
Perturbative renormalization of the supercurrent operator in lattice N = 1
supersymmetric Yang-Mills theory

G. Bergner,1,* M. Costa,2† H. Panagopoulos ,2,‡ I. Soler ,1,§ and G. Spanoudes 3,∥
1University of Jena, Institute for Theoretical Physics, Max-Wien-Platz 1, D-07743 Jena, Germany

2Department of Physics, University of Cyprus, 1 Panepistimiou Avenue, 2109 Aglantzia, Nicosia, Cyprus
3Computation-based Science and Technology Research Center,
The Cyprus Institute, 20 Kavafi Str., Nicosia 2121, Cyprus

(Received 11 May 2022; accepted 18 July 2022; published 4 August 2022)

In this work we perform a perturbative study of the Noether supercurrent operator in the context of
supersymmetric N ¼ 1 Yang-Mills theory on the lattice. The supercurrent mixes with several other
operators, some of which are not gauge invariant, having the same quantum numbers. We determine, to
one-loop order, the renormalization and all corresponding mixing coefficients by computing the relevant
Green’s functions of each one of the mixing operators with external elementary fields. Our calculations are
performed both in dimensional and lattice regularization. From the first regularization we obtain the MS-
renormalized Green’s functions; comparison of the latter with the corresponding Green’s functions in the
lattice regularization leads to the extraction of the lattice renormalization factors and mixing coefficients in
the MS scheme. The lattice calculations are performed to lowest order in the lattice spacing, using Wilson
gluons and clover improved gluinos. The lattice results can be used in nonperturbative studies of
supersymmetric Ward identities.
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I. INTRODUCTION

Supersymmetry (SUSY) has a variety of applications in
modern quantum field theory. The most well known are
possible extensions of the standard model of particle
physics and theoretical considerations like the gauge/
gravity duality. In supersymmetric extensions of the
standard model SUSY is expected to emerge at very
high energies and it provides dark matter candidates,
arising from the lightest supersymmetric particles. Super-
symmetric extensions of the standard model would also
resolve the hierarchy problem. In theoretical considera-
tions, the symmetry constrains the strongly interacting state
of gauge theories such that analytical predictions and
conjectures are possible. These theories are typically
models with extended supersymmetry such as N ¼ 4
supersymmetric Yang-Mills (SYM) theory.

In order to check and extend theoretical predictions for
strongly coupled supersymmetric gauge theories, numerical
investigations of lattice gauge theory would be desirable.
However, it is unavoidable to break supersymmetry in any
nontrivial theory on the lattice. SUSY is recovered in the
continuum limit via fine-tuning of the lattice theory.
A signal for fine-tuning is provided by supersymmetric
Ward identities. However, the SUSYWard identities usually
involve a substantial mixing with different operators. It is
our aim to investigate the extent to which perturbative
estimates can provide some insights for this operatormixing.
Our long term aim is to find strategies that might be used for
theories with scalar fields like supersymmetric QCD. In
these theories a large number of mixing terms appear and
additional insights about mixing coefficients are essential.
Wewill start, however,with a simpler case,where themixing
terms can be evaluated nonperturbatively. This allows one to
check the relevance of perturbative estimates.
In this work, we consider the N ¼ 1 supersymmetric

Yang-Mills theory with gauge group SUðNcÞ, which
describes the strong interactions between gluons and
gluinos, the superpartners of the gluons. SYM shares some
of the fundamental properties of supersymmetric theories
containing quarks and squarks, while at the same time it is
amenable to high-accuracy nonperturbative investigations;
it is thus an ideal forerunner to the future study of theories
containing more superfields.
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In any SUSY theory there exists a conserved current for
each generator of the SUSYalgebra. The current associated
with this algebra is called supercurrent. On the lattice, the
supercurrent divergence is proportional to the gluino mass,
and Ward identities involving the supercurrent operator are
used to renormalize it nonperturbatively [1]. Furthermore,
other operators sharing the same quantum numbers emerge
beyond the classical level.
In this work, we use clover improved fermions and

Wilson gluons to study the supercurrent operator. Its
renormalization and its mixing patterns with gauge invari-
ant and noninvariant operators will be extracted from the
computation of its one-loop Green’s functions with external
elementary fields. Such Green’s functions are not gauge
independent and will be evaluated for arbitrary covariant
gauge. The lattice action is chosen similar to the one used in
large scale simulations [2,3].
After presenting the basics of the computational setup

(Sec. II), we calculate the renormalization of the super-
current (Sec. III) both in dimensional (Sec. III A) and lattice
(Sec. III B) regularizations, using the MS renormalization
scheme. Finally, in Sec. IV we provide a short outlook.

II. COMPUTATIONAL SETUP FOR THE
RENORMALIZATION OF THE SUPERCURRENT

OPERATOR

The supercurrent stems from the application of Noether’s
theorem to supersymmetric transformations [4] of the SYM
Lagrangian:

LSYM → LSYM þ δξLSYM; ð1Þ

δξLSYM ¼ ξ̄∂μYμ and the parameter ξ is a Grassmann
spinor; the definition of the supercurrent is given by

ξ̄Sμ ¼ ξ̄

�
Σiδξϕi

∂LSYM

∂ð∂μϕiÞ
− Yμ

�
; ð2Þ

where the index i runs over all degrees of freedom (ϕi) in
LSYM. Our studies have been performed in the Wess-
Zumino (WZ) gauge. In this gauge, the SYM Lagrangian
contains the gluon (uμ) and gluino (λ) fields, as well as an
auxiliary field; the latter is eliminated, either by applying its
equation of motion (classical case), or by functionally
integrating over it (quantum case). Thus, the Lagrangian of
SYM, in Minkowski space, becomes

LSYM¼−
1

4
uαμνuαμνþ

i
2
λ̄αγμDμλ

α;

uμν¼∂μuν−∂νuμþ ig½uμ;uν�; Dμλ¼ ∂μλþ ig½uμ;λ�:
ð3Þ

This definition includes the coupling constant g and the
field strength tensor uμν ¼ uαμνTα as well as the gluino field

λ ¼ λαTα that are representedwith generators of the SUðNcÞ
algebra Tα normalized such that trcðTαTβÞ ¼ 1

2
δαβ.

LSYM is invariant, up to a total derivative, under the
following supersymmetric transformation:

δξuαμ ¼ −iξ̄γμλα;

δξλ
α ¼ 1

4
uαμν½γμ; γν�ξ: ð4Þ

Given that the renormalized theory does not depend on the
choice of a gauge-fixing term, and given that many
regularizations, in particular the lattice regularization,
violate supersymmetry at intermediate steps, one may as
well choose the standard covariant gauge-fixing term,
proportional to ð∂μuμÞ2, rather than a supersymmetric
variant [5,6]. The total SYM action thus includes the
gauge-fixing term and the corresponding term involving
the ghost field cα which arises from the Faddeev-Popov
procedure. The total action is no longer gauge invariant, but
it is Becchi-Rouet-Stora-Tyutin (BRST) invariant. The
BRST transformation on all fields of the total action is
as follows:

uαμ → uαμ þ ð∂μca þ gfαβγcβuγμÞη;
λα → λα − gfαβγcβλγη;

cα → cα −
g
2
fαβγcβcγη;

c̄α → c̄α þ 1

α
∂μuαμη; ð5Þ

where fαβγ are the structure constants of SUðNcÞ, η is the
Grassmann parameter of the BRST transformation, and α in
the last line of Eq. (5) is the gauge parameter.
Using the transformations of Eq. (4) on LSYM one

obtains:

Yμ ¼ −2itrcðuμνγνλÞ −
i
4
trcðuρσ½γρ; γσ�γμλÞ: ð6Þ

From this point on, we will switch to Euclidean space, as
required by the calculation of lattice Green’s functions. Use
of Eqs. (2) and (6) leads to the supercurrent operator Sμ [7],
which in Euclidean space takes the form:

Sμ ¼ −
1

2
trcðuρσ½γρ; γσ�γμλÞ: ð7Þ

The γ-trace anomaly of this operator [8] plays a significant
role in the spectrum of SYM and it has phenomenological
interest; Sμ is also involved in nonperturbative investiga-
tions of SYM on the lattice via the supersymmetric Ward
identity. A proper study of Sμ must address the fact that it
mixes with a number of other operators upon renormaliza-
tion. These operators must have the same transformation
properties under global symmetries [e.g., Lorentz, or
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hypercubic on the lattice, global SUðNcÞ transformations,
ghost number, etc.] and their dimension must be lower than
or equal to that of Sμ. There are altogether four classes of
such operators, as follows [9]:
(1) Class G: Gauge invariant operators.
(2) Class A: BRST variation of operators.
(3) Class B: Operators which vanish by the equations of

motion.
(4) Class C: Any other operators which respect the same

global symmetries, but do not belong to the above
classes. These can at most have finite mixing with Sμ
[9]; thus, in a renormalization schemewhich employs
minimal subtraction, such operators do not mix.

In particular, class G contains another dimension 7=2
gauge invariant operator (see Ref. [1] and references
therein). In the literature, it is denoted as

Tμ ¼ 2trcðuμνγνλÞ: ð8Þ

Exploiting the nilpotency of the BRST transformations, we
determine the operators of class A. By Eq. (5), the operators
must necessarily have the same index structure as Sμ, i.e.,
one free spinor index, one Lorentz index, no free color, and
zero ghost number; in addition, their dimensionality must
not exceed 7=2. This requirement leaves only one candi-
date, OA1, for the class A operators:

δBRSTðc̄αγμλαÞ ¼
1

α
ð∂νuανÞγμλαηþ gfαβγ c̄αcβγμλγη: ð9Þ

The operator OA1 is BRST invariant modulo equations of
motion. In general, class A operators have vanishing matrix
elements in physical external states with transverse polari-
zation. However, they must be correctly taken into account
for the renormalization of Sμ. Similar comments apply to
classes B and C.
For class B operators we check the equations of motion

for the gluino and gluon fields. Taking into account that
operators must have zero ghost number and that the gluon
equation of motion has already dimension 3, we conclude
that only the gluino equation of motion may contribute; we
must also multiply it by a factor of uμ or =uγμ, and take the
trace over color indices, in order to render it colorless [i.e.,
invariant under global SUðNcÞ transformations]. This leads
to two class B operators. Note that we could neglect such
operators by studying exclusively on-shell Green’s func-
tions, as is done, e.g., in Ref. [10]; however, for the sake of
a more thorough elucidation of the mixing pattern, we have
chosen to study more general Green’s functions.
We present all candidate gauge noninvariant operators

which can mix with Sμ and belong to classes A, B, C1:

OA1 ¼
1

α
trcðð∂νuνÞγμλÞ − igtrcð½c; c̄�γμλÞ; ð10Þ

OB1 ¼ trcðuμ=DλÞ; ð11Þ

OB2 ¼ trcð=uγμ=DλÞ; ð12Þ

OC1 ¼ trcðuμλÞ; ð13Þ

OC2 ¼ trcð=uγμλÞ; ð14Þ

OC3 ¼ trcð=u∂μλÞ; ð15Þ

OC4 ¼ trcðð∂μ=uÞλÞ; ð16Þ

OC5 ¼ trcðð∂νuνÞγμλÞ; ð17Þ

OC6 ¼ trcðuνγμ∂νλÞ; ð18Þ

OC7 ¼ igtrcð½uρ; uσ�½γρ; γσ�γμλÞ; ð19Þ

OC8 ¼ igtrcð½uμ; uν�γνλÞ; ð20Þ

OC9 ¼ igtrcð½c; c̄�γμλÞ: ð21Þ

The same gauge noninvariant operators may mix with Tμ

given that they share the same quantum numbers; we
will also compute the renormalization factor and the
mixing coefficients for Tμ. The operators OC1;OC2 are
of lower dimension and thus they do not mix with Sμ in
dimensional regularization; they may however show up on
the lattice. Note that class C operators cannot contribute in
the continuum for the purpose of MS renormalization.
However, they may give finite mixing coefficients on the
lattice. In producing the minimal list of mixing operators
[Eqs. (10)–(21)], we have also exploited the fact that charge
conjugation C is a symmetry of the action, valid both in the
continuum and lattice formulations of the theory:

C∶

8>>>>><
>>>>>:

λαðxÞTα → −λαðxÞðTαÞ�
cαðxÞTα → −cαðxÞðTαÞ�
c̄αðxÞTα → −c̄αðxÞðTαÞ�
uαμðxÞTα → −uαμðxÞðTαÞ�; μ ¼ 0; 1; 2; 3:

ð22Þ

The mixing matrix is a 14 × 14 square block upper
triangular matrix.2 The renormalized supercurrent can be
written as a linear combination of these operators:

1Operators OC5 and OC9, taken together with OA1, are linearly
dependent; however, keeping both of them in the list affords us
with additional consistency checks.

2This is due to the fact that [9] class G=A=B=C operators can
mix with class ðG;A;B;CÞ=ðA;B;CÞ=ðB;CÞ=ðCÞ operators.
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SRμ ¼ ZSSSBμ þ ZSTTB
μ þ ZSA1OB

A1

þ
X2
i¼1

ZSBiOB
Bi þ

X9
i¼1

ZSCiOB
Ci: ð23Þ

Equation (23) defines the first row of the mixing matrix.
We are also interested in deriving the second row of this
matrix:

TR
μ ¼ ZTSSBμ þ ZTTTB

μ þ ZTA1OB
A1

þ
X2
i¼1

ZTBiOB
Bi þ

X9
i¼1

ZTCiOB
Ci; ð24Þ

where the renormalization factors are the diagonal matrix
elements Zii ¼ 1þOðg2Þ and the mixing coefficients are
the off-diagonal (i ≠ j) elements Zij ¼ Oðg2Þ. Each Z
should more properly be denoted as ZB;R where B is the
regularization (B ¼ LR: lattice, DR: dimensional regulari-
zation, etc.) and R the renormalization scheme (MS, etc.).
In order to calculate the one-loop renormalization factors

and the mixing coefficients in Eqs. (23) and (24), we
compute the two-point Green’s functions of Sμ and Tμ with
one external gluino and one external gluon fields (Fig. 1),
as well as three-point Green’s functions with external
gluino/gluon/gluon fields (Fig. 2) and with external
gluino/ghost/antighost fields (Fig. 3).
In a gauge invariant renormalization scheme (GIRS)

[11,12], only gauge invariant Green’s functions are
involved. Since the mixing of gauge noninvariant operators
leads to vanishing contributions in such Green’s functions,
the mixing matrix becomes effectively a 2 × 2 matrix
which involves only ZSS; ZTT; ZST; ZTS. Preliminary results
for this scheme are shown in Ref. [13]; further perturbative
and nonperturbative results in the GIRS and for a different
discretization will be published in a follow-up paper [14].
The renormalization conditions involve the renormaliza-

tion factors of the gluon, gluino, ghost, and coupling
constant. For completeness, we present the definitions of
these factors:

uRμ ¼
ffiffiffiffiffiffi
Zu

p
uBμ ; ð25Þ

λR ¼
ffiffiffiffiffi
Zλ

p
λB; ð26Þ

cR ¼
ffiffiffiffiffi
Zc

p
cB; ð27Þ

gR ¼ Zgμ
−ϵgB; ð28Þ

where μ is an arbitrary scale with dimensions of inverse
length. For one-loop calculations, the distinction between
gR and μ−ϵgB is inessential in many cases; we will
simply use g in those cases. Our results are presented as
functions of the MS scale μ̄ which is related to μ

through3 μ ¼ μ̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eγE=4π

p
.

