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Abstract

We analyze the contributions of the one–pion–pole (OPP) exchange, caused by strong low–energy 
interactions, and the pseudoscalar interaction beyond the Standard Model (BSM) to the correlation coeffi-
cients of the neutron β−–decays for polarized neutrons, polarized electrons and unpolarized protons. The 
strength of contributions of pseudoscalar interactions is defined by the effective coupling constant Cps =
C

(OPP)
ps + C

(BSM)
ps . We show that the contribution of the OPP exchange is of order C(OPP)

ps ∼ −10−5. The 
effective coupling constant C(BSM)

ps of the pseudoscalar interaction BSM can be in principle complex. Using 
the results, obtained by González-Alonso et al. (2019) [34] we find that the values of the real and imaginary 
parts of the effective coupling constant C(BSM)

ps are constrained by −3.5 × 10−5 < ReC
(BSM)
ps < 0 and 

ImC
(BSM)
ps < −2.3 × 10−5, respectively. The obtained results can be used as a theoretical background for 

experimental searches of contributions of interactions BSM in asymmetries of the neutron β−–decays with 
a polarized neutron, a polarized electron and an unpolarized proton at the level of accuracy of a few parts 
of 10−5 or even better Abele (2016) [40].
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1. Introduction

Nowadays the neutron lifetime and correlation coefficients of the neutron β−-decays for po-
larized neutrons, polarized electrons and unpolarized protons are calculated within the Standard 
Model (SM) at the level of 10−3 including the radiative corrections of order O(α/π) of and 
corrections caused by the weak magnetism and proton recoil of order O(Ee/M) [1–13], where 
α, Ee and M are the fine–structure constant [14], an electron energy and the nucleon mass, 
respectively. Such a SM theoretical background has allowed to make steps forwards investiga-
tions of contributions of interactions beyond the SM (BSM) of order 10−4 or even smaller [40]. 
The analysis of interactions beyond the V − A effective theory of weak interactions [15–19]
(see also [20,21]) in the neutron β−–decays with different polarizations of massive fermions 
has a long history and started in 50th of the 20th century and is continuing at present time 
[22–34] (see also [8,9,11]). The most general form of the Lagrangian of interactions BSM has 
been written in [22–27], including non–derivative vector ψ̄pγμψn, axial–vector ψ̄pγμγ 5ψn, 
scalar ψ̄pψn, pseudoscalar ψ̄pγ 5ψn and tensor ψ̄pσμνψn nucleon currents coupled to corre-
sponding lepton currents in the form of local nucleon–lepton current–current interactions, where 
{1, γμ, γμγ 5, γ 5, σμν} are the Dirac matrices [35], with respect to G–parity transformations [36], 
i.e. G = C e iπI2 , where C and I2 are the charge conjugation and isospin operators [35], the vec-
tor, axial–vector, pseudoscalar and tensor nucleon currents are G–even and the scalar nucleon 
current is G–odd. According to the G–transformation properties of hadronic currents, Weinberg 
divided hadronic currents into two classes, which are G–even first class and G–odd second class 
currents [37], respectively. Thus, following Weinberg’s classification the non–derivative vector, 
axial–vector, pseudoscalar and tensor nucleon currents in the interactions BSM, introduced in 
[22–27], are the first class currents, whereas the non–derivative scalar nucleon current is the sec-
ond class one (see also [38]). The analysis of superallowed 0+ → 0+ nuclear beta transitions 
by Hardy and Towner [39] and González–Alonso et al. [34] has shown that the phenomeno-
logical coupling constants of non–derivative scalar current–current nucleon–lepton interaction 
is of order 10−5 or even smaller. This agrees well with estimates of contributions of the second 
class currents, caused by derivative scalar ∂μ(ψ̄pψn) and pseudotensor ∂ν(ψ̄pσμνγ

5ψn) nucleon 
currents proposed by Weinberg [37], to the neutron lifetime and correlation coefficients of the 
neutron β−–decays carried out by Gardner and Plaster [32,33] and Ivanov et al. [11,12]. The 
contemporary experimental sensitivities 10−4 or even better [40] of experimental analyses of 
parameters of neutron β−–decays (see, for example, [41–43]) demand a theoretical background 
for the neutron lifetime and correlation coefficients of the neutron β−–decays with different po-
larizations of massive fermions at the level of 10−5 [10–13]. As has been shown in [28–31] in 
the linear approximation the contributions of vector and axial–vector interactions BSM can be 
absorbed by the matrix element Vud of the Cabibbo–Kobayashi–Maskawa (CKM) mixing ma-
trix and by the axial coupling constant λ (see also [9–12]). As a result, taking into account the 
constraints on the scalar interaction [39] and [34] the contributions of interactions BSM to the 
neutron β−–decay can be induced only by a tensor nucleon current [44,45]. As we show be-
low the contribution of the one–pion–pole (OPP) exchange to the correlation coefficients of the 
neutron β−–decays for a polarized neutron, a polarized electron and an unpolarized proton is of 
order 10−5. This is commensurable with the contribution of the isospin breaking correction to 
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the vector coupling constant of the neutron β−–decay calculated by Kaiser [46] within the heavy 
baryon chiral perturbation theory (HBχPT). However, unlike Kaiser’s correction the contribu-
tion of the OPP exchange can be screened by the contribution of the pseudoscalar interaction 
BSM.

This paper is addressed to the analysis of contributions of the OPP exchange, caused by 
strong low–energy interactions, and the pseudoscalar interaction BSM introduced in [22–27]
to the neutron lifetime and correlation coefficients of the neutron β−–decays for a polarized neu-
tron, a polarized electron and unpolarized proton. The analysis of contributions of pseudoscalar 
interactions to the electron–energy and angular distribution of the neutron β−–decay for a po-
larized neutron and unpolarized electron and proton has a long history [47–54] (see also [4,
34]). For example the Fierz–like interference term [55], induced by pseudoscalar interactions, 
can be recognized in the electron–energy and angular distributions calculated in [47–54] (see 
also [4,34]). The contributions of the pseudoscalar interactions to the correlation coefficients of 
the electron–energy and angular distribution of the neutron β−–decay for a polarized neutron 
and unpolarized electron and proton can be, in principle, extracted from the electron–energy 
and angular distributions obtained by Harrington [47] (see Eqs. (9) – (13) of Ref. [47]) and 
Holstein [51] (see Appendix B of Ref. [51]) (see also section 4 of this paper). In our work in 
addition to the results obtained in [47–54] (see also [4,34]) we calculate the contributions of 
pseudoscalar interactions to the correlation coefficients of the electron–energy and angular dis-
tribution of the neutron β−–decays, caused by correlations with the electron spin. The analyze of 
contributions of pseudoscalar interactions to the correlation coefficients of the electron–energy 
and angular distribution of the neutron β−–decays for a polarized neutron, a polarized electron 
and unpolarized proton, carried out in this paper, completes the investigations of contributions 
of interactions BSM to the electron–energy and angular distributions, which we have performed 
in [10–12], where we have calculated i) the complete set of corrections of order 10−3, caused 
by radiative corrections of order O(α/π) and the weak magnetism and proton recoil corrections 
of order O(Ee/M), and ii) contributions of vector, axial–vector, scalar and tensor interactions 
BSM introduced in [22–27].

The paper is organized as follows. In section 2 we write down the amplitude of the neutron 
β−–decay by taking into account the contributions of the OPP exchange and the pseudoscalar 
interaction BSM only. We analyze the contributions of energy independent corrections to the 
pseudoscalar form factor of the nucleon defined by the Adler-Dothan-Wolfenstein (ADM) term 
[56,57] and chiral corrections calculated within the HBχPT [58–60]. We show that the ADM–
term and chiral corrections, calculated in the two–loop approximation within the HBχPT by 
Kaiser [60], are able in principle to induce sufficiently small real contributions to phenomeno-
logical coupling constants of the pseudoscalar interaction BSM of a neutron–proton pseudoscalar 
density coupled to a left–handed leptonic current. In section 3 we discuss the contributions to the 
correlation coefficients of the electron–energy and angular distribution of the neutron β−–decays 
caused by the OPP exchange and the pseudoscalar interaction BSM. The distribution is calcu-
lated for a polarized neutron, a polarized electron and an unpolarized proton. Using the results, 
obtained in [29,34,53,69] we estimate the phenomenological coupling constants of the pseu-
doscalar interactions BSM. We adduce the results in Table 1. In section 4 we discuss the obtained 
results, which can be used for experimental analyses of the neutron β−–decays with experimen-
tal accuracies of about a few parts of 10−5 [40]. Since the complete set of contributions of order 
10−3, including the radiative corrections of order O(α/π) and corrections of order O(E0/M), 
caused by the weak magnetism and proton recoil, are calculated at the neglect of contributions 
of order O(αE0/πM) ∼ 10−6 and O(E2/M2) ∼ 10−6 [9–12], the results obtained in this pa-
0
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per should be tangible and important for a correct analysis of experimental data on searches 
of contributions of interactions BSM with an accuracy of a few parts of 10−5. We give also a 
comparative analysis of the results obtained in this work with those in [4,47–54]. This allows us 
to argue that the corrections, caused by pseudoscalar interactions, calculated for the correlation 
coefficients of the neutron β−–decays, induced by correlations of the electron spin with the neu-
tron spin and 3-momenta of decay fermions with standard correlation structures introduced by 
Jackson et al. [24], are fully new. Moreover all terms in Eq. (A.6) with correlation structures be-
yond the standard ones by Jackson et al. [24] and proportional to the effective coupling constants 
C′

ps and C′′
ps were never calculated in literature. In the Appendix we give a detailed calculation 

of the contributions of pseudoscalar interactions caused by the OPP exchange and BSM to the 
correlation coefficients of the neutron β−–decays for a polarized neutron, a polarized electron 
and an unpolarized proton, completing the analysis of contributions of interactions BSM to the 
correlation coefficients of the neutron β−–decays carried out in [10–12].

