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Abstract By considering the concept of the modified
Chaplygin gas (MCG) as a single fluid model unifying dark
energy and dark matter, we construct a static, spherically
charged black hole (BH) solution in the framework of Gen-
eral Relativity. The P–V criticality of the charged anti-de
Sitter (AdS) BH with a surrounding MCG is explored in
the context of the extended phase space, where the negative
cosmological constant operates as a thermodynamical pres-
sure. This critical behavior shows that the small/large BH
phase transition is analogous to the van der Waals liquid/gas
phase transition. Accordingly, along the P–V phase spaces,
we derive the BH equations of state and then numerically
evaluate the corresponding critical quantities. Similarly, crit-
ical exponents are identified, along with outcomes demon-
strating the scaling behavior of thermodynamic quantities
near criticality to a universal class. The use of geometrother-
modynamic (GT) tools finally offers a new perspective on
the discovery of the critical phase transition point. At this
stage, we apply a class of GT tools, such as Weinhold, Rup-
peiner, HPEM, and Quevedo classes I and II. The findings
are therefore non-trivial, as each GT class metric captures at
least either the physical limitation point or the phase tran-
sition critical point. Overall, this paper provides a detailed

a e-mail: sekhmaniyassine@gmail.com
b e-mail: javlon@astrin.uz (corresponding author)
c e-mail: giuseppegaetano.luciano@udl.cat
d e-mail: rmyrzakulov@gmail.com
e e-mail: moloydhruba@yahoo.in

study of the critical behavior of the charged AdS BH with
surrounding MCG.

1 Introduction

General relativity (GR) provides the best available descrip-
tion of gravity so far [1]. Among its most enthralling pre-
dictions, gravitational waves (GWs) and black holes (BHs)
deserve special mention, as they represent the ultimate con-
firmation of Einstein’s theory. On the one hand, the first direct
detection of GWs dates back about a decade ago, with the
emission of signals from a binary BH merger and the subse-
quent ringing of the single resulting BH [2]. On the other
hand, X-rays coming from superheated material swirling
around a dark object were recognized as distinctive evidence
of a central BH (Cygnus X-1, located within the Milky Way)
in the early sixties, although we had to wait another half cen-
tury to capture the first ever picture of a similar spacetime
oddity – M87* [3]. Since then, GWs and BHs have been
extensively addressed as a new way to probe the cosmos at
a fundamental level. In particular, it is commonly accepted
that BH physics could offer valuable insight into the unifica-
tion of GR, quantum theory, and statistical mechanics [4–7],
opening a novel route to quantum gravity.

A class of solutions of Einstein’s equations that have been
attracting growing interest in recent years are anti-de Sitter
(AdS) BHs. The observation that asymptotically AdS BHs
can be modeled in the language of dual thermal field the-
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ory has motivated a fluid-like description of the underly-
ing microphysics. Interestingly enough, such studies have
revealed that the equilibrium thermodynamics of BHs can
be investigated by considering the geometric properties of
their event horizons and other relevant spacetime features [8–
19]. In the ensuing geometrothermodynamic (GT) picture,
the scalar curvature of the BH metric represents the thermo-
dynamic (microstructure) interaction, with positive curva-
ture indicating prevailing repulsion and vice versa. More-
over, singularities represent the breakdown of the classi-
cal theory because they correspond to an infinite gravita-
tional interaction, which cannot be treated properly in GR.
The microscopic behavior of BHs has been analyzed in the
geometrothermodynamic framework for a wide class of sys-
tems [9,13,17,18,20] and in various entropic scenarios [21–
27].

Further suggestive features of AdS BHs are phase transi-
tions and critical phenomena, which were first demonstrated
in the phase space of Schwarzschild-AdS BHs that are not
rotational and uncharged [7]. This seminal discovery has
opened up a new line of research in the field of BH ther-
modynamics. In this context, non-trivial results have been
achieved for spinning branes [28,29] and charged Reissner–
Nordström (RN) BHs [30,31], whose first-order phase transi-
tions display a critical behavior analogous to a van der Waals
(vdW)-like (i.e. liquid–gas) change of phase. Recently, the
correspondence between BHs and condensed matter systems
has been explored further by incorporating the variation of
the cosmological constant � in the first law of BH thermo-
dynamics [32–38] (see also [39] for more discussion), which
allows maintaining consistency with the Smarr relation [33].
In this scenario, the BH mass is identified with enthalpy rather
than with internal energy. Furthermore, since � corresponds
to pressure, it is natural to consider the thermodynamic vol-
ume of BH as its conjugate variable.

Taking the above arguments seriously, various thermody-
namic quantities (such as adiabatic compressibility, specific
heat at constant pressure, etc.) have been computed by using
standard thermodynamic machinery [34–36]. Remarkably,
the critical behaviour of AdS BHs has been reconsidered in
an extended phase space, including pressure and volume as
thermodynamic variables [35]. As a result of this approach,
the P = P(V, T ) equation of state has been analyzed for
a rotating charged AdS BH, emphasizing analogies with the
vdW diagram P–V. The recent study in [39] has gained fur-
ther progress in the identification of charged BH first-order
transitions with the standard liquid–gas phase transitions by
examining the behavior of the Gibbs free energy of a RN-AdS
BH in the canonical ensemble (i.e. fixed charge).

Predicting critical points in a BH system is crucial for
phase transition analysis. In this way, the GT provides an
alternative description using a thermodynamic metric, gov-
erned by a thermodynamic potential and its derivative with

respect to extensive parameters. This metric is implemented
in the thermodynamic equilibrium phase space. In this regard,
the Weinhold geometry is considered the first attempt to ana-
lyze the critical phase transition of a thermodynamic system
[40,41]. An alternative approach, applied to the exploration
of critical thermodynamic characteristics, is the Ruppeiner
geometry [42,43]. As such, these two approaches are known
to be closely linked via the inverse of temperature [44]. In
fact, the Legendre transformation is vital in the context of GT
due to its invariance on the thermodynamic potential [45].
This invariance enables the use of the Legendre-invariant
metric in thermodynamic phase space [46]. By the way, the
Quevedo metric is a better example of the Legendre-invariant
metric [47,48]. Furthermore, Hendi et al. [49–53] invented
another representation base of a thermodynamic system, a
metric that provides a perfect correlation between the curva-
ture scalar and the phase transition point of the heat capac-
ity. Similarly, Mansoori et al. [54–56] currently developing
another thermodynamical metric. However, there were a few
limitations to these thermodynamic metrics. In general, the
main motivation behind the use of GT is that it offers an
independent view of thermodynamic systems, aiding in the
inspection of the bound points, patterns, and stability of phase
transitions. It provides microscale behavior and the Ricci
scalar sign, indicating repulsive or attractive interactions, i.e.,
negative or positive, respectively, along the transition curve,
while R = 0 indicates the absence of interaction [42].

In the framework of modern cosmology, one of the most
conspicuous problems is the explanation of the matter/energy
content of the Universe. It is a fact that the amount of invisi-
ble dark sectors is about 95% of the total density [57]. This
dominance has stimulated great efforts to uncover the ori-
gin of these mysterious entities. A challenging possibility
is that dark components may surround (or even be created
inside) BHs. Along this direction, special focus has been
devoted to analyzing static spherically symmetric BHs sur-
rounded by quintessence matter (see [58–63] and references
therein). Other solutions are in [64–70]. Concretely, attempt-
ing to describe the acceleration of the universe attributable
to a kind of exotic negative-pressure fluid, widely known as
dark energy (DE), is a challenge in the fields of astrophysics
and theoretical physics. Based on this challenge, various dark
energy model candidates provide phenomenological and the-
oretical predictions to explain the acceleration of the universe
[71–76]. In addition to the familiar types of dark-energy
model, there are other types of cosmological dark-energy
model deemed interesting, such as the cosmological constant
and the universe full of exotic fluids. Keep in mind that the
acceleration phase in the late universe is broadly attributed
to the cosmological constant �, or a constant energy den-
sity ρ� = 7.0210−24 g/m3, dubbed dark energy. Indeed, the
problem puts a frame on looking for a unification of the dark
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sector of the universe and considers it as a single component
that behaves as both dark energy and dark matter.

