

∫
t
dmTmC (O)Z(m)

∏
α∈Φ+

4 sinh2 π〈α,m〉, O ∈ AC [B], (2.52)

where Z(m) is the hemisphere partition function with Dirichlet boundary conditions:

Z(m) = e−π Im(τ) Tr(m2) ∏
α∈Φ+

〈α,m〉
2 sinh π〈α,m〉 ≡ e

−π Im(τ) Tr(m2) ∆(m)
∆(m) , (2.53)

where we also introduced the notations ∆(m) and ∆(m) for the ordinary Vandermonde and
the sinh-Vandermonde respectively:

∆(m) =
∏
α∈Φ+

〈α,m〉, ∆(m) =
∏
α∈Φ+

2 sinh π〈α,m〉, (2.54)

with m a boundary mass made dimensionless by absorbing `, and τ a 4d gauge coupling:

τ = 4πi
g2

YM
+ θ

2π , (2.55)

and Φ+ denotes the set of positive roots in the root system Φ of g.
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The equation (2.52) reflects the statement that AC [B] is obtained from AC [TB
3d] by

promoting 3d masses in TB
3d theory to dynamical variables. Indeed, in (2.52) we integrate

over masses, and by including insertions given by W-invariant polynomials P (m), we can
compute correlators of bulk operators P (Y+) at the boundary. Indeed, P (Y+) reduces to
an insertions of P (m), as it follows from (2.48).

In later sections we will also discuss similar statements for the AH algebra, see in
particular section 4.2.

3 Dirichlet boundary conditions and U(gC)

Let us now start examining concrete examples, and Dirichlet boundary conditions are
among the most basic ones. Recall that the fields ~Y obey Dirichlet boundary condi-
tions (2.6), which in the presence of boundary masses look like (2.48). This means that
~Y is not dynamical, so the boundary observable φC is not available. There are no other
potential candidates to contribute the Q C1,2 cohomology, and in fact we simply have

AC = C, (3.1)

with the unique trace on it, normalized to produce the HS4 partition function with the
Dirichlet boundary conditions and the boundary mass:

TC(1) = Z(m) = e−π Im(τ) Tr(m2) ∆(m)
∆(m) . (3.2)

Again, we made the mass dimensionless by incorporating a factor of the radius `. The 4d
derivation of (3.2) can be found in [83, 84], while [18] checked that the 2d perturbative YM
reproduces the same answer.

The AH algebra is much more interesting, which is our next subject.

3.1 AH and U(gC)

Recall that the 2d protected sector of the MSYM on S4 is described by a perturbative
complexified 2d Yang-Mills on S2 ⊂ S4 [16]. For the four-dimensional hemisphere HS4,
the same is true, with S2 replaced by the disk HS2. The gauge field of the 2d Yang-Mills
is A H

i , i = 3, 4 discussed in section 2.2.1. The 4d Dirichlet boundary conditions (2.48) are
translated into the Dirichlet boundary conditions in two dimensions [18] fixing the value
of the boundary gauge field according to:

A H
∣∣
∂(HS2) = −im

`
. (3.3)

We still keep m dimensionless here.
The gauge symmetry is broken at the boundary, so the boundary observables are

polynomials in φH that are not necessarily gauge-invariant. At the origin, φH coincides
with X+ = X1 + iX2, while away from the origin it becomes a more general complex linear
combination of ~X (2.18). Such observables are related to the curvature of A H

3,4 because φH
is proportional to it in the cohomology:

FH
34 = 1

`
φH + {QH , . . . }. (3.4)
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So the boundary correlators in 4d reduce to perturbative correlation function in 2d Yang-
Mills (YM) on the disk with boundary condition (3.3), and with boundary insertions of
the 2d gauge curvature. It is enough to consider separate insertions of FH , while more
general polynomials can be obtained by collisions of such elementary boundary operators.

It is useful to write the 2d YM as a deformed BF theory:7

S = −i
∫

TrBF + e2
∫

d2x TrB2, (3.5)

where for the simplicity of notations, we renamed FH as simply F . Here B is a g∗C-valued
0-form, where g∗ is the dual of g, and g∗C = g∗⊗C, since all the fields are complexified. We
also abuse notations, denoting by Tr(ab) one of the three things: a Killing form if a, b ∈ g,
a dual of the Killing form if a, b ∈ g∗, the canonical pairing if a ∈ g, b ∈ g∗ or vice versa.

Notice that the action (3.5) is diagonalized by the field redefinition

B = B̃ + i

2e2F34, (3.6)

upon which one gets back the 2d YM action plus e2 ∫ d2x Tr B̃2. Therefore, the field B̃ has
an ultra-local Green function, given just by a contact term 〈B̃(x)B̃(y)〉 ∝ δ(2)(x−y). From
this we see that under the correlators, B and i

2e2F are equivalent up to contact terms:(
i

2e2

)n
〈F a1

34 (ϕ1) . . . F an34 (ϕn)〉 = 〈Ba1(ϕ1) . . . Ban(ϕn)〉+ contact terms. (3.7)

Here ai are gauge indices corresponding to some choice of basis on g, and ϕi are angular
positions along ∂D2. As long as we look at the insertions of B at separate points, the
contact terms do not contribute, and as we know, we can build more general operators by
collisions. Therefore, we study correlators of B now.

Another important simplification can be achieved by reinterpreting the boundary con-
ditions (3.3) as a modification of the m = 0 case,

A H
∣∣ = 0, (3.8)

by an insertion of the boundary deformation in the path integral:

e−
∮
∂D2 dϕ Tr(mB). (3.9)

Indeed, such a modification, on boundary equations of motion, deforms (3.8) into (3.3).
A better, perhaps more convincing, way to understand it is through the operator formal-
ism. In canonical quantization of the BF theory on space S1, the position variable is the
holonomy Aϕ = u = const along the S1, or rather its global version:

U = Pei
∮
S1 A. (3.10)

The field B plays the role of conjugate momentum. Denote the “position basis” vector with
the holonomy U = e2πiu by |u〉. The hemisphere produces some state |Ψ〉, and the boundary

7The 2d gauge coupling constant e is related to the 4d Yang-Mills coupling gYM [16] via e2 = g2
YM

8π`2 .
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condition (3.8) corresponds to computing the overlap 〈0|Ψ〉. A non-zero holonomy at the
boundary corresponds to a more general overlap 〈u|Ψ〉. As is usual, one can obtain 〈u| by
applying a shift operator given by the exponential of the momentum operator, which in
our case can be written as:

〈u| = 〈0|e−i
∮
S1 Tr(uB)dϕ. (3.11)

Passing to the path integral formulation, we see that indeed, acting with such an operator
corresponds to including the deformation (3.9) as a boundary action. In other words,
correlators of operators O at m 6= 0 are given in terms of those at m = 0,

〈O〉m = 〈O e−
∮
∂D2 dϕ Tr(mB)〉0. (3.12)

To determine the algebra of boundary observables, it is enough to both set m = 0,
and study the weak-coupling limit e → 0. An abstract, and at the same time very cheap
argument for this can be made using the result found later in this subsection: the boundary
algebra at e = m = 0 is the universal enveloping algebra U(gC). If the answer at finite
e,m were different, it would be some deformation of U(gC) as an associative algebra. It is
known, however, that for semisimple g

HH2(U(g), U(g)) = 0, (3.13)

implying that such deformations are trivial, that is at e,m 6= 0 we must find U(gC)[[e,m]],
if e,m were treated as formal parameters. Since they are really numbers, we simply have
U(gC), perhaps with some e and m-dependent renormalization happening along the way.

A more concrete argument is to compute boundary correlators perturbatively (we are
only interested in the perturbative 2d YM anyways). We treat TrB[A,A] as an interaction,
and account for its effect in perturbation theory. The propagators that follow from the free
action are roughly

〈BB〉free = 0, 〈BA〉free ∼
1
d , 〈AA〉free ∼

e2

d ∗ d . (3.14)

As already mentioned, at e = m = 0, we will find a non-trivial boundary algebra. The
boundary correlators have jump discontinuities when operators collide, and such a dis-
continuous8 UV behavior encodes the algebra. The boundary algebra essentially follows
from a single Feynman diagram on figure 3.1. At e 6= 0, the non-zero 〈AA〉free propagator
allows to write many more non-trivial Feynman diagrams. However, this propagator is
less singular than 〈BA〉free, and all such diagrams will not affect discontinuities of bound-
ary correlators. We can easily see it from the dimensional analysis: B is dimensionless,
while both e and m have dimensions of mass. Therefore, positive powers of e and m in
expressions for correlators can only appear with positive powers of coordinates, so that the
total expression is dimensionless. Such contributions vanish at coincident points limit, not
affecting the structure constants of the algebras. An example of such an expression is

(x1 − x2)n+kenmk, (3.15)
8In fact piece-wise constant, since the correlators are topological.
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Ba(x)

Bb(y)

fabc

Figure 2. The boundary algebra is determined by this diagram. The two boundary insertions,
Ba(x) and Bb(y), are connected to the bulk vertex fabcB

aAb ∧ Ac. A line with an arrow denotes
the 〈BA〉free propagator, with the arrow pointing at B. Similar Feynman rules were used in [21].

where x1, x2 are positions of some insertions. In the x1−x2 → 0 limit, only the n = k = 0,
i.e. e and m independent, terms can survive.

Putting it in a more intuitive physical language, what we have just explained simply
means that e and m are relevant perturbations. Therefore, they are immaterial in the UV
limit, and meanwhile, the algebra of local operators is a question about the UV behavior of
correlators. Thus, the algebra structure does not depend on e and m, and in what follows,
we simply compute it at e = m = 0. Later we will determine the trace on it: unlike the
algebra, it depends both on e and m.

Algebra at e = 0. At e = 0, the action (3.5) simply describes the BF theory. It is
well-known that the BF theory in 2d is equivalent to the Poisson sigma model with the
dual Lie algebra, — g∗C in our case, — taken as a target Poisson manifold. The Poisson
structure is the canonical Lie-Poisson structure on g∗C. This equivalence is manifested by
writing the action as

S = −i
∫ (

Aa ∧ dBa − 1
2fabcB

aAb ∧Ac
)
, (3.16)

where now Ba play the role of coordinates on the target, and the Poisson structure is

πab = −fabcBc. (3.17)

We recognize this as the Poisson sigma model from [21], where it was shown perturbatively
that the algebra of boundary operators is determined by the Konsevich’s star product [85].
Concretely, specializing to the case of g∗C with the Lie-Poisson structure, we find that the
star-product is

Ba ? Bb =: BaBb : − i2f
abcBc. (3.18)

The Weyl-ordered product : BaBb : on the right refers to the boundary operator we assign
(via a chosen quantization map) to the usual product of smooth functions. This assumes
a certain definition of composite operators adopted in [21].

We can avoid thinking about subtleties involved in defining composite operators as
follows. Start with a collection of boundary operators Ba1 , Ba2 , . . . inserted at separate
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points. We are allowed to move them through each other, which amounts to commuting
them using the star-commutator that follows from (3.18):

[Ba, Bb]? = −ifabcBc. (3.19)

Now we can define composite operators by colliding a collection of B’s, that is, we bring
them really close together without letting them pass through each other, i.e. the ordering is
preserved. The commutator of Ba with such an object is determined by consecutively com-
muting Ba with its constituents. This is precisely the recipe we would use for computing
commutators in U(gC). Therefore, we see that with the standard definition of composite
operators via collision of elementary fields, we simply find the universal enveloping alge-
bra. Any other definition of composite operators would produce the same algebra U(gC),
possibly written in a different basis.