2. Amplitude of the neutron β−–decay with contributions of OPP exchange and 
pseudoscalar interaction BSM

Since the expected order of contributions of pseudoscalar interactions of about 10−5, we take 
them into account in the linear approximation additively to the corrections of order 10−4 − 10−3

calculated in [1–34]. In such an approximation and following [9,11,12] the amplitude of the 
neutron β−–decay we take in the form

M(n → pe−ν̄e)

= −GF√
2

Vud

{
〈p(�kp,σp)|J (+)

μ (0)|n(�kn, σn)〉
[
ūe(�ke, σe)γ

μ(1 − γ 5)vν̄(�kν̄,+1

2
)
]

+ ūp(�kp,σp)γ 5un(�kn, σn)
[
ūe(�ke, σe)(Cp + C̄P γ 5)vν̄(�kν̄,+1

2
)
]}

, (1)

where GF and Vud are the Fermi couping constant and the Cabibbo–Kobayashi–Maskawa 
(CKM) matrix element [14]. Then, 〈p(�kp, σp)|J (+)

μ (0)|n(�kn, σn)〉 is the matrix element of the 
charged hadronic current J (+)

μ (0) = V
(+)
μ (0) − A

(+)
μ (0), where V (+)

μ (0) and A(+)
μ (0) are the 

charged vector and axial–vector hadronic currents [15,18,19]. The fermions in the initial and 
final states are described by Dirac bispinor wave functions un, up , ue and vν̄ of free fermions 
[9,62]. In the second term of Eq. (1) we take into account the contribution of the pseudoscalar 
interaction BSM [22–27] with two complex phenomenological coupling constants CP and C̄P

in the notation of [9,11,12].
For the analysis of contributions of pseudoscalar interactions to the neutron β−–decays for a 

polarized neutron, a polarized electron and an unpolarized proton we define the matrix element 
〈p(�kp, σp)|J (+)

μ (0)|n(�kn, σn)〉 as follows

〈p(�kp,σp)|J (+)
μ (0)|n(�kn, σn)〉

= ūp(�kp,σp)
(
γμ(1 + λγ 5) + 2Mλqμ

m2
π − q2 − i0

γ 5
)
un(�kn, σn), (2)

where λ is the axial coupling constant with recent experimental value λ = −1.27641(45)stat.
(33)syst. [41]. The first term in Eq. (1) is written in agreement with the standard V − A effective 
theory of weak interactions [15,18,19] (see also [20,21]). The term proportional to qμγ 5 defines 
the contribution of the OPP exchange, caused by strong low–energy interactions (see also [18]) 
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with the π−–meson mass mπ = 139.57061(24) MeV [14] and q = kp − kn = −ke − kν̄ is a 
4–momentum transfer. The OPP contribution is required by conservation of the charged hadronic 
axial–vector current in the chiral limit mπ → 0 [18].

In the more general form the matrix element of the hadronic axial–vector current can be taken 
in the form accepted in the HBχPT [58–60]. This gives

〈p(�kp,σp)|A(+)
μ (0)|n(�kn, σn)〉

= ūp(�kp,σp)
(
γμ GA(q2) + qμ

2M
GP (q2)

)
γ 5un(�kn, σn), (3)

where GA(q2) and GP (q2) are the axial–vector form factor and the induced pseudoscalar form 
factor, respectively, at 0 ≤ q2 ≤ �2 for the neutron β−–decay with � = mn − mp . The in-
variant 4–momentum transfer squared q2 vanishes, i.e. q2 = 0, at the kinetic energy of the 
proton Tp = Ep − mp = �2/2mn. In the chiral limit mπ → 0 because of conservation of the 
charged hadronic axial–vector current [18] the form factors GA(q2) and GP (q2) are related 
by GP (q2) = −(4M2/q2)GA(q2). In turn, for a finite pion mass the pseudoscalar form factor 
GP (q2) has been calculated in the two–loop approximation within HBχPT by Kaiser [60]. A 
precision analysis of the induced pseudoscalar form factor in the proton weak interactions has 
been also carried out by Gorringe and Fearing [61].

2.1. Pseudoscalar interaction BSM as induced by corrections to the pseudoscalar form factor, 
caused by strong low–energy interactions

According to [58], the axial–vector form factor GA(q2) can be rather good parameterized by 
a dipole form (see also [63])

GA(q2) = gA(
1 + q2/M2

A

)2 = gA

(
1 − 1

6
〈r2

A〉q2 + . . .
)
, (4)

where gA = −λ is the axial–coupling constant, and MA is the cut–off mass related to the 
mean square axial radius of the nucleon 〈r2

A〉 as 〈r2
A〉 = 12/M2

A = 0.403(29) fm2 with MA =
1.077(39) GeV extracted from charged pion electroproduction experiments [63]. In turn, the 
cut–off mass MA = 1.026(17) GeV extracted from (quasi)elastic neutrino and antineutrino scat-
tering experiments [63] gives 〈r2

A〉 = 12/M2
A = 0.440(16) fm2. In the approximation Eq. (4) the 

pseudoscalar form factor GP (q2) acquires the following form [58] (see also [61])

1

2M
GP (q2) = 2MgA

m2
π − q2 − i0

− 1

3
gAM〈r2

A〉, (5)

where the correction to the OPP exchange is the Adler–Dothan–Wolfenstein (ADW) term [56,
57]. The ADW–term induces the BSM–like pseudoscalar interaction with the coupling constants

C
(ADW)
P = −C̄

(ADW)
P = −1

3
λ〈r2

A〉meM = 2.1 × 10−3. (6)

According to Eq. (11), this gives the contribution to the correlation coefficients of the neutron 
β−–decays equal to ReC

(BSM)
ps = C

(ADW)
ps = −4.9 × 10−7. Using the results, obtained by Kaiser 

[60] (see Eq. (7) of Ref. [60]) in the two–loop approximation in the HBχPT, the induced BSM–
like pseudoscalar coupling constants are equal to

C
(K)
P = −C̄

(K)
P = mem

2
πM

4 4 ζ0 = 4.1 × 10−5 ζ0, (7)

32π fπ
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where fπ = 92.4 MeV is the charged pion leptonic (or PCAC) constant [58,60]. Since |ζ0| ∼ 1
[60], we get |CP | = |C̄P | ∼ 4.1 × 10−5. The contribution of C(K)

P = −C̄
(K)
P to the coupling 

constant ReC
(BSM)
ps (see Eq. (11)) is of order |ReC

(BSM)
ps | ∼ 9.6 × 10−9. This means that the 

SM strong low–energy interactions are able to induce the BSM–like pseudoscalar interaction 
with real coupling constants, the contributions of which are much smaller than the current 
experimental sensitivity of the neutron β−–decays [40]. Below we consider a more general pseu-
doscalar interaction BSM with complex phenomenological coupling constants CP and C̄P such 
as CP �= −C̄P .

2.2. Non–relativistic approximation for the amplitude of the neutron β−–decay Eq. (1)

In the non–relativistic approximation for the neutron and proton the amplitude of the neutron 
β−–decay in Eq. (1) takes the form

M(n → pe−ν̄e) = −GF√
2

Vud2M
{
[ϕ†

pϕn][ūeγ
0(1 − γ 5)vν̄]

− λ[ϕ†
p �σ ϕn] · [ūe �γ (1 − γ 5)vν̄]

+ λ
me

m2
π

[ϕ†
p(�σ · �kp)ϕn][ūe(1 − γ 5)vν̄]

− 1

2M
[ϕ†

p(�σ · �kp)ϕn][ūe(Cp + C̄P γ 5)vν̄]
}
, (8)

where ϕj for j = p, n are the Pauli spinorial wave functions of non–relativistic neutron and 
proton, and �kp = −�ke − �kν̄ is a 3–momentum of the proton.