Recently, new models that mix dark matter and dark
energy have been proposed as candidates for the dark com-
ponents. Among the suggested unified dark fluid models,
the Chaplygin gas [75] and related generalizations [77,78]
have been largely adopted to explain the accelerated expan-
sion of the Universe [71,79–81]. Further applications of the
Chaplygin dark fluid (CDF) appear in relation to the Hub-
ble tension [82] and the growth of cosmological perturba-
tions [83], respectively. In [84] the analytical solution and the
related thermodynamic quantities have been addressed for a
charged static spherically symmetric BH surrounded by CDF
in the Lovelock gravity theory. This model was later extended
to the modified Chaplygin gas (MCG) to study the stabil-
ity of BHs surrounded by MCG in Einstein–Gauss–Bonnet
[85] and Lovelock [86] gravity. On more thermodynamic
shores, the phase transitions and critical behavior of static
spherically-symmetric AdS BHs surrounded by CDF in GR
have been the subject of investigation in [87], while a prelim-
inary geometrothermodynamic analysis has been conducted
in [88]. All of these studies indicate that the (generalized)
CDF could be not only a theoretical model but a naturally
existing fluid, deserving of further consideration.

Starting from the above premises, in this work, we aim to
study the phase structures and transitions of a charged AdS
BH surrounded by MCG. Toward this end, the analysis is
structured as follows: the next Sect. 2 is devoted to discussing
the charged BH solution surrounded by MCG. In Sect. 3
we examine the general features of BH chemistry for the
obtained solution, while Sect. 4 contains the analysis of ther-
modynamic stability. The study of critical behavior and phase
transitions on the basis of geometrothermodynamic tools are
the main objectives of Sects. 5 and 6, respectively. Conclu-
sions and perspectives are finally summarized in Sect. 7.

2 Charged black hole solution surrounded by modified
Chaplygin gas

This section presents an examination of the MCG structure
within the framework of GR theory. Thus, it is carefully noted
that pure Chaplygin gas is said to have an exotic equation of
a negative pressure state

p = − B

ρ
, B > 0. (1)

In addition, the extended version of this gas is the generalized
Chaplygin gas (GCG), which is typified by the generalized
equation of state

p = −B/ρβ, (2)

with 0 ≤ β ≤ 1 being a universal constant. In practical
terms, MCG is a major extension of Chaplygin gas, which
is an exotic fluid considered perfect, obeying the calorific
EoS p = Aρ − B/ρβ where A ≥ 0, β ≥ 0 and the pair
A and B are considered constant through an adiabatic pro-
cess [89,90]. Parametrically speaking, conditions β = 1 and
A = 0 lead to a characteristic of the lifting forces on a plane
wing in the aerodynamic process. On the other hand, con-
straining β > 0 and A = 0 define the GCG. On top of
that, there is plenty of evidence that the MCG can be rebuilt
using k-quintessence (kinetic quintessence) [91,92] and f -
quintessence (fermionic quintessence) [93]. Inspired by the
exciting results of the MCG-specific BH chemistry method
by assuming the negative cosmological constant as a thermo-
dynamical pressure, revealing the critical behavior from the
MCG background is needed [94,95]. In this regard, Ubbanah
used a specific BH known as Chaplygin’s BH and assumed
the negative cosmological constant as the thermodynamic
pressure. As a consequence, the work deserves further con-
tributions, and the system is considered to be a heat engine
[94]. Similarly, modified cosmic Chaplygin gas is exam-
ined in the context of the AdS feature by considering BH’s
chemistry formula. This work highlights several thermody-
namic aspects, including the heat engine and Joule–Thomson
expansion [95].

In what follows, we consider the system of a charged
source with a MCG structure in the context of GR described
by the following action:

I = 1

16π

∫
d4x

√−g

[
R + 6�−2 − 1

4
FμνF

μν

]
+ IM (3)

where R is the Ricci scalar, g = det(gμν) is the determinant
of the metric tensor gμν , � is the AdS length, IM is the matter
contribution arising from the MCG background, and Fμν =
∂μAν −∂ν Aμ is the field strength of the electromagnetic field
with Aμ is the gauge potential. Moreover, κ = 8πG, where
G is the Newtonian gravitational constant. Henceforth, we
consider G = c = 1. Varying the action (3) leads to the
following field equations:

Gμν − 3

�2 gμν = T EM
μν + TMCG

μν , (4)

∂μ(
√−gFμν) = 0 (5)

where Gμν is the Einstein tensor, TMCG
μν is the energy–

momentum tensor for MCG, and T EM
μν is the energy–

momentum tensor for the electromagnetic field which is
explicitly given by

T EM
μν = 2

(
FμλF

λ
ν − 1

4
gμνF

λδFλδ

)
. (6)
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We consider a static, spherically symmetric, D-dimensional
space-time given by

ds2 = − f (r) dt2 + dr2

f (r)
+ r2d�2, (7)

in this metric, f (r) is the metric function that depends on r
and d�2 = dθ2 + sin2 θdφ2.

The way to reveal the structure of the electromagnetic
field, in particular an electrically charged BH solution, is to
assume a radial electric field. Thus, in this choice, the gauge
potential is expressed as

Aμ = h(r)δ0
μ. (8)

Exploiting Eqs. (6) and (7) provides a second-order differ-
ential equation given by

r h′′(r) + 2h′(r) = 0 (9)

where the prime and double prime are the first and second
derivatives with respect to r . To proceed to solve the differ-
ential equation yields a compact solution in the form of

h(r) = q

r
(10)

where q is an integration constant acting like an electric
charge. Taking into account the structure of the gauge field
(10) in conjunction with the space-time metric (7), the field
strength component appears as follows:

Ftr = ∂t Ar − ∂r At = q

r2 . (11)

We assign the MCG the equation of state p = Aρ−Bρ−β

[89,90], where A, B are positive parameters and the param-
eter β runs in the range 0 ≤ β ≤ 1. In a 4D spherically sym-
metric spacetime scenario, the related energy–momentum
tensor components of the MCG are expressed in the follow-
ing way:

T t
t = ψ(r), T i

t = 0, T j
i = φ(r)

rir j

rnrn
+ ξ(r)δ j

i . (12)

It should be noted that the expression for the energy-
momentum tensor was first given by Kiselev when studying
the static spherically symmetric quintessence surrounding a
BH. Due to the fact that spacetime is considered static and
spherically symmetric, the r–r component of the energy-
momentum tensor should be equal to the t–t component, so

T t
t = T r

r = −ρ(r). (13)

On the basis of the isotropic average over the angles, the
following

〈rir j 〉 = rnrn

3
δ
j
i (14)

where one can obtain

〈T j
i 〉 =

(
φ(r)

3
+ ξ(r)

)
δ
j
i

= p(r)δ j
i =

(
A ρ(r) − B

[ρ(r)]β
)

δ
j
i . (15)

It is noteworthy that the given energy density and parameter
set require an explicit and constraining statement. To this
purpose, taking into account Eqs. (13) and (15) simplify the
process and yield the following expressions:

φ(r) = β1 ρ(r) + α1 ρ(r)−β, (16)

ξ(r) = β2 ρ(r) + α2 ρ(r)−β. (17)

Furthermore, by exploiting equations (13) and (15), the
parameters αi and βi are constrained to be given by

β1 = −3(1 + A)

2
, β2 = 1 + 3A

2
, (18)

α1 = 3

2
B, α2 = −3

2
B, (19)

Thus, it is now simple to define the angular components of
the energy-momentum tensor devoted to the MCG structure
by

T θ
θ = T φ

φ = 1 + 3A

2
ρ(r) − 3

2
B ρ(r)−β. (20)

By considering the spacetime metric (7) together with the
field Eq. (4), the Einstein tensor components can be given by

Gt
t = Gr

r = 1

r2

(
f + r f ′ − 1

) + 3

�2 (21)

Gθ
θ = Gφ

φ = 1

2r

(
2 f ′ + r f ′′) + 3

�2 (22)

whereby combining the previous set with that of Eqs. (13)–
(20) produces a pair of differential equations such as:

1

r2

(
f + r f ′ − 1

) + 3

�2 = −ρ − q2

r4 (23)

1

2r

(
2 f ′ + r f ′′) + 3

�2 =
(

1 + 3A

2
ρ − 3

2

B

ρβ

)
+ q2

r4 (24)

To properly look for the expression of the energy density,
consider the set previously described above by using Eqs.
(13)–(20) and, in a way, by imposing the conservation con-
dition on the energy–momentum tensor. This consideration
step produces an interesting result, as

ρ(r) =
{

1

1 + A

(
B +

(
γ

r3

)(1+A)(1+β))} 1
1+β

, (25)

where an integration constant, γ > 0, is used. It is important
to keep in mind that the energy density is restricted to ∼
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(
B

1+A

) 1
1+β

at the asymptotic limit for r . As a result, MCG

behaves as a cosmological constant far away from the BH,
and as it approaches the BH, it gravitationally grows more
densely.

