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Abstract The possibility of testing gravity theories with
the help of gravitational wave detections has become an inter-
esting arena of recent research. In this paper, we follow this
direction by investigating the quasinormal modes (QNMs) of
the axial perturbations for charged black holes in the Palatini-
type theories of gravity, specifically (1) the Palatini f(R)
gravity coupled with Born-Infeld nonlinear electrodynamics
and (2) the Eddington-inspired-Born-Infeld gravity (EiBI)
coupled with Maxwell electromagnetic fields. The coupled
master equations describing perturbations of charged black
holes in these theories are obtained with the tetrad formalism.
By using the Wentzel-Kramers-Brillouin (WKB) method up
to 6th order, we calculate the QNM frequencies of the EiBI
charged black holes, the Einstein-Born-Infeld black holes,
and the Born-Infeld charged black holes within the Palatini
R + aR? gravity. The QNM spectra of these black holes
would deviate from those of the Reissner-Nordstrom black
hole. In addition, we study the QNMs in the eikonal limit and
find that for the axial perturbations of the EiBI charged black
holes, the link between the eikonal QNMs and the unstable
null circular orbit around the black hole is violated.

1 Introduction

It is quite fair to say that one of the most enchanting events of
recent discovery in modern physics is the direct detection of
gravitational waves (GWs) from the coalescence of binary
black holes [1,2]. The reason why the direct detections of
GW signals are so appealing is that they not only confirm
the predictions of Einstein’s general relativity (GR) once
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again, but also render GWs spectacularly a suitable tool for
human being to hear deep into the sky far beyond the reach of
electromagnetic signals. Not long after the first detection of
GWs, the LIGO-VIRGO collaboration succeeded in detect-
ing the GWs emitted from the merger of binary neutron stars,
with an accurate localization of the source [3]. The prompt
and accompanied electromagnetic signals emitted from the
source were also detected. This outstanding accomplishment
has initiated a new era of multi-messenger astronomy.

In addition, the direct detections of GWs could help us
to test other gravitational theories, or even to falsify some
extended theories of gravity [4]. In fact, one of the reasons to
consider extended theories of gravity is that GR inevitability
predicts the existence of spacetime singularities like the big
bang singularity and the black hole singularity. To amelio-
rate these spacetime singularities, one may resort to some
extended theories of gravity which modify Einstein equation
at the large curvature limits, but reduce to GR when curvature
becomes small. Within the new era of GW astronomy, one
plausible way to test these extended theories of gravity, for
instance, is via the speed of GWs, as was done in Refs. [5-9].

Another interesting aspect regarding GW detections could
be the ringdown signals in the final stage of a merger event.
Essentially, the final product of a merger event, no matter
if seeded from binary black holes or from binary neutron
stars, is usually a black hole. Before the final black hole set-
tles itself, there is an intermediate stage where the distortion
of the black hole is gradually relieved, with the emission of
GWs. In practice, the ringdown stage can be described by
the theory of black hole perturbations and the frequencies
of the GWs are featured by quasinormal modes (QNMs). In
this stage, the distorted black hole can be regarded as a dis-
sipative system. The perturbations have a discrete spectrum
and the QNM frequencies are complex numbers. The real
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part of the frequencies describes the oscillations of the per-
turbations and the imaginary part corresponds to the decay of
the amplitude. Interestingly, these QNM frequencies merely
depend on the parameters characterizing the black holes, such
as the mass, the charge, and the spin. If there are additional
parameters appearing in the underlying theory, these param-
eters should manifest themselves in the QNM spectra. Along
this direction of research, the QNM:s of black holes in several
gravity theories have been investigated, such as in the Horn-
deski gravity [10-14], metric f(R) gravity [15—17], massive
gravity [18, 19], Einstein-dilaton-Gauss-Bonnet gravity [20—
23], the Randall-Sundrum braneworld model [24], Horava-
Lifshitz gravity [25], higher dimensional black holes [26—
28], and Einstein-aether theory [29], etc. Furthermore, the
QNMs of some regular black holes [30,31] and the black
holes with non-commutative geometry [32,33] have been
analyzed in the literature. In addition, probing signatures
of the black hole phase transitions in modified theories of
gravity via QNMs has been shown to be possible [34]. See
Refs. [35-38] for nice reviews on the latest progress of the
field.