3. Electron–energy and angular distribution of the neutron β−–decay for polarized 
neutron, polarized electron, and unpolarized proton

The electron–energy and angular distribution of the neutron β−–decays for a polarized neu-
tron, a polarized electron and an unpolarized proton has been written by Jackson et al. [24]. It 
reads

d5λn(Ee, �ke, �kν̄, �ξn, �ξe)

dEed�ed�ν̄

= (1 + 3λ2)
G2

F |Vud |2
32π5

(E0 − Ee)
2
√

E2
e − m2

e Ee F (Ee,Z = 1)

×ζ(Ee)
{

1 + b
me

Ee

+ a(Ee)
�ke · �kν̄

EeEν̄

+ A(Ee)
�ξn · �ke

Ee

+ B(Ee)
�ξn · �kν̄

Eν̄

+Kn(Ee)
(�ξn · �ke)(�ke · �kν̄)

E2
eEν̄

+ Qn(Ee)
(�ξn · �kν̄)(�ke · �kν̄)

EeE
2
ν̄

+ D(Ee)
�ξn · (�ke × �kν̄)

EeEν̄

+G(Ee)
�ξe · �ke

Ee

+ H(Ee)
�ξe · �kν̄

Eν̄

+ N(Ee) �ξn · �ξe + Qe(Ee)
(�ξn · �ke)(�ke · �ξe)

(Ee + me)Ee

+Ke(Ee)
(�ξe · �ke)(�ke · �kν̄)

(Ee + me)EeEν̄

+ R(Ee)
�ξn · (�ke × �ξe)

Ee

+ L(Ee)
�ξe · (�ke × �kν̄)

EeEν̄

−3
Ee 1 − λ2

2

( (�ke · �k )2

2 2 − 1 k2
e

2

)
+ 3

1 − λ2

2

me
( (�ξe · �kν)(�ke · �kν)

2 − 1 �ξe · �ke
)

M 1 + 3λ EeE 3 Ee 1 + 3λ M EeEν 3 Ee
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+3
1 − λ2

1 + 3λ2

1

M

( (�ξe · �ke)(�ke · �kν)
2

(Ee + me)EeE2
ν

− 1

3
(Ee − me)

�ξe · �ke

Ee

)}
, (9)

where we have followed the notation [9–12]. The last three terms in Eq. (9) are caused by the 
contributions of the proton recoil calculated to order O(Ee/M) [8–12]. Then, �ξn and �ξe are unit 
polarization vectors of the neutron and electron, respectively, d�e and d�ν̄ are infinitesimal solid 
angels in the directions of electron �ke and antineutrino �kν̄ 3–momenta, respectively, E0 = (m2

n −
m2

p + m2
e)/2mn = 1.2926 MeV is the end–point energy of the electron spectrum, F(Ee, Z = 1)

is the relativistic Fermi function equal to [64–66] (see also [4,9–12])

F(Ee,Z = 1) =
(

1 + 1

2
γ
) 4(2rpmeβ)2γ

�2(3 + 2γ )

e πα/β

(1 − β2)γ

∣∣∣�
(

1 + γ + i
α

β

)∣∣∣
2
, (10)

where β = ke/Ee = √
E2

e − m2
e/Ee is the electron velocity, γ = √

1 − α2 − 1, rp is the electric 
radius of the proton. In the numerical calculations we use rp = 0.841 fm [67]. The function ζ(Ee)

contains the contributions of radiative corrections of order O(α/π) and corrections from the 
weak magnetism and proton recoil of order O(Ee/M), taken in the form used in [8–12]. Then, 
b is the Fierz interference term defined by the contributions of interactions beyond the SM [55]. 
The analytical expressions for the correlation coefficients a(Ee), A(Ee) and so on, calculated 
within the SM with the account for radiative corrections of order O(α/π) and corrections caused 
by the weak magnetism and proton recoil of order O(Ee/M) together with the contributions of 
Wilkinson’s corrections [4], are given in [9–12].

3.1. Corrections to the correlation coefficients of the electron–energy and angular distribution 
of the neutron β−–decays caused by pseudoscalar interactions

In the Appendix we calculate the contributions of the OPP exchange and the pseudoscalar 
interaction BSM to the correlation coefficients of the electron–energy and angular distribution of 
the neutron β−–decays for a polarized neutron, a polarized electron and an unpolarized proton. 
The corrections to the correlation coefficients and the correction to the electron–energy and an-
gular distribution are given in the Appendix in Eqs. (A.5) and (A.6), respectively. The strength 
of these corrections (see Eq. (A.5)) is defined by the effective coupling constants C′

ps and C′′
ps , 

which are the real and imaginary parts of the effective coupling constant Cps given by

Cps = C(OPP)
ps + C(BSM)

ps = C′
ps + i C′′

ps,

C(OPP)
ps = 2λ

1 + 3λ2

me

m2
π

E0 = −1.47 × 10−5,

C(BSM)
ps = − 1

1 + 3λ2

E0

2M
(CP − C̄P ) = −1.17 × 10−4 (CP − C̄P ),

C′
ps = ReCps = C(OPP)

ps + ReC(BSM)
ps ,

C′′
ps = ImCps = ImC(BSM)

ps , (11)

where C(OPP)
ps and C(BSM)

ps are the effective coupling constants caused by the OPP exchange and 
the pseudoscalar interaction BSM, respectively. The numerical values are calculated for λ =
−1.27641 [41], me = 0.5110 MeV, mπ = 139.5706 MeV [14], E0 = (m2

n − m2
p + m2

e)/2mn =
1.2926 MeV and M = (mn +mp)/2 = 938.9188 MeV [14], respectively. According to our anal-

ysis (see Eqs. (6) and (7)), a real part of the phenomenological coupling constant C(BSM)
ps can be 
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partly induced by the SM strong low–energy interactions through the ADM–term (see Eq. (6)) 
and Kaiser’s two–loop corrections, calculated within the HBχPT (see Eq. (7)).

The corrections, caused by pseudoscalar interactions (see Eq. (A.5) and Eq. (A.6)), to the 
electron–energy and angular distribution of the neutron β−–decays for a polarized neutron, a 
polarized electron and an unpolarized proton, taken together with the electron–energy and angu-
lar distributions calculated in [8–12] can be used as a theoretical background for experimental 
searches of contributions of interactions BSM of order 10−4 or even smaller [40].

3.2. Estimates of the real and imaginary parts of the phenomenological coupling constant 
CP − C̄P

According to [30], the phenomenological coupling constant CP − C̄P can be defined as fol-
lows

CP − C̄P = 2gP εP , (12)

where εP is a complex effective coupling constant of the four–fermion local weak interaction of 
the pseudoscalar quark current ūγ 5d , where u and d are the up and down quarks, with the left–
handed leptonic current �̄(1 − γ 5)ν� [28–31] (see also [34,53]). Then, gP is the matrix element 
〈p|ūγ 5d|n〉 = gP ūpγ 5un caused by strong low–energy interactions, where ūp and un are the 
Dirac wave functions of a free proton and neutron, respectively. According to González-Alonso 
and Camalich [53], one gets gP = 349(9) (see Eq. (13) of Ref. [53]).

Following [53] and using the constraint |εP | < 5.8 × 10−3, obtained at 90% C.L. from the 
experimental data on the search for an excess of events with a charged lepton (an electron or 
muon) and a neutrino in the final state of the pp collision with the center-of-mass energy of √

s = 8 TeV with an integrated luminosity of 20 fb−1 at LHC [68], we get |Re(CP − C̄P )| < 4.1. 
In this case the pseudoscalar interaction BSM can dominate in the effective coupling constant 
C′

ps in comparison to the OPP exchange, which is of order |C(OPP)
ps | ∼ 10−5.

In turn, the analysis of the leptonic decays of charged pions, carried out in [34] (see Eq. (113) 
and a discussion on p. 51 of Ref. [34]), taken together with the results, obtained in [69], gives 
one Re εP = (0.4 ± 1.3) × 10−4 and, correspondingly, Re(CP − C̄P ) = 0.03 ± 0.09. Such an 
analysis implies that the phenomenological coupling constants Re(CP − C̄P ) and ReC

(BSM)
ps are 

commensurable with zero. This leads to a dominate role of the OPP exchange in the effective 
coupling constant C′

ps equal to C′
ps = −1.47 × 10−5.