Substituting Eq. (25) into Eq. (23), one can obtain the
analytical solution for f (r) in the following compact form

f (r) = 1 − 2M

r
+ Q2

r2 + r2

�2

−r2

3

(
B

A + 1

) 1
β+1

2F1[α, ν; λ; ξ ] (26)

where M is the physical parameter standing for the mass of
the BH. Whereas, the integration constant q is mainly related
to the physical parameter charge Q over a two-sphere with
an infinite radius according to the conservation law as

Q = 1

4π

∫
S2∞

�F = 1

8π

∫
S2∞

Fμν εμν

= 1

4π

∫
S2∞

h′(r)
√−g dθ dφ

= 1

4π

∫
S2∞

dθ dφ r2 sin θ
q

r2 = q (27)

where εtr = ntσr = 1 for a static spherically spacetime with
nμ is the unit normal and σν is the unit normal to a unit two-
sphere with an infinite radius. This proves that the physical
electric charge Q in our charged BH solution is the same as
in Maxwell’s equation. Also, the electric potential evaluated
at infinity by an observer with relation to the event horizon
r+ can be given as

φ(r+) = Aμχμ|r→∞ − Aμχμ|r=r+ = Q

r+
(28)

where χ = C ∂t is the null generator of the event horizon,
while C acts as a fixed constant. Here, the hypergeometric
function 2F1[α, ν; λ; ξ ] representing the regular solution of
the hypergeometric differential equation, is defined for |ξ | <

1 by a power series of the form

2F1[α, ν; λ; ξ ] =
∞∑
k=0

[
(α)k(ν)k/(λ)k

]
ξ k/k! (29)

with (n)k is the (rising) Pochhammer symbol [96]. Further-
more, the parameters set (α, ν, λ, ξ) are given, respectively,
by

α = − 1

β + 1
, ν = − 1

1 + A + β(A + 1)
,

λ = 1 + ν, ξ = − 1

B

( γ

r3

)(A+1)(β+1)

.

To explore the asymptotic behavior of the metric function
f (r), the limit r → ∞ is taken into account, giving

f (r) = 1 + r2
(

1

�2 −
(

B

1 + A

) 1
1+β

)
, (30)

which implies that in the asymptotic limit, the behavior of
the solution is controlled by means of the AdS length � (the
cosmological constant �) and the MCG parameters back-

ground. As a result, one can constrain 3
�2 <

(
B

1+A

) 1
1+β

. It

may be further pointed out that the metric function can be
close to RN-AdS BHs once conditions β = 0, γ = 0, and
A > 0 are set after taking the limit B → 0.

To provide an examination regarding the behavior of the
metric function for our BH solution, Fig. 1 depicts this behav-
ior. For a certain choice in the parameter space, the metric
function is being schematically considered. In particular, for
all sets of the parameter space, the root of f (r) is divided
into two classes: the smallest root corresponds to two BH
horizons, and the largest root is associated with a cosmolog-
ical horizon. It appears that the two BH horizons, whether
event or inner, are closely located at the same horizon radius
for the variation of the parameter set (A, B, β). On the other
hand, varying the charge parameter at the level of the metric
function generates the apparition of multiple event horizons.
A closer observation shows that the behavior of the metric
function is disproportional with respect to the pairs (A, Q)

and (B, β). In what follows, our BH solution will be exam-
ined in part by studying its singular behavior and, secondly,
by analyzing its violation or satisfaction with respect to the
constraints of the energy conditions (EC).

To properly verify the singularity and uniqueness of our
BH solution, we need to provide an analysis based on scalar
invariants. These are the Ricci scalar, the Ricci square, and
the Kretschmann scalar.

The Ricci scalar for the corresponding metric is given by

R = 1

B

{(
B

A + 1

) 1
β+1

T
− β

β+1
1

×
(

(1 − 3A)
( γ

r3

)(A+1)(β+1) + 4B

)}
−12

�2 (31)

The Ricci squared is given by

RμνRμν =
(
A + 1

B

)− 2
β+1

{
8B2

((
A + 1

B

) 2
β+1

(
Q4 + 9

�4 r
8
)

+ r8
(
T

2
β+1

1 − 6

�2 T
1

β+1
2

))
+ 4B T3

(
γ

r3

)(A+1)(β+1)

+ T4

(
γ

r3

)2(A+1)(β+1)}(
1

2B2T 2
1 r8

)
(32)
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Fig. 1 Variation of the BH
metric function (26) with respect
to r for various values of the
parameter space with � = 40

Finally, the Kretschmann scalar is found to be

RαβμνRαβμν = 4

(
A + 1

B

)− 2
β+1

×
(
r4

(
3T

1
β+1

1 − 2F1(α, ν; λ; ξ)

)

+ 2

(
A + 1

B

) 1
β+1

(
− 3Mr + 3Q2 − −3

�2 r4
))2

+ 4

(
r4

(
A + 1

B

)− 1
β+1

2F1(α, ν; λ; ξ) + 6Mr − 3Q2 − 3

�2 r
4
)2

+ (A + 1)
− 2

β+1

B2 T 2
1

(
− 2B T1

(
r4B

1
β+1 2F1(α, ν; λ; ξ)

+ (A + 1)
1

β+1

(
6Mr − 9Q2 − 3

�2 r
4
))

+ 9(A + 1) r γ (B T1)
1

β+1

( γ

r3

)A(β+1)+β
)2

(33)

where

T1 = 1

B

(( γ

r3

)(A+1)(β+1) + B

)
(34)

T2 = (A + 1)

B2

(( γ

r3

)(A+1)(β+1) + B

)
(35)

T3 = r4 T
1

β+1
2

(
3(A + 1)Q2 − (5 − 3A)

3

�2 r
4
)

+ r8 T
2

β+1
1

+ 4Q4
(
A + 1

B

) 2
β+1 + 36

�4 r
8
(
A + 1

B

) 2
β+1

− 3Ar8T
2

β+1
1 (36)

T4 =
(

9A2 + 6A + 5
)
r8 T

2
β+1

1 + 8

(
A + 1

B

) 2
β+1

×
(
Q4 + 9

�4 r
8
)

+ 4r4 T
1

β+1
2

(
3(A + 1)Q2 − (1 − 3A)

3

�2 r
4
)

. (37)

A closer look at the expressions (31), (32) and (33) shows
that the BH solution represented by this metric is singular
for any permissible value of the parameters A and β. Practi-
cally speaking, the existence of the singularity results from
the mass and charge terms in the BH metric. By imposing
the constraints β < 0 and A > 0, the singularity will conse-
quently disappear due to the product constant γ . Neverthe-
less, to rule out the singularity made from the mass and the
charge terms, it may be useful to describe a procedure with a
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non-linear charge distribution function similar to Ref. [97].
Throughout this work, we will not be thinking about such a
situation and will stick to the metric function (26) for the rest
of the analysis. A few remarks concerning the mentioned
scalars show that the Ricci scalar is not a function of the
BH charge Q. In contrast, Ricci squared and Kretschmann
scalars are functions of the BH charge Q, so any variation
in the BH charge may induce meaningful variations in these
same scalars. Therefore, the considered scalars demonstrate
that our BH solution is unique, and the AdS background,
together with the MCG structure, changes the BH spacetime
significantly.

In what follows, we take care to study the energy condi-
tions for our BH solution [98–101].

The elements of the stress-energy tensor Tμν governed
by Einstein equations (4) for charged BHs surrounding the
MCG with a negative cosmological are as follows:

ρ =
(
A + 1

B

)− 1
β+1

T
1

β+1
1 + 3

�2 + Q2

r4 = −Pr (38)

Pθ = Pφ = 1

2Br4T1

((
A + 1

B

)− 1
β+1

(
2BQ2

(
A + 1

B

) 1
β+1

+
( γ

r3

)(A+1)(β+1)
(

2Q2
(
A + 1

B

) 1
β+1

+ (3A + 1)r4T
1

β+1
1

)
− 2Br4T

1
β+1

1

))
− 3

�2 . (39)

• The weak energy condition (WEC) requires that
Tμν tμtν

� 0 everywhere, for any time vector tμ, which is equiv-
alent to [102]

ρ ≥ 0, ρ + Pi ≥ 0 (i = r, θ, φ) (40)

and so ρ + Pr = 0 and

ρ + Pθ = ρ + Pφ

= 1

2r4T1

(
4Q2

B

((
γ

r3

)(A+1)(β+1)

+ B

)

+ 3γ rT
1

β+1
1

(
A + 1

B

) β
β+1

(
γ

r3

)A(β+1)+β)
. (41)

The WEC is satisfied since A, B and γ are positive param-
eters and 0 � β � 1. Figure 2 clearly shows that the
energy density ρ along with ρ + Pθ is positive for a span
of horizon radii.