In this paper, as a further extension of our previous work
[39] in which the QNMs of massless scalar field perturba-
tions were studied, we consider the QNMs of the axial per-
turbations for the charged black holes in two Palatini-type
gravity theories: (1) the Palatini f(R) gravity coupled with
Born-Infeld nonlinear electrodynamics (NED) and (2) the
Eddington-inspired-Born-Infeld (EiBI) gravity coupled with
linear electromagnetic fields. To calculate the QNM frequen-
cies, we use the WKB method up to 6th order [40—43]. We
also calculate the QNMs in the eikonal limit in which the
multipole number [ — oo. Furthermore, the QNM frequen-
cies will be compared with those of the Reissner-Nordstrom
(RN) black hole in GR. Note as well that for the merger
events of binary neutron stars, the ringdown timescale is usu-
ally shorter than the timescale of charge neutralization of the
black hole [44]. This justifies to some extent the validity of
studying QNMs of charged black holes from the astrophysi-
cal point of view.

The charged black holes in the Palatini f(R) gravity cou-
pled with Born-Infeld NED have been studied in detail in
Ref. [45]. The black hole solutions are very close to the RN
black hole at the exterior spacetime, while deviate from it
inside the event horizon because of the Born-Infeld NED
source and the nonlinear function f(R). It has been shown
that there exist some regions in the parameter space where
the singularity inside the event horizon is replaced with a
finite size wormhole structure [46]. Moreover, one can con-
struct the Einstein-Born-Infeld (EBI) black hole by choosing
f(R) = R. The properties of this charged black hole have
been widely studied in the literature [47-50]. Again, due to
the Born-Infeld corrections from the NED source, the inte-

@ Springer

rior structure of the black hole would change significantly as
compared with that of the RN black hole in GR.

The EiBI gravity was formally proposed in Ref. [51]
to resolve the initial big bang singularity [52]. This theory
reduces to GR in vacuum but differs from it when matter is
included. The exact expressions and some interesting proper-
ties of the charged black holes in the EiBI theory were stud-
ied in Refs. [53,54] (see Ref. [55] for a review on the EiBI
gravity). Due to the Born-Infeld corrections from the gravity
sector, the interior structure of the black hole could deviate
from that of the RN black hole notably [S6—58]. One can then
compare the QNM frequencies of the EBI black holes and
those of the EiBI charged black holes to see how the Born-
Infeld structure from the matter and the gravitational sector
affects the QNMs.

This paper is outlined as follows. In Sect. 2, we briefly
review the tetrad formalism which will be used later to derive
the master equations describing the axial perturbations of the
black holes. In Sect. 3, the perturbed Maxwell equation for
NED is obtained for the sake of later convenience. In Sect.
4, we derive sequentially the coupled master equations of
the axial perturbations for charged black holes in the Pala-
tini f(R) gravity coupled with Born-Infeld NED and in the
EiBI gravity with linear electromagnetic fields. In Sect. 5, we
calculate the QNM frequencies of these charged black holes
by using the WKB semi-analytic method. The QNMs in the
eikonal limit are discussed as well. We finally conclude in
Sect. 6.

2 Tetrad formalism

To study the QNMs of the black holes of our interest, we
shall consider the perturbations of a static and spherically
symmetric spacetime. Without loss of generality, the per-
turbed spacetime can be described by a non-stationary and
axisymmetric metric in which the symmetrical axis is turned
in such a way that no ¢ dependence appears in the metric
functions. In general, the metric can be written as follows
[59]:

2 2
ds? = — e (dx0> +e2V (dx1 —odx"— qzdxz—q3dx3)

+ 22 (dxz)z ST (dx3)2 , @2.1)

where v, ¥, w2, U3, o, q2, and g3 are functions of time ¢
(t = x9), radial coordinate r (r = x2), and polar angle
6 (9 = x*). Because the system is axisymmetric, the metric
functions are independent of the azimuthal angle ¢ (¢ = x1).
In this work, the notation used in Ref. [59] is strictly followed.
The only difference is that the metric function w used in
Ref. [59] is replaced with ¢ in Eq. (2.1) since we will use w
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to denote the frequency of the perturbations later. Note that
in the background spacetime which is static and spherically
symmetric, we have 0 = g2 = g3 = 0.