Then, following the assumption εP = 2me(mu + md)/m2
π ∼ 4 × 10−4 [34], which is also 

related to the analysis of the leptonic decays of charged pions (see a discussion below Eq. (112) 
of Ref. [34]), we get Re(CP − C̄P ) ∼ 0.3 and ReC

(BSM)
ps ∼ −3.5 × 10−5. As a result, according 

to the assumption εP = 2me(mu + md)/m2
π ∼ 4 × 10−4, the contribution of the pseudoscalar 

interaction BSM to the effective coupling constant C′
ps should be of order 10−5, that makes it 

commensurable with the contribution of the OPP exchange.
Since the constraint |εP | < 5.8 × 10−3 [53] disagrees with the constraints following from the 

analysis of the leptonic decays of charged pions [34,69], one may conclude that the phenomeno-
logical coupling constant Re(CP − C̄P ) should be constrained by 0 � Re(CP − C̄P ) � 0.3. This 
leads to the effective coupling constant ReC

(BSM)
ps restricted by −3.5 × 10−5 � ReC

(BSM)
ps � 0. 

This shifts the contributions of the pseudoscalar interaction BSM to the region of values 
|ReC

(BSM)
ps | ∼ 10−5 or even smaller.
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Table 1
Estimates of the phenomenological coupling constant CP − C̄p =
2gP εP for gP = 349(9) [53] and the constraints on the parameter 
εP [29,34,53,69].

0 � Re (Cp − C̄P ) � 0.3 −3.5 × 10−5 � ReC
(BSM)
ps � 0

Im (CP − C̄P ) < 0.2 ImC
(BSM)
ps < −2.3 × 10−5

The imaginary part Im(CP − C̄P ) = 2gP Im εP we estimate using the upper bound ImεP <

2.8 × 10−4, obtained at 90% C.L. in [29] (see also Eq. (114) of Ref. [34]). We get Im(CP −
C̄P ) < 0.3. The effective coupling constant C′′

ps = ImC
(BSM)
ps is restricted by C′′

ps = ImC
(BSM)
ps <

−2.3 × 10−5. Since the contribution of the OPP exchange is real, the effective coupling constant 
C′′

ps , constrained by C′′
ps < −2.3 × 10−5, is fully defined by the pseudoscalar interaction BSM.

In Table 1 we adduce the constraints on the real and imaginary parts of the phenomenological 
coupling constant CP − C̄P and on the effective coupling constant C(BSM)

ps , which may follow 
from the results obtained in [34,53,69].

4. Discussion

The corrections of order 10−5, calculated within the SM, are needed as a SM theoretical 
background for experimental searches of interactions beyond the SM in terms of asymmetries and 
correlation coefficients of the neutron β−–decays [10–12]. An experimental accuracy of about 
a few parts of 10−5 or even better, which is required for experimental analyses of interactions 
BSM of order 10−4, can be reachable at present time [40]. In this paper we have continued the 
analysis of corrections of order 10−5 to the correlation coefficients of the neutron β−–decays, 
which we have begun in [10–13]. In this paper we have taken into account the contributions 
of strong low–energy interactions in terms of the OPP exchange and the contributions of the 
pseudoscalar interaction BSM [22–27], and calculated corrections to the correlation coefficients 
of the electron–energy and angular distribution of the neutron β−–decay for a polarized neutron, 
a polarized electron and an unpolarized proton.

In addition to the results, concerning the corrections caused by pseudoscalar interactions to the 
electron–energy and angular distributions of the neutron β−–decay for a polarized neutron and 
unpolarized electron and proton, obtained in [47–54] and especially by Harrington [47] and Hol-
stein [51], we have calculated corrections to the correlation coefficients, caused by correlations 
with the electron spin, i.e. for a polarized neutron and a polarized electron with an unpolarized 
proton.

We have shown that the energy independent contributions to the pseudoscalar form factor 
[56–60], related to the Adler-Dothan-Wolfenstein (ADM) term Eq. (6) and to the chiral correc-
tions Eq. (7), calculated by Kaiser [60] in a two–loop approximation within the HBχPT, are able 
in principle to be responsible for sufficiently small real parts of the phenomenological coupling 
constants CP and C̄P and at the level of 10−6 − 10−8 of the effective coupling constant C(BSM)

ps . 
In turn, the isospin breaking corrections of order 10−5, calculated by Kaiser within the HBχPT 
[46] to the vector coupling constant of the neutron β−–decay, should be taken into account for a 
correct description of the neutron lifetime at the level of 10−5.

As has been shown in [30] the phenomenological coupling constant CP − C̄P , introduced 
at the hadronic level [22–27], can be related to the effective coupling constant εP of the pseu-
doscalar interaction of the up and down quarks with left–handed leptonic current by CP − C̄P =
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2gP εP , where gP = 349(9) [53] is the matrix element of the pseudoscalar quark current caused 
by strong low–energy interactions. Using the relation CP − C̄P = 2gP εP [30] we have esti-
mated the real and imaginary parts of the phenomenological coupling constant CP − C̄P . Having 
summarized the results, concerning the constraints on the parameter εP , obtained in [29,34,53,
69], and taking into account that gP = 349(9) [53], we have got 0 � Re(CP − C̄P ) � 0.3 and 
Im(CP − C̄P ) < 0.2. Such an estimate agrees well with the analysis of the contributions of the 
pseudoscalar interaction BSM to the lifetimes of charged pions [34].

For the effective coupling constants ReC
(BSM)
ps and ImC

(BSM)
ps , defining the strength of the 

contributions of the pseudoscalar interaction BSM to the correlation coefficients of the electron–
energy and angular distribution of the neutron β−–decays, we get −3.5 ×10−5 � ReC

(BSM)
ps � 0

and ImC
(BSM)
ps < −2.3 × 10−5, respectively. This implies that the effective coupling constant 

C
(BSM)
ps is of order |C(BSM)

ps | ∼ 10−5.
The analysis of contributions of pseudoscalar interactions to the electron–energy and angu-

lar distributions of weak semileptonic decays of baryons has a long history [47–54] (see also 
[4,34]). That is why it is important to make a comparative analysis of the results obtained in 
our work with those in [4,34,47–54]. For the first time the contributions of pseudoscalar in-
teractions to the correlation coefficients of electron–energy and angular distributions for weak 
semileptonic decays of baryons for polarized parent baryons and unpolarized decay electrons 
and baryons were calculated by Harrington [47]. In the notation of Jackson et al. [24] Harring-
ton calculated the contributions of the induced pseudoscalar form factor to the Fierz interference 
term b(Ee) [55] and to the correlation coefficients a(Ee), A(Ee), B(Ee) and D(Ee), caused by 
electron–antineutrino angular correlations and correlations of the neutron spin with electron and 
antineutrino 3–momenta, respectively. The corresponding contributions of pseudoscalar interac-
tions can be obtained from Eqs. (9) – (13) of Ref. [47] keeping the leading terms in the large 
baryon mass expansion. They read

d5δλn(Ee, �ke, �kν̄, �ξn, �ξe)

dEed�ed�ν̄

∝ − Re(g1g
∗
3)

|f1|2 + 3|g2|2
m2

e

M2

Eν̄

Ee

− Re(g1g
∗
3)

|f1|2 + 3|g2|2
m2

e

M2

�ke · �kν̄

EeEν̄

− Re(f1g
∗
3)

|f1|2 + 3|g2|2
m2

e

M2

�ξn · �ke

Ee

− Re(f1g
∗
3)

|f1|2 + 3|g2|2
m2

e

M2

Eν̄

Ee

�ξn · �kν̄

Eν̄

+ Im(g1g
∗
3)

|f1|2 + 3|g2|2
m2

e

M2

�ξn · (�ke × �kν̄

)

EeEν̄

, (13)

where the first term describes the contribution of pseudoscalar interactions to the Fierz–like inter-
ference term [55]. The analogous corrections can be extracted from the expressions, calculated 
by Holstein [51] (see Appendix B of Ref. [51]). The corrections of pseudoscalar interactions 
to the Fierz–like interference term δbps(Ee) and correlation coefficients δaps(Ee), δAps(Ee), 
δBps(Ee) and δDps(Ee), calculated in Eqs. (A.5) and (A.6), agree well with those calculated 
by Harrington [47] (see Eq. (13)). Since in [4,34,48–54] the electron–energy and angular dis-
tributions were analyzed for weak semileptonic decays either for polarized parent baryons and 
unpolarized decay electrons and baryons or for unpolarized parent baryons and unpolarized de-
cay electrons and baryons the overlap of our results with those obtained in [4,48–54] is at the 
level of the corrections shown in Eq. (13). Indeed, the contribution of the Fierz–like interfer-
ence term δbps(Ee) in Eq. (A.4) agrees well with the result, obtained by Wilkinson [4] and by 
González-Alonso and Camalich [53]
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d5δλn(Ee, �ke, �kν̄, �ξn, �ξe)

dEed�ed�ν̄

∝ C′
ps λ

E0 − Ee

E0

me

Ee

+ . . . → − gAgIP

g2
V + 3g2

A

E0 − Ee

M

me

Ee

− λ

1 + 3λ2 gP ReεP

E0 − Ee

M

me

Ee

+ . . . , (14)

where the term proportional to gAgIP, describing the contribution of the OPP exchange with 
gIP = 2gAM/m2

π , was calculated by Wilkinson (see Table 1 and a definition of gIP on p. 479 of 
Ref. [4]), whereas the second term, caused by the contribution of the pseudoscalar interaction 
BSM and where we have taken into account the relation CP − C̄P = 2gP εP [30], was calculated 
by González-Alonso and Camalich [53] (see Eqs. (16) and (17) of Ref. [53])).