• The zero energy condition (NEC) stipulates that Tμν tμtν

� 0 in the overall spacetime for any null vector tμ. The
NEC predicts ρ + Pr � 0 which is identically zero, and

ρ + Pθ = ρ + Pφ � 0, which is satisfied for Eq. (41)
whenever |A| > 1.

• The strong energy condition (SEC) asserts that Tμν tμtν

� 1/2 Tμν tν tν globally, for any time vector tμ which
assumes that [102]

ρ +
∑
i

Pi = Pr + 2 Pθ ≥ 0. (42)

A closer examination shows that the SEC is satisfied only
by the following constraint:

Q2 − r4

⎛
⎜⎝

(
γ

r3

)(A+1)(β+1) + B

A + 1

⎞
⎟⎠

1
β+1

� 0. (43)

As shown in Fig. 2, the MCG mostly violates the SEC.
This is similar to the situation with the quintessence of dark
energy. Indeed, a violation of the SEC is interpreted as a
violation of the attractive behavior of gravity, as evidenced by
the dark energy that accelerates the expansion of the universe
in cosmological studies, along with the matter content of
the background of a regular BH, whose singularity has been
superseded by a Sitter core.

For the sake of completeness, it must be said that the gen-
eral correspondence between the SEC and the behavior of
gravity is matter of active investigation in literature. It is well
known that the validity of the SEC in a gravitational frame-
work is typically associated with the attractive character of
gravity. This is certainly true in GR, where the SEC must
be assumed in order to guarantee the attractive nature of the
theory – focusing theorem [103,104]. However, such corre-
spondence may not hold entirely general validity in extended
gravity. A paradigmatic example is provided by f (R) gravity,
which was illustrated in [105], considering the Raychaudhuri
equation. Indeed, it was shown that, even assuming the stan-
dard SEC, the Raychaudhuri equation could exhibit positive
contributions coming from spacetime geometry, which are
usually interpreted as the manifestation of a possible repul-
sive gravity. Therefore, the SEC/attractive gravity paradigm
seems not to be valid in this context. A rigorous and general
proof that the attractiveness of gravity is not guaranteed by
the SEC anymore in extended gravity goes beyond the scope
of the present analysis, and will be left as a future task. More
discussion on the SEC from a thermodynamic perspective is
contained in Sect. 4.1.

3 Black hole chemistry with modified Chaplygin gas

Investigating the thermodynamic quantities of our BH solu-
tion is the main task of this section. Therefore, at the radius
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Fig. 2 Energy conditions using Q = 0.2, B = 10, γ = 1, A = 1, � = 40

of the r+ horizon of the metric solution (26), the mass of the
BH is expressed in such a way as

M = 1

6r+

{
− r4+

(
A + 1

B

)− 1
β+1

2F1[α, ν; λ; ξ ]

+ 3

�2 r
4+ + 3(Q2 + r2+)

}
. (44)

Subsequently, to determine the Hawking temperature, it
is first necessary to consider surface gravity [106], which is
provided by

κ =
(

−1

2
∇μξν∇μξν

)1/2

= 1

2
f ′ (r+) , (45)

with ξμ = ∂/∂t is a Killing vector. So, the formula T+ =
κ/2π is the Hawking temperature, expressed in terms of the
BH system parameters as

T+ = 1

4π r3+

{
r2+

(
1 + 3

�2 r2+
)

− Q2 − r4+
(
A + 1

B

)− 1
β+1

×
(

1

B

(
γ

r3+

)(A+1)(β+1)

+ 1

) 1
β+1

}
. (46)

It is worth mentioning that all the parameters set in the BH
solution effectively contribute to the behavior of the Hawking
temperature.

To describe the behavior of the Hawking temperature,
Fig. 3 depicts its behavior against the horizon radius. It is
worth noting that all the parameter variations in the BH sys-
tem contribute to the effect on the Hawking temperature.
Remarkably, the Hawking temperature rises to a maximum at
Tmax+ for a specific horizon radius r+. In particular, the maxi-
mum related to the Hawking temperature spanned the interval
1.04269 < Tmax+ < 1.06535 for all the considered param-
eter spaces, and that maximum grows significantly with the
charge parameter variation, which is the largest maximum
among the other parameter variations. After reaching the
maximum, all the Hawking temperature configurations start
to decrease monotonically, up to being negative in the end.
A distinct remark schematically shows that the variation of
the charge parameter at the level of the Hawking temperature
could generate multiple peaks in contrast to the other param-
eter variations. In addition, a closer examination shows that
the behavior of the Hawking temperature for all parameters
set finished being unphysically due to the negativity referred
to as T+ < 0.

To carry out a nice generation of the corresponding ther-
modynamic quantities, it is useful to apply the first law of
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Fig. 3 Variation of the
Hawking temperature T+ (46)
with respect to the horizon
radius r+ for several fixed
parameters

BH thermodynamics. In particular, the first law can be given
as [107]

dM = T+dS +
∑
i

μi dNi (47)

where μi are the chemical potentials corresponding to the
conserved charges Ni .

Holding parameters constant, with the exception of
entropy, one can find

S = 1

T+

∫
∂M+
∂r+

dr+ = π r2+, (48)

which is similar compared to multiple background studies
[5,6,108,109].

On the other hand, by considering the extended phase
space, certain critical processes as a thermodynamic aspect
are achieved. At this point, the P–V criticality, which will
be a main feature of this work, is treated once the negative
cosmological constant behaves like pressure, also known as
“black hole chemistry”. So, one has [33,110]

P = − �

8π
= 3

8π �2 . (49)

In light of this objective, the first modified law of thermody-
namics is formulated as follows [34,111]:

dH = dM = T dS + V dP + �dQ (50)

where mass resembles enthalpy. Whereas, to construct the
thermodynamic phase space framework, in particular, the
parameter function f (r+, M, P, Q) must always vanish
under any transformation of the parameter. Further remarks
on this subject make similar arguments to consider the con-
straints f (r+, M, P, Q) = 0 and δ f (r+, M, P, Q) = 0 on
the evolution along the space of parameters. Nevertheless, an
alternative way is considered: taking the mass parameter, M ,
as a function of the parameters M(r+, �, Q) too.

The thermodynamic parameters are S, P , and Q. It is then
convenient to redefine M = M(S, P, Q) for the possibility
of explicitly obtaining

dM =
(

∂M

∂S

)
P,Q

dS +
(

∂M

∂P

)
S,Q

dP +
(

∂M

∂Q

)
S,P

dQ.(51)

This is similar to such a differential 1-form in the space of
parameters. Accordingly, all components are nothing more
than thermodynamic quantities expressed in the context of
extended phase space. So, one has

T =
(

∂M

∂S

)
P,Q

(52)

V =
(

∂M

∂P

)
S,Q

(53)
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φ =
(

∂M

∂Q

)
S,P

. (54)

In an alternative way, the same results can be expressed in
accordance with the variation along the space of the param-
eters of the condition described by f (r+, M, P, Q),

d f (r+, M, P, Q) = 0 = ∂ f

∂r+
dr+ + ∂ f

∂M
dM

+ ∂ f

∂P
dP + ∂ f

∂Q
dQ (55)

reshape another term for dM giving as follows:

dM =
(

1

4π

∂ f

∂r+

)(
− 1

4π

∂ f

∂M

)−1

dr+ +
(

− ∂ f

∂M

)−1

×
(

∂ f

∂P

)
dP +

(
− ∂ f

∂M

)−1(
∂ f

∂Q

)
dQ (56)

which must be in conformity with Eq. (50). Equation (56)
embraces the presence of temperature, which is geometri-
cally defined as

T = 1

4π

∂ f

∂r+
, (57)

and which is a well-known finding, providing

dS =
(

− 1

4π

∂ f

∂M

)−1

dr+. (58)

It should be pointed out that this expression can also be
derived using Wald’s formalism; basically, δS = δ

∫
∂L
∂R as

long as d f = 0 is satisfied.
Furthermore, the thermodynamic volume and the conju-

gate potential are defined by the following formula:

V =
(

∂M

∂P

)
S,Q

=
(

− ∂ f

∂M

)−1(
∂ f

∂P

)
, (59)

φ =
(

∂M

∂Q

)
S,P

=
(

− ∂ f

∂M

)−1(
∂ f

∂Q

)
. (60)

In the case of the BH system, the enthalpy is defined by the
total mass of the system. Consequently, in terms of the param-
eters of BH system and in the context of the extended phase
space, the thermodynamic volume and the electric potential
can thus be formulated as

V =
(

∂M

∂P

)
S,Q

= 4πr3+
3

. (61)

φ =
(

∂M

∂Q

)
S,P

= Q

r+
. (62)

while the Hawking temperature is given by

T =
(

∂M

∂S

)
P,Q

= 1

4πr3+

(
r4+

(
8π P −

(
A + 1

B

)− 1
β+1

×
(

1

B

(
γ

r3+

)(A+1)(β+1)

+ 1

) 1
β+1

)
− Q2 + r2+

)
. (63)

According to Euler’s theorem [33,112], with M(S, P, Q),
the Smarr formula can be constructed for the charged source
in the framework of GR as

M = 2T S − 2PV + φ Q (64)

in which another combination arises between thermody-
namic quantities. These amounts in the classical limit (Q →
0) are consistent with the corresponding amounts for the
Schwarzchild AdS BH [113].