To study the perturbations of the spacetime metric (2.1),
we will use the tetrad formalism in which one defines a basis
associated with the metric (2.1) [59]:

eﬁ))z(e_”, ge ", 0, O),

ey =10 €’ 0 0),

eé‘z):(()’ qgre M2, e H2, O),

ey = (0. gze™™, 0, e72), 2.2)
and

e = (", 0, 0, 0),

) =(-oe’, eV, —qe¥, —gse’),

e = (0. 0, e, 0),

el =(0, 0, 0, ™), (2.3)

where the tetrad indices are enclosed in parentheses to distin-
guish them from the tensor indices. The tetrad basis should
satisfy

(@) ,n _ ga@) (@ v _ v
o) = 0wy G Cw = O
€D = gun@®er,
g = Nwme e = ewpuel”. 24)

Conceptually, in the tetrad formalism we project the rele-
vant quantities defined on the coordinate basis of g, onto a
chosen basis of 1)) by constructing the tetrad basis corre-
spondingly. In practice, 7(4)(p) is usually assumed to be the
Minkowskian matrix

nwe =" = diag (=1,1,1,1). 2.5)
In this regard, any vector or tensor field can be projected onto

the tetrad frame in which the field can be expressed through
its tetrad components:

Ali = e,(f)A(a) R A(a) = eZz)Aﬂ’

Buv = efel” Bayty »  Biayb) = €(a() Buv- (2.6)

It has been shown in Ref. [59] that the master equa-
tions describing the gravitational perturbations of black holes
(Schwarzschild, RN, etc) can be obtained by using the tetrad
formalism in a straightforward and concise manner. One
should notice that in the tetrad formalism, the covariant (par-
tial) derivative in the original coordinate frame is replaced
with the intrinsic (directional) derivative in the tetrad frame.

For instance, the derivatives of an arbitrary rank two object
H,,, in the two frames can be related as follows [59]

—_ A "
Ha i) = €y Huvire() ()

= Ha®),(0)

=1 (Y@@ Hmy®) + Yoy Hiayimy) »

2.7)

where a vertical rule and a comma denote the intrinsic
and directional derivative with respect to the tetrad indices,
respectively. A semicolon denotes a covariant derivative with
respect to the tensor indices. Furthermore, the Ricci rotation
coefficients are defined by
— M v
Y©)@)(b) = €y e(a)v; n€(c)s (2.8)
and their components corresponding to the metric (2.1) are
given in Ref. [59].

3 Perturbed Maxwell equation for NED

In a gravity theory formulated upon the Palatini variational
principle, the matter Lagrangian is assumed to be coupled
with the physical metric g, only. Therefore, the matter fields
would follow the geodesics defined by this metric and the
conservation equation of the energy momentum tensor fol-
lows the standard form with respect to g,,. In this section,
we focus on the matter Lagrangian described by NED [45]:

S = é/d“x«/_—gl) (X,Y), 3.1

where we have set G = ¢ = 1, and ¢ (X, Y) is a function of
gauge field invariants defined by [45]:

1 1

X =2 FuF". = 5 Fun F™, (3.2)

where F*'V = %e‘“’"‘ﬂ Fyp is the dual of the field strength.
The standard Maxwell electromagnetic fields are recovered
when ¢(X,Y) = X; For the sake of simplicity, we will
assume a vanishing magnetic field, i.e., Y = 0, in the rest of
this paper.

For a gravitational theory minimally coupled to NED with
a purely radial electric field and no magnetic field, only the
(t,r) and (r, t) components, i.e. the (0, 2) and (2, 0) com-
ponents of the field strength F),, appear at the background
level. In the tetrad frame, the field strength F(4)) at the
background level satisfies [45]

Q*ev+,u.2

r2gx

)2 v _

0
Fop = Foyieyes” = Fooe . (33)
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where ¢px = d¢/d X and Q. is an integration constant which
can be regarded as the charge of the black hole. Note that the
last equality in Eq. (3.3) can be obtained from the conser-
vation equation of NED at the background level [45]. From
Eq. (3.3), we get