In turn, the contributions of pseudoscalar interactions to the correlation coefficients, induced 
by correlations with the electron spin, were not calculated in [4,34,47–54]. Thus, the calculation 
of contributions of pseudoscalar interactions to the correlation coefficients, induced by corre-
lations with the electron spin, distinguishes our results from those obtained in [4,34,47–54]. 
However, we would like to notice that in the book by Behrens and Bühring [52] there is a capture 
entitled “Electron polarization”, concerning an analysis of a polarization of decay electrons in 
beta decays. In this capture the authors propose a most general density matrix, which can be ap-
plied to a description of energy and angular distributions for beta decays by taking into account a 
polarization of decay electrons (see Eq. (7.6) and Eq. (7.7) of Ref. [52]). Of course, by using such 
a general density matrix and the technique, developed by Biedenharn and Rose [70], one can, in 
principle, calculate contributions of pseudoscalar interactions to the correlation coefficients in-
duced by correlations with the electron spin. Nevertheless, the calculation of these corrections 
were not performed in [52]. The authors applied such a general density matrix to a calculation 
of a general formula for a value of a longitudinal polarization of decay electrons in beta decays 
only (see Eq. (7.151) of Ref. [52]). Thus, we may assert that all corrections of pseudoscalar 
interactions to the correlation coefficients, induced by correlations with the electron spin (see 
Eq. (A.5)), and also other terms proportional to the coupling constants C′

ps and C′′
ps in Eq. (A.6)

are new in comparison to the results, obtained in [4,34,47–54] and were never calculated in lit-
erature. Moreover, a theoretical accuracy O(αE0/πM) ∼ 10−6 and O(E2

0/M2) ∼ 10−6 of the 
calculation of a complete set of corrections of order 10−3 [9–12] including radiative corrections 
of order O(α/π) and corrections of order O(E0/M), caused by the weak magnetism and proton 
recoil, makes the contributions of corrections of order 10−5, induced by pseudoscalar interac-
tions, observable in principle and important as a part of theoretical background for experimental 
searches of contributions of interactions BSM in asymmetries of the neutron β−–decays with a 
polarized neutron, a polarized electron and an unpolarized proton [40].

Thus, in this work we have calculated the contributions of pseudoscalar interactions, induced 
by the OPP exchange and BSM, to the complete set of correlation coefficients of the electron–
energy and angular distribution of the neutron β−–decays for a polarized neutron, a polarized 
electron and an unpolarized proton. The corrections to the Fierz interference term b(Ee), the 
correlation coefficients a(Ee), A(Ee), B(Ee) and D(Ee), caused by electron–antineutrino angu-
lar correlations and correlations of the neutron spin with electron and antineutrino 3–momenta, 
respectively, and as well as the correlation coefficients, induced by correlations with the electron 
spin such as G(Ee), N(Ee) and so on, and also corrections, given by the terms proportional to the 
effective coupling constants C′

ps and C′′
ps in Eq. (A.6), are calculated by using one of the same 

theoretical technique. The agreement of the corrections to the Fierz interference term b(Ee) and 
the correlation coefficients a(Ee), A(Ee), B(Ee) and D(Ee) with the results obtained in [4,34,
47–54] may only confirm a correctness of our results.
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The obtained corrections (see Eq. (A.5) and Eq. (A.6)), caused by the OPP exchange and the 
pseudoscalar interaction BSM, complete the analysis of contributions of interactions BSM to the 
correlation coefficients of the neutron β−–decays for a polarized neutron, a polarized electron 
and an unpolarized proton carried out in [9–12]. For experimental accuracies of about a few parts 
of 10−5 or even better [40] the exact analytical expressions of these corrections can be practically 
distinguished from the contributions of order 10−5, caused by the second class hadronic currents 
or G–odd correlations, calculated by Gardner and Plaster [33] and Ivanov et al. [11,12].
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Appendix A. Calculation of corrections caused by pseudoscalar interactions to the 
electron–energy and angular distribution of the neutron β−–decays for a polarized 
neutron, a polarized electron and an unpolarized proton

A direct calculation of the corrections, caused by the OPP exchange and the pseudoscalar 
interaction BSM [9], to the electron–energy and angular distribution of the neutron β−–decays 
for a polarized neutron, a polarized electron and an unpolarized proton yields

d5δλn(Ee, �ke, �kν̄, �ξn, �ξe)

dEed�ed�ν̄

= (1 + 3λ2)
G2

F |Vud |2
32π5

(E0 − Ee)
2
√

E2
e − m2

e Ee F (Ee,Z = 1)

× 1

E0EeEν̄

{
C′

ps

[
λ

(
− me(�kp · �kν̄) − (�kp · �ke)(ζe · kν̄) + (�kp · �ζe)(ke · kν̄)

)

+(�ξn · �kp)
(
meEν̄ + Ee(ζe · kν̄) − ζ 0

e (ke · kν̄)
)

+λ (�ξn × �kp) ·
(

− Ee(�ζe × �kν̄) + ζ 0
e (�ke × �kν̄) + Eν̄(�ζe × �ke)

)

+C′′
ps

[�ζe · (�ke × �kν̄)(�ξn · �kp) + λ
(
Ee

�kp · (�ζe × �kν̄) − Eν̄
�kp · (�ζe × �ke)

−me
�kν̄ · (�ξn × �kp) − �ke · (�ξn × �kp)(ζe · kν̄) + �ζe · (�ξn × �kp)(ke · kν̄)

)]}
. (A.1)

The strength of the contributions of pseudoscalar interactions is defined by the effective coupling 
constants C′

ps and C′′
ps , which are the real and imaginary parts of the effective coupling constant 

Cps given by

Cps = C(OPP) + C(BSM),
ps ps
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C(OPP)
ps = 2λ

1 + 3λ2

me

m2
π

E0 = −1.47 × 10−5,

C(BSM)
ps = − 1

1 + 3λ2

E0

2M
(CP − C̄P ) = −1.17 × 10−4 (CP − C̄P ),

C′
ps = ReCps = C(OPP)

ps + ReC(BSM)
ps ,

C′′
ps = ImCps = ImC(BSM)

ps . (A.2)

The numerical values are obtained at λ = −1.27641, E0 = (m2
n−m2

p +m2
e)/2mn = 1.2926 MeV, 

me = 0.511 MeV and M = (mn + mp)/2 = 938.918 MeV [14]. Then, ζe is a 4–polarization 
vector of the electron [35]

ζe = (ζ 0
e , �ζe) =

( �ξe · �ke

me

, �ξe + �ke(�ξe · �ke)

me(Ee + me)

)
(A.3)

obeying the constraints ζ 2
e = −�ξ 2

e = −1 and ke · ζe = 0. The right-hand-side (r.h.s.) of Eq. (A.1)
can be transcribed into the form

d5δλn(Ee, �ke, �kν̄, �ξn, �ξe)

dEed�ed�ν̄

= (1 + 3λ2)
G2

F |Vud |2
32π5

(E0 − Ee)
2
√

E2
e − m2

e Ee F (Ee,Z = 1)

×
{
C′

ps

[
λ

(Eν̄

E0

me

Ee

+ me

E0

�ke · �kν̄

EeEν̄

− me

E0

�ξe · �ke

Ee

−
(

1 − m2
e

E0Ee

) �ξe · �kν̄

Eν̄

+
(
1 + me

E0

) (�ξe · �ke)(�ke · �kν̄)

(Ee + me)EeEν̄

)
+

(
− me

E0

�ξn · �ke

Ee

− me

E0

Eν̄

Ee

�ξn · �kν̄

Eν̄

+ Ee

E0

(�ξn · �ke)

Ee

(�ξe · �kν̄)

Eν̄

+Eν̄

E0

(�ξn · �kν̄)(�ξe · �kν̄)

E2
ν̄

− Ee

E0

(�ξn · �ke)(�ξe · �ke)(�ke · �kν̄)

(Ee + me)E2
eEν̄

− Eν̄

E0

(�ξn · �kν̄)(�ξe · �ke)(�ke · �kν̄)

(Ee + me)EeE
2
ν̄

)

+λ
(EeEν̄ − k2

e

EeE0
(�ξn · �ξe) + Ee − Eν̄

E0

(�ξn · �ξe)(�ke · �kν̄)

EeEν̄

+ Ee − Eν̄ + me

E0

(�ξn · �ke)(�ξe · �ke)

(Ee + me)Ee

−me

E0

(�ξn · �kν̄)(�ξe · �ke)