4 Black hole stability

Within the canonical ensemble, heat capacity is a further ther-
modynamical quantity providing information on the thermal
state of the BHs. indeed, the heat capacity involves three
specific and fascinating pieces of information. Firstly, the
discontinuous behavior of this quantity means the existence
of possible thermal phase transitions that the system may
undergo. Second, another feature deals with the sign of heat
capacity. In essence, the sign shows whether the system is
thermally stable or not. In other words, positivity generates
thermal stability, whereas the opposite indicates instability
[114,115]. Third, the corresponding possible set of roots is
useful given leads to indicate the sign change, which may
show stable/unstable states or bound points. As a conse-
quence of these points, this section and the next are devoted
to computing the relevant heat capacity in the extended phase
space and inspecting the relation between this quantity and
the GT tools. One can compute the heat capacity according
to the following form [106]:

CP =
(

∂H

∂T+

)
P

= T+
(

∂S

∂T+

)
P

. (65)

Likewise, the function is expressed in terms of the parameter
space as

CP = 2π r2+

⎛
⎝

(
γ

r3+

)(A+1)(β+1)

+ B

⎞
⎠ C̃P (66)

where
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Fig. 4 Variation of heat capacity CP (66) as a function of r+ for different values of pressure and for fixed values in parameter space

C̃P =
( A+1

B

) 1
β+1

(−8π Pr4 + Q2 − r2
) + r4T

1
β+1

1( A+1
B

) 1
β+1

(−8π Pr4 − 3Q2 + r2
)
B T1 + r4T

1
β+1

1

(
B − (3A + 2)

(
γ

r3

)(A+1)(β+1)
)

Within the realm of BH physics, it is claimed that the
associated roots of the heat capacity (CP = T = 0) indicate
a one-dimensional line between physical (T > 0) and non-
physical (T < 0) BHs, known as the physical limit. In this
region, the system exhibits a sign change in heat capacity.
On the other hand, the set of divergence points of the heat
capacity represents the phase transition critical points of BHs
[116]. Thus, both the phase transition critical and limitation
points of the BHs are explicitly computed with consideration
of the following constraints:

• (
∂M
∂S

)
P,Q = 0 physical limitation points

•
(

∂2 M
∂S2

)
P,Q

= 0 phase transition critical points

So as to find the physical limitation and phase transition crit-
ical points, we consider Eq. (44) and solve the following
equations for the entropy or in terms of the horizon radius:
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Table 1 The physical limitation points with A = 0.1

Q β B γ P r�
1 r�

2 Number of points

0.8 0.1 1 1 0.0306 < Pc 1.63453 1.94108 2

0.8 0.1 1 1 0.0326 < Pc 1.39086 2.79912 2

0.8 0.1 1 1 0.0383 = Pc 1.19141 ∅ 1

0.8 0.1 1 1 0.0387 > Pc 1.18307 ∅ 1

0.2 0.4 0.1 0.01 0.0734 < Pc 0.197083 ∅ 1

0.2 0.4 0.1 0.01 0.0863 = Pc 0.196779 ∅ 1

0.2 0.4 0.1 0.01 0.0950 > Pc 0.196066 ∅ 1

(
∂M

∂S

)
P,Q

= r4+
{

8π P −
(
A + 1

B

)− 1
β+1

×
⎛
⎝ 1

B

( (
γ

r3+

)(A+1)(β+1)

+ B

)⎞
⎠

1
β+1 }

−Q2 + r2+ = 0,

(67)
(

∂2M

∂S2

)
P,Q

= B

(
A + 1

B

) 1
β+1 (

8π Pr4+ + 3Q2 − r2+
)

+ 8πγ Pr+
(
A + 1

B

) 1
β+1

(
γ

r3+

)Aβ+A+β

+
(

γ

r3+

)
(A+1)(β+1)

((
3Q2 − r2+

)(
A + 1

B

) 1
β+1

+(3A + 2)r4+

⎛
⎝ 1

B

(
γ

r3+

)(A+1)(β+1)

+ 1

⎞
⎠

1
β+1

⎞
⎟⎠

− Br4+

⎛
⎝ 1

B

(
γ

r3+

)(A+1)(β+1)

+ 1

⎞
⎠

1
β+1

= 0 (68)

Attempting to solve these equations appears to be analyt-
ically difficult. This is why we apply the numerical approach
to find physical limit points and phase transition points for a
given parameter space. The presentation of the heat capacity
root point and singularity point is illustrated for two given
parameter spaces in Tables 1 and 2. Concretely, Table 1
includes the possible roots of the heat capacity (CP = 0),
which alternatively implies the constraint (T = 0). Thus,
this constraint provides a bound or limitation between the
physical temperature region (T > 0) and the unphysical
temperature region (T < 0). Precisely, this table presents
two critical configurations in the essence of the BH chem-
istry concept. It is observed that the two critical configura-
tions have, for a small horizon radius r+, one specific phys-
ical limitation point that is still present for any value of the
pressure. On the other hand, the first critical configuration
(Q = 0.8, β = 0.1, B = γ = 1 and A = 0.1) carries in a

large horizon radius r+, another physical limitation point that
will disappear as the pressure increases to the critical pressure
(P = Pc). Roughly speaking, although the pressure varies
smaller than or greater than the critical pressure, the system
always exhibits a physical limitation point at a small horizon
radius. On the other hand, Table 2 includes the possible phase
transition critical points (divergent points) involving such a
second-order critical phase transition. In other words, diver-
gent points can be generated in a similar way by solving
the associated equation (1/CP = 0). Physically speaking,
second-order critical points result in discontinuities in cer-
tain thermodynamic quantities, such as specific heat; hence,
a specific heat divergence point is a sign of a given phase
transition. This is due to the fact that the critical point occurs
at the spike-like divergence of the specific heat at constant
pressure, or, in another sense, they are inflection points in
P − r+ diagrams. It can be seen that both critical configura-
tions exhibit divergent critical points for the P ≤ Pc bound.
Moreover, for P > Pc, the divergent critical points are no
longer present, and therefore no phase transition occurs, so
the system remains stable.

To obtain an appropriate description of the behavior of
the heat capacity under constant pressure, Fig. 4 presents the
variation of CP against the radius of the horizon r+. The
appearance of divergent points and intersecting points both
correspond to a change of sign, which indicates a phase tran-
sition, either a second-order phase transition or a first-order
one, respectively. Graphically, the analysis of the behavior
of the corresponding heat capacity is shown in Fig. 4. Thus,
the upper panel concerns a fixed-valued parameter space that
generates the behavior of the heat capacity as a function of the
radius of the horizon. It should be noted that for pressure less
than the critical pressure (P < Pc), especially P = 0.0306,
there are two roots for the heat capacity (Table 1). In this
case, these two roots are, in fact, two critical horizon radii,
i.e., r�

1 and r�
2 (the second root exists only for the upper panel

with a certain parameter space), at which, for r+ < r�
1 , the

heat capacity of BHs is negative. Therefore, the BHs with a
small horizon radius are unstable. In addition, for r�

2 > r+,
the heat capacity is positive which claims that the BHs are
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Table 2 The phase transition critical points with A = 0.1

Q β B γ P rdiv
1 rdiv

2 Number of points

0.8 0.1 1 1 0.0306 < Pc 1.94108 ∅ 1

0.8 0.1 1 1 0.0326 < Pc 1.86425 ∅ 1

0.8 0.1 1 1 0.0383 = Pc 3.1466312 ∅ 1

0.8 0.1 1 1 0.0387 > Pc ∅ ∅ 0

0.2 0.4 0.1 0.01 0.0734 < Pc 0.4237 0.650683 2

0.2 0.4 0.1 0.01 0.0863 = Pc 0.5022368 ∅ 1

0.2 0.4 0.1 0.01 0.0950 > Pc ∅ ∅ 0

stable. It can be clearly observed that there is an important
region due to r�

1 < r+ < rdiv
1 , where rdiv

1 is a divergence
point. The heat capacity of BHs in this region is positive. In
other words, BHs have thermal stability when their horizon
radius lies within the interval r�

1 < r+ < rdiv
1 . Similarly, for

the region rdiv
1 < r+ < r�

2 , the heat capacity is negative,
which means that our BHs are unstable. On the other hand,
for (P < Pc) in the bottom panel with fixed values in the
parameter space, there are two roots and two critical phase
transition points that generate four intervals along the radius
of the horizon. Clearly, BHs are thermally stable for regions
r�

1 < r+ < rdiv
1 and r+ > rdiv

2 , while they are thermally
unstable for regions r+ < r�

1 and rdiv
1 < r+ < rdiv

2 . Further-
more, as the pressure closes to critical pressure (P = Pc),
the number of physical limitation points and divergent points
reduces, and the heat capacity is positive, which means that
the BHs are thermally stable and have a one-phase transition.
This behavior is similar for the two sets of parameter spaces
regarding the heat capacity behavior. For (P > Pc), the criti-
cal behavior is no longer present due to the absence of such a
discontinuity provided by the divergent point. This situation
keeps the BHs thermally stable. By contrast, physical limita-
tions are always present. Roughly speaking, our BH solution
clearly remains in a thermally stable state.