In perturbation theory, the external fields in the Green’s
functions are the Fourier transformed fields and the oper-
ators are defined in position space. As is shown in Table I the
tree-level Green’s functionwith the same external fields give
contributions which may depend on more than one external
momentum qi; this is a consequence of the absence of
momentum conservation since there is no summation/
integration over the position of the operators. Although this
seems to complicate things it is a way to disentangle the
mixing patterns. The one-loop Feynman diagrams contrib-
uting to the two-point Green’s function of Sμ, huνSμλ̄i, are
shown in Fig. 1. In Figs. 2 and 3, we present the one-loop
Feynman diagrams contributing to the three-point Green’s
functions huνuρSμλ̄i and hcSμc̄ λ̄i, respectively. An analo-
gous computation is also carried out for the corresponding
Green’s functions of operator Tμ. Since Tμ is gauge
invariant, it will be involved in the GIRS; the results
presented here can then be checked for consistency with
the ones calculated using the GIRS in Ref. [14].
Previous studies on the renormalization of the super-

current on the lattice exist in the literature [1,10,15–18]. In
Refs. [1,15,16], SUSY Ward identities involve the gluino
mass, which receives an additive renormalization (critical
mass) and the mixing with Tμ is taken into account.
Reference [10] investigates perturbatively the mixing
behavior of the supercurrent with the on-shell condition
for gluino momentum and mass using Wilson gluinos and
gluons. Further, in Ref. [19], the gradient flow technique is
used to study the renormalization of the supercurrent in the
N ¼ 1 SYM.

III. RESULTS

An unambiguous extraction of all mixing coefficients
and renormalization constants of the operators Sμ
and Tμ entails a careful selection of the appropriate
Green’s functions and a choice of the external momenta.
In particular, we calculate two-point and three-point

FIG. 1. One-loop Feynman diagrams contributing to the two-
point Green’s functions huνSμλ̄i and huνTμλ̄i. A wavy (dashed)
line represents gluons (gluinos). A cross denotes the insertion of
SμðTμÞ. Diagrams 2, 4 do not appear in dimensional regulariza-
tion; they do however show up in the lattice formulation.

3γE is Euler’s constant: γE ¼ 0.57721….
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Green’s functions of Sμ and Tμ using both dimensional
regularization (continuum), where we regularize the theory
in D dimensions (D ¼ 4 − 2ϵ) and lattice regularization.
The continuum Green’s functions will be used in order to
calculate the renormalized Green’s functions in the MS
scheme, which are necessary ingredients for the renorm-
alization conditions on the lattice.
Taking into account the potential IR divergences, we

calculate the corresponding diagrams by setting to zero
only one gluon or gluino external momentum. The differ-
ence between the MS-renormalized Green’s functions and
the corresponding Green’s functions regularized on the
lattice allows us to deduce the one-loop renormalizations
and mixing coefficients on the lattice.

FIG. 3. One-loop Feynman diagrams contributing to the three-
point Green’s functions hcSμc̄ λ̄i and hcTμc̄ λ̄i. A wavy (dashed)
line represents gluons (gluinos). A cross denotes the insertion of
the operator. The “double dashed” line is the ghost field.
Diagrams 1 and 2 do not appear in dimensional regularization;
they do however show up in the lattice formulation.

FIG. 2. One-loop Feynman diagrams contributing to the three-point Green’s functions huνuρSμλ̄i and huνuρTμλ̄i. Awavy (dashed) line
represents gluons (gluinos). Diagrams 1, 2, 3, 5, 6, 11, and 13 do not appear in dimensional regularization but they contribute in the
lattice regularization. A cross denotes the insertion of the operator. A mirror version (under exchange of the two external gluons) of
diagrams 3, 4, 5, 6, 8, 10, 14, 15 and 16 must also be included.
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The novelty in our one-loop results is that we calculate
the complete mixing patterns of the supercurrent operator
perturbatively. More precisely, we use gauge variant
off-shell Green’s functions; we obtain analytic expressions
for the renormalization factors and mixing coefficients,
where the number of colors, Nc, the coupling constant g,
the gauge parameter, α, and the clover/Wilson parameters,
cSW=r (on the lattice) are left unspecified.

A. Results for Green’s functions and for the mixing
matrix in dimensional regularization (DR)

In this subsection we present continuum results on bare
Green’s functions of the composite operators, Sμ and Tμ,
with external elementary quantum fields in the momentum
space. We will use the MS renormalization scheme. The
divergent parts (1=ϵ) of the one-loop contributions are
expected to contain tensorial structures of the tree-level
Green’s functions of some of the mixing operators. For this

reason we present, in Table I, the expressions for the tree-
level two-point and three-point Green’s functions of the
operators Sμ and Tμ, and of all gauge noninvariant operators
which could mix with them. Notice that in Table I, the
Green’s functions with external gluinos, gluons and ghosts,
h uα1ν ð−q1ÞOiðxÞλ̄α2ðq2 Þitreeamp, h uα1ν ð−q1 Þuα2ρ ð −q2ÞOiðxÞ
λ̄α3ðq3Þitreeamp, hcα3ðq3ÞOiðxÞc̄α2ðq2Þλ̄α1ðq1Þitreeamp, are shown
apart from overall exponential and color factors, which are
understood.
We first present the continuum results of each one-loop

two-point Green’s function of Sμ and Tμ. Use of generic
values of the external momenta q1 and q2 lead to results
which are very lengthy expressions, involving polylogar-
ithms of the momenta; however, for the extraction of all Z
factors in Eqs. (23) and (24) we need only consider specific
values of q1 and q2. In particular, a sufficient set of values
consists of the following three choices: (q2 ¼ 0), (q1 ¼ 0),
(q2 ¼ −q1). For the choice q2 ¼ 0, we find

huα1ν ð−q1ÞSμλ̄α2ðq2ÞiampjDR
q2¼0 ¼ −iδα1α2eiq1xð=q1γν − q1νÞγμ þ i

g2Nc

16π2
1

2
δα1α2eiq1x

×

�
ðγνγμ=q1 þ γμq1νÞ

�
3ð1 − αÞ

2ϵ
þ 23

2
þ α2

2
þ 3ð1 − αÞ

2
log

�
μ̄2

q21

��

− γνq1μ

�
3ð1 − αÞ

ϵ
þ 15þ α2 þ 3ð1 − αÞ log

�
μ̄2

q21

��
− 4

�
=q1q1μq1ν

q21
þ =q1δμν

��
: ð29Þ

TABLE I. The two-point and three-point tree-level Green’s functions of Sμ and Tμ as well as of gauge noninvariant operators which
may mix with Sμ. huα1ν ð−q1ÞOiðxÞλ̄α2ðq2Þitreeamp and huα1ν ð−q1Þuα2ρ ð−q2ÞOiðxÞλ̄α3ðq3Þitreeamp are shown apart from an overall factor of

δα1α2eix·ðq1þq2Þ and fα1α2α3eix·ðq1þq2þq3Þ, respectively. Similarly, the tree-level parts of the three-point Green’s functions
hcα3ðq3ÞOiðxÞc̄α2ðq2Þλ̄α1ðq1Þitreeamp are shown apart from an overall factor of fα1α2α3eix·ðq1−q2þq3Þ.