EeEν̄

+ Eν̄

E0

(�ξn · �ke)(�ξe · �kν̄)

EeEν̄

− Eν̄

E0

(�ξn · �kν̄)(�ξe · �kν̄)

E2
ν̄

−Ee

E0

(�ξn · �ke)(�ξe · �ke)(�ke · �kν̄)

(Ee + me)E2
eEν̄

+ Eν̄

E0

(�ξn · �kν̄)(�ξe · �ke)(�ke · �kν̄)

(Ee + me)EeE
2
ν̄

)]

+C′′
ps

[
− Ee

E0

�ξe · (�ke × �kν̄)(�ξn · �ke)

E2
eEν̄

− Eν̄

E0

�ξe · (�ke × �kν̄)(�ξn · �kν̄)

EeE
2
ν̄

+ λ
( �ξe · (�ke × �kν̄)

EeEν̄

+me

E0

�ξn · (�ke × �kν̄)

EeEν̄

+ Ee

E0

�ξn · (�ξe × �ke)

Ee

+ Eν̄

E0

�ξn · (�ξe × �kν̄)

Eν̄

− Ee

E0

�ξn · (�ξe × �ke)(�ke · �kν̄)

E2
eEν̄

−Eν̄

E0

�ξn · (�ξe × �kν̄)(�ke · �kν̄)

EeE
2
ν̄

+ Eν̄

E0

�ξn · (�ke × �kν̄)(�ξe · �kν̄)

EeE
2
ν̄

− Eν̄

E0

�ξn · (�ke × �kν̄)(�ξe · �ke)

(Ee + me)EeEν̄

)]}
.

(A.4)

We obtain the following contributions to the correlation coefficients

δζps(Ee) = 0 , δbps(Ee) = C′
ps λ

E0 − Ee
, δaps(Ee) = C′

ps λ
me

,

E0 E0
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δAps(Ee) = −C′
ps

me

E0
, δBps(Ee) = −C′

ps

me

E0

E0 − Ee

Ee

, δKnps(Ee) = δQnps(Ee) = 0 ,

δGps(Ee) = −C′
ps λ

me

E0
, δHps(Ee) = −C′

ps λ
(

1 − m2
e

E0Ee

)
,

δQeps(Ee) = C′
ps

(
λ

2Ee − E0 + me

E0
+ (λ − 1)

1

3

E0 − Ee

E0

)
,

δKeps(Ee) = C′
ps λ

(
1 + me

E0

)
,

δNps(Ee) = C′
ps

(
λ

−2E2
e + E0Ee + m2

e

E0Ee

+ (1 − λ)
1

3

E0 − Ee

E0

)
,

δDps(Ee) = C′′
ps λ

me

E0
, δRps(Ee) = C′′

ps

(
− λ

Ee

E0
+ (1 + 2λ)

1

3

E0 − Ee

E0

)
,

δLps(Ee) = C′′
ps λ. (A.5)

In terms of corrections to the correlation coefficients Eq. (A.5) the correction to the electron–
energy and angular distribution Eq. (A.4) is given by

d5δλn(Ee, �ke, �kν̄, �ξn, �ξe)

dEed�ed�ν̄

= (1 + 3λ2)
G2

F |Vud |2
32π5

(E0 − Ee)
2
√

E2
e − m2

e Ee F (Ee,Z = 1)
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me

Ee
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Ee

+ δBps(Ee)
�ξn · �kν̄

Eν̄

+δGps(Ee)
�ξe · �ke

Ee

+ δHps(Ee)
�ξe · �kν̄

Eν̄

+ δQeps(Ee)
(�ξn · �ke)(�ke · �ξe)

(Ee + me)Ee

+δKeps(Ee)
(�ξe · �ke)(�ke · �kν̄)

(Ee + me)EeEν̄

+ δNps(Ee) (�ξn · �ξe) + δRps

�ξn · (�ke × �ξe)

Ee

+δLps

�ξn · (�ke × �kν̄)

EeEν̄

+ C′
ps

[
λ

E0 − Ee

E0

(�ξn · �ξe)(�ke · �kν̄)

EeEν̄

+ (1 − λ)Ee + λE0

E0

(�ξn · �ke)(�ξe · �kν̄)

EeEν̄

− λ
me

E0

(�ξn · �kν̄)(�ξe · �ke)

EeEν̄

−(1 + λ)
Ee

E0

(�ξn · �ke)(�ξe · �ke)(�ke · �kν̄)

(Ee + me)E2
eEν̄

+ (1 − λ)
E0 − Ee

E0

( (�ξn · �kν̄)(�ξe · �kν̄)

E2
ν̄

− 1

3
�ξn · �ξe

)

+(λ − 1)
E0 − Ee

E0

( (�ξn · �kν̄)(�ke · �kν̄)

E2
ν̄

− 1

3
�ξn · �ke

) (�ξe · �ke)

(Ee + me)Ee

]

+C′′
ps

[
− Ee

E0

�ξe · (�ke × �kν̄)(�ξn · �ke)

E2
eEν̄

+ λ
E0 − Ee

E0

�ξn · (�ξe × �kν̄)

Eν̄

−λ
Ee

E0

�ξn · (�ξe × �ke)(�ke · �kν̄)

E2
eEν̄

− λ
E0 − Ee

E0

�ξn · (�ke × �kν̄)(�ξe · �ke)

(Ee + me)EeEν̄

−E0 − Ee

E0

( �ξe · (�ke × �kν̄)(�ξn · �kν̄)

EeE
2
ν̄

− 1

3

�ξe · (�ke × �ξn)

Ee

)

−λ
E0 − Ee

E

( �ξn · (�ξe × �kν̄)(�ke · �kν̄)

E E2 − 1

3

�ξn · (�ξe × �ke)

E

)

0 e ν̄ e



A.N. Ivanov et al. / Nuclear Physics B 951 (2020) 114891 15
+λ
E0 − Ee

E0

( �ξn · (�ke × �kν̄)(�ξe · �kν̄)

EeE
2
ν̄

− 1

3

�ξn · (�ke × �ξe)

Ee

)]}
. (A.6)

This correction to the electron–energy and angular distribution together with the results obtained 
in [8–12], can be used for experimental analyses of asymmetries and correlation coefficients of 
the neutron β−–decays for a polarized neutron, a polarized electron and an unpolarised proton 
with experimental uncertainties of a few parts of 10−5 [40].

References

[1] S.M. Bilen’kii, R.M. Ryndin, Ya.A. Smorodinskii, Ho Tso-Hsiu, On the theory of the neutron beta decay, J. Exp. 
Theor. Phys. 37 (1959) 1759 (in Russian); Sov. Phys. JETP 37 (10) (1960) 1241.

[2] A. Sirlin, General properties of the electromagnetic corrections to the beta decay of a physical nucleon, Phys. Rev. 
164 (1967) 1767.

[3] R.T. Shann, Electromagnetic effects in the decay of polarized neutrons, Nuovo Cimento A 5 (1971) 591.
[4] D.H. Wilkinson, Analysis of neutron beta decay, Nucl. Phys. A 377 (1982) 474.
[5] W.J. Marciano, A. Sirlin, Radiative corrections to β decay and the possibility of a fourth generation, Phys. Rev. 

Lett. 56 (1986) 22.
[6] A. Czarnecki, W.J. Marciano, A. Sirlin, Precision measurements and CKM unitarity, Phys. Rev. D 70 (2004) 093006.
[7] W.J. Marciano, A. Sirlin, Improved calculation of electroweak radiative corrections and the value of V (ud), Phys. 

Rev. Lett. 96 (2006) 032002.
[8] V. Gudkov, G.I. Greene, J.R. Calarco, General classification and analysis of neutron beta-decay experiments, Phys. 

Rev. C 73 (2006) 035501;
V. Gudkov, Asymmetry of recoil protons in neutron beta decay, Phys. Rev. C 77 (2008) 045502.

[9] A.N. Ivanov, M. Pitschmann, N.I. Troitskaya, Neutron beta decay as a laboratory for testing the Standard Model, 
Phys. Rev. D 88 (2013) 073002, arXiv :1212 .0332 [hep -ph].

[10] A.N. Ivanov, R. Höllwieser, N.I. Troitskaya, M. Wellenzohn, Ya.A. Berdnikov, Precision analysis of electron energy 
spectrum and angular distribution of neutron beta decay with polarized neutron and electron, Phys. Rev. C 95 (2017) 
055502, arXiv :1705 .07330 [hep -ph].

[11] A.N. Ivanov, R. Höllwieser, N.I. Troitskaya, M. Wellenzohn, Ya.A. Berdnikov, Tests of the Standard Model in 
neutron beta decay with polarized neutron and electron, and unpolarized proton, Phys. Rev. C 98 (2018) 035503, 
arXiv :1805 .03880 [hep -ph].