4.1 Strong energy condition

At the end of Sect. 2 the energy conditions for our BH solution
have been discussed from the point of view of cosmology.
We have shown that, although the WEC and NEC could be
satisfied under specific conditions, the SEC is mostly vio-
lated by MCG. This somehow reflects the quintessence-like
behavior of dark energy, which spoils the attractive behavior
of gravity.

It is likewise useful to address the problem from a ther-
modynamic perspective. Notice that thermodynamic infor-
mation on the BH system in the extended phase space is
essentially contained in the radius r , which is related to the
thermodynamic volume through Eq. (61), and the AdS length
� (see Eqs. (38) and (39)). In particular, since the latter is

linked to the negative cosmological constant, it plays a cru-
cial role in determining the BH chemistry, upon identification
of the cosmological constant as the thermodynamic pressure
[32–38]. At this point, one could interpret any information
from the length � in the realm of the SEC as a way to approach
the thermodynamics, particularly the P-V critical study. Fur-
thermore, one can depict the strong energy condition con-
straint for large values of the parameter �, and similarly to P
according to the BH chemistry concept.

A concrete visualization of SEC behavior is provided in
a two-dimensional shape in Fig. 5, for several fixed param-
eters. As a general feature, it can be seen that the SEC is
satisfied in the small enough radii. This is due to the strong
gravitational forces near the central singularity, which gener-
ate extreme conditions where energy densities and pressures
remain positive, to satisfy the SEC. On the other hand, the
reversed scenario occurs as the black hole size increases.
Therefore, for fixed parameters Q, β, A, B, γ and �, small
BHs are found to provide the solution with minimum viola-
tion of the energy condition. In other terms, assuming that
AdS BHs surrounded by exotic fluid with MCG are phys-
ically viable solutions, such a selection criterion based on
the energy condition indicates that small-sized BHs would
be preferred by Nature.

It is interesting to compare the above considerations with
recent results in literature. For instance, in [102] the valid-
ity of the SEC is checked for both non-rotating and rotat-
ing BHs in conformal gravity. Similar to our finding, it is
shown that the SEC is only satisfied for specific sizes of
BHs, which depend on the new scale of the theory. Like-
wise, logotropic fluids-like BHs may violate the SEC for
high radii, as argued in [117]. On the other hand, the study of
[118] reveals that, although the WEC is preserved, the SEC is
always violated for regular Hayward-AdS BHs. In [119] new
solutions for regular BHs endowed with multihorizons are
proposed, concluding that the SEC is never satisfied within
the event horizon in all solutions, while the other energy
conditions depend on the ratio between extreme charges of
isolated solutions.

123

Eur. Phys. J. C (2024) 84:227 227Page 13 of 24



Fig. 5 Strong (ρ + ∑3
i=1 pi ) energy condition for several fixed parameters

5 P–V criticality

In this section, special care is taken to study the critical P–V
for charged AdS BHs surrounded by an MCG structure. As
such, by exploiting the expression for the Hawking temper-
ature with (49), we can obtain the corresponding equation of
state as follows:

P = − 1

8π r2+
+ T

2r+
+ Q2

8π r4+
+ 1

8π

(
A + 1

B

)− 1
β+1

×
(

1

B

(
γ

r3+

)(A+1)(β+1)

+ 1

) 1
β+1

(69)

Of course, the parameters β, A, B, γ and Q potentially
affect this equation. As intended, we can define the specific
volume v = 2r+, wherewith the pressure is cast in the stan-
dard form P = 1

v
T + O(v).Moreover, since the thermody-

namic volume V ∝ r3+ the critical point can be inspected
considering the following constraints:
(

∂P

∂r+

)
T

= 0,

(
∂2P

∂r2+

)
T

= 0 (70)

or alternatively,
(

∂T

∂r+

)
P

= 0,

(
∂2T

∂r2+

)
P

= 0. (71)

The previous constraints set the triply critical point (Tc, Pc, rc)
with the unknown critical horizon radius rc which needs
numerical solving. one has

Tc = 1

4πr3
c

{
rc

(
2rc − 3γ

(
A + 1

B

) β
β+1

(
γ

r3
c

)
Aβ+A+β

×
(

1

B

(
γ

r3
c

)
(A+1)(β+1) + 1

)
1

β+1 −1
)

− 4Q2
}
, (72)
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Table 3 Numerical sets for critical physical quantities and coefficients C = 1 and Ci in P–V critical behavior with A = 0.1

Q β B γ rc Tc Pc
Pc rc
Tc

C1 C3 C5

0.2 0.4 0.1 0.01 0.50223 0.21186 0.08637 0.20474 2.44204 − 2.44204 − 1.22199

0.4 0.3 0.3 0.03 1.00185 0.10609 0.03452 0.32596 1.5339 −1.5339 − 0.76960

0.6 0.2 0.6 0.06 1.51043 0.07021 0.0327248 0.70392 0.7103 − 0.7103 − 0.3548

0.8 0.1 1 1 3.14663 0.03224 0.03836 3.7441 0.1335 − 0.1335 − 0.06166

1 0.05 1.8 1.5 4.31299 0.02278 0.06455 12.2182 0.04092 − 0.04092 − 0.01806

Fig. 6 Isobaric curve T –r+ diagrams of the BH system for certain values of the parameter space

Pc = 1

8πr4
c

{
r2
c

(
r2
c

(
A + 1

B

)− 1
β+1

×
(

1

B

(
γ

r3
c

)
(A+1)(β+1) + 1

)
1

β+1 − 1

)
+ Q2

+ 1

r2
c

(
rc

(
2rc − 3γ

(
A + 1

B

) β
β+1

(
γ

r3
c

)
Aβ+A+β

×
(

1

B

(
γ

r3
c

)
(A+1)(β+1) + 1

)
1

β+1 −1
)

− 4Q2
)}

(73)

and

2B2
(
A + 1

B

) 1
β+1 (

6Q2 − r2
c

)
+ 1

r6
c

(
γ 2

(
γ

r3
c

)2(Aβ+A+β)

×
(

3(A + 1)(3A + 2)r4
c

(
1

B

(
γ

r3
c

)(A+1)(β+1)

+ 1

) 1
β+1

− 2

(
A + 1

B

) 1
β+1 (

r2
c − 6Q2

)))
+ B

(
γ

r3
c

)(A+1)(β+1)

×
(

3(A + 1)(3A(β + 1) + 3β + 2)r4
c

(
1

B

(
γ

r3
c

)(A+1)(β+1)

+ 1

) 1
β+1

− 4

(
A + 1

B

) 1
β+1 (

r2
c − 6Q2

))
= 0 (74)

Table 3 is just a numerical approach to solving Eq. (74) by
setting the quantities Tc and Pc to their respective values.

Fascinating findings are closely related to this table. Indeed,
the variation of the BH parameter space yields particular
variation to the ratio Pc rc/Tc and to the constants Ci . In
particular, the variation of the ratio Pc rc/Tc is proportional
to the variation of the parameters (Q, B, and γ ) with the
exception of β. Further, the variation of the constant C1 seems
perfectly disproportional to the constants C3 and C5, as the
parameter set (Q, B, β γ ) varies.