Remark: observe that the dimensionless field B is related to the dimension-1 field φH

under the correlators via
φH = g2

YM
4πi`B, (3.20)

up to Q-exact and contact terms. So in the natural 4d normalization, we have:

[φHa , φHb ]? = −~fabcφHc , ~ = g2
YM

4π` . (3.21)

While in three dimensions, 1
` plays the role of a natural quantization parameter ~ [6], in

the four-dimensional problem with the Dirichlet boundary, ~ is also proportional to the 4d
gauge coupling.

From now on, we will drop the ? and simply write BaBb for Ba ? Bb, etc.

3.2 The trace

Now let us determine the trace on U(gC) that encodes the boundary correlators. Assume
from now on that there is no theta-angle:

Re(τ) = 0. (3.22)

In the case of Dirichlet boundary conditions and their S-duals, analysis generalizes to
θ 6= 0 without too much work, and in particular the hemisphere partition function is
θ-independent.9 We will not study θ 6= 0 in the rest of this paper.

Consider again the trace TH with some twist parameter m, and let Tm=0
H be the same

trace with the twist parameter set to zero. Then we have

TH(1) = Tm=0
H (e−2πm·B) = eiπτ Tr(m2) ∆(m)

∆(m) , (3.23)

where the first equality follows from (3.12). Decompose U(gC) in irreps of gC. As (−1)FH =
1, the trace relations for Tm=0

H ,
Tm=0
H [Ba,O] = 0, (3.24)

9This is only true for 4d N = 4 theories. With N = 2 SUSY, the θ-dependence would appear through
the non-trivial Nekrasov partition function [12, 44].
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tell us that Tm=0
H only takes non-zero values on gC-invariant operators, i.e. the center

Z[U(gC)] of U(gC). There is a well-known Harish-Chandra isomorphism between Z[U(gC)]
and BH ∼= C[g]G ∼= C[t]W , which will play role in the next subsection.

The left hand side of (3.23) is a generating function for Weyl-ordered operators:

e−2πm·B =
∞∑
n=0

(−2π)n
n! mai · · ·man : Ba1 · · ·Ban :, (3.25)

which form a linear basis for U(tC), and in particular include C[t]W as a subspace.
Thus (3.23) completely encodes the data of the trace. This means we already know,
somewhat implicitly, all correlation functions.

We can make the answer more explicit with a trick related to S-duality. First of all,
notice the Fourier transform10

∫
t∨

[da]e−
iπ
τ

Tr(a2)∆(a)e2πim·a = τdim(G)/2

irk(G)/2 eiπτ Tr(m2)∆(m). (3.26)

A way to prove it is to relate ∆(a) to the sinh-Vandermonde ∆(a) through

∆(a) = lim
ε→0

∆(εa)
(2πε)|Φ+|

, (3.27)

and apply the Weyl denominator formula for the sinh-Vandermonde:

∆(a) =
∑
w∈W

(−1)l(w)e2π〈w(ρ),a〉, (3.28)

where ρ = 1
2
∑
α∈Φ+ α. For each summand on the right-hand side of this formula, it is

completely straightforward to evaluate the Fourier integral (3.26), after which we apply
the Weyl formula again to recover ∆(τmε), and then take the ε→ 0 limit to find (3.26).

Using (3.26), we can write:

TH(1) = irk(G)/2

τdim(G)/2

∫
t∨

[da]e−
iπ
τ

Tr(a2)∆(a)e
2πim·a

∆(m) . (3.29)

Recognizing the character of the Verma module, we can also rewrite this as

TH(1) = irk(G)/2

τdim(G)/2

∫
t∨

[da]e−
iπ
τ

Tr(a2)∆(a) TrV−ia−ρ e−2πm·B (3.30)

in terms of (analytically continued) traces on Verma modules V−ia−ρ for U(gC). Taking m
derivatives on both sides, we learn that

TH(O) = irk(G)/2

τdim(G)/2

∫
t∨

[da]e−
iπ
τ

Tr(a2)∆(a) TrV−ia−ρ e−2πm·BO, (3.31)

i.e. we have a decomposition of our trace as a continuous superposition of the twisted traces
on U(gC) associated to Verma modules.

10We write the integration domain as t∨ anticipating the relation to S duality below.
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There is another useful way to rewrite this (recall that ∆(w · a) = (−1)l(w)∆(a)):

TH(O) = irk(G)/2

|W|τdim(G)/2

∫
t∨

[da] e−
iπ
τ

Tr(a2) ∆(a)
∆(a)︸ ︷︷ ︸

Dirichlet
partition function

· ∆2(a)︸ ︷︷ ︸
gauging
factor

·
[ ∑
w∈W

(−1)l(w) TrV−iw(a)−ρ e
−2πm·BO

∆(a)

]
︸ ︷︷ ︸

T [G] at the boundary

. (3.32)

This is consistent with S-duality: we recognize the localization expression for a hemi-
sphere partition function with enriched Neumann boundary conditions and boundary de-
grees of freedom given by the 3d theory T [G] (see [86–88] for the T [G] partition function).

3.3 Bulk-boundary map and the Harish-Chandra isomorphism

As was mentioned before, the trace relations imply that Tm=0
H is supported on the gC-

invariants, i.e. the center Z[U(gC)]. Via the Harish-Chandra isomorphism, the latter is
mapped to Sym(tC)W ≡ C[t∗]W , which we identify with the space of bulk operators C[t]W .
We are going to argue here that the bulk-boundary map, given by bringing the Q-closed
bulk operators to the boundary, is precisely the Harish-Chandra isomorphism.

In fact, the decomposition of TH in terms of traces on the Verma modules (3.31)
is precisely what we need in order to show this. Recall that an element of the center,
z ∈ Z[U(gC)], acts by a scalar on a highest-weight module Vλ,

z · v = χλ(z)v, ∀v ∈ Vλ. (3.33)

Furthermore, these scalars, considered as polynomial functions of λ (polynomiality is obvi-
ous), are constant along the shifted Weyl orbits, which is part of the Harish-Chandra theo-
rem. The latter means that considered as a function of λ̃ = λ+ ρ, χ

λ̃
(z) is Weyl-invariant,

and can in fact be regarded as an element of C[t]W . Thus we get the Harish-Chandra map
Z[U(gC)] 3 z 7→ χ

λ̃
(z) ∈ C[t]W .

Now suppose that we choose some gC-invariant polynomial p̂(B) and insert it under the
trace in (3.31). By the above reasoning, it will evaluate to some Weyl-invariant polynomial
p(−ia) on the Verma module V−ia−ρ. We then find:

TH(p̂(B)O) = 1
|W|

irk(G)/2

τdim(G)/2

∫
[da]e−

iπ
τ

Tr(a2)∆(a)p(−ia)

×
[ ∑
w∈W

(−1)l(w) TrV−iw(a)−ρ e
−2πm·BO

]
. (3.34)

In the S-dual picture, we recognize the factor p(−ia) as the insertion of bulk BPS
operator. Thus the Harish-Chandra isomorphism tells us the boundary image of bulk
operators that are S-dual to invariant polynomials in the bulk scalar fields.

The Coulomb branch algebra of T [G] is expected to be the quantization of the regular
nilpotent orbit in gC or deformations thereof: it is the central quotient U(gC)/Ia, where Ia
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is the ideal that fixes the value of the central elements p̂(B) in Z[U(gC)] to p(−ia). Here
a are the mass parameters in T [G]. The term in square brackets in the integral is (∆(a)
times) the trace TC in T [G].

We see here the first example of a general principle: the algebra AC for a boundary
condition has a center isomorphic to C[t]W , and the central quotient AC [a] of AC is a 3d
Coulomb branch. The trace on AC is reconstructed as above by integrating the trace on
AC [a] against an appropriate Gaussian measure.

On gC = glN . Let us give some more details in the case when the 4d gauge group
is U(N), so in particular gC = glN . The center of U(glN ) is formed by gauge-invariant
polynomials that can be simply constructed from traces,

Tr(Bn). (3.35)

The Harish-Chandra isomorphism is not the naive identification of these with Weyl-
invariant polynomials of the eigenvalues. It is a non-trivial deformation of that. To give a
few examples of pairs (p̂, p), we write:

p̂(B) 7−→ p(−ia)

Tr(B) 7−→ −i
N∑
j=1

aj ,

Tr(B2) 7−→ −
N∑
j=1

a2
j + N(N2 − 1)

12 , (3.36)

Tr(B3) 7−→
N∑
j=1

(
ia3
j + i

N

2 a
2
j − i

N2 − 1
4 aj

)
− i

2

(∑
j

aj

)2

− iN2(N2 − 1)
24 ,

which are all symmetric polynomials in ai as expected.
A simple way to derive p(−ia) is to use the formula for gC = glN (see, e.g. [89]):

1 + iTr 1
z −B

= C(z + i)
C(z) , (3.37)

for a degree n monic polynomial C(z). The polynomial C(z) itself can be computed as
a Capelli determinant [90] of z − B, which is a quantized analogue of the characteristic
polynomial of B. It has the property that C(B) = 0. Indeed, if we multiply the above
expression by C(z), we find

C(z) + iTr C(z)− C(B)
z −B

+ iTr C(B)
z −B

= C(z + i) (3.38)

so the coefficients Tr C(B)Bn of negative powers of z must vanish.
The important property of the Capelli determinant is that under the Harish-Chandra

map, it has a simple expression, which in our conventions is ∏N
j=1(z−λj + i(j− 1)), where

– 26 –



J
H
E
P
1
2
(
2
0
2
1
)
0
5
0

λj parameterize the highest weight of the Verma module. For us, λ = −ia−ρ, and we find
that Harish-Chandra image of C(z) is

C(z) =
N∏
j=1

(
z + iaj + i

2(N − 1)
)
. (3.39)

Combining this with (3.37) allows to write formulas like (3.36) straightforwardly.

4 Neumann boundary conditions and their enrichment

The half-BPS Neumann boundary conditions (2.5), possibly deformed by the boundary
FI term (2.49), and possibly enriched by the boundary 3d N = 4 SCFT, form another
well-known large class of boundary conditions. Without the boundary SCFT, it is quite
easy to determine both AH and AC . Because the boundary values of ~X are fixed, and
the only operator obeying E = RH is X+ = X1 + iX2, there are no non-trivial QH1,2-closed
boundary operators, and we simply have:

AH = C, (4.1)

with the trace given by the HS4 partition function with Neumann boundary conditions:

TH(1) = 1
|W|

∫
t
[da] ∆(a)∆(a)eiπτ Tr(a2). (4.2)

Such boundary conditions are not compatible with the bulk θ-term, except in the abelian
case, which is why we set:

θ = 0, (4.3)

but still use the 4d coupling τ for convenience. Neumann boundary conditions allow for a
boundary FI term r, which amounts to the insertion of e2πiTr(ra) under the integral, where
r is valued in the abelian part of g, so Tr(ra) picks out the components of a in the abelian
directions. Using the same trick based on the Weyl denominator formula, we find:

TH(1) = 1
|W|

∫
t
[da] ∆(a)∆(a)e2πiTr(ra)eiπτ Tr(a2)

= irk(G)/2

τ rk(G)/2 e
− iπ
τ

Tr(r2−ρ2−2irρ)∆
(
i

τ
ρ− r

τ

)
, (4.4)

where Tr(ρ2) = h
12 dim(g) by the Freudenthal-de Vries formula.