Operators
Tree-level two-point Green’s function

(external legs: uνλ̄)
Tree-level three-point Green’s function

(external legs: uνuρλ̄)
Tree-level three-point Green’s function

(external legs: cc̄ λ̄)

Sμ −ið=q1γν − q1νÞγμ g½γν; γρ�γμ=2 0
Tμ iðq1μγν − =q1δμνÞ −gðδμνγρ þ δμργνÞ 0
OA1 iq1νγμ=ð2αÞ 0 ðg=2Þγμ
OB1 iδμν=q2=2 −gðδνμγρ þ δρμγνÞ=2 0
OB2 iγνγμ=q2=2 −2gγνγμγρ 0
OC1 δμν=2 0 0
OC2 γνγμ=2 0 0
OC3 iγνq2μ=2 0 0
OC4 iγνq1μ=2 0 0
OC5 iγμq1ν=2 0 0
OC6 iγμq2ν=2 0 0
OC7 0 −g½γν; γρ�γμ 0
OC8 0 −gðδνμγρ þ δρμγνÞ=2 0
OC9 0 0 −ðg=2Þγμ
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The above Green’s function is not proportional to its tree-level value, but the pole parts (1=ϵ) are. In the MS scheme
renormalization factors depend only on pole parts; removing these parts from Eq. (29), we are left with the MS-
renormalized Green’s function. The latter will be utilized in the extraction of the lattice renormalization factors later. The
result of the two-point Green’s function for the same choice of external momentum and insertion of Tμ, is

huα1ν ð−q1ÞTμλ̄
α2ðq2ÞiampjDR

q2¼0 ¼ −iδα1α2eiq1xðq1μγν − =q1δμνÞ þ i
g2Nc

16π2
1

2
δα1α2eiq1x

�
ðγνγμ=q1 þ γμq1νÞ

�
3

ϵ
þ 9þ 3 log

�
μ̄2

q21

��

− γνq1μ

�
3ð1 − αÞ

2ϵ
þ 15

2
þ α2

2
þ 3ð1 − αÞ

2
log

�
μ̄2

q21

��

þ =q1δμν

�
−
3ð3þ αÞ

2ϵ
−
17

2
þ αþ α2

2
−
3ð3þ αÞ

2
log

�
μ̄2

q21

��
− 2

=q1q1μq1ν
q21

�
ð30Þ

From Eq. (30) we will calculate ZTT and ZTS as well as the mixing with other operators of Eqs. (10)–(21) at one-loop level.
For the choice q1 ¼ 0, we find

huα1ν ð−q1ÞSμλ̄α2ðq2ÞiampjDR
q1¼0 ¼ i

g2Nc

16π2
1

2
δα1α2eiq2x

�
γνγμ=q2

�
1 −

1

2ϵ
−
1

2
log

�
μ̄2

q22

��

þ γμq2ν − 2γνq2μ − =q2δμν

�
2þ 1

ϵ
þ log

�
μ̄2

q22

���
: ð31Þ

Notice that the Green’s function of Sμ for the choice q1 ¼ 0 [Eq. (31)] is gauge independent. On the contrary, the same
Green’s function with the operator insertion Tμ is not:

huα1ν ð−q1ÞTμλ̄
α2ðq2ÞiampjDR

q1¼0 ¼ i
g2Nc

16π2
1

2
δα1α2eiq2x

�
γνγμ=q2

�
2þ α

2ϵ
þ 2þ αþ 2þ α

2
log

�
μ̄2

q22

��

− γνq2μ

�
2

ϵ
þ 4þ αþ 2 log

�
μ̄2

q22

��
þ =q2δμν

�
−2þ 2α

ϵ
− 2þ 2αþ ð−2þ 2αÞ log

�
μ̄2

q22

���
:

ð32Þ

For the choice q2 ¼ −q1, we find

huα1ν ð−q1ÞSμλ̄α2ðq2ÞiampjDR
q2¼−q1 ¼−iδα1α2ð=q1γν−q1νÞγμþ i

g2Nc

16π2
1

2
δα1α2

�
γνγμ=q1

�
4−3α

2ϵ
þ11

2
þαþα2

2
þ4−3α

2
log

�
μ̄2

q21

��

þγμq1ν

�
3ð−1þαÞ

ϵ
−5−4α−α2þ3ð−1þαÞ log

�
μ̄2

q21

��
þ=q1δμν

�
1

ϵ
−4−2αþ log

�
μ̄2

q21

��

−γνq1μ

�
3ð1−αÞ

ϵ
þ5þ4αþα2þ3ð1−αÞ log

�
μ̄2

q21

��
þ4α

=q1q1μq1ν
q21

�
; ð33Þ

huα1ν ð−q1ÞTμλ̄
α2ðq2ÞiampjDR

q2¼−q1 ¼ iδα1α2ðq1μγν − =q1δμνÞ þ i
g2Nc

16π2
1

2
δα1α2

�
γνγμ=q1

�
4 − α

2ϵ
þ 4þ 4 − α

2
log

�
μ̄2

q21

��

þ γμq1ν

�
3

ϵ
þ 6þ αþ 3 log

�
μ̄2

q21

��
þ γνq1μ

�
1þ 3α

2ϵ
þ 1

2
− α −

α2

2
þ 1þ 3α

2
log

�
μ̄2

q21

��

þ =q1δμν

�
−5 − 7α

2ϵ
− 4 −

13

2
− 4αþ α2

2
þ −5 − 7α

2
log

�
μ̄2

q21

��
þ 2α

=q1q1μq1ν
q21

�
: ð34Þ

In order to calculate all mixing coefficients, we also need to consider three-point Green’s functions. We begin with the
Green’s function with two external gluon fields and one gluino field. A single choice of external momenta is sufficient in
this case: (q2 ¼ 0, q3 ¼ −q1). The result for Sμ is4

4Note the presence of Zg, which is required to one loop in this case.
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huα1ν ð−q1Þuα2ρ ð−q2ÞSμλ̄α3ðq3ÞiampjDR
q2¼0;q3¼−q1¼gRfα1α2α3