To highlight the key properties of P–V criticality, the
T –r+ and P–r+ are useful at this stage, Fig. 6 shows the
isobaric curve on the diagram T − r+, which is classified
according to multiple pressure values. Indeed, the appropri-
ate case P < Pc implies two extreme points along the sides of
three branches, namely the small BH branch, the intermedi-
ate BH branch and the large BH branch. The small and large
BH branches are characterized by a positive slope, which
means that the heat capacity is positive and the system is
thermally stable. While the intermediate BH branch stands
on a negative slope, the BH is thermally unstable due to the
negativity of the heat capacity. On the other hand, the case
P > Pc indicates the absence of any extremal point, which
proves that the system displays one stable BH branch in this
situation. Alternatively, Fig. 7 displays, throughout a spec-
trum of temperature T , the P–r+ criticality behavior via the
isotherm curve P-r+. It is obvious that the diagram shown
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Fig. 7 Isotherme curve P–r+ diagrams of the BH system for certain values of the parameter space

is very similar to the VdW liquid–gas system (Fig. 7). In
this way, situation T < Tc predicts the existence of a small-
large BH phase transition underlying the liquid–gas phase
transition of the VdW. As the temperature reaches the crit-
ical temperature (T = Tc), the number of phase transitions
is limited to one, for which the first-order phase transition
merges with the second-order phase transition like in a real
gas system. On the other hand, once (T > Tc), the system
displays one-phase behavior and is in fact an ideal with an
empty set of phase transitions.

The present step applies a different thermodynamic poten-
tial to achieve a perfect disclosure of the phase transition of
the BH system. In particular, the Gibbs free energy is a ther-
modynamic quantity calculated from the Euclidean action
with an appropriate limit term. A fruitful feature resulting
from the sign of Gibbs free energy enables for a global sta-
bility analysis. In the extended phase space, the thermody-
namic potential is now the Gibbs free energyG = M−T S =
H − T S. In practice, it should be noted that any discontin-
uous behavior in the first- or second-order derivatives of the
Gibbs energy leads to a first- or second-order phase transition
in the system. The Gibbs free energy is therefore given by

G = G(P, T ) = H − T S = M − T S

= 12

r+

{
− r2+

(
− 3 + 8P π r2+

)
+ 9Q2

+ r4+
(

B

A + 1

) 1
β+1

(
3

(
1

B

(
γ

r3+

)(A+1)(β+1)

+ 1

) 1
β+1

− 2 2F1[α, ν; λ; ξ ]
)}

(75)

To provide an appropriate analysis of the behavior of the
Gibbs free energy, either as a function of temperature or in
terms of the horizon radius, Figs. 8 and 9 easily show this

behavior. To start with, it is well known that Figs. 6 and 8
represent the same BH branches, where the same spectrum of
values corresponds to the same pressures. Therefore, the case
(P < Pc) generates a classic swallow-tail phenomenon on
the G–T diagram (Fig. 8), implying a first-order small/large
BH phase transition. In other words, the nonsmooth points on
the isobaric curves related to the G–T diagram are those of
the extreme points on the isobaric curve in the T –r diagram.
In the monitoring phase of the scenario considered, the swal-
lowtail gradually decreases in size, eventually disappearing
as pressure increases. Due to increasing pressure, the extreme
points of T on the isobaric curve move closer to each other
to converge at the critical pressure (P = Pc), and hence, any
kind of first-order phase transition in the system disappears
completely. For P > Pc, G becomes a monotonic function
of T , indicating that no phase transition occurs in the sys-
tem. Some meaningful information from Gibbs free energy
is predicting the local stable BH system. By the way, the
sign of G claims the system is locally stable when (G < 0)

and unstable when (G > 0). For that reason, Fig. 9 shows
graphically the behavior of Gibbs free energy as a function
of the horizon radius. Thus, it is observed for all the param-
eter space values that the BH system, in the overall view of
the horizon radius, is locally stable and, in contrast, unsta-
ble for small values of the horizon radius. Alternatively, one
can similarly inspect the same critical study from Fig. 8 as
previously mentioned.

5.1 Critical exponents

Critical exponents perfectly describe the behavior of physical
quantities in the vicinity of the critical point. Indeed, criti-
cal exponents are independent of such physical systems and
can be considered quasi-universal parameters. It is handy to
introduce the following notations:
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Fig. 8 The diagram G–T of the black hole system for certain values of the parameter space

Fig. 9 The G − r+ diagram of the black hole system for certain values of the parameter space

t = T

Tc
− 1, ω = V

Vc
− 1, p = P

Pc
, (76)

in which the critical thermodynamic volume Vc is associated

with the critical event horizon radius rc by Vc = r3
c
6 . The

critical exponents are explicitly defined in the following way:

CV ∝ |t |−α (77)

η ∝ |t |λ (78)

κT ∝ |t |−γ (79)

|P − Pc| ∝ |V − Vc|δ. (80)

The exponent α describes the behavior of specific heat at
a constant volume. It is easy to conclude that the entropy S
is independent of the Hawking temperature T , thus

CV = T

(
∂S

∂T

)
V

= 0, (81)

hence it can be deduced that α = 0.
The exponent β describes the behavior of the order param-

eter near the critical point. It is then possible to expand the
equation of state near the critical point in

p = C + C1 t + C2 ω + C3 tω + C4 ω2 + C5 ω3

+O(tω2, ω4), (82)

where

C = 1

8π Pc r4
c

{
r2
c

(
r2
c

(
A + 1

B

)− 1
β+1

×
(

1

B

(
γ

r3
c

)
(A+1)(β+1) + 1

) 1
β+1 + 4πrcTc − 1

)
+ Q2

}
, (83)
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C1 = −C3 = Tc
2Pc rc

, (84)

C2 = C4 = 0, (85)

C5 = − 1

16π Pc r4
c

( (
γ

r3
c

)(A+1)(β+1) + B

)3

(
A + 1

B

)− 1
β+1

×
{

8B3
(
A + 1

B

) 1
β+1 (

r2
c (πrcTc − 1) + 5Q2

)

+ B2
(

γ

r3
c

)(A+1)(β+1) (
24

(
A + 1

B

) 1
β+1

×
(
r2
c (πrcTc − 1) + 5Q2

)
+ F

(
1

B

(
γ

r3
c

)(A+1)(β+1)

+ 1

) 1
β+1

)

+ B

(
γ

r3
c

)2(A+1)(β+1) (
24

(
A + 1

B

) 1
β+1

×
(
r2
c (πrcTc − 1) + 5Q2

)
+ G

(
1

B

( γ

rc3

)(A+1)(β+1) + 1

) 1
β+1

)

+
(

γ

r3
c

)3(A+1)(β+1) (
8

(
A + 1

B

) 1
β+1

×
(
r2
c (πrcTc − 1) + 5Q2

)
+ H

(
1

B

(
γ

r3
c

)(A+1)(β+1)

+ 1

) 1
β+1

)}
,

(86)

where

F = (A + 1)(3A(β + 1)

+3β + 4)(3A(β + 1) + 3β + 5) r4
c

G = −(A + 1)(3A(β − 2) + 3β − 10)(3A(β + 1)

+3β + 4) r4
c

H = (A + 1)(3A + 4)(3A + 5) r4
c

Accordingly, in terms of numerical results, the dependencies
of the coefficients Ci on the parameters Q and β are presented
in the Table 3.

As the pressure remains constant during the phase transi-
tion, one can have

C + C1 t + C3 tωl + C5 ω3
l = C + C1 t + C3 tωs + C5 ω3

s .

(87)

where ωs and ωl are the reduced volumes of the small and
large BHs, respectively.

In addition, Maxwell’s equal area law is simply given by
the following formula

∫ ωl

ωl

ω
dp

dω
dω = 0, (88)

and considering the first derivative so that

dp

dω
= C3 t + 3 C5 ω2. (89)

Exploiting Eqs. (88) and (89) yield the following finding:

C3 t (ω
2
s − ω2

l ) + 3

2
C5(ω

4
s − ω4

l ) = 0. (90)

from which, with Eq. (87), it is possible to find an explicit
link between ωl and ωs in the following form:

ωl = −ωs =
√

−C3

C5
t (91)

where the argument under the square root function remains
positive. A quick look at Eq. (91) yields the desired results,
namely

η = Vl − Vs = Vc(ωl − ωs) = 2Vc ωl ∝ √−t (92)

which provides λ = 1/2.
The exponent γ describes the critical behavior of the

isothermal compressibility κT given explicitly by

κT = − 1

V

∂V

∂P

∣∣∣∣
Vc

= − 1

Pc

1
∂p
∂ω

∣∣∣∣
ω=0

∝ 2rc
Tc

t−1 (93)

giving rise to γ = 1.
The exponent δ is in charge of describing the critical

behavior of Eq. (80) on the critical isotherm T = Tc. So,
the shape of the critical isotherm is defined at t = 0 provid-
ing the following finding:

|P − Pc| = Pc|p − 1| = Pc |C5 ω3| = Pc |C5|
V 3
c

|V − Vc|3

(94)

which easily proves δ = 3.
From the aforementioned findings it is clear that the four

critical exponents are precisely the ones obtained previously
for charged AdS BHs. This in fact demonstrates that the MCG
does not alter the critical exponents, similar to quintessential
dark energy. Thus, the universality profile of VdW-like phase
transitions and the values of critical exponents for AdS BHs
have been ascertained.