The nontrivial Q C1,2-closed boundary operators are built from the (twisted translations
of) Y+ = Y1 + iY2, which is dynamical at the boundary. Unbroken gauge invariance implies
that the boundary operators are generated from building blocks of the form

Tr(Y n
+ )(0), (4.5)

and their twisted translations along the x3 direction. Such operators are well-defined both
at the boundary and in the bulk, where they correspond to Tr(φC)n from section 2.2.2,
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thus form a commutative algebra, which, as we know by now, is the center of U(gC). In
other words, we can write

AC = C[g]g ∼= C[t]W , (4.6)

and a trace of some polynomial P (Y+) ∈ C[t]W is simply given by11

TC(P (Y+)) = 1
|W|

∫
t
[da] ∆(a)∆(a)e2πiTr(ra)eiπτ Tr(a2)P (a). (4.7)

This latter formula describes the one-point function of bulk operators.

4.1 Adding boundary theory

Now we enrich the Neumann boundary conditions by coupling to the boundary SCFT
T with a global symmetry G. Coupling is realized via gauging this global symmetry by
the bulk vector multiplet. Sometimes it is useful to think about this boundary condition
slightly differently: we start with the Dirichlet boundary condition (with global symmetry
G), place theory T at the boundary (that has another copy of global symmetry G), and
gauge the diagonal subgroup of G × G by 3d vector multiplets living at the boundary.
The corresponding hyper-Kähler moment map involved in this gauging is given in the
equation (2.7). Suppose the theory T itself has protected algebras

AH(T ) and AC(T ). (4.8)

4.1.1 AH algebra and the trace

To describe the AH algebra of the coupled bulk-boundary system, the perspective of gaug-
ing the Diag(G×G) is quite useful. Indeed, the algebra for [Dirichlet]⊗T is

AH(T )⊗ U(gC), (4.9)

and the 3d gauging simply implements the quantum Hamiltonian reduction of (4.9). From
the localization, this comes about as follows: the bulk gives a 2d cYM on the hemisphere
HS2, the boundary theory T produces a 1d topological quantum mechanics (TQM) living
at the boundary ∂(HS2), and the 1d gauging couples these two systems, resulting in the
quantum Hamiltonian reduction. The moment map constraint involved in this is

m ≡ µ+X − r = 0, (4.10)

where µ generates the gC-action on AH(T ) and corresponds to the twisted translation of
µ+(0) = µ1(0)+iµ2(0) in the 3d theory T , and X ∈ gC likewise corresponds to the twisted-
translated version of X+(0) at the Dirichlet boundary of the 4d theory. The quantum
Hamiltonian reduction reads

AH = (AH(T )⊗ U(gC)/(m))gC , (4.11)

where the quotient is over the left ideal generated by m, and then we pass to the gC-
invariants (which is the same as g-invariants). Because m is linear in X, taking the quotient

11Y+ has dimension one, so it evaluates to 1
`
a, but we neglect obvious factors of ` for brevity.
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is equivalent to eliminating the factor of U(gC). Thus it only remains to take the subalgebra
of invariants, and our answer is simply

AH = (AH(T ))g. (4.12)

We see that while gauging in 3d corresponds to the quantum Hamiltonian reduction of
the protected algebra, gauging at the boundary of 4d is realized via a “half” of the same
procedure, — simply taking the subalgebra of invariants. One can compare this to the
procedure in [91], where the boundary VOA for Neumann boundary conditions is computed
by taking the derived invariants only, while the same problem in pure 2d setting requires
performing Hamiltonian reduction (BRST reduction of the VOA) [92].

It is rather straightforward to write the twisted trace on AH , given we know the twisted
trace on AH(T ) that follows from the sphere correlators for T . Let T aH denote the twisted
trace on AH(T ), with masses a for the G symmetry turned on (and other parameters, such
as masses m for other flavor symmetries and, perhaps, FI terms kept implicit). We assume
that it is normalized to the S3 partition function of T :

T aH(1) = ZS3 [T ](a). (4.13)

From the 2d/1d viewpoint, T aH describes partition function and correlators of the 1d TQM
associated with the 3d theory T . We then couple it to the cYM on HS2. Again the
perspective of gauging Diag(G × G) turns out to be quite useful, and allows to write for
O ∈ (AH(T ))g:

TH(O) = 1
|W|

∫
t
[da] T aH(O)︸ ︷︷ ︸

trace on AH(T )

· e2πiTr(ra)∆(a)2︸ ︷︷ ︸
gauging

Diag(G×G)

· eiπτ Tr(a2) ∆(a)
∆(a)︸ ︷︷ ︸

Dirichlet partition function

. (4.14)

We see that while AH does not, TH in general does depend on the boundary FI term r.
Both AH and TH might also depend on FI parameters of the boundary theory T ; the
masses of T also enter TH as the twist parameters, though we kept them implicit.

4.1.2 AC algebra and trace

The above discussion makes it straightforward to describe the AC algebra at the bound-
ary, especially since we have essentially alluded to the answer in section 2.4.1, and later
in (3.32)–(3.34). The operators in the Coulomb branch algebra AC(T ) are neutral under
the flavor symmetry G, so they remain in the algebra upon gauging. Additionally, we know
that gauge-invariant operators built from Y+, which form a copy of C[t]W , are also in the
Q C1,2-cohomology, so we should extend AC(T ) by such operators. Notice that Y1 = a is
the variable we integrate over as we couple bulk to the boundary, and meanwhile, this a
enters as a mass parameter in the algebra AC(T ). Adjoining C[t]W to the algebra AC(T )
therefore simply means that we promote masses a to dynamical fields. This is manifestly
reflected in the fact that we integrate over a. Mathematically, this is a central extension:

0 −→ C[t]W −→ AC −→ AC(T ) −→ 0. (4.15)
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The first map here is just an inclusion, while the second map is a central quotient that
sets a to a constant value. This is (S-dual of) the same central quotient that was briefly
discussed in the text after the equation (3.34).

If we denote the trace on AC(T ) as T aC , again only making the mass a manifest in the
notation, the trace on AC is written just like in section 2.4.1:

TC [O] = 1
|W|

∫
t
[da]T aC [O] · e2πiTr(ra)∆(a)2 · eiπτ Tr(a2) ∆(a)

∆(a) . (4.16)

The boundary FI parameter r can only affect the trace, not the algebra, but it does
not introduce any new twists because the boundary monopoles (that would be charged
under the corresponding “topological symmetry”) do not exist in this setting. In the
equation (4.16), the insertion can be O ∈ AC(T ), or it can be a central “bulk operator”
from C[t]W given by a Weyl-invariant polynomial

P (a) ∈ C[t]W . (4.17)

4.1.3 Basic example of S-duality

As an illustrative example, consider again the T [G] boundary conditions. As a 3d the-
ory, T [G] has the nilpotent cone of g for its Higgs branch, and the nilpotent cone of the
Langlands dual g∨ for its Coulomb branch. Correspondingly, the TQM sectors describe
quantizations of these branches, which are the central quotients U(gC)/Ia and U(g∨C)/I∨b
respectively.

As we couple T [G] to the bulk G gauge theory, we obtain algebras AH and AC at the
boundary. They are computed according to our recipe, which gives

AH ∼= (U(gC)/Ia)g ∼= C, (4.18)

because the g-invariants belong to the center, which is removed by taking the central quo-
tient. The boundary algebra AC is obtained by promoting b in U(g∨C)/I∨b to the dynamical
field, which simply undoes the quotient, and we find

AC ∼= U(g∨C). (4.19)

The above answers for AH and AC of curse match those for AC and AH respectively at the
Dirichlet boundary conditions in the G∨ gauge theory, as studied in the previous section.
The trace on AH = C is given by the hemisphere partition function, and it obviously
matches the dual answer. That the trace on AC = U(g∨C) matches the S-dual answer has
already been observed in the equation (3.34) and the discussion after it.

To make things more explicit, consider the case of T [SU(2)], i.e. SQED2, coupled to
the SU(2) theory in the bulk. The Coulomb branch algebra is generated by v±, ϕ, and it
contains a mass parameter m, which we promote to the dynamical field upon coupling to
the bulk. With respect to the bulk gauge symmetry, this is the abelianized algebra, because
m is not invariant under the Weyl group of SU(2), but m2 is. The actual gauge-invariant
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algebra is obtained by throwing away m but keeping m2. While the classical relation in
this algebra is v+v− = ϕ2 −m2 [25], the quantum relations are:

v+v− =
(
ϕ− 1

2ε
)2
−m2, v−v+ =

(
ϕ+ 1

2ε
)2
−m2, where ε = 1

2` . (4.20)

Either way, the relations simply eliminate m2 from the algebra, and the remaining gener-
ators v±, ϕ only satisfy the following commutation relations

[v+, v−] = −2εϕ, [ϕ, v±] = ±εv±. (4.21)

These are of course commutation relations of su(2), so we indeed recover the algebra
AC = U(gC) = U(sl2) at the boundary.

4.2 Ungauging and interval reduction

It is well-known that one can recover the boundary theory T by an interval compactifi-
cation [3], where on one end we use T to define the boundary conditions, while the other
end supports the Dirichlet boundary conditions. In the IR, this effectively ungauges the
boundary, and we recover the T SCFT.

Notice an interesting feature: while the algebra AH(T ) decreases upon coupling to the
bulk, the algebra AC(T ) increases in size. The latter is related to the statement made in
section 2.4.1, which asserts that one can go back to AC(T ) from AC by taking a central
quotient, which is the same as the interval compactification with the Dirichlet boundary
conditions on the other end. While going from AC(T ) to AC involved promoting masses
a to dynamical variables, going back, obviously, corresponds to giving a a fixed value,
as already explained in section 2.4.1, and this is exactly what the Dirichlet boundary
conditions achieve.

Since AH is “smaller” than AH(T ), understanding how ungauging works in this case is
more interesting. As we reduce on the interval, we need to take into account the following:

1. Algebra AH = AH(T )g on the left boundary;

2. Algebra U(gC) on the right (Dirichlet) boundary;

3. Wilson lines stretched between the two boundaries constructed using the QH1,2-closed
gauge field A H

4 introduced in section 2.2.1.

4. Fermionic lines L1,2 sretched between the two boundaries that are cohomological
descendants of the QH1,2-closed bulk field φH introduced in section 2.2.1.

The fermionic lines from the item four are not QH1,2-closed, but rather the descent equations
imply (similar to [91]) that

Q
H
1,2L1,2 = φH

∣∣Right
Left . (4.22)

On the Dirichlet boundary, the restriction of φH generates the boundary algebra U(gC).
On the other end, the Neumann boundary conditions imply that φH

∣∣ = 0 there. The above
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equation therefore makes all operators in U(gC) QH1,2-exact, and completely eliminates the
U(gC) algebra.

What remains is the algebra AH = AH(T )g (item number one on the list) and Wilson
lines (item number three). While the algebra AH only contains g-invariant operators
from AH(T ) due to gauge invariance, the Wilson lines are allowed to end on g-charged
operators from AH(T ). Such configurations of Wilson lines stretched between the two
boundaries, with a charged operator from T sitting at one end of the line, do contribute
to the cohomology. They can be interpreted as giving non-trivial AH(T )g-modules. We
therefore claim that AH(T ) can be recovered from AH = AH(T )g as an extension by
modules corresponding to such Wilson lines. This is an infinite extension, since charges of
operators sitting at the endpoints of Wilson lines can be arbitrarily large:

AH(T ) = infinite extension of AH . (4.23)

Alternatively, we could go to the S-dual picture, and recover the boundary algebra there
using the AC prescription described above. The dual boundary theory is T [G] ◦ T , which
is obtained by gauging the diagonal G symmetry in T [G] × T . By specializing the cen-
ter of the boundary algebra AH (which is the AC of the S-dual picture) to fixed values
parametrized by a, we should recover AC(T [G] ◦ T ). This in particular implies that the
trace on the boundary algebra AH of the original theory can be expressed through the
trace on AC(T [G] ◦ T ) on the dual side according to:

〈O〉Neumann+T = 1
|W|

∫
[da] ∆(a)∆(a)e−

iπ
τ

Tr(a2)〈O〉T [G]◦T (a). (4.24)

Notice that ZT [G]◦T (a) is a character for the AH such that the center is given in terms of
a. We do not pursue this approach any further.