1

2
½γν;γρ�γμZ−1

g

−
ðgRÞ3Nc

16π2
fα1α2α3

�
γνγργμ

�
1−2α
2ε

þ5

2
þα

4
þα2

4
þ1−2α

2
log

�
μ̄2

q21

��

þδνργμ

�
−
1−2α
2ε

−
29

16
þα

8
−
α2

4
−
1−2α
2

log

�
μ̄2

q21

��
þδνμγρ

�
19

8
þ3α

4

�

þδμργν

�
−
11

4
þα

2

�
þγνγμ

=q1q1ρ
q2

�
21

16
−
13α

8
−
α2

4

�
−γνγρ

=q1q1μ
q2

�
9

8
þα

4

�

−γργμ
=q1q1ν
q2

�
11

16
þα

4

�
þδνμ

=q1q1ρ
q21

�
7

8
þ3α

4

�
−δνρ

=q1q1μ
q21

�
5

4
þ5α

2

�

þδμρ
=q1q1ν
q21

�
5

8
−
3α

2

�
−γμ

q1νq1ρ
q21

�
3

8
þ9α

4
þα2

4

�
þγν

q1ρq1μ
q21

�
1

2
þ9α

2
þα2

2

�

−γρ
q1νq1μ
q21

�
1

4
þ3α

2

�
þð1þ3αÞ=q1q1νq1ρq1μ

q41

�
. ð35Þ

Computing the above three-point Green’s function for Tμ to one loop, we find

huα1ν ð−q1Þuα2ρ ð−q2ÞTμλ̄
α3ðq3ÞiampjDR

q2¼0;q3¼−q1 ¼−gRðδμνγρþδμργνÞZ−1
g

−
ðgRÞ3Nc

16π2
fα1α2α3

�
γνγργμ

�
1

ε
þ5

2
þα

2
þ log

�
μ̄2

q21

��

−δνργμ

�
1

ε
þ3þαþ log

�
μ̄2

q21

��

þδνμγρ

�
3þ2α

2ε
þ59

16
þ9α

8
−
α2

4
þ3þ2α

2
log

�
μ̄2

q21

��

þδμργν

�
−
3þ2α

2ε
−
31

8
−
α

2
þα2

4
−
3þ2α

2
log

�
μ̄2

q21

��

þγνγμ
=q1q1ρ
q2

�
19

8
−
α

4

�
−γνγρ

=q1q1μ
q2

�
9

16
þα

8

�
−

7

16
γργμ

=q1q1ν
q2

−δνμ
=q1q1ρ
q21

�
3þ3α

4
þα2

4

�
−δνρ

=q1q1μ
q21

�
5

8
þ5α

4

�
þδμρ

=q1q1ν
q21

�
1

2
−α

�

þγμ
q1νq1ρ
q21

�
11

4
−
α

4

�
þγν

q1ρq1μ
q21

�
1

4
þ9α

4
þα2

4

�
−γρ

q1νq1μ
q21

�
1

8
þ3α

4

�

þ1þ3α

2

=q1q1νq1ρq1μ
q41

�
. ð36Þ

Lastly, the gluino-ghost-antighost Green’s functions of the
operators Sμ, Tμ are shown in the following equations for a
specific choice of the external momenta and they
will allow us to check that the mixing coefficients ZSC9

andZTC9 vanish in continuum regularization andMSrenorm-
alization scheme as expected. Our results for the Green’s
function with external gluino, antighost, and ghost fields are

hca3ðq3ÞSμc̄a2ðq2Þλ̄a1ðq1ÞiampjDR
q1¼q2;q3¼0

¼ −
g3Nc

16π2
fα1α2α3α

�
1

4
γμ −

=q1q1μ
q21

�
; ð37Þ

hca3ðq3ÞTμc̄a2ðq2Þλ̄a1ðq1ÞiampjDR
q1¼q2;q3¼0

¼ g3Nc

16π2
fα1α2α3α

�
1

4
γμ þ

=q1q1μ
2q21

�
: ð38Þ

Equations (37) and (38) are necessarily pole free, since OC9
belongs to class C. Calculation of the sameGreen’s functions
on the lattice will determine whether a (finite) mixing

coefficient zL;MS
SC9 and zL;MS

TC9 will be necessary in order to
match Eq. (37) and Eq. (38), respectively.
The renormalization conditions involve the renormaliza-

tion factors of the external fields as well as of parameters
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that show up in the bare Green’s functions. In the MS scheme, the conditions amount to the requirement that renormalized

Green’s functions be finite functions of the renormalized parameters, and that all contributions to ZDR;MS factors contain
only poles in ϵ. Thus, applied to the gluino-gluon Green’s function of the operator Sμ, the condition reads to one loop,

huRν SRμ λ̄Riampj1=ϵ ¼ 0; where huRν SRμ λ̄Riamp ¼ Z−1=2
λ Z−1=2

u huBν SRμ λ̄Biamp ¼ Z−1=2
λ Z−1=2

u ZSShuBν SBμ λ̄Biamp

þ ZSThuBν Tμ
Bλ̄Bitreeamp þ ZSA1huBνOB

A1λ̄
Bitreeamp þ

X2
i¼1

ZSBihuBνOB
Biλ̄

Bitreeamp

þ
X6
i¼1

ZSCihuBνOB
Ciλ̄

Bitreeamp þOðg4Þ: ð39Þ

Similarly for the operator Tμ:

huRν TR
μ λ̄

Riampj1=ϵ ¼ 0; where huRν TR
μ λ̄

Riamp ¼ Z−1=2
λ Z−1=2

u ZTThuBν SBμ λ̄Biamp þ ZTShuBν SμBλ̄Bitreeamp

þ ZTA1huBνOB
A1λ̄

Bitreeamp þ
X2
i¼1

ZTBihuBνOB
Biλ̄

Bitreeamp

þ
X6
i¼1

ZTCihuBνOB
Ciλ̄

Bitreeamp þOðg4Þ: ð40Þ

In order to determine all of the above mixing coeffi-
cients, we also need to impose a set of renormalization
conditions on three-point Green’s functions. We will study
two such Green’s functions for each operator. The first one
involves two external gluons and one gluino,

huRν uRρSRμ λ̄Riampj1=ϵ ¼ 0; similarly for Tμ: ð41Þ

The second one involves external gluon, antighost, and
ghost fields:

hcRSRμ c̄Rλ̄Riampj1=ϵ ¼ 0; similarly for Tμ: ð42Þ

Given that, in these cases, a power of gB appears already at
tree level, the one-loop expression for Zg must be used in
renormalizing g; this is shown explicitly in Eqs. (35) and
(36). Strictly speaking, in the two-point Green’s functions
of Eqs. (39) and (40) as well as the three-point Green’s
functions of Eqs. (41) and (42), one must take the regulator
to its limit value (i.e., ϵ → 0 in dimensional regularization
or a → 0 on the lattice). This limit is convergent, provided
all renormalization factors and mixing coefficients, Z, have
been appropriately chosen.
Results for the renormalization of the external fields and

of the coupling constant have been already calculated in
Ref. [20] and for the sake of completeness are shown for
DR in Eqs. (43)–(46).