Fo)@) = f * (background level) (3.4)
regx

In the general case where the perturbations are taken into

account, the metric functions and the field strength could

depend on ¢, r, and 6. In this case, the Bianchi identity of the

field strength F{(a)(»)|(c)] = 0 leads to

("2 Fiy@) 5 + (" Faymy) , = 0, (3.5)
("™ Foym) , + (" Fuye) o = 0, (3.6)
(" Foym) 5+ (" Fayg) o =0, (3.7)
(€T Fo@) 5 + (€ Fay) 5 + (T Foys)

— Ve (

03—q30) Fye)
(3.8)

732 — q2.3) Foya)+e
+ eVt (0.2 — q2.0) Fay1)-

Note that the comma here denotes the partial derivative with
respect to the tensor indices. This derivative is related to the
directional derivative shown in Eq. (2.7) by H)wp),) =
eé‘c) Ha)),; [59]. In addition, Eq. (3.5) is a redundant equa-
tion because it is just an integrability condition for Egs. (3.6)
and (3.7).

On the other hand, the conservation equation for NED
NP (Fay)¢x)c) = 0 can be written explicitly as follows

(eVtims Foyo¢x) , + (eVTH2 Fo)a)¢x) 5 =0, (3.9)
("2 Foyaéx) o + ("M Fayo¢x) , =0, (3.10)
(" Fay3x) 5 + (/T Foo¢x) o =0, (3.11)
(€™ Fiyey¢x) 5 + ("2 Fyey¢x) 5

+ (euzﬂu F(O)(1)¢X),O
= [6‘/’“‘3 (02-92.0) Foyo)+¢¥ ™2 (63—43.0) Fo)3)

+e' ™ (g32 — q2.3) F(2)(3)]¢X- (3.12)
Again, it can be shown that Eq. (3.9) is a redundant equation
since itis an integrability condition for Egs. (3.10) and (3.11).

To linearize the equations above, the scalar field ¢x and
the gauge field invariant X should be decomposed into the
background and the 1st order parts:

¢x — édx +3px, X — X +6X, (3.13)
where
dpx = dxx0X =2¢xx Fo)o)dFo)) - (3.14)

@ Springer

In the above expressions, we have decomposed Fg)2) as
Foy2) = Fo)@2) + 6F ) in which the background Fg)(2)
is given in! Eq. (3.4). Note that the quantity X at the back-
ground level is given by X = F(ZO) @

After the decomposition, the linearized Egs. (3.6), (3.7),
and (3.8) are

(re" sin@F(o)(l))!r + ref?sin@ F(1y2),0 = 0, (3.15)
re” (Foy)sin6) , +r”sin0 Fiiy3)0 =0, (3.16)
eV [8Fo)2).0 + Foye) Bua +8v) 4]

+ (re" Foyo) , + e Faye),0 = 0. (3.17)

On the other hand, the linearized Egs. (3.10), (3.11) and
(3.12) can be written as

pxre Fo)3)0 + (¢xre’ F)) , =0, (3.18)

ox [8Fy2),0 + Foy@) 0% +813) o]
v
F sin @ ) F =0, 3.19
sind (Fo)i3) ),e + 8¢x,0F(0)(2) (3.19)
(F€V¢XF(1)(2))J +e" 20y Fiyaye
+ re"2¢x Foy1).0 = r* sin0 Fo)o)bx (02— q20),
(3.20)

where 8v, Su, 843, and 8¢ are the 1st order parts of the
metric functions v, ua, 3, and v, respectively.

For the sake of abbreviation, we define the field perturba-
tion
B = F(())(l) sin 6. (321)

After differentiating Eq. (3.20) with respect to x* = ¢ and
using Egs. (3.15) and (3.16), we have

2v4pn
B e By .
VTH2 (reV B ] d sin 0
[¢Xe (re )” . +éx r <sin9>’9 !
— ¢xret2B oo = —r* Foyodx (0,20 — 2,00) sin® 6.
(3.22)

Recall that in the derivation of Eq. (3.22), we have only used
the Maxwell equation of the NED source. Eq. (3.22) would
become one of the coupled master equations in the sense
that the linear order metric functions on the right hand side
of Eq. (3.22) are coupled with the field perturbation B (or
the Ist order field strength F(g)(1)) on the left hand side. In

1 'We only use a delta into the linear order perturbations of quantities
whose values at the background level do not vanish. The quantities that
vanish at the background level, such as the metric functions o, ¢», and
q3, and the Maxwell tensor components F;)(;) (ij # 02 or 20), shall
be regarded as linear order perturbation quantities directly.