[12] A.N. Ivanov, R. Höllwieser, N.I. Troitskaya, M. Wellenzohn, Ya.A. Berdnikov, Tests of the standard model in 
neutron beta decay with polarized electrons and unpolarized neutrons and protons, Phys. Rev. D 99 (2019) 053004, 
arXiv :1811 .04853 [hep -ph].

[13] A.N. Ivanov, R. Höllwieser, N.I. Troitskaya, M. Wellenzohn, Ya.A. Berdnikov, Radiative corrections of order 
O(αEe/mN) to Sirlin’s radiative corrections of order O(α/π) to neutron lifetime, Phys. Rev. D 99 (2019) 093006, 
arXiv :1905 .01178 [hep -ph].

[14] M. Tanabashi, et al., Particle Data Group, Phys. Rev. D 98 (2018) 030001.
[15] R.P. Feynman, M. Gell–Mann, Theory of Fermi interaction, Phys. Rev. 109 (1958) 193.
[16] E.C.G. Sudarshan, R.E. Marshak, Chirality invariance and the universal Fermi interaction, Phys. Rev. 109 (1958) 

1860.
[17] R.E. Marshak, S. Okubo, G. Sudarshan, V-A theory and the decay of the hyperon, Phys. Rev. 113 (1959) 944.
[18] Y. Nambu, Axial vector current conservation in weak interactions, Phys. Rev. Lett. 4 (1960) 380.
[19] R.E. Marshak, Riazuddin, C.P. Ryan, Theory of Weak Interactions in Particle Physics, Wiley-Interscience, a Divi-

sion of John Wiley & Sons, Inc., New York, 1969, p. 41.
[20] V.M. Shekhter, Hyperon beta decay, J. Exp. Theor. Phys. 8 (1959) 316.
[21] V.M. Shekhter, Beta decay of strange particles, J. Exp. Theor. Phys. 9 (1959) 920.
[22] T.D. Lee, C.N. Yang, Question of parity conservation in weak interactions, Phys. Rev. 104 (1956) 254.
[23] T.D. Lee, R. Oehme, C.N. Yang, Remarks on possible noninvariance under time reversal and charge conjugation, 

Phys. Rev. 106 (1957) 340.
[24] J.D. Jackson, S.B. Treiman, H.W. Wyld Jr., Possible tests of time reversal invariance in beta decay, Phys. Rev. 106 

(1957) 517.
[25] M.E. Ebel, G. Feldman, Further remarks on Coulomb corrections in allowed beta transitions, Nucl. Phys. 4 (1957) 

213.

http://refhub.elsevier.com/S0550-3213(19)30377-3/bib42696C656E6B7931393539s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib42696C656E6B7931393539s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5369726C696E31393637s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5369726C696E31393637s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5368616E6E31393731s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib57696C6B696E736F6E31393832s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5369726C696E31393836s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5369726C696E31393836s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5369726C696E32303034s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5369726C696E32303036s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5369726C696E32303036s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4775646B6F7632303036s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4775646B6F7632303036s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4775646B6F7632303036s2
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F7632303133s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F7632303133s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F763230313762s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F763230313762s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F763230313762s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F763230313764s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F763230313764s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F763230313764s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F7632303139s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F7632303139s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F7632303139s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F763230313961s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F763230313961s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F763230313961s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib50444732303138s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4665796E6D616E31393538s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib53756461727368616E31393538s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib53756461727368616E31393538s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4D61727368616B31393539s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4E616D627531393630s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4D61727368616B31393639s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4D61727368616B31393639s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5368656B687465723139353961s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5368656B687465723139353962s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4C656531393536s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4C656531393537s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4C656531393537s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4A61636B736F6E31393537s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4A61636B736F6E31393537s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4562656C31393537s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4562656C31393537s1


16 A.N. Ivanov et al. / Nuclear Physics B 951 (2020) 114891
[26] P. Herczeg, Beta decay beyond the standard model, Prog. Part. Nucl. Phys. 46 (2001) 413.
[27] N. Severijns, M. Beck, O. Naviliat-Cuncic, Tests of the standard electroweak model in beta decay, Rev. Mod. Phys. 

78 (2006) 991.
[28] V. Cirigliano, J. Jenkins, M. González-Alonso, Semileptonic decays of light quarks beyond the Standard Model, 

Nucl. Phys. B 830 (2010) 95.
[29] T. Bhattacharya, V. Cirigliano, S.D. Cohen, A. Filipuzzi, M. González-Alonso, M.L. Graesser, R. Gupta, Huey-Wen 

Lin, Probing novel scalar and tensor interactions from (ultra)cold neutrons to the LHC, Phys. Rev. D 85 (2012) 
054512.

[30] V. Cirigliano, M. Gonzáles-Alonso, M.L. Graesser, Non-standard charged current interactions: beta decays versus 
the LHC, J. High Energy Phys. 02 (2013) 046.

[31] V. Cirigliano, S. Gardner, B. Holstein, Beta decays and non-standard interactions in the LHC era, Prog. Part. Nucl. 
Phys. 71 (2013) 93.

[32] S. Gardner, C. Zhang, Sharpening low-energy, Standard-Model tests via correlation coefficients in neutron beta 
decay, Phys. Rev. Lett. 86 (2001) 5666.

[33] S. Gardner, B. Plaster, Framework for maximum likelihood analysis of neutron beta decay observables to resolve 
the limits of the V - A law, Phys. Rev. C 87 (2013) 065504.

[34] M. González–Alonso, O. Naviliat–Cuncic, N. Severijns, New physics searches in nuclear and neutron beta decay, 
Prog. Part. Nucl. Phys. 104 (2019) 165, arXiv :1803 .08732 [hep -ph].

[35] C. Itzykson, J.–B. Zuber, Quantum Field Theory, McGraw–Hill Inc., New York, 1980.
[36] T.D. Lee, C.N. Yang, Charge conjugation, a new quantum number G, and selection rules concerning a nucleon 

anti-nucleon system, Nuovo Cimento 10 (1956) 749.
[37] S. Weinberg, Charge symmetry of weak interactions, Phys. Rev. 112 (1958) 1375.
[38] A.N. Ivanov, Lorentz structure of vector part of matrix elements of transitions n ←→ p, caused by strong low–

energy interactions and hypothesis of conservation of charged vector current, J. Phys. G, Nucl. Part. Phys. 45 (2018) 
025004.

[39] J.C. Hardy, I.S. Towner, Superallowed 0+ → 0+ nuclear beta decays: 2014 critical survey, with precise results for 
Vud and CKM unitarity, Phys. Rev. C 91 (2015) 025501.

[40] H. Abele, Precision experiments with cold and ultra-cold neutrons, Hyperfine Interact. 237 (2016) 155.
[41] B. Märkisch, H. Mest, H. Saul, X. Wang, H. Abele, D. Dubbers, M. Klopf, A. Petoukhov, C. Roick, T. Soldner, D. 

Werder, Measurement of the weak axial-vector coupling constant in the decay of free neutrons using a pulsed cold 
neutron beam, Phys. Rev. Lett. 122 (2019) 242501, arXiv :1812 .04666 [nucl -ex].

[42] Ch.-Y. Seng, M. Gorchtein, H.H. Patel, M.J. Ramsey-Musolf, Reduced hadronic uncertainty in the determination of 
Vud , Phys. Rev. Lett. 121 (2018) 241804, arXiv :1807 .10197 [hep -ph].

[43] Ch.-Y. Seng, M. Gorchtein, M.J. Ramsey-Musolf, Dispersive evaluation of the inner radiative correction in neutron 
and nuclear beta decay, Phys. Rev. D 100 (2019) 013001, arXiv :1812 .03352 [nucl -th].

[44] R.W. Pattie Jr., K.P. Hickerson, A.R. Young, Limits on tensor coupling from neutron beta decay, Phys. Rev. C 88 
(2013) 048501, arXiv :1309 .2499 [nucl -th], Erratum: Phys. Rev. C 92 (2015) 069902.

[45] A.N. Ivanov, R. Höllwieser, N.I. Troitskaya, M. Wellenzohn, Ya.A. Berdnikov, Neutron dark matter decays and 
correlation coefficients of neutron beta decays, Nucl. Phys. B 938 (2019) 114, arXiv :1808 .09805 [hep -ph].

[46] N. Kaiser, Isospin breaking in neutron beta decay and SU(3) violation in semileptonic hyperon decays, Phys. Rev. 
C 64 (2001) 028201.

[47] D.R. Harrington, Lepton decays of hyperons, Phys. Rev. 120 (1960) 1482.
[48] V.P. Belov, B.S. Mingalev, V.M. Shekhter, Possibility of determining the form factors in leptonic decay of hyperons, 

J. Exp. Theor. Phys. 11 (1960) 392.
[49] L. Bender, V. Linke, H.J. Rothe, Leptonic decays of baryons, Z. Phys. 212 (1968) 190.
[50] Ll. Armstrong Jr., C.W. Kim, Coulomb corrections in nuclear β decay: elementary-particles treatment, Phys. Rev. 