ZDR;MS
u ¼ 1 −

g2Nc

16π2
1þ α

2ϵ
; ð43Þ

ZDR;MS
λ ¼ 1þ g2Nc

16π2
α

ϵ
; ð44Þ

ZDR;MS
c ¼ 1 −

g2Nc

16π2
3 − α

4ϵ
; ð45Þ

ZDR;MS
g ¼ 1þ g2Nc

16π2
3

2ϵ
: ð46Þ

Imposing the renormalization condition, Eq. (39), on
the two-point functions is sufficient in order to obtain
the renormalization of the supercurrent ZSS. Notice that the
pole parts in Eq. (29) are proportional to the tree-level
Green’s function of Sμ and thus there is no mixing with
Tμ, OA1, OC4, OC5: ZST ¼ ZSA1 ¼ ZSC4 ¼ ZSC5 ¼ 0.
Operators OC1 and OC2 are of lower dimensionality and
they will not mix in the continuum regularization:
ZSC1 ¼ ZSC2 ¼ 0. By imposing the renormalization con-
dition of Eq. (39) and demanding the left-hand side to be
finite, ZSS is determined to be

ZDR;MS
SS ¼ 1þOðg4Þ: ð47Þ

From the conceptual point of view, the case of the super-
current is quite similar to any nonanomalous conserved
current since it receives no quantum corrections in the
continuum.
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From Eqs. (29)–(38) and the renormalization conditions
Eqs. (39)–(42) we determine to one loop:

ZDR;MS
ST ¼ 0; ð48Þ

ZDR;MS
SA1 ¼ 0; ð49Þ

ZDR;MS
SB1 ¼ g2

16π2
1

ϵ
Nc; ð50Þ

ZDR;MS
SB2 ¼ g2

16π2
1

2ϵ
Nc; ð51Þ

ZDR;MS
SCi ¼ 0; i ¼ 1; 2;…; 9; ð52Þ

ZDR;MS
TT ¼ 1 −

g2

16π2
3

ϵ
Nc; ð53Þ

ZDR;MS
TS ¼ g2

16π2
3

2ϵ
Nc; ð54Þ

ZDR;MS
TA1 ¼ 0; ð55Þ

ZDR;MS
TB1 ¼ g2

16π2
2

ϵ
Nc; ð56Þ

ZDR;MS
TB2 ¼ −

g2

16π2
1

2ϵ
Nc; ð57Þ

ZDR;MS
TCi ¼ 0; i ¼ 1; 2;…; 9: ð58Þ

As was expected, in the continuum there is no mixing
with class C operators. We also see that operators Sμ and Tμ

do not mix with the class A operator; however, they both
mix with the class B operators. Note that Tμ mixes [21]
with Sμ, but not vice versa; its mixing coefficient ZTS is
gauge independent in the MS scheme as should be for any
gauge invariant operator.
The pole-free parts of the Green’s functions in Eqs. (29)–

(38) are the MS-renormalized Green’s functions which are
essential ingredients in order to extract the lattice renorm-
alization factors and mixing coefficients.

B. Results for Green’s functions and for the mixing
matrix in the lattice regularization

In this subsection, we present our results for the
renormalization factors and the mixing coefficients in the
lattice regularization (LR) and in the MS scheme, as
defined in the previous subsection. We make use of
the Wilson formulation on the lattice, with the addition
of the clover (SW) term for gluino fields. In this discre-
tization, the Euclidean action SL

SYM on the lattice becomes

SL
SYM ¼ a4

X
x

�
Nc

g2
X
μ;ν

�
1 −

1

Nc
TrUμν

�
þ
X
μ

�
Trðλ̄γμDμλÞ −

ar
2
Trðλ̄D2λÞ

�
−
X
μ;ν

�
cSWa
4

λ̄ασμν
ˆ̃F
αβ
μνλ

β

�
þm0Trðλ̄λÞ

�

ð59Þ

where (setting a to 1 from this point on)

UμνðxÞ ¼ Ux;xþμUxþμ;xþμþνUxþμþν;xþνUxþν;x and Uxþμ;x ≡U†
x;xþμ: ð60Þ

ˆ̃F
ab
μν is defined in the adjoint representation as

ˆ̃F
αβ
μν ¼

1

8
ðQ̃αβ

μν − Q̃αβ
νμÞ ð61Þ

Q̃αβ
μν ¼ 2trcðTαUx;xþμUxþμ;xþμþνUxþμþν;xþνUxþν;xTβUx;xþνUxþν;xþμþνUxþμþν;xþμUxþμ;x

þ TαUx;xþνUxþν;xþν−μUxþν−μ;x−μUx−μ;xTβUx;x−μUx−μ;x−μþνUx−μþν;xþνUxþν;x

þ TαUx;x−μUx−μ;x−μ−νUx−μ−ν;x−νUx−ν;xTβUx;x−νUx−ν;x−μ−νUx−μ−ν;x−μUx−μ;x

þ TαUx;x−νUx−ν;x−νþμUx−νþμ;xþμUxþμ;xTβUx;xþμUxþμ;xþμ−νUxþμ−ν;x−μUx−ν;xÞ: ð62Þ
The definitions of the covariant derivatives are as follows:

DμλðxÞ≡ 1

2
½Ux;xþμλðxþ μÞUxþμ;x −Ux;x−μλðx − μÞUx−μ;xÞ�; ð63Þ

D2λðxÞ≡X
μ

½Ux;xþμλðxþ μÞUxþμ;x − 2λðxÞ þ Ux;x−μλðx − μÞUx−μ;x�: ð64Þ
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The “Lagrangian mass” m0 is a free parameter in principle
and is related to the bare gluino mass. This term breaks
supersymmetry softly. All renormalization factors which
we will be calculating must be evaluated at vanishing
renormalized mass, that is, when m0 is set equal to the
critical value which ensures a massless gluino in the
continuum limit. However, since our calculations are at
one-loop order, this critical value is irrelevant, being
already of order g2. Note also that as in the continnum,
a gauge-fixing term, together with the compensating ghost
field term, must be added to the action, in order to avoid
divergences from the integration over gauge orbits; these
terms, as well as the standard “measure” part of the lattice
action are the same as in the nonsupersymmetric case [22].
The lattice analog of the BRST transformations of the
continuum action is shown in Refs. [15,22]. Further details
of the lattice action can be found in Ref. [23].
Equation (59) is invariant under the local gauge trans-

formations

U0
x;xþμ ¼ G−1ðxÞUx;xþμGðxþ μÞ;
λ0ðxÞ ¼ G−1ðxÞλðxÞGðxÞ; ð65Þ

whereGðxÞ is an element of the SUðNcÞ gauge group in the
fundamental representation. These gauge transformations
commute with the lattice supersymmetry transformations
(cf. [15])

δξUx;xþμ ¼ gξ̄γμλðxÞUx;xþμ;

δξλðxÞ ¼
1

4
½γμ; γν�UμνðxÞξ=ðigÞ: ð66Þ

The lattice discretization of operators Sμ, Tμ is not
unique, and alternative variants have been considered in
the literature, e.g., [10,16]. A standard definition which we
adopt in this work is

Sμ ¼ −
1

2
trcðF̂ρσ½γρ; γσ�γμλÞ; Tμ ¼ 2trcðF̂μνγνλÞ; ð67Þ

where

F̂μν ¼
1

8ig
ðQμν −QνμÞ;