5 Nahm poles and finite W-algebras

To have answers for the whole class of boundary conditions introduced in [1], we must
understand the algebras and traces for Nahm pole boundary conditions as well. Recall
from section 2.1 that the Nahm pole is parameterized in terms of an embedding

% : su(2)→ g, (5.1)

and we fix a choice of such % in this section. Being a generalization of the Dirichlet boundary
conditions, Nahm poles also break gauge symmetry at the boundary. While in the case of
Dirichlet there is a remnant G global symmetry at the boundary, the Nahm pole further
breaks this global G to a subgroup F% that commutes with the pole, i.e. the centralizer of
%(su2):

F% = CG(%(su2)). (5.2)
For the global symmetry F%, like in the Dirichlet case, we can turn on the boundary mass,
which then enters as the twist parameter in the trace.

Nahm poles also have a few completely novel features, such as modified R-symmetry
at the boundary, as we discuss momentarily, and additional restrictions on the allowed
boundary operators that basically follow from finiteness of the action.
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5.1 R-symmetry mixes with gauge symmetry at the Nahm pole

Since the fields ~X form a triplet of what we previously called SU(2)H , the Nahm pole

~X ∼
~t

y
, (5.3)

whenever non-trivial, explicitly breaks SU(2)H . Superconformal invariance, on the con-
trary, requires this symmetry to be there. The resolution comes from the fact that

%(su2) ⊂ g (5.4)

integrates to SU(2)% ⊂ G (or SO(3)%), which is also explicitly broken at the boundary.
Crucially, there exists a subgroup of SU(2)H × SU(2)% that remains unbroken. It plays
the role of Higgs branch R-symmetry at the boundary, and we call it S̃U(2)H . Let us
choose a basis of the gauge algebra g = Lie(G) as (t1, t2, t3, Ta), where the Ta span the
orthocomplement of %(su2) in g. Then

Xi =
3∑
j=1

Xj
i tj +

∑
a

Xa
i Ta. (5.5)

The Nahm pole keeps Xa
i finite, while Xj

i is singular,

Xj
i ∼

δji
y
. (5.6)

Here, the lower index is a triplet under the SU(2)H , while the upper index is a triplet under
the SU(2)%. The diagonal subgroup preserves the form of the singularity (5.6), which makes
it the unbroken subgroup we are looking for:

S̃U(2)H ∼= Diag [SU(2)H × SU(2)%] . (5.7)

One might find a different global form if we only had the SO(3)% to begin with, but its Lie
algebra is really all we need here.

Besides S̃U(2)H , there also exists the flavor symmetry group F% defined in (5.2), which
is preserved at the Nahm pole as well. It cannot further mix with the S̃U(2)H without
breaking part of symmetry (as is always the case for non-abelian R-symmetry), thus S̃U(2)H
must be the correct R-symmetry.

One can also understand this fact from the SUSY algebra closure (A.11). Normally,
the SUSY algebra closes up to a gauge transformation GΛ, as written in (A.11) (and up
to equations of motion, which is not important to us here). This gauge transformation
is trivial for gauge-invariant bulk operators, but not trivial for boundary operators that
can be charged under G. This usually produces central charges that are proportional to
boundary masses, and indeed this happens for the flavor symmetry F%. One can check,
however, that the Nahm pole produces additional pieces in the boundary limit of GΛ. They
give a boundary gauge transformation with the gauge parameter proportional to

εijk lim
y→0

Xk(y)y = εijktk, (5.8)
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whenever the right hand side of (A.11) also includes an R-symmetry Rij . Together these
two pieces combine into a generator of S̃U(2)H , which replaces SU(2)H when acting on
boundary operators charged under %(su2) ⊂ g.

This redefinition of the R-symmetry group SU(2)H at the boundary has some inter-
esting consequences. It means that the R-charges of boundary operators can be shifted
from their naive values. Recall that the conformal dimensions and R-charges of operators
must obey certain inequalities implied by unitarity, such as E ≥ RH and E ≥ RC .12 It
can happen that these inequalities are broken by the redefined R-charges. It is enough
to consider the highest weight with respect to both S̃U(2)H and SU(2)C : if it happens to
violate the inequality

E ≥ R̃H +RC , (5.9)

it means that the whole S̃U(2)H × SU(2)C multiplet is inconsistent with unitarity. What
does it mean? It simply means that the corresponding multiplet is not part of the theory.
In other words, the corresponding boundary operators do not exist. This situation is not
unheard of: it was already pointed out in [1] that the singular nature of the Nahm pole
boundary conditions imposes certain additional constraints on the behavior of fields near
the boundary, such that the action remains finite. These constraints must be precisely
such that they remove all the operators that violate the unitarity bounds. This makes the
identification of boundary operators subtle and interesting, which is what we address next.

5.2 Boundary operators at the Nahm pole

The 4d action diverges in the presence of the Nahm pole. This is typical of disorder ob-
servables, and the standard cure is to excise a size-δ tubular neighborhood of the divergent
locus, — a boundary in our case, — and include a boundary term that cancels the diver-
gence.13 In our case, the leading divergence is of order δ−3, and it can be canceled by the
boundary term that slightly modifies the action. The relevant terms in the action become:

Sdiv ∼ Tr
∫

d4x

((
DyXj + i

2εjkl[Xk, Xl]
)2
− [Xj , Yk] + fermions

)
. (5.10)

Now the action is less divergent, but still appears to have subleading δ−1 divergences.
These cannot be removed, and in fact play a rather different role: they impose further
restrictions on the behavior of fields at the boundary. It is clear that fields commuting
with the pole are unconstrained, while others must obey certain additional restrictions.

Analyzing the field space in full detail is a cumbersome task, but fortunately we can
almost avoid it using the results of the previous section. First we notice that the Q C1,2
cohomology at the Nahm pole is trivial, meaning that

AC = C. (5.11)
12Superconformal primaries obey E ≥ RH + RC [4], which is a stronger inequality if we consider the

SU(2)H and SU(2)C highest weights.
13See [93], where the boundary term was also included in the presence of the Nahm pole. For similar

discussion in the case of monopole operators in 3d, see [7].
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Indeed, the only operator that obeys E = RC is Y+ = Y1 + iY2, and it is not affected by
the shift of R-charges. Because the Nahm pole boundary conditions, just like the Dirichlet,
fix values of Yi at the boundary, we do not have any boundary operators in the Q C1,2
cohomology, besides the identity. The trace given by the hemisphere partition function
will be addressed later.

To describe boundary operators in the QH1,2 cohomology, we need to find those obeying

E = R̃H . (5.12)

Furthermore, as we know, they must have RC = 0, be invariant under the boundary
rotations that fix the x3 axis, and be S̃U(2)H highest weights. This eliminates Yi, fermions,
and most of the gauge field components, except F34. From the earlier analysis, we know
that the QH1,2-closed operator built from the F34 and scalars is cohomologous to φH , so we
can simply ignore it. Therefore all the independent boundary operators can be constructed
from the Xi and derivatives.

Let us split Xi into a singular and regular part:

Xi = ti
y

+ X̂i. (5.13)

It is the regular part X̂i that is used to construct boundary operators. Because they must
be highest weight vectors of S̃U(2)H = Diag[SU(2)H × SU(2)%], they are clearly highest
weights both with respect to SU(2)H and SU(2)%. The former means that we are only
interested in X̂+ = X̂1 + iX̂2, like before; the latter means that we should only consider
gauge components of X̂+ valued in the subspace of highest weights with respect to %(su2),
which we denote as

P+ ⊂ g. (5.14)

The subspace P+ can be further decomposed into a subspace of zero weights with respect
to %(su2), weights 1/2, 1, etc. We write it as:

P+ =
⊕

m∈ 1
2Z≥0

P+,m. (5.15)

The subspace P+,0 of zero highest weights is clearly the same thing as the subalgebra
f% = Lie(F%) commuting with %(su2). Components of X̂+ valued in this space have R̃H =
RH = 1, and because X̂+ has E = 1, the equality E = R̃H is obeyed. Such components are
indeed the allowed boundary local operators, as we can also see from the action: singularity
does not affect the operators commuting with %(su2).

For the highest weight vectors of positive weight, the inequality E ≥ R̃H is broken.
Indeed, if we focus on the subspace P+,m with m > 0, then components of X̂+ valued
in it have

R̃H = RH +m = 1 +m > 1, (5.16)

yet they still have E = 1. Such components of X̂+ violate the unitarity bounds, thus
the corresponding operators must not be part of the theory. In practice, it means that
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the Nahm pole must force such components to vanish at the boundary. Clearly all their
derivatives along the boundary must vanish too.

Normal derivatives of X̂+, however, might not vanish. It is convenient to choose a
partial gauge, in which

Ay = 0 (5.17)

in a neighborhood of the boundary. The reason is that X̂+ has unusual gauge transforma-
tions: indeed, it is defined by subtracting a gauge-noninvariant pole from a gauge-covariant
quantity X+. Thus taking covariant derivatives of X̂+ is a little cumbersome.14 In the
gauge Ay = 0, though, we can take ordinary normal derivatives. In particular, if m is an
integer, then acting with the normal derivative m times results in an operator that obeys
E = R̃H . Indeed,

(∂y)mX̂+ (5.18)

has dimension E = 1 + m. Thus its components valued in P+,m obey E = R̃H , and may
be valid boundary operators in the cohomology, if non-zero. This can be generalized to
m half-integral as well, if we write the answer in the following form. Let the boundary
operator corresponding to the %(su2) highest weight vα ∈ P+ be denoted as X̂(α)

+ , and
let its %(su2) weight be mα. Then all such operators can be combined into the following
g-valued and operator-valued function (not a field — see below),

X̂+(y) =
∑

vα∈P+

X̂
(α)
+ vαy

mα , (5.19)

which makes it manifest that while X̂+(y) has E = 1, the coefficients X̂(α)
+ have E = R̃H =

1 +mα. Expansion (5.19) is simply a small piece of the more general expansion of X̂+(y)
in y, which has many more other terms, yet (5.19) contains the data of QH1,2 cohomology
at the boundary.

So far we have proven that all the boundary operators are generated by the coefficients
in (5.19). Logically, it is still a possibility that some of them vanish due to constraints
imposed by the Nahm pole. We can actually do better and prove that all X̂(α)

+ from (5.19)
are non-trivial.

For that let us identify field configurations on which the operators from (5.19) are
supported. In fact, we are in a rare situation where we have to distinguish operators (we
also occasionally call them observables) and fields, since these are elements of the dual
spaces. For us the operators in the cohomology must be the SU(2)% highest weights, and
these are what we have in (5.19). The dual fields on which such operators are supported,
on the other hand, are the SU(2)% lowest weights. The relevant field configurations, with

14For a simple illustration, consider X̂+ itself, whose gauge transformation, due to the pole subtraction, is
X̂+ 7→ X̂++i[ε, X̂+]+i[ε/y, t+]. Since ε

∣∣
y=0

= 0, and its derivative is regular, we may write ε
y

∣∣
y=0

= ∂yε
∣∣
y=0

.
Thus X̂+

∣∣
y=0

transforms according to X̂+
∣∣
y=0
7→ (X̂+ + i[∂yε, t+])

∣∣
y=0

. The gauge-invariant boundary
operator may be written as (X̂+ − iAy)

∣∣
y=0

, which coincides with X̂+
∣∣
y=0

in the gauge Ay = 0. Taking
normal derivatives of X̂+ is straightforward in this gauge, while trying to write them in a gauge-covariant
way is inconvenient.
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the pole included, have the following form:

X+(y) = t+
y

+
∑

vα∈P−
x(α)vαy

−mα , (5.20)

where now we sum over the lowest weights vα ∈ P−. The succinct way to think about
it is as follows: coefficients X̂(α)

+ in (5.19) can be thought of as functions on the space of
configurations of the form (5.20).