6 Thermal geometries

Based on the arguments set out in the introduction, this sec-
tion focuses on providing an appropriate analysis of the phase
transition for our charged BH solution using GT tools. Atten-
tion is paid to examining the shape of the metric in regard
to Ruppeiner, Weinhold, HPEM, and Quevedo theoretic. So,
the Weinhold shape can be given in mass representation as
[120]

gWjk = ∂ j∂k M(S, Q, �). (95)

For a charged AdS BH, the line element appears as follows:

ds2
W = MSS dS2 + M�� d�2 + MQQ dQ2 + 2MS� dSd�
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+ 2MSQ dSdQ + 2M�Q d�dQ (96)

Or, in terms of mass matrix representation, the formulation
is given explicitly as

gW =
⎛
⎝MSS MS� MSQ

M�S M�� 0
MQS 0 MQQ

⎞
⎠ (97)

Similarly, in Ruppeiner formalism one considers entropy as
basic thermodynamic potential,

gR
jk = ∂ j∂k S. (98)

It is worth noting that the Ruppeiner metric is linked to the
Weinhold metric through a conformal transformation, yield-
ing the following defining expression [121]:

ds2
R = 1

T
ds2

W (99)

Or, in terms of mass matrix representation, one has

gR = 1

T

⎛
⎝MSS MS� MSQ

M�S M�� 0
MQS 0 MQQ

⎞
⎠ . (100)

It should be noted that the treatment will be carried out in
terms of pressure, which is related to the derivative of the
AdS length by the following expression:

∂� = − 3

16π�

∂P

P2 . (101)

In order to properly examine an interesting discussion of
the GT tools in the essence of our BH solution in extended
phase space, Figs. 10 and 11 provide the necessary analysis in
this regard. To begin with, the Weinhold and Ruppeiner struc-
tures provide an analysis concerning a certain gauge param-
eter space, which is illustrated in Fig. 10. It is observed that
the zero of the heat capacity yields a divergent scalar curva-
ture, as in the case where the Weinhold scalar curvature has a
negative divergent point. This negative divergent point coin-
cides with the physical limitation point of the heat capacity
at r�

1 = 1.63453. Moreover, the application of the Wein-
hold geometry is compatible with the realm interpretation
of the GTs tools. However, the Ruppeiner scalar curvature
has three divergent points, one of which is positive. With
care, the positive divergence point is shown to coincide with
a physical limitation point (the root of the heat capacity at
0) at rdiv

1 = 1.94108. Furthermore, another coincidence is
demonstrated between the Ruppeiener scalar curvature and
the phase transition critical point at r�

1 = 1.63453. Therefore,
the Ruppeiener structure offers valuable information.

To get a better approach to the BH phase transition anal-
ysis, it might be useful to apply geometrical thermodynam-
ics, such as the HPEM and Quevedo tools. In particular, the

Quevedo metric is expressed as follows

g =
(
Ec ∂�

∂Ec

)(
ηabδ

bc ∂2�

∂Ec∂Ed
dEa dEd

)
(102)

where

∂�

∂Ec
= δcb I

b. (103)

Within this structure, �, I b, and Ea represent the ther-
modynamic potential and intense and extended variables,
respectively, On the other hand, the generalized HPEM met-
ric labeled by n extended variables is given in such a way as
[49,51,121]

dS2
HPEM = S MS(∏n

i=2
∂2M
∂ξ2

i

)3

(
−MSSdS2 +

n∑
i=2

(
∂2M

∂ξ2
i

)
dφ2

i

)
.

(104)

Here, ξ(ξ �= S), MS = ∂M
∂S , and MSS = ∂2M

∂S2 are extensive
parameters, respectively. So, the background of metrics is
easily expressed as follows [49,51,121]:

dS2
HPEM = S MS(

∂2M
∂�2

∂2M
∂Q2

)3

(−MSSdS2 + M��d�2 + MQQdQ2)

(105)

dS2
QI = (

SMS + �M� + QMQ
)

× (−MSSdS2 + M��d�2 + MQQdQ2) (106)

dS2
QI I = SMS

(−MSSdS2 + M��d�2 + MQQdQ2) (107)

By the way, Ricci scalars employed in making these mea-
surements have the following denominator [51,121]

denom(R) =

⎧⎪⎪⎨
⎪⎪⎩

2M2
SS S

3M3
S HPEM

2M2
SSM

2
QQM2

��

(
SMS + QMQ + �M�

)
Quevedo Classe I

2S3M2
SSM

2
QQM2

��
M3

S Quevedo Classe II

.(108)

To examine, at a graphical level, the behavior of the three
applying GT tools, Fig. 11 presents the relevant results. With
regard to the application of the HPEM geometry, the results
seem very interesting. This fascinating observation is due
to the presence of three divergent points of HPEM scalar
curvature, one of which is negative. It is clear that the negative
divergent point is perfectly aligned with the phase transition
critical point. Furthermore, it is clearly demonstrated that the
HEPM scalar curvature reaches zeros of the heat capacity at
r. In turn, the application of the Quevedo class provides two
divergent points, one of which is negative. Unlike the HPEM
scalar curvature, the divergence of the scalar curvature is at
the zero point of the heat capacity. Moreover, the negative
divergent point coincides with the phase transition critical
point. What remains to be discussed is the application of
Quevedo Class II. It can be seen that the critical point of the
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Fig. 10 Curvature scalar
variation of Weinhold and
Ruppeiner metrics for Q = 0.8,
B = 1, γ = 1, A = 0.1,
β = 0.1 and
P = 0.0306 (P < Pc)

Fig. 11 Curvature scalar
variation of HPEM and Quevedo
metrics for Q = 0.8, B = 1,
γ = 1, A = 0.1, β = 0.1 and
P = 0.0306 (P < Pc)
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phase transition coincides with the positive divergent point
of the corresponding scalar curvature.

7 Conclusion

A number of cosmological challenges aim to reveal the uni-
fied dark fluid as an unknown energy component of the uni-
versal dark sector. What is more, the unified dark fluid is a
hybrid of dark matter and dark energy, making it a candi-
date for the so-called Chaplygin gas. Spurred by this insight,
we constructed an exact static, spherically symmetrically
charged AdS BH solution with a surrounding MCG. Taking
advantage of the MCG equation of state p = Aρ−B/ρβ , we
established its energy density with respect to the radial coor-
dinate. To verify the singularity and uniqueness of the BH,
we have performed an examination based on scalar invari-
ants. This showed that the BH solution is singular for a
given parameter space and absolutely unique. Furthermore,
we have investigated the classical energy conditions for the
MCG and concluded that it admits the null and weak energy
conditions but violates the strong energy condition. Further,
the BH solution is graphically represented according to the
permitted values on the parameter space.

As part of this work, we have inspected, within the
extended phase space, different thermodynamic quantities,
and the modified first law of thermodynamics, along with
the Smarr relations, have been established. The frame of the
extended phase space, together with the statement of BH
chemistry, is helpful to consider the P–V criticality. There-
fore, we have managed the P–V criticality for the charged
AdS BH endowed with MCG structure and discovered a
generic small/large BH phase transition, which is analogous
to the liquid/gas phase transition of VdW. Furthermore, the
critical exponents are shown to be similar to those of the VdW
fluid. Furthermore, the heat capacity at constant pressure is
said to show the thermal local stability of the BH solution.
Indeed, we have shown, according to the sign of the heat
capacity, that our BH solution is locally thermally stable.

Among ordinary predictions of the phase transition crit-
ical point, GT tools are alternatively used to predict certain
correlations. In this way, we have applied some tools from
the GT background in the extended phase space, such as
Weinhlold, Ruppeiner, HPEM, and Quevedo classes I and
II. The examination showed consistent results between the
GT scalar curvature and the physical limitation point (the
root of the heat capacity at 0) or the critical phase transition
point of the heat capacity (divergent point). In essence, the
microstructures are thereby defined precisely for all classes
of GT tools and according to the curvature scalar sign.

This work raises certain questions and will be a subject
for revealing thermodynamic topology or discovering aspects
such as the Joule-Thomson expansion. On the other hand,

quasinormal modes and shadow behavior, as well as the angle
of deflection, are topics that could be addressed in the future.
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