Eur. Phys. J. C (2019) 79:63

Page 50f 17 63

order to deduce the other coupled equation, the perturbed
gravitational equation should be taken into account.

At the end of this section, we would like to write down
the perturbed energy momentum tensor of NED, which will
appear on the right hand side of the perturbed gravitational
equations later. The energy momentum tensor of NED in the
tetrad frame is

1 1
Ty = P (¢XF(a>(m)F(b)(m) + §¢77(a><b>) . (3.23)

Furthermore, the perturbed energy momentum tensor reads

1
Taye) = 4~ <¢X5 Fa@)™ Fo)m) + $x F@)™ 8 Fisymy

1
+ 8¢x Fiay™ Fioyom) + 5?7(a>(b)¢x5x)- (3.24)

Finally, we can write down its components explicitly as fol-
lows:

1
8Ty = —8T2)2) = o (¢x + 2¢xxX) F0)2)d Fo)2)

(3.25)
1
8T3)3) = 8Ty = E¢XF(0)<2>5F(0><2» (3.26)
1

8Ty = E¢XF(O)(2) Fuy@),

1
§T0)3) = —E¢X Foyo Fo)3)

1
8Ty = —E¢XF<0)(2>F<0><1>,

1
T3 = —E¢XF(0>(2> Fo)3), (3.27)
5T(0)(2) = 5T(1)(3) =0. (3.28)

4 The master equations

As we have mentioned previously, the master equations
describing the gravitational perturbations of a charged black
hole are two coupled equations. This is because of the cou-
pling between the gravitational field and the electromagnetic
field in the system. So far we have derived one of the coupled
equations, i.e., Eq. (3.22), from the Maxwell equation of the
NED source. In this section, we will carry out the derivation
of the other coupled equation from the gravitational equation
of the theory. We will first consider the Palatini f(R) gravity
coupled with NED and obtain the master equations in this
theory. After that we will turn to deduce the master equa-
tions of the EiBI gravity coupled with linear electromagnetic
fields.

4.1 Axial perturbations of charged black holes in Palatini
f(R) with NED

In this subsection, we will consider the Palatini f (R) theory
coupled with NED. The action of the theory reads [45]

1
S| =—

= d*x/=g f(R) + Su.
167

.1

where the matter Lagrangian S, is given in Eq. (3.1). We
would like to emphasize again that the theory is formu-
lated within the Palatini variational principle in which the
metric g,, and the affine connection I' are independent
variables. For a nonlinear function f of the Ricci scalar
R = g"V R, ("), the equations of motion would be different
from those in the metric f(R) theory.

In addition, after deriving the master equations we will
consider a particular NED model, that is, the Born-Infeld
NED:

5 X
p(x)=2821- 1—% .

The background solutions of the charged black holes in the
Palatini f(R) gravity coupled with the Born-Infeld NED
Lagrangian (4.2) have been studied in Ref. [45]. The QNMs
of a massless scalar field of such black holes have been dis-
cussed in Ref. [39]. The most general form of the metric
functions of these black holes have been derived in Ref. [45]
as well (see also Egs. (3.24) and (3.25) in Ref. [39]).

Specifically, if we focus on Einstein gravity (f(R) =
R) coupled with the Born-Infeld NED, we would get the
Einstein-Born-Infeld (EBI) black hole whose deviations
from the RN black hole result purely from the matter sec-
tor. Its exact metric functions at the background level read
[39,47-50]

4.2)

_ 1
62‘):62#2:1——

r

282 24 2 2 (115 )
‘T’"[W AR Vi iy |
e =2 ¢ =r2sin?0, 4.3)

where F(.., ..; ..; ..) is the hypergeometric function [60] and
ry 1s defined as r,,, = 4/ QO+ /Bm- Note that we have used the
following dimensionless rescalings:

O« r
— = 0 BmTs = Bm — =T,
Is Is

4.4)

where r; /2 = M denotes the mass of the black hole seen by
an observer infinitely far away. For the sake of convenience,
we will use these rescalings in the rest of this paper.