We can recall from [1] that the moduli space of solutions of the Nahm’s equations in
the presence of pole has exactly the same description as (5.20). In [1] this description was
found by discarding one of the three Nahm’s equations and complexifying the gauge group.
Going backward, if we are given (5.20), we can perform a complex gauge transformation
and find a solution of the usual Nahm’s equations. Notice that the dangerous term in the
action (5.10) (that constrains X̂i) is given by the square of Nahm’s equations, and thus
simply vanishes on their solutions. This shows that solutions of Nahm’s equations are part
of the physical space of fields on which the action is well-behaved despite the pole. In
particular, coordinate functions on this space are valid independent observables that are
not constrained in any way.

We therefore conclude that the operators X̂(α)
+ from (5.19) have the interpretation of

coordinates on the moduli space of solutions to the Nahm’s equations, and all of them
are independent nontrivial operators. Configurations of the form (5.20) are known to be
isomorphic to the Slodowy slice St+ at t+. Our conclusion therefore is the isomorphism of
vector spaces:

Boundary operators ∼= regular functions on St+ (5.21)

There is one algebraic structure on this space, which is that of a commutative point-wise
multiplication of regular functions. It is expected to match the operator product on the
sort of a “chiral ring” we would get if we dropped the “S” part in the “Q+S” construction
of section 2 (or took the commutative limit ` → ∞). Another algebraic structure on the
space of operators is the one we actually considered in section 2. It is expected to match
the appropriate equivariant deformation quantization of St+ (with respect to its natural
Poisson structure inherited from g∗), given by a star-product on the algebra of regular
functions on St+ .

The latter is known to be the so-called finite W-algebra [94–100] associated to the
embedding % (in particular see [98, 100] for the quantization). It only depends (up to
isomorphism) on the conjugacy class of the nilpotent element t+ (see, e.g. [101, Theorem
1]), so we denote it as W(gC, t+). We largely follow [102, 103] where the highest weight
theory of finite W-algebras was considered, and also use the results of [104] in the last
section. We propose the following

Conjecture. The algebra of boundary operators in the QH1,2 cohomology at the Nahm pole
% is the finite W-algebra W(gC, t+).

Below we will provide some checks of this conjecture, but first let us briefly review the
definition of finite W-algebras.
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5.3 Finite W-algebra at the boundary

5.3.1 Definitions

Within the limits of this subsection only, g will be a finite-dimensional reductive Lie algebra
over C, equipped with a non-degenerate invariant symmetric bilinear form Tr(·, ·). This is
what in the rest of paper is denoted by gC, a complexification of g = Lie(G). For notational
clarity, we drop the subscript C in this subsection only.

Let us briefly recall the definition of W(g, t+) according to [97]. The embedding % :
su(2) → g, as we know, gives a triple of su(2) generators (t1, t2, t3) inside g. Choose t3
as a semi-simple element, and t± = t1 ± it2 as nilpotent elements, and use t3 to define a
1
2Z-grading on g:

g ∼=
⊕
d∈ 1

2Z

gd. (5.22)

This grading is an example of so-called good gradings for t+, and we do not have to define
it using t3, any good grading would do (as we mentioned earlier, see [101, Therem 1] for
this fact). That the grading is good means that t+ ∈ g1, and the linear map

adt+ : gj → gj+1 (5.23)

is injective for j ≤ −1
2 and surjective for j ≥ −1

2 . In particular, the map ade : g− 1
2
→ g 1

2
is bijective, which implies that the skew-symmetric bilinear form 〈·, ·〉, defined using the
Killing form Tr according to

〈x, y〉 = Tr(t+[x, y]), (5.24)

is non-degenerate. Pick a subspace l ⊂ g− 1
2
Lagrangian with respect to 〈·, ·〉, and define

m := l⊕
⊕
d≤−1

gd. (5.25)

This is a nilpotent subalgebra of g, and one can define its character χ : m→ C as

χ(x) = Tr(t+x). (5.26)

A finite W-algebra is then defined as the quantum Hamiltonian reduction of the universal
enveloping algebra U(g) by this m, with χ treated as the moment map constraint. More
precisely, χ extends to a homomorphism U(m) → C, whose kernel kerχ generates a left
ideal Iχ of U(g), Iχ := U(g) kerχ, and the finite W-algebra is then defined as

W(g, t+) = (U(g)/Iχ)adm , (5.27)

where we take the subspace invariant under the adjoint action of m.15

15We took a few shortcuts, and made a few modifications compared to the standard mathematical liter-
ature treatment. First, we consider the 1

2Z grading with t+ in degree one, instead of the Z-grading with t+
in degree two, as it is somewhat more natural physically. Second, the definition we reviewed is usually given
second, being equivalent to the first definition, but such a shortened approach is enough for us. Finally, the
algebra itself is often denoted W(χ), Wχ, or U(g, t+), but we call it W(g, t+).
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Even though the definition depends on a few choices, such as a Lagrangian subspace
l, an element t+, and a good grading, it turns out that these choices are irrelevant. Up to
an isomorphism, the algebra only depends on the conjugacy class of the nilpotent t+.

Three more definitions of the same algebra W(g, t+) can be found reviewed in [103],
where the relations (namely, equivalence) between all these definitions are given. The first
definition there is very similar to the one we presented above, and can basically be obtained
by dropping l. More precisely, define instead

m :=
⊕
d≤−1

gd, n :=
⊕
d<0

gd, (5.28)

and assume also t ⊂ g0. The map χ is defined as before, it also is a character for m, and
extends to χ : U(m)→ C. Then again we define a left ideal Iχ := U(g) kerχ, and define

W(g, t+) = (U(g)/Iχ)ad n. (5.29)

Repeating the same with the right ideal gives a canonically isomorphic algebra. Notice
that this last definition is not a quantum Hamiltonian reduction with respect to n, because
χ does not extend to the character of n.

5.3.2 Simple checks

We now consider two simple checks of the proposal that W(gC, t+) describes the boundary
algebra at the Nahm pole.

First, suppose that % is a principal embedding. It is known that in this case the finite
W-algebra is given by the center of U(gC) [94],

W(gC, t+) ∼= Z [U(gC)] . (5.30)

So the proposal is that in this case AC = C and AH = Z [U(gC)], where the latter can be
identified with the algebra of bulk operators,

BH ∼= C[t]W . (5.31)

The S-dual of the principal Nahm pole is given by the pure Neumann boundary condi-
tions [3]. According to section 4, in this case AH ∼= C and AC ∼= C[t∨]W , which agrees with
the above up to exchange AC ↔ AH . We only have to mention that C[t]W is a free polyno-
mial ring with rk(G) generators, and the same is true for C[t∨]W , with rk(G∨) = rk(G) gen-
erators. Thus we see that the proposal for the principal Nahm pole agrees with S-duality.

Second, we can look at a more general Nahm pole %, and its algebra W(gC, t+). It
contains two obvious subalgebras:

Z [U(gC)] ⊂ W(gC, t+) and U(f%) ⊂ W(gC, t+). (5.32)

The first one is just the subalgebra of bulk operators, which is also the center of W(gC, t+).
This one is always part of the boundary algebra, as we have argued previously via the
bulk-boundary map. The bulk-boundary map is not completely obvious in the presence
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vk-1 vk-2 v2 v1 N...

Figure 3. Quiver of the T%[SU(N)] theory. The relation of ranks to % = (ni) is: vk−1 = nk,
vi = vi+1 + ni+1 [3, 88].

of the Nahm pole: indeed, while the operators Tr(X+)n are gauge-invariant, and so obey
E = RH = R̃H and must be in the cohomology, at the boundary they have to be expressed
through X̂(α)

+ appearing in (5.19). In the process, there are some cancellations of powers of
y happening as we approach the boundary, between t+

y and X̂(α)
+ vαy

mα . The way it works
is basically the finite W-algebra version of the Harish-Chandra map.

The second subalgebra corresponds to those components of X+ that commute with
%(su2). They are essentially unaffected by the pole, and just like in the Dirichlet case,
produce the universal enveloping algebra U(f%) for f% ⊂ gC.

A less trivial check. Consider the case of gauge group G = SU(N), so gC = slN . The
boundary algebra AH is then expected to be W(slN , t+), where % = (n1, n2, . . . , nk), with∑
ni = N , ni ≥ 1, and ni ≥ ni+1. The S-dual of the Nahm pole is given by the Neumann

boundary conditions in the SU(N) theory enriched with the boundary theory T%[SU(N)]
defined by the quiver in figure 3.
To check the proposal, we need to know the algebra AC of this theory. The Coulomb branch
algebras of such quiver theories have been identified in several works, see in particular [25,
105, 106], and the answer coincides with the one following from the methods of [8], implying
that we get the same algebra on S3. The algebra is given by a central quotient of the shifted
truncated Yangian Yµ(slk), and it appears in the representation in terms of shift operators
like in [107]. The shifted Yangians are related to finite W-algebras [102], and indeed in this
case one finds precisely the right finite W-algebra, see e.g. section 1.2.3 of [26], and [108].

5.3.3 The trace

Now we study the trace on AH at the Nahm pole. Its value on the identity, which also
determines the trace on AC , is given by the hemisphere partition function. We determine
it using the S-duality, by computing the hemisphere partition function in the G∨ gauge
theory, with Neumann boundary conditions enriched by T%[G∨]. The S3 partition function
of T%[G∨] for G∨ = SU(N) can be found, e.g., in [88], and we write it in the form

ZT%[SU(N)](ζ,m) =
∑
w∈W(−1)l(w)e2πim·w(ζ%)

∆(m)∆%(ζ%)
, (5.33)

where m is in the Cartan of g∨, and the FI term ζ is in the Cartan of f% ⊂ g, that is if
% = [n1, n2, . . . , nk], then

ζ = (ζ1, . . . , ζ1︸ ︷︷ ︸
n1

, . . . , ζk, . . . , ζk︸ ︷︷ ︸
nk

), (5.34)

with ζ1 = 0, ζ2 = α1, ζ3 = α1+α2, . . . , ζk = α1+· · ·+αk−1, where αi are the FI parameters
associated with the gauge nodes of the quiver for T%[SU(N)]. The formula also includes
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the shifted parameter
ζ% = ζ − it3, (5.35)

and the reduced sinh-Vandermonde ∆%(ζ%), which is defined similar to the full sinh-
Vandermonde, but with certain roots in the product omitted:

∆%(x) =
∏
α∈Φ%+

2 sinh π〈α, x〉. (5.36)

Here the restricted set of positive roots Φ%
+ is determined according to the Young diagram

encoding %. Consider the Young diagram with column heights n1 ≥ n2 ≥ · · · ≥ nk from
the left to the right, and label boxes with the basis vectors e1, e2, . . . , eN ordered as follows:
first top to bottom, then left to right. Then the roots belonging to Φ%

+ are of the form
ei − ej , with i < j, such that ei and ej belong to the same row of the Young diagram.
(Here we identified the dual to Cartan of slN with the subspace ∑N

i=1 xi = 0 of CN , where
all the roots lie.)