C 5 (1972) 672.
[51] B.R. Holstein, Recoil effects in allowed beta decay: the elementary particle approach, Rev. Mod. Phys. 46 (1974) 

789.
[52] H. Behrens, W. Bühring, Electron Radial Wave Functions and Nuclear Beta-Decay, Oxford University Press, New 

York, 1982.
[53] M. González-Alonso, J.M. Camalich, Isospin breaking in the nucleon mass and the sensitivity of beta decays to new 

physics, Phys. Rev. Lett. 112 (2014) 042501, arXiv :1309 .4434 [hep -ph].
[54] L. Hayen, N. Severijns, K. Bodek, D. Rozpedzik, X. Mougeot, High precision analytical description of the allowed 

β spectrum shape, Rev. Mod. Phys. 90 (2018) 015008.
[55] M. Fierz, Zur Fermischen Theorie des β-Zerfalls, Z. Phys. 104 (1937) 553.

http://refhub.elsevier.com/S0550-3213(19)30377-3/bib486572637A656732303031s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5365766572696A6E7332303036s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5365766572696A6E7332303036s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib43697269676C69616E6F32303130s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib43697269676C69616E6F32303130s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib42686174746163686172796132303132s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib42686174746163686172796132303132s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib42686174746163686172796132303132s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib43697269676C69616E6F32303133s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib43697269676C69616E6F32303133s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib43697269676C69616E6F3230313361s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib43697269676C69616E6F3230313361s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib476172646E657232303031s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib476172646E657232303031s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib476172646E657232303133s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib476172646E657232303133s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5365766572696A6E7332303139s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5365766572696A6E7332303139s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib49747A796B736F6E31393830s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4C65653139353661s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4C65653139353661s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5765696E6265726731393538s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F7632303138s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F7632303138s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F7632303138s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib486172647932303135s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib486172647932303135s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4162656C6532303136s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4162656C6532303138s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4162656C6532303138s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4162656C6532303138s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib53656E6732303138s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib53656E6732303138s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib53656E673230313861s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib53656E673230313861s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib50617474696532303133s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib50617474696532303133s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F763230313863s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F763230313863s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4B616973657232303031s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4B616973657232303031s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib48617272696E67746F6E31393630s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5368656B6874657231393630s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib5368656B6874657231393630s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib42656E64657231393638s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib41726D7374726F6E6731393732s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib41726D7374726F6E6731393732s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib486F6C737465696E31393734s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib486F6C737465696E31393734s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib424231393832s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib424231393832s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib476F6E7A616C657A2D416C6F6E736F32303134s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib476F6E7A616C657A2D416C6F6E736F32303134s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib486179656E32303138s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib486179656E32303138s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib466965727A31393337s1


A.N. Ivanov et al. / Nuclear Physics B 951 (2020) 114891 17
[56] S.L. Adler, Y. Dothan, Low-energy theorem for the weak axial-vector vertex, Phys. Rev. 151 (1966) 1267, Erratum: 
Phys. Rev. 164 (1967) 2062.

[57] L. Wolfenstein, Weak interactions of pions and muons, in: S. Devons (Ed.), High Energy Physics and Nuclear 
Structure, Plenum, New York, 1970, p. 661, High–energy physics and nuclear structure, Proceedings of the Third 
International Conference on High Energy Physics and Nuclear Structure, held at Columbia University, New York 
City, September 8 - 12, 1969.

[58] V. Bernard, N. Kaiser, Ulf-G. Meißner, Chiral dynamics in nucleons and nuclei, Int. J. Mod. Phys. E 4 (1995) 193.
[59] V. Bernard, N. Kaiser, Ulf-G. Meißner, Nucleon electroweak form-factors: analysis of their spectral functions, Nucl. 

Phys. A 611 (1996) 429.
[60] N. Kaiser, Induced pseudoscalar form-factor of the nucleon at two loop order in chiral perturbation theory, Phys. 

Rev. C 67 (2003) 027002.
[61] T. Gorringe, H.W. Fearing, Induced pseudoscalar coupling of the proton weak interaction, Rev. Mod. Phys. 76 

(2004) 31.
[62] A.N. Ivanov, M. Pitschmann, N.I. Troitskaya, Ya.A. Berdnikov, Bound-state β−-decay of the neutron re-examined, 

Phys. Rev. C 89 (2014) 05550.
[63] A. Liesenfeld, et al., A measurement of the axial form factor of the nucleon by the p(e, e′π+)n reaction at W =

1125 MeV, Phys. Lett. B 468 (1999) 20.
[64] J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics, John Wily & Sons, New York, 1952.
[65] J.D. Jackson, S.B. Treiman, H.W. Wyld Jr., Coulomb corrections in allowed beta transitions, Nucl. Phys. 4 (1957) 

206;
J.D. Jackson, S.B. Treiman, H.W. Wyld Jr., Note on relativistic coulomb wave functions, Z. Phys. 150 (1958) 640.

[66] E.K. Konopinski, The Theory of Beta Radioactivity, Oxford at the Clarendon Press, 1966.
[67] R. Pohl, et al., The size of the proton, Nature 466 (2010) 213.
[68] V. Khachatryan, et al., CMS Collaboration, Search for new physics in the final states with a lepton and missing 

transverse energy at 
√

s = 8 TeV, CERN Report No. CMS-PAS-EXO-12-060, 2013.
[69] M. González-Alonso, J.M. Camalich, Global effective-field-theory analysis of new-physics effects in (semi)leptonic 

kaon decays, J. High Energy Phys. 12 (2016) 052.
[70] L.C. Biedenharn, M.E. Rose, Theory of angular correlations of nuclear radiation, Rev. Mod. Phys. 25 (1953) 729.
[71] A.N. Ivanov, Status of the Free Neutron Decay, Wilkinson’s corrections and role of pseudoscalar interactions in 

neutron beta decays, invited talk at International Workshop on “Current and Future Status of the First-Row CKM 
Unitarity”, held on 16 - 18 of May 2019 at Amherst Center of Fundamental Interactions, University of Mas-
sachusetts Amherst, USA, http://www.physics .umass .edu /acfi /seminars -and -workshops /current -and -future -status -
of -the -first -row -ckm -unitarity.

http://refhub.elsevier.com/S0550-3213(19)30377-3/bib41646C657231393636s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib41646C657231393636s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib576F6C66656E737465696E31393730s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib576F6C66656E737465696E31393730s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib576F6C66656E737465696E31393730s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib576F6C66656E737465696E31393730s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4265726E61726431393935s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4265726E61726431393936s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4265726E61726431393936s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4B616973657232303033s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4B616973657232303033s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib476F7272696E676532303034s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib476F7272696E676532303034s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F7632303134s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4976616E6F7632303134s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4C696573656E66656C6431393939s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4C696573656E66656C6431393939s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib426C61747431393532s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4A61636B736F6E31393538s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4A61636B736F6E31393538s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4A61636B736F6E31393538s2
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib4B6F6E6F70696E736B6931393636s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib506F686C32303130s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib434D5332303133s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib434D5332303133s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib476F6E7A616C657A2D416C6F6E736F32303136s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib476F6E7A616C657A2D416C6F6E736F32303136s1
http://refhub.elsevier.com/S0550-3213(19)30377-3/bib42696564656E6861726E31393533s1
http://www.physics.umass.edu/acfi/seminars-and-workshops/current-and-future-status-of-the-first-row-ckm-unitarity
http://www.physics.umass.edu/acfi/seminars-and-workshops/current-and-future-status-of-the-first-row-ckm-unitarity

	Precision analysis of pseudoscalar interactions in neutron beta decays
	1 Introduction
	2 Amplitude of the neutron β--decay with contributions of OPP exchange and pseudoscalar interaction BSM
	2.1 Pseudoscalar interaction BSM as induced by corrections to the pseudoscalar form factor, caused by strong low-energy interactions
	2.2 Non-relativistic approximation for the amplitude of the neutron β--decay Eq. (1)

	3 Electron-energy and angular distribution of the neutron β--decay for polarized neutron, polarized electron, and unpolarized proton
	3.1 Corrections to the correlation coefﬁcients of the electron-energy and angular distribution of the neutron β--decays caused by pseudoscalar interactions
	3.2 Estimates of the real and imaginary parts of the phenomenological coupling constant CP - C̄P

	4 Discussion
	Acknowledgements
	Appendix A Calculation of corrections caused by pseudoscalar interactions to the electron-energy and angular distribution of the neutron β--decays for a polarized neutron, a polarized electron and an unpolarized proton
	References