@ Springer
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As mentioned in Ref. [39], it is interesting to compare
the QNMs of the EBI charged black hole with those of
the charged black holes within the EiBI gravity coupled
with Maxwell electromagnetic fields. One can then compare
directly the QNMs of charged black holes within two the-
ories, one with the Born-Infeld correction from the matter
sector and the other one with this kind of modification from
the gravitational sector.

4.1.1 Perturbed field equations

In a gravitational theory constructed on the Palatini varia-
tional principle, the variation of the gravitational action with
respect to the affine connection determines the auxiliary met-
ric g, which is compatible with the affine connection:

3 2 . 2
dsg —— (dxo) +e2V (dx] —&dxo—cjzdxz— c}gde)

_ 2 _ 2
+ 22 (dxz) EpenE (dx3) . (4.5)
In the Palatini f(R) gravity, the auxiliary metric and the
physical metric are conformally related g, = frg,v, where
fr = df/dR. Therefore, their metric functions are related
as follows

6217 — fRezl)7 621// — fRe2w7
2 = fre?, M = fre¥t,
og=0, 622512, 532113- (4.6)

On the other hand, the variation of the action with respect to
guv reads

JRR(u(q) — lg;wf(R) = 87 Ty 4.7
It should be emphasized that the symmetric part of the Ricci
tensor R(,,) in Eq. (4.7) is defined solely by the affine con-
nection I'. Because the field equation ensures the compati-
bility between the auxiliary metric g, and the affine con-
nection, it is fair to say that the Ricci tensor is defined by the
auxiliary metric, that is, R(,.)(q).

In order to recast Eq. (4.7) into the tetrad frame, we rewrite
Eq. (4.7) as follows

. 1
frePED Riaywy — zf e e nayw) = 8me el Ty,

(4.8)

where R q)(p) satisfies R, (q) = R(a)(b)efl ') and e(a) isa
tetrad basis mapping the auxiliary metric g,,, onto the tetrad
frame. More explicitly, it satisfies
s@)g (b)

quv = N(a) ()€, 4.9

@ Springer

This additional tetrad basis is related to the physical tetrad
basis according to the conformal relation between the two
metrics:

~(a) (b) _ (@) (b>

(4.10)

N@) (b€ = fRN1@®)e,

In this regard, Eq. (4.7) can be rewritten as

3 1 By
fz%Rw)(b)—Ef’?(a)(b) =87 fr T\l el e el (4.11)

where the expressions of R, are given in Ref. [59], in
which all quantities should be replaced with their tilde coun-
terparts. Furthermore, the scalar curvature R can be written
as
R = 8" Ruw(@) = 1" Ry [ (4.12)
Since we are focusing on the axial perturbations (odd par-
ity perturbations) which change sign when ¢ — —¢, we
only consider the (1, 3), (1, 2) and (0, 1) components of the
linearized Eq. (4.11):

[erZe” "2 (g3 — 6]3,2)] 5

— frrie T ( (4.13)

[flerzeufl‘2

— frrieTvTH2 (G,Z — ngo)go sin’ 0

03— 613,0)70 =0,

(232 — q2.3) sin® 9] 5

= 4¢x Fo))r’e" Bsin®, (4.14)
[fR”4€_V_“2 (02— g2,0) sin’ 0] )

+ frrie vt [(0,3 —43,0) sin® 9] X

= 4gx Foyoyr e sin” 0 Fi)). (4.15)

Then, we define

0 = frrie’ ™ (923 — 93.2) sin’ 6, (4.16)

with which Egs. (4.13) and (4.14) can be rewritten as

- 0>
T erntg (037 oo @)
4px F
a2 = (02—qug) o P x 0 5
frr*sin® 6 : frrsin® 0
4.18)

By differentiating Eqgs. (4.17) and (4.18) and eliminating o,
we obtain

1 eV 2 eVtH2 03
—— 02 +——\—"7=
sin36 \ frr 2 Jrr® \sin0/ 5
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_ Q.00 _462”+“2¢XF<0>(2>< B )
frr?sin’ Qev—r2 frr sin?6 /) 3
(4.19)

Equation (4.19) is the second equation of the coupled mas-
ter equations describing the axial perturbations of a charged
black hole within the Palatini f(R) gravity coupled with
NED.