This Φ%
+ is in fact a positive part of the restricted root system Φ% introduced in [101,

sections 2, 3], see also [103, section 3.1]. The roots in Φ% correspond to the non-zero
weights of the adjoint action of tt+ on gt+ , that is they are the roots of gt+ . (Recall that
the notation xt+ means “centralizer of t+ in x”.)

We are going to assume that for general G∨, the S3 partition function of T%[G∨] takes
the same form (5.33), with the reduced sinh-Vandermonde in (5.36), and with the restricted
set of positive roots Φ%

+ corresponding to g∨. This makes sense because the Nahm pole
eliminates certain modes of the fields that would contribute to the one-loop determinants
with the Dirichlet boundary conditions. Of course it would be desirable to have a derivation
of this conjecture, but it seems to fit well with everything else in our story.

One can then determine the HS4 partition function by integrating ZT%[G∨] against
the Dirichlet partition function with the appropriate measure, which gives TH(1) on the
original side of the duality:

TH(1) = 1
|W|

irk(G)/2

τdim(G)/2

∫
t∨

[da]ZT%[G∨](ζ, a)∆(a)∆(a)e−
iπ
τ

Tr(a2)

= irk(G)/2

τdim(G)/2

∫
t∨

[da] e−
iπ
τ

Tr(a2)∆(a)e
2πia·ζ%

∆%(ζ%)
= ∆(ζ%)

∆%(ζ%)
eiπτ Tr(ζ2

%), (5.37)

where we included a factor irk(G)/2

τdim(G)/2 by hands to compensate for the normalization term
arising in S-duality due to the gravitational counterterms, — this is the same factor we
found in section 3.2 by performing S-duality in the opposite direction, and since it cannot
depend on the boundary conditions we can include it by hands here.

We can extract the following term from the second line,

e2πia·ζ

∆%(ζ%)
, (5.38)

which can be similarly identified with the character (i.e. twisted trace of the identity) of
the Verma module for W(g, t+). This deserves an explanation.
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The highest weight theory for finite W-algebras was developed in [103], and they also
introduced a good filtration on W(g, t+), which was also called the loop filtration in [109],
such that the associated graded of W(g, t+) is tt+-equivariantly isomorphic, as a graded
algebra, to U(gt+), where the latter is equipped with the good grading (see [103, Theorem
3.8]). This result allows to viewW(g, t+) as a deformation of U(gt+), and as a vector space,
gt+ is the space P+ of highest weight vectors in g with respect to SU(2)% (which we found
in section 5.2 to generate the boundary operators at the Nahm pole.)

Quite conveniently, [109] found that Verma modules ofW(g, t+) can likewise be viewed
as tt+-equivariant deformations of the Verma modules of U(gt+). In other words, each
Verma module of W(g, t+) has a filtration, also called loop filtration in [109], such that
the associated graded is tt+-equivariantly and graded isomorphic to the Verma module of
U(gt+). The character of Verma module can well be computed using such an associated
graded module, as we are simply counting vectors weighted by their tt+-weights.

The expression (5.38) can be indeed recognized as the character of the U(gt+) Verma
module V−ia−ρt+ , where ρt+ is the analog of Weyl vector in the case of gt+ (see [109] for
the precise definition of this shift). That we have ζ% instead of ζ in the denominator, i.e.,
that ζ is shifted by t+, is related to the redefinition of R-symmetry discussed in section 5.1.
Because our traces are also twisted by (−1)2RH (see section 2.4), this redefinition results
in an extra Z2 twist in the trace, that is present in general, but was absent in the U(g)
case. So we look at the U(gt+) character, with the additional Z2 twist that multiplies by
−1 operators that have half-integral spin with respect to t3.

We then further include operator insertions under the trace. We can also generate
special insertions by taking derivatives with respect to the boundary masses, i.e. twist
parameters of the trace, which are also identified as FI parameters ζ on the dual side. In
the end of the day, we propose the formula very similar to the one in the Dirichlet case:

TH(O) = irk(G)/2

τdim(G)/2

∫
t∨

[da] e−
iπ
τ

Tr(a2)+2πa·t3∆(a) TrV
−ia−ρt+

e−2πζ·BO, (5.39)

where we use V−ia−ρt+ as a notation for the Verma module of the finite W-algebra that
corresponds to the Verma module of U(gt+) with the same name. In this formula, B
denotes the element of f%, that corresponds to the U(f%) subalgebra that couples to the
boundary mass.

6 Teaser on interfaces

All our techniques can be straightforwardly applied to half-BPS interfaces of the 4d N = 4
SYM. While many interesting aspects of such defects are subject of a separate paper,
we describe some preliminary results here. We are interested in interfaces that can be
engineered by D5 branes and their S-dual NS5 branes, and here we only consider examples
with a single D5 or NS5 brane, while multiple fivebranes are treated in a separate article.

6.1 Intersecting branes

D5 frame. Suppose N D3 branes intersect a single D5 brane. This system has a well-
known description: it can be obtained by gluing two half-spaces with U(N) SYM on them,
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each subject to the Dirichlet boundary conditions, with a fundamental hypermultiplet living
at the interface. Each Dirichlet boundary supports a protected algebra AH = U(glN ),
according to our construction. The corresponding elementary boundary operators that
generate the two copies of U(glN ) are denoted as B+ and B−. According to [5, 6], the
interface hypermultiplet adds another ingredient: fields (Qα, Q̃α), α = 1 . . . N , valued in
the fundamental of U(N) and its dual, obeying

[Qα, Q̃β ] = 1
`
δβα, (6.1)

that is they form N copies of the Weyl algebra W .
Gluing is implemented via gauging Diag(U(N)×U(N)) on the interface, which can be

derived from the localization [84]. At the algebra level, as we know, it corresponds to the
quantum Hamiltonian reduction of A0 = U(glN )⊗U(glN )⊗W⊗N with respect to the glN
action, whose moment map is

µα
β = (B+)αβ + (B−)αβ +QαQ̃

β − rδβα. (6.2)

Let us describe the resulting algebra. In quantum Hamiltonian reduction, we first take
the quotient of A0 over its left ideal generated by µαβ , which can be used to completely
eliminate B−, so that the quotient is represented by the subalgebra generated by B+, Q and
Q̃. Next we pass to the subalgebra fixed by glN , and it clearly is generated by expressions
of the form:

Tr(B+)n, Q̃(B+)nQ, n ≥ 0. (6.3)

This generating set is redundant, and not very convenient. First recall from the section 3.3
that the Capelli determinant C(z), which is a degree-N polynomial, acts as the character-
istic polynomial, i.e.

C(B+) = 0. (6.4)

Thus all the higher powers (B+)n, n > N , can be expressed through (B+)n with n ≤ N

and coefficients of C(z), which are simply the center generators (Capelli invariants). The
center can also be seen as generated by Tr(B+)n with n ≤ N (these are called Gelfand
invariants, whose relation to Capelli invariants was explained in section 3.3). We therefore
conclude that the true generating set is finite, and given by

Tr(B+)n, Q̃(B+)nQ, 0 ≤ n ≤ N. (6.5)

This is still not the most convenient set, and one can easily show that it is equivalent to

Tr(B+)n, Tr(B−)n, 0 ≤ n ≤ N, (6.6)

which can be proven inductively by showing that all generators of the form Q̃(B+)nQ can
be expressed using (6.6), modulo µ. Indeed, the moment map constraint implies

Tr(B−)n = Tr(ζ Id−B+ −QQ̃)n = (−1)nnTr Q̃(B+)n−1Q+ . . . , (6.7)

where the ellipsis only involves products of expressions like Tr(B+)m and Q̃(B+)kQ, with
k < n − 1. Taking n = 0 as the base of induction, this proves that Tr(B−)n can replace
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Q̃(B+)nQ in the set of generators. Thus the algebra is generated by (6.6), which are simply
the bulk operators on the two sides of the D5 brane, giving two copies of the center,

AH = Z[U(glN )]⊗Z[U(glN )]. (6.8)

We can also easily determine the AC algebra. From the “gluing by gauging” perspec-
tive, each Dirichlet boundary supports a trivial algebra AC = C, and only the 3d vector
multiplet involved in gauging contributes Q C1,2 closed operators of the type Tr(Y+)n (in [7],
these are called Tr Φn), which generate the center. There are no monopole operators,
because this 3d vector multiplet is not a purely 3d object: it lives at the interface and
describes the Diag(G×G) part of the 4d vector multiplet, and such setup does not admit
local monopoles. We thus conclude:

AC = Z[U(glN )]. (6.9)

NS5 frame. Now let us compare this to the S-dual configuration of N D3 branes inter-
secting an NS5 brane. This can be described by Neumann boundary conditions on each
side of the brane, coupled to a bi-fundamental hypermultiplet living at the interface. The
algebra AH follows from the method of section (4.1.1) immediately. We start with the
algebra of free bifundamental hypers, which is WN2 , i.e. N2 copies of the Weyl algebra
generated by

[Qαα̇, Q̃ββ̇ ] = 1
`
δβαδ

β̇
α̇, (6.10)

where α, β are gauge index on the left, and α̇, β̇ — on the right of the brane. According to
the section 4.1.1, we pass to the glN × glN -invariants, which are simply generated by

Tr(QQ̃)n, n ≥ 0, (6.11)

where we use (QQ̃)α̇β̇ = Qα
α̇Qαβ̇ . Such (QQ̃) obey the glN relations, and we clearly obtain

the center of U(glN ),
AH = Z[U(glN )], (6.12)

which agrees with the AC algebra in the dual D5 brane description.
The AC algebra of the NS5 interface follows from section 4.1.2 without any work.

Indeed, the Coulomb algebra of a free bi-fundamental hyper is trivial, that is C. Extending
it by the restrictions of bulk scalars Tr(Y+)n on the left and on the right, we produce two
copies of the center,

AC = Z[U(glN )]⊗Z[U(glN )], (6.13)
which of course agrees with AH in the D5 S-duality frame.

Using the known expression for the hemisphere partition function and the gluing rules,
it is completely straightforward to write traces in all these cases, so we skip this. The S-
duality, as usual, is implemented by the Fourier transform.

6.2 Terminating and intersecting branes

Another interesting configuration has different numbers of D3 branes on the two sides of
the fivebrane. Namely, suppose we have N D3 branes intersecting a fivebrane (D5 or NS5),
and additionally k D3 branes terminating on it from the right. The cases k = 1 and k > 1
are quite different, so we discuss them separately.
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k = 1, D5 and NS5 frames. When the fivebrane is the D5 brane, the interface can
be described as follows: take a left half-space with the U(N) gauge group and Dirichlet
boundary; take a right half-space with the U(N + 1) gauge group and Dirichlet boundary;
pick an embedding ι : U(N) → U(N + 1); gauge the group Diag

[
U(N) × ι(U(N))

]
at the

interface. Notably, there is no extra interface matter. As we now know, this procedure
gives the AH algebra as a quantum Hamiltonian reduction of U(glN ) × U(glN+1) with
respect to the diagonal glN , whose moment map is

µ = B− +B+
∣∣
glN
− r Id, (6.14)

where B+
∣∣
glN

means restriction of B+ ∈ glN+1 to the glN subalgebra, and r is a possible
boundary FI term. Again, taking quotient eliminates B−, and taking the invariants results
in the answer

AH = U(glN+1)glN . (6.15)

To compute the invariant subalgebra, decompose glN+1 as a glN -module,

glN+1
∼= glN ⊕ C⊕ CN ⊕ CN 3 (B, c,X, Y ). (6.16)

It is easy to identify the glN -invariants as generated by c, TrBk, and Y BkX, with k ∈ Z≥0.
This makes it somewhat similar to the previous example, however there is an important
difference: X,Y do not form the Weyl algebra. Rather, the commutation relations are:

[Bα
β , B

γ
δ ] = 1

`
(δγβB

α
δ − δαδ B

γ
β), [Bα

β , c] = 0,

[Bα
β , X

γ ] = 1
`
δγβX

α, [Bα
β , Yδ] = −1

`
δαδ Yβ , (6.17)

[Xα, Yβ ] = 1
`

(Bα
β − δαβ c), [Xα, c] = 1

`
Xα, [Yα, c] = −1

`
Yα.