Qμν ¼ Ux;xþμUxþμ;xþμþνUxþμþν;xþνUxþν;x

þUx;xþνUxþν;xþν−μUxþν−μ;x−μUx−μ;x

þUx;x−μUx−μ;x−μ−νUx−μ−ν;x−νUx−ν;x

þUx;x−νUx−ν;x−νþμUx−νþμ;xþμUxþμ;x: ð68Þ

Both MS-renormalized and bare Green’s functions have
the same tensorial structures. As is expected by renorma-
lizability, the difference between the one-loop MS-renor-
malized Green’s functions [Eqs. (29)–(38), with 1=ϵ → 0]
and the corresponding bare lattice Green’s functions must
be polynomial in the external momenta. The resulting
expressions for the difference between the two-point MS-
renormalized and lattice bare Green’s functions of Sμ are
given below in Eqs. (69)–(71).
In these expressions, we have included only terms which

do not vanish in the limit a → 0. Higher order terms in a are
also of interest to practitioners, since they help eliminate
lattice artifacts from the corresponding nonperturbative
Green’s functions; a procedure to this effect has been
employed in different contexts, by us and by other groups
(see, e.g., Refs. [24–27]). Ideally, the elimination of
artifacts would circumvent the need to carry out a con-
tinuum extrapolation; however, this is not attainable since,
in the absence of such an extrapolation, terms of OðgmanÞ,
(m > 2; n > 0), which are beyond computational feasibil-
ity, would begin to dominate. In any case, the calculation of
higher order contributions5 would be the subject of further
investigation, beyond the scope of the present work.
In order to perform the lattice integrals

R
d4p over loop

4-momenta pμ (−π ≤ pμ ≤ π), we first approximate them
by a sum over a hypercubic mesh of L4 points with varying
L (4 ≤ L ≤ 128), omitting points corresponding to the
(integrable) poles, and then extrapolate to the limit L → ∞.
The systematic errors, coming from this extrapolation, are
smaller than the last digit we present in all the results which
follow.

huα1ν ð−q1ÞSμλ̄α2ðq2ÞiampjMS
q1¼0 − huα1ν ð−q1ÞSμλ̄α2ðq2ÞiampjLRq1¼0

¼ i
g2Nc

16π2
1

2
δα1α2eiq2x ×

�
γνγμ=q2

�
0.80802 −

1

2
log ða2μ̄2Þ

�
− =q2δμνð0.38395þ log ða2μ̄2ÞÞ

�
; ð69Þ

5Note that such contributions cannot be extracted analytically as functions of the external momentum q; rather, they must be
computed numerically for every relevant value of q.
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huα1ν ð−q1ÞSμλ̄α2ðq2ÞiampjMS
q2¼0 − huα1ν ð−q1ÞSμλ̄α2ðq2ÞiampjLRq2¼0

¼ i
g2

16π2
1

2
δα1α2eiq1x ×

�
39.47842

Nc
ðγνγμ=q1 þ γμq1νÞ−

78.95683
Nc

γνq1μ þNc

�
−5.99999=q1δμν þ γνq1μ5.99722

þ ðγνγμ=q1 þ γμq1ν − 2γνq1μÞ
�
−30.57429þ 5.17830α− 4.55519c2SW þ 5.3771cSWrþ

3

2
ð1− αÞ log ða2μ̄2Þ

���
; ð70Þ

huα1ν ð−q1ÞSμλ̄α2ðq2ÞiampjMS
q2¼−q1 − huα1ν ð−q1ÞSμλ̄α2ðq2ÞiampjLRq2¼−q1

¼ i
g2

16π2
1

2
δα1α2 ×

�
39.47842

Nc
ðγνγμ=q1 þ γμq1νÞ−

78.95683
Nc

γνq1μ þNc

�
0.80802γμq1ν þ 4.38396γνq1μ þ

1

2
γνγμ=q1 log ða2μ̄2Þ

þ ðγνγμ=q1 þ γμq1ν − 2γνq1μÞ
�
−31.38231þ 5.17830α− 4.55519c2SW þ 5.37708cSWrþ 2 log ða2μ̄2Þ− 3

2
α log ða2μ̄2Þ

�

þ=q1δμνð−5.61605þ log ða2μ̄2ÞÞ
��

: ð71Þ

Similarly, the expressions for the Green’s functions with an external gluon and gluino fields and operator insertion of Tμ

are as follows:

huα1ν ð−q1ÞTμλ̄
α2ðq2ÞiampjMS

q1¼0 − huα1ν ð−q1ÞTμλ̄
α2ðq2ÞiampjLRq1¼0

¼ i
g2Nc

16π2
1

2
δα1α2eiq2x

�
γνγμ=q2

�
0.19198þ 1

2
log ða2μ̄2Þ

�
þ =q2δμνð0.23209 − 2 log ða2μ̄2ÞÞ

�
; ð72Þ

huα1ν ð−q1ÞTμλ̄
α2ðq2ÞiampjMS

q2¼0 − huα1ν ð−q1ÞTμλ̄
α2ðq2ÞiampjLRq2¼0

¼ i
g2

16π2
1

2
δα1α2eiq1x ×

�
39.47842

Nc
ðγνγμ=q1 þ γμq1νÞ þ Nc

�
−41.73349=q1δμν þ ðγνγμ=q1 þ γμq1νÞð4.07960 − 4.57771c2SW

þ 5.73984cSWrþ 3 log ða2μ̄2ÞÞ þ γμq1νð4.07960 − 4.57771c2SW − 3.73984cSWrþ 3 log ða2μ̄2ÞÞ

þ γνq1μ

�
33.57429þ 5.17830αþ 4.55519c2SW − 5.37708cSWr −

3

2
ð1þ αÞ log ða2μ̄2Þ

���
; ð73Þ

huα1ν ð−q1ÞTμλ̄
α2ðq2ÞiampjMS

q2¼−q1 − huα1ν ð−q1ÞTμλ̄
α2ðq2ÞiampjLRq2¼−q1

¼ i
g2

16π2
1

2
δα1α2 ×

�
39.47842

Nc
ð=q1δμν þ γνq1μÞ þ Nc

�
γνγμ=q1

�
3.88762 − 4.57771c2SW − 3.73984cSWrþ

5

2
log ða2μ̄2Þ

−
3

2
α log ða2μ̄2Þ

�
þ =q1δμν

�
−41.96558þ 5.17830αþ 4.60023c2SW þ 12.85677cSWr −

1

2
ð5þ 3αÞ log ða2μ̄2Þ

�

þ γμq1νð4.07960 − 4.57771c2SW þ 3.73984cSWrþ 3 log ða2μ̄2ÞÞ

þ γνq1μ

�
33.57429 − 5.17830αþ 9.11039c2SW −

3

2
ð1 − αÞ log ða2μ̄2Þ

���
: ð74Þ

The absence of q-independent terms in Eqs. (69)–(74) signal that the lower-dimensional operators OC1 and OC2 do not
mix with either Sμ or Tμ.
The quantities ZLR;MS

u , ZLR;MS
λ , ZLR;MS

g , and ZLR;MS
c , appearing in the renormalization conditions on the lattice, have been

calculated in previous works [20,23] at one-loop level. The first three renormalization factors are computed in Ref. [20]; for
a self-contained presentation, they are shown below:

ZLR;MS
u ¼ 1þ g2Nc

16π2

�
19.7392

1

N2
c
− 18.5638þ 1.3863αþ 18.8508c2SW − 1.5939cSWrþ

�
3

2
þ α

2

�
logða2μ̄2Þ

�
; ð75Þ
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ZLR;MS
λ ¼ 1 −

g2Nc

16π2
ð12.8524þ 3.7920ð1 − αÞ − 5.5891c2SW − 4.4977cSWrþ α logða2μ̄2ÞÞ; ð76Þ

ZLR;MS
g ¼ 1þ g2

16π2

�
−9.8696

1

Nc
þ Nc

�
12.8904þ 0.7969cSWr − 9.4254c2SW −

3

2
logða2μ̄2Þ

��
: ð77Þ

In Ref. [23] we calculate ZL;MS
c , using Wilson gluinos

without clover term. Since the ghost propagator does not
involve gluino fields at one loop, the clover term will not
affect this one-loop renormalization factor:

ZLR;MS
c ¼1−

g2Nc

16π2

�
3.6086−1.2029α−

1

4
ð3−αÞlogða2μ̄2Þ

�
:

ð78Þ

Starting from the two-point Green’s function with the
choice q2 ¼ 0, we obtain the following one-loop results:

ZLR;MS
SS ¼ 1þ g2

16π2

�
−9.86960

Nc
þ Ncð−2.3170

þ 14.49751c2SW − 1.23662cSWrÞ
�
; ð79Þ

ZLR;MS
ST ¼ g2

16π2
3Nc; ð80Þ

ZLR;MS
SA1 ¼ ZLR;MS

SC4
¼ ZLR;MS

SC5 ¼ 0; ð81Þ

ZLR;MS
TT ¼1þ g2

16π2

�
−9.86960

Nc
þNcð3.26262þ9.91980c2SW

−4.97646cSWrþ3 logða2μ̄2ÞÞ
�
; ð82Þ

ZLR;MS
TS ¼ g2

16π2
Nc

�
−2.03980þ 2.28886c2SW

þ 1.86992cSWr −
3

2
log ða2μ̄2Þ

�
; ð83Þ

ZLR;MS
TA1 ¼ ZLR;MS

TC4 ¼ ZLR;MS
TC5 ¼ 0: ð84Þ

An important feature of the supercurrent operator is that its
renormalization is finite: this is in line with its classical
conservation. The mixing with Tμ on the lattice is in
agreement with Ref. [10], where it is mentioned that ZST is
related to the γ-trace anomaly [28] corresponding to
superconformal symmetry breaking and is identical to
the one loop level β function.
Since for the choice q2 ¼ 0 the tree-level two-point

Green’s functions of OB1;OB1;OC3;OC6 vanish, we evalu-
ate the two-point Green’s functions at q1 ¼ 0, leading to

ZLR;MS
SB1 ¼ g2

16π2
Ncð−0.38395 − log ða2μ̄2ÞÞ; ð85Þ

ZLR;MS
SB2 ¼ g2

16π2
Nc

�
0.80802 −

1

2
log ða2μ̄2Þ

�
; ð86Þ

ZLR;MS
SC3 ¼ ZLR;MS

SC6 ¼ 0; ð87Þ

ZLR;MS
TB1 ¼ g2

16π2
Ncð0.23209 − 2 log ða2μ̄2ÞÞ; ð88Þ

ZLR;MS
TB2 ¼ g2

16π2
Nc

�
0.19197þ 1

2
log ða2μ̄2Þ

�
; ð89Þ

ZLR;MS
TC3 ¼ ZLR;MS

TC6 ¼ 0: ð90Þ

All of the above are consistent with the continuum by
checking the pole parts and the logarithmic divergences in
the lattice spacing. At this point, we check the Green’s
functions for the choice q2 ¼ −q1; we find agreement with
the above results.
The three-point Green’s functions determine the mixing

with OC7, OC8, and OC9. Their results are shown below:

huα1ν ð−q1Þuα2ρ ð−q2ÞSμλ̄α3ðq3ÞiampjMS
q2¼0;q3¼−q1 − huα1ν ð−q1Þuα2ρ ð−q2ÞSμλ̄α3ðq3ÞiampjLRq2¼0;q3¼−q1

¼ g3Nc

16π2
fα1α2α3

�
þðδνργμ − γνγργμÞ

�
19.73920

N2
c

− 12.48660þ 3.28231α − 2.27761c2SW þ 2.68854cSWr

þ 1 − 2α

2
log

�
μ̄2

q21

��
− 2δνμγρ þ 2δμργν

�
; ð91Þ
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huα1ν ð−q1Þuα2ρ ð−q2ÞTμλ̄
α3ðq3ÞiampjMS

q2¼0;q3¼−q1 − huα1ν ð−q1Þuα2ρ ð−q2ÞTμλ̄
α3ðq3ÞiampjLRq2¼0;q3¼−q1

¼ g3Nc

16π2
fα1α2α3

�
ðγνγργμ − δνργμÞð−1.84782þ 2.28886c2SW þ 1.86992cSWr − log ða2μ̄2ÞÞ

þ ðδνμγρ − δμργνÞ
�
19.7392

N2
c

− 17.1822þ 3.2823αþ 2.30011c2sw þ 6.42838cSWr −
�
3

2
þ α

�
log ða2μ̄2Þ

��
: ð92Þ

Following the same procedure for extracting the mixing of
Sμ and Tμ with OC7, OC8, we use Eq. (91) and Eq. (92),
respectively. We find that there is no mixing with these
operators to one loop:

ZLR;MS
SC7 ¼ ZLR;MS

SC8 ¼ 0; ð93Þ

ZLR;MS
TC7 ¼ ZLR;MS

TC8 ¼ 0: ð94Þ

In contrast, the lattice Green’s functions containing
gluino-ghost-antighost external fields are identical to the
continuum ones in Eqs. (37)–(38) at one-loop order; thus,
there is also no mixing either Sμ or Tμ with OC9.
Thus, to one-loop order on the lattice, Sμ and Tμ do not

mix with class A and class C operators. However, they do
mix with the gauge variant operators of class B,
cf. Eqs. (85)–(89).

IV. SUMMARY AND FUTURE PLANS

In this paper we address the mixing which occurs among
the supercurrent operator, Sμ, and the mixing operator, Tμ,
beyond tree level with a number of gauge noninvariant
operators, using lattice perturbation theory. We employ the
Wilson plaquette action for the gluon fields and the Wilson
fermion action with the clover improvement for the gluino
fields.
Extensions of the present work include the application to

other actions currently used in numerical simulations,
including fermion actions with stout smearing and
improved gluon actions [2,3]. In these cases, additional
contributions to the renormalization factors are more
convergent, and thus their perturbative treatment is con-
ceptually more straightforward; nevertheless, the sheer size
of the vertices renders the computation quite cumbersome.

The results are a first starting point for a nonperturbative
calculation of supersymmetric Ward identities and a tuning
of the lattice action towards the supersymmetric limit.
Depending on the method one wishes to employ for
computing Green’s functions of the supercurrent operator
nonperturbatively, a renormalization scheme other than MS
may be more appropriate. In particular, one may employ an
extension of the X-space scheme, the gauge invariant
renormalization scheme, in which conditions need to be
imposed on two-point and three-point Green’s functions.
And in doing so, the new renormalizations and mixing
coefficients in GIRS, ZL;GIRS

SS , ZL;GIRS
TT , and ZL;GIRS

ST , ZL;GIRS
TS

will be related to ZL;MS
SS , ZL;MS

TT and ZL;MS
ST , ZL;MS

TS via a 2 × 2

regularization-independent conversion matrix, whose ele-
ments are finite functions of the renormalized coupling. In
fact, these relevant matrix elements are directly obtainable
from continuum calculation. In Ref. [14], we aim to present
the nonperturbative results in the GIRS along with con-
version factors taking us from GIRS to MS.
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