Finally, the term (0,20 — ¢2,00) in Eq. (3.22) can be elim-
inated by using Eq. (4.18):

2v+un B
[que”_“z (re”B) 2] ) + ¢x ¢ (—’3 ) sin 0
5 3

r sin 6

— ¢xre’?B o
B ¢x Fo)
= 4Vt F, 22 e 2XT 00 4
(¢xFo@) T + FerZsing 2
(4.20)

Equations (4.19) and (4.20) form the coupled master equa-
tions describing the evolutions of the perturbation fields B
and Q, which correspond to the perturbations of the matter
field and the gravitational field, respectively.

4.1.2 Effective potentials

For the sake of later convenience, we would like to recast
the coupled master equations (4.19) and (4.20) into a
Schrodinger-like form, which in practice is more suitable
for the calculations of QNMs with the WKB method. We
consider the ansatz [59]
o, 0)=0rY®), B(r,0) = B(r)Y¢/sin6, (4.21)

where Y (0) is the Gegenbauer function satisfying [60]

d( 1 dY)_ .Y
a0 \smdgde )~ " e

where u2 = (I — 1)(I + 2) and [ is the multipole number.
From Eq. (4.22), it can be proven that

. d 1 d Yy 2 Yo
sin— | — —— Z—(M +2> Skl
df \ sin6 df sin 6 sin 6

With the assumption (4.21), the coupled Egs. (4.20) and
(4.19) can be rewritten as

(4.22)

(4.23)

[d)xe"_“z (re"B),r]

s

2v+uo 4 2
+ |:w2¢>xre“2 - (M2 + 2) ¢Xe _ 20 ez"+“2i| B

r frr?

v+po
- eﬂeﬁQ* 0. (4.24)

eV 12 N a)2 eVt /~42
frr? o s \Srr2ev=i2 fprt ¢
2v+ 2 2
_ A0 (4.25)
SRr

where we have used Eq. (3.4) for the background field Fg)(2)
and the Fourier decomposition d; — —iw.
We introduce the following definitions

0

HD = —2u¢/?re’B,  H = > (4.26)

where Z = rf ;/ 2, and consider the tortoise radius ry which
satisfies

dr
=e
dr

v—py

4.27)

Finally, by using Eqgs. (4.26) and (4.27), Egs. (4.24) and
(4.25) become

d?H”
drf
1 (éx, 2 40 L Lo
= = +(p +2) 5+ eV |H
B <¢/) W e |
ZMEZVQ* (=)
T a2 12 2
fR/ ¢)X/ r3

dPHZ Z, )
HO = |-z (2 H
arz T (%), 5=

+ P Hl(_)

2#«@2” [op (-)

_ ZHe Co (4.29)
RIS

It can be seen that the coupled master equations have been
recast into a Schrodinger-like form and they can be written
in a matrix expression as follows

( d? " wz) Hl(_) _ |:V11 V12i| Hl(_)
dr? H™ Var Voo | | HYT) |
where V;; is given in Egs. (4.28) and (4.29).

According to the coupled master equations (4.28) and
(4.29), one can see that:

(4.30)

1. When fr = I and the NED model is assumed to be the
Born-Infeld NED given by Eq. (4.2), the master equations
reduce to those of the EBI black hole given in Ref. [61].

2. When ¢ = X, it can be proven that the Ricci scalar R,
the function f, and its derivative fg are just constants
at the background level. They manifest themselves as an
effective cosmological constant A.rr = f/(2fr). Fur-
thermore, it can be shown that, after a constant rescaling
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of Hi(f), the master equations reduce to those of the RN-
dS(AdS) spacetime given in Refs. [62-66].
3. If ¢ = X, and fr = 1, we have

2
Vio=Vo1 = —%ezv , (4.31)
2v 2
e 4
Vil = — [(;ﬂ +2)r + Q*} , (4.32)
r r
e2v Q2
Vn = — (W2 +2)r — 3+ —== (4.33)

The master equations turn out to be those of the RN
black hole [59].