Because B generates glN , commutativity of generators TrBk, c is obvious, as well as van-
ishing of commutators of TrBk, c with Y BkX. The only non-obvious commutators are

[Y BpX,Y BqX] = 0, (6.18)

which can be shown by a small computation using (6.17).
We want to claim that c, TrBk and Y BkX generate Z(U(glN+1)) ⊗ Z(U(glN )), as

expected from S-duality. However, to make things more manifest, it is again useful to
define another generating set, which consists of operators that can be removed from the
interface into the bulk. The moment map constraint tells us that

B− = r −B, (6.19)

where B− is a generator on the glN side of the interface. Then the generators of
Z(U(glN )) are

Tr(B−)m = Tr(ζ −B)m, (6.20)
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which is an invertible change of generators from TrBm. To identify the generators of
Z(U(glN+1)), we consider the matrix of glN+1 generators B+, which contains B, X, Y , c
as submatrices, and build the generators as

Tr(B+)m. (6.21)

For example

TrB+ = c+ TrB, Tr(B+)2 = TrB2 + 2Y X + c2 + ~TrB −N~c, etc. (6.22)

An argument similar to that from the previous subsection proves that Tr(B+)m are equiv-
alent to the generators c, Y BkX. Thus we indeed find

AH = Z[U(glN )]⊗Z[U(glN+1)]. (6.23)

This clearly matches the AC algebra for the S-dual NS5 interface. Indeed, in that case the
treatment is not different from the previous subsection: there is a bi-fundamental hyper at
the NS5 brane that has a trivial AC algebra, and its extension by the bulk fields produces
product of bulk algebras on the left and on the right, exactly as in (6.23).

The AC algebra on the D5 interface is given by

AC = Z[U(glN )], (6.24)

as is obvious from the gauging perspective, from the same reasons as in the previous section.
This algebra also matches the S-dual algebra AH on the NS5 interface.

k > 1, D5 and NS5 frames. When we have more than one D3 brane terminating
on the right, the description in the D5 frame changes quite dramatically, while the NS5
description is basically unchanged. The NS5 answer is still AH = Z[U(glN )] and AC =
Z[U(glN )]⊗Z[U(glN+k)], with exactly the same derivation: we take glN×glN+k invariants
pf the bi-fundamental hyper to find AH , and we extend trivial algebra C by the bulk
operators to obtain AC .

The D5 frame now involves the Nahm pole. More precisely, we break U(N + k) on the
right into U(N)×U(k), give regular (or principal) Nahm pole boundary conditions to the
U(k)-valued fields, and identify U(N) with the U(N) on the left via gauging Diag(U(N)×
U(N)) as before. Again, there is no extra interface matter. The only non-trivial interface
operators contributing to AC in this construction appear as Tr(Y+)n, where Y+ corresponds
to the U(N) subgroup only. Thus we find AC = Z[U(glN )], matching the AH on the NS5
side of duality.

The most interesting case here is the AH algebra on the D5 side. It can again be
obtained by gauging, i.e. the quantum Hamiltonian reduction. The left half-space (with
the U(N) theory) has Dirichlet boundary conditions, and contributes U(glN ). The right
half-space has a % = [k, 1, . . . , 1︸ ︷︷ ︸

N

] Nahm pole, and so contributes the finite W-algebra

W(glN+k, t+). Thus we have

A0 = U(glN )⊗W(glN+k, t+), (6.25)
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and we must perform the quantum Hamiltonian reduction of A0 with respect to glN , where
on the second factor, this glN acts as the boundary symmetry commuting with the Nahm
pole. Again, the first step in quantum Hamiltonian reduction is taking the quotient, and
it simply eliminates U(glN ). The second step then results in

AH =W(glN+k, t+)glN , (6.26)

so we now proceed to compute it. To find this algebra, we need to understand the structure
of the finite W-algebra sufficiently well. Fortunately, it has been studied in excruciating
detail and related to shifted Yangians in [104], so we will simply apply their result. We are
not going to review them, rather only point at specific statements in that paper, so to un-
derstand the computation presented below, an interested reader will have to consult [104].
They use the classification of good gradings on glN in terms of pyramids [110], and one
can associate ρ = [k, 1, . . . , 1] to various pyramids, the most convenient of which is:

1

2

.

.

N

N+1 N+2 . . . N+k

One easily reads off the shift matrix from the pyramid, which is a square matrix of size N+1:

σ =


0 0 . . . 0 k − 1
0 0 . . . 0 k − 1
. . . . . . .

0 0 . . . 0 k − 1
0 0 . . . 0 0

 . (6.27)

According to [104], our finite W-algebra is given by the shifted Yangian (for glN+1) at level
k, with the shift matrix σ (recall that “level k” refers to a truncation of the Yangian by a
certain ideal that will be described below):

W(glN+k, t+)glN = YN+1,k(σ). (6.28)

Using the terminology of [104], it is most convenient to describe this algebra in the parabolic
presentation of shape

ν = (N, 1). (6.29)

With such a shape, the [104, Corollary 6.3] identifies the generating set very explicitly as{
{D(1)

1;i,j}1≤i,j≤N , {D(r)
2;1,1}1≤r≤k, {E(k)

1;i,1}1≤i≤N , {F (1)
1;1,j}1≤j≤N

}
, (6.30)
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where we used the same notations as in [104]. In fact, the Corollary 6.3 says more: ordered
monomials in such elements form a basis of YN+1,k(σ). The relations are recorded in [104,
(3.3)-(3.14)]: to establish closure of the algebra generated by (6.30), it is crucial to remem-
ber that one takes a quotient by the two-sided ideal generated by {D(r)

1;i,j}1≤i,j≤N,r>1 (this
is what truncates the full Yangian to the finitely-generated algebra).

It is easy to see from [104, (3.3)] that the first set {D(1)
1;i,j}1≤i,j≤N in fact generates

the U(glN ) of our interest; the second set {D(r)
2;1,1}1≤r≤k is invariant under this glN (i.e.,

commutes with it). The remaining two sets, {E(k)
1;i,1}1≤i≤N and {F (1)

1;1,j}1≤j≤N , transform as
a fundamental (defining) and an anti-fundamental irrep of glN . We then easily find that
the glN -invariant subalgebra is generated by:

{D(r)
2;1,1}1≤r≤k, Tr(D(1)

1 )m, F (1)(D(1)
1 )mE(k), (6.31)

where we suppressed some indices for brevity. At this point, the commutativity of
Tr(D(1)

1 )m with all the other generators in (6.31) is obvious from glN -invariance. One
can also use [104, (3.3)] to prove by induction that

[D(r)
2;1,1, D

(s)
2;1,1] = 0, (6.32)

where one assumes that r > s, and that commutativity holds for all s ≤ s0, and then
proves that it must also hold for s = s0 + 1.

The commutativity between D
(r)
2;1,1 and F (1)(D(1)

1 )mE(k) is slightly more challenging.
First we have to show that, modulo the two-sided ideal I generated by {D(r)

1;i,j}1≤i,j≤N,r>1,
the following relations hold:

E
(k+r)
1;i,1 =

N∑
j=1

(−D(1)
1 )rijE

(k)
1;j,1 mod I,

F
(1+r)
1;1,j =

N∑
i=1

F
(1)
1;1,i(−D

(1)
1 )rij mod I, (6.33)

where (D(1)
1 )r means the r-th power of the matrix D

(1)
1;i,j . Then we can compute the

commutator of D(r)
2;1,1 with F (1)(D(1)

1 )mE(k) using [104, (3.5), (3.6)] and these relations,
to show that it vanishes. Commutativity of F (1)(D(1)

1 )mE(k) with F (1)(D(1)
1 )nE(k) can also

be shown using similar considerations.
We can invoke the Capelli’s determinant for glN again to argue that only the following

generators are independent,

{D(r)
2;1,1}1≤r≤k, Tr(D(1)

1 )m, F (1)(D(1)
1 )mE(k), 1 ≤ m ≤ N. (6.34)

So we find that the algebra W(glN+k, t+)glN is generated by k + 2N free commuting vari-
ables, which agrees with the S-duality prediction

AH = Z(U(glN+k))⊗Z(U(glN )). (6.35)

That this computation heavily relied on properties of finite W-algebras, and produced the
expected answer, can be viewed as another check of our finite W-algebra proposal from the
section 5.
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7 Outlook

In this work, we have mostly focused on boundary conditions, completely analyzing the
Dirichlet case, and providing a lot of details on other standard classes of boundary condi-
tions in 4d N = 4 SYM, while other topics, such as interfaces, were only touched upon.
A partial list of future directions, some of which we are planning to report on in the near
future, includes:

• The study of interfaces engineered by multiple D5 or NS5 branes. Such interfaces
carry ineresting truncations of the Yangian, and provide new efficient connections
with integrability.

• The holographic interpretation for many of these constructions is quite interesting,
and the case of interfaces is closely related to the twisted holography setting studied
in [22].

• While we have identified the QH1,2 cohomology of boundary local operators (as a vector
space) for the Nahm pole boundary conditions quite convincingly, that they form a
finite W-algebra is more of a conjecture in general. The S-duality and some other
computations we have done provide a very strong check of this statement, but it
would be interesting to have a direct derivation of the operator product, like in the
Dirichlet case, where the 2d constrained Yang-Mills perspective is quite useful.

• The construction of AC admits a lift to five dimensions, with boundary local oper-
ators lifting to boundary lines. Their operator algebras are also going to be certain
associative algebras equipped with traces, which we expect to be “quantum” defor-
mations of the structures studied in this paper, such as the quantum group Uq(gC).
It would be interesting to explore this further, taking some motivation from [111].

• The construction of AH may also admit a lift to five dimensions, with boundary
local operators lifting to a boundary chiral algebra, and the 5d half-index [112] in
the appropriate limit playing the role of its character. It is unlikely that the flat five-
dimensional half-space is the right setting for the 5d construction to work: the lack of
conformal symmetry is one indication of it; not enough R-symmetry on the S4 × S1

background [113] is another. On the other hand, the 5d MSYM on AdS5 is a better
candidate to search for boundary chiral algebras, and indeed it was demonstrated to
work in the simplest case [114]. It would be interesting to explore this further.
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A Conventions

A.1 Summary of notations

Let us summarize some of the notations used throughout this work that could potentially
be confusing:

G compact gauge group of 4d SYM
g Lie algebra of G

g∨ Langlands dual of g
g∗ vector space dual to g

Tr a unified notation for the Kiling form on g,
the induced bilinear form on g∗,
and the natural pairing of g with g∗

gC, g
∨
C complexification of g and g∨, that is g⊗ C and g∨ ⊗ C
Φ root system of g

Φ+ positive roots in Φ
W Weyl group of G
St+ Slodowy slice to a nilpotent element t+ ∈ g

W(gC, t+) finite W-algebra associated to a nilpotent element t+ ∈ gC
∆(a) Vandermonde determinant associated with Φ+
∆(a) sinh-Vandermonde associated with Φ+

% embedding determining the Nahm pole
ρ the Weyl vector, i.e. the half-sum of roots in Φ+

C(z) Capelli determinant of z −B
AH ,AC boundary algebras of local operators in the H and C constructions

AH(T ),AC(T ) Higgs and Coulomb branch algebras of a 3d theory T
AC [B] notation used in section 2.4.1 to specifically refer to the AC algebra

of the boundary condition B
TH , TC twisted traces on AH and AC that encode physical correlators

A H ,A C emergent gauge fields in the QH1,2 and Q C1,2 cohomology respectively
A, F temporary notation for A H and its curvature in section 3.1

BH ,BC commutative bulk algebras of local operators
in the H and C constructions

E conformal dimension of local perators
RH , RC R-charges of local oeprators with respect to the choice

of Cartan in SU(2)H and SU(2)C

A.2 SUSY algebra

The 4d N = 4 superconformal algebra has the following anti-commutation relations:

{QAα , Q̃Bα̇} = δABγ
µ
αα̇Pµ,

{SAα, S̃Bα̇ } = δBAγ
µ
αα̇Kµ,

{QAα , SBβ} = −εαβ(σIJ)ABRIJ + δABγ
µν
αβMµν − iεαβδABD,

{Q̃Aα̇, S̃Bβ̇ } = −εα̇β̇(σIJ)ABRIJ + δBAγ
µν

α̇β̇
Mµν − iεα̇β̇δ

B
AD, (A.1)
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and we do not need to write and of the remaining non-trivial commutators. Here RIJ ,
I, J = 1 . . . 6 are (real anti-symmetric) generators of the R-symmetry Spin(6) = SU(4),
σIJ are these generators in the representation 4 (the fundamental of SU(4)), while σIJ
correspond to 4. The supercharges Q and S̃ transform in 4, while Q̃ and S — in 4 of the
R-symmetry. Matrices σIJ are Hermitian, and we have

σIJ = −(σIJ)∗. (A.2)

We construct σIJ as

σIJ = − i2[γ̂I , γ̂J ], γ̂
I = −(γ̂I)∗, (A.3)

where γ̂ABI is an intertwiner between an irreducible component of 4 ⊗ 4 and 6 of SU(4).
The form of these matrices can be deduced from the isomorphism Λ2C4 ∼= C6, and we take:

γ̂1 =


0 −i 0 0
i 0 0 0
0 0 0 i

0 0 −i 0

 , γ̂2 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , γ̂3 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,

γ̂4 =


0 0 i 0
0 0 0 i

−i 0 0 0
0 −i 0 0

 , γ̂5 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , γ̂6 =


0 0 0 i

0 0 −i 0
0 i 0 1
−i 0 0 0

 . (A.4)

For spinors, we work in conventions ε12 = −ε12 = 1, and use gamma-matrices in Weyl
representation (here σi are Pauli matrices):

(γi)αα̇ = (σi)αα̇ for i = 1, 2, 3, and (γ4)αα̇ = iδα̇α ,

(γi)α̇α = (σi)α̇α for i = 1, 2, 3, and (γ4)α̇α = −iδα̇α. (A.5)

Introducing half-BPS boundary conditions, we break the R-symmetry down to
SU(2)H × SU(2)C , and choose

R12, R13, R23 generate SU(2)C , choose RC = iR31 as Cartan,

R45, R46, R56 generate SU(2)H , choose RH = iR56 as Cartan. (A.6)

Accordingly, we identify the 3d N = 4 generators Qaḃα and Saḃα preserved by the boundary:

Q11̇
α = Q1

α + Q̃3α̇=α, Q22̇
α = Q3

α + Q̃1α̇=α,

Q12̇
α = Q2

α − Q̃4α̇=α, Q21̇
α = Q4

α − Q̃2α̇=α,

S11̇α = S1α + S̃3
α̇, S22̇α = S3α + S̃1

α̇,

S12̇α = S2α − S̃4
α̇, S21̇α = S4α − S̃2

α̇, α̇ = α everywhere. (A.7)
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A.3 4d N = 4 Super-Yang Mills on S4

There are six scalars ΦI , I = 1 . . . 6, and four Dirac spinors (λAα, λ
Aα̇), A = 1 . . . 4, in the

vector multiplet. The action and SUSY on a radius-` four-sphere are given by

S = 1
g2
YM

Tr
∫
S4

√
gd4x

(1
2FµνF

µν +DµΦIDµΦI + 2iλAα̇γµα̇αDµλAα − iγ̂ABI λαA[ΦI , λBα]

− iγ̂IABλ
Aα̇[ΦI , λ

B
α̇ ]− 1

2[ΦI ,ΦJ ]2 + 2
`2

ΦIΦI
)
, (A.8)

δAµ = −i
(
εαAγµα

α̇λ
A
α̇ + εAα̇γµα̇

αλAα
)
,

δΦI = γ̂IABεαAλBα + γ̂
I
ABε

Aα̇λ
B
α̇ , (A.9)

δλAα = 1
2σ

µνFµνε+ iDµΦI γ̂IABγ
µ
α
α̇εBα̇ + i

2ΦI γ̂IABγ
µ
α
α̇DµεBα̇ −

1
2[ΦI ,ΦJ ](σIJ)ABεBα,

δλ
A
α̇ = 1

2σ
µνFµνε+ iDµΦI γ̂ABI γµα̇

αεBα + i

2ΦI γ̂ABI γµα̇
αDµεBα −

1
2[ΦI ,ΦJ ](σIJ)ABεBα̇,

where the SUSY parameters obey:

∇µε = γµε̃, ∇µε̃ = − 1
4`2 γµε,

∇µε = γµε̃, ∇µε̃ = − 1
4`2 γµε. (A.10)

A chosen SUSY closes on-shell as follows,

δ2 = 2iLv + 2iρ∆ + 2wIJRIJ + GΛ, (A.11)

where Lv is the Lie derivative with respect to the vector field

vµ = εAα̇σµα̇
αεAα, (A.12)

∆ is the dilation with parameter

ρ = εAα̇ε̃Aα̇ + εαAε̃
A
α , (A.13)

RIJ is the R-symmetry rotation with parameter

wIJ = −εAα̇(σIJ)AB ε̃Bα̇ − εαA(σIJ)AB ε̃
A
α , (A.14)

and GΛ is the gauge transformation with parameter

Λ = (εαAγ̂ABI εBα + εAα̇γ̂IABε
B
α̇ )ΦI − 2εAα̇σµα̇αεAαAµ, (A.15)

which acts on fields according to GΛX = −i[Λ, X] and GΛAµ = DµΛ.
For now, let us work in stereographic coordinates xµ on S4. The metric is

gµν = e2Ωδµν , e2Ω = 1(
1 + x2

4`2
)2 , (A.16)
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the vielbein and the Spin connection are

eaµ = δaµe
Ω, ωabµ = 1

2`2 (xaebµ − xbeaµ). (A.17)

Conformal Killing spinors are given by

ε = eΩ/2(ε̂+ xaσaη̂), ε̃ = eΩ/2
(
η̂ − 1

4`2x
aσaε̂

)
,

ε = eΩ/2(ε̂+ xaσaη̂), ε̃ = eΩ/2
(
η̂ − 1

4`2x
aσaε̂

)
. (A.18)

We choose conventions where

δε,εO = [ε̂αAQAα + ε̂
Aα̇
Q̃Aα̇ + η̂α̇AS̃

A
α̇ + η̂

Aα
SAα,O]. (A.19)

Our two supercharges correspond to

QH = QH1 + QH2 , which has:

ε̂22 = 1, ε̂31 = −1, ε̂
1
1̇ = −1, ε̂

4
2̇ = −1,

η̂12̇ = 1
2` , η̂41̇ = 1

2` , η̂
2
1 = − 1

2` , η̂
3
2 = 1

2` , (A.20)

and

QC = Q C1 + Q C2 , which has:

ε̂11 = − 1
2 , ε̂12 = 1

2 , ε̂21 = − i

2 , ε̂22 = − i

2 ,

ε̂31 = i

2 , ε̂32 = i

2 , ε̂41 = 1
2 , ε̂42 = − 1

2 ,

ε̂
1
1̇ = i

2 , ε̂
1
2̇ = i

2 , ε̂
2
1̇ = − 1

2 , ε̂
2
2̇ = 1

2 ,

ε̂
3
1̇ = − 1

2 , ε̂
3
2̇ = 1

2 , ε̂
4
1̇ = i

2 , ε̂
4
2̇ = i

2 ,

η̂11̇ = i

4` , η̂12̇ = i

4` , η̂21̇ = − 1
4` , η̂22̇ = 1

4` ,

η̂31̇ = − 1
4` , η̂32̇ = 1

4` , η̂41̇ = i

4` , η̂42̇ = i

4` ,

η̂
1
1 = − 1

4` , η̂
1
2 = 1

4` , η̂
2
1 = − i

4` , η̂
2
2 = − i

4` ,

η̂
3
1 = i

4` , η̂
3
2 = i

4` , η̂
4
1 = 1

4` , η̂
4
2 = − 1

4` . (A.21)

A.3.1 Observables in the cohomology
The H case. Let us describe observables in the QH cohomology. One can check that
the following combinations are QH closed:

φH(x3, x4) = Φ5 − iΦ6 4`2 − x2
3 − x2

4
4`2 + x2

3 + x2
4
− Φ4 4i`x3

4`2 + x2
3 + x2

4
− Φ3 4i`x4

4`2 + x2
3 + x2

4

∣∣∣∣∣
x1=x2=0

,

A H
3 = A3 − iΦ3 + 2ix4(x4Φ3 + x3Φ4 + 2`Φ6)

4`2 + x2
3 + x2

4

∣∣∣
x1=x2=0

,

A H
4 = A4 + iΦ4 − 2ix3(x4Φ3 + x3Φ4 + 2`Φ6)

4`2 + x2
3 + x2

4

∣∣∣
x1=x2=0

, (A.22)
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where recall that x3 and x4 parametrize the S2 at the fixed locus x1 = x2 = 0. We therefore
have a complex scalar φH and a complexified gauge field A H

µ on S2. One can check that
the following shifted gauge field,

Ã H
3 = A H

3 + x4
2` φ

H , Ã H
4 = A H

4 −
x3
2` φ

H , (A.23)

has Q-exact curvature F̃H
34 = 0+{QH , . . . }. Therefore, flatness of (A.23) is a BPS equation,

and it also ensures that the curvature of A H
3,4 is equivalent to 1

`φ
H in the cohomology.

Additionally, the following combination is QH closed:

A H
τ = x1(A2 + iΦ1)− x2(A1 − iΦ2) = Aτ + i(x1Φ1 + x2Φ2), (A.24)

furthermore it is closed for any values of x1,2,3,4. It can be used to construct a QH -
supersymmetric circular Wilson loop, as mentioned in the main text.

The C case. In the QC cohomology, we only find a scalar operator

φC(x3, x4) = Φ3−iΦ1 4`2 − x2
3 − x2

4
4`2 + x2

3 + x2
4
−Φ2 4i`x3

4`2 + x2
3 + x2

4
−Φ5 4i`x4

4`2 + x2
3 + x2

4

∣∣∣∣∣
x1=x2=0

, (A.25)

and a similar circular Wilson loop linking the S2, which is constructed from the gauge field

A C
τ =x1A2 − x2A1 − x3Φ2 − x4Φ5 − 1

4`(4`2 − x2
1 − x2

2 − x2
3 − x2

4)Φ1

− i

4`(4`2 + x2
1 + x2

2 + x2
3 + x2

4)Φ3. (A.26)

As mentioned in the main text, S-duality implies that there must also exist magnetic
observables.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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