@Gv) If ¢ = X, Q. =0, and fgr = 1, we have Vi, = V| =
0, and

eZv

Vi1 = —21(1 + 1), (4.34)
r
e 3

Vap = — |:l(l +1)— —] . (4.35)
r r

Therefore, the potential for pure electromagnetic per-
turbations and for pure axial gravitational perturbations
of the Schwarzschild black hole (the Regge-Wheeler
equation [67]) are recovered, respectively.

As we show in the appendix A, the coupled master equa-
tion (4.30) can be decoupled within a WKB approximation in
the cases that we are studying in this work. Therefore, to pro-
ceed we will decouple the master equation by diagonalizing
the matrix V;; to obtain its eigenvalues V; and V5:

[Vn +Var + \/(Vn - Vi) + 4V12V21}

Vo =

l\.)l'd l\JI'—‘

|:V11 + Vo — \/(Vu — V)? + 4V12V21} . (4.36)

If¢p =X, O, =0,and fg = 1, it can be seen that V| and
V5 reduce to Eqgs. (4.34) and (4.35), respectively. From the
discussion above, we have proven that the potential terms in
the master equation (4.30) reduce to their RN counterpart in
the correct limits. In the presence of nonlinearity of NED and
the gravitational function f(R), the potentials would change
significantly and, consequently, alter the QNM frequencies.
We will discuss this issue later in Sect. 5.

@ Springer

4.2 Axial perturbations for EiBI charged black holes

In this subsection, we will consider the EiBI theory coupled
with linear Maxwell fields. The total action is given by [51]

Ry

7|

8w+ —>— +Sn

(4.37)

where the matter Lagrangian is described by the linear
Maxwell fields: ¢x = 1. In the above action, € = *1 indi-
cates that one can freely choose the Born-Infeld coupling
constant to be either positive or negative. The dimensionless
constant A is related to an effective cosmological constant
via A = eﬁg()\ — 1). In the rest of this paper, we will assume
a zero effective cosmological constant (A = 1) and focus on
black hole solutions which are asymptotically flat. It should
be stressed that only the symmetric part of the Ricci tensor
R(,v)(I') is considered to respect the projective symmetry of
the theory.

Since only the linear Maxwell fields are considered, the
perturbed Maxwell equation can be obtained by simply
rewriting the NED equation (3.22) with ¢ = X:

2v+uo
e B 0 .
—— ) sin@ —re'? By
r sin 6

[e"f"2 (re"B),,]’r +

= —04 (020 — 92.00) sin 6. (4.38)

On the other hand, one needs to take the perturbed gravi-
tational equation into account to complete the derivation of
the coupled master equations of the EiBI theory. The per-
turbed gravitational equation contains the perturbed energy
momentum tensor, which can be rewritten from that of the
NED with ¢ = X as:

1
8Ty = —8T2)2) = EF<0><2)3F<O><2) ) (4.39)
1
8T3)3) = 8Ty = EF(0><2>5F(0)<2> ) (4.40)
1

8Ty = EFw)(z)F(l)(z),

1
T3 = —Eﬂoxz) F)3),

1
8Ty = _EF(O)(Z)F(O)(I)’

1
8T 2)3) = —EF(O)@)F«»@)’ (4.41)
§T0)2) = 8T)3) = 0. (4.42)
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4.2.1 Perturbed field equations

Because the EiBI gravity is also formulated within the Pala-
tini variational principle, there is an auxiliary metric g,
which is compatible with the affine connection as before. The
line element of g, can be similarly expressed as in Eq. (4.5).
According to the variation of the action, the auxiliary metric
satisfies the following Eq. [51]:

R (@) = €B7 (quv — 8uv) - (4.43)
At the beginning, the symmetric part of the Ricci tensor is
assumed to be constructed from the affine connection. How-
ever, we can recast it as a function of the auxiliary metric,
thatis, R, (¢), because the compatibility between the affine
connection and the auxiliary metric.

In the tetrad frame, we can rewrite Eq. (4.43) as

él(f)é‘()b) ﬁ(a)(b) = Eﬂgn(a)(b) (él(f)él()b) - eif)el()b)) s (4.44)
or

Riayw) = eBg (’7<a)<b) — NE@e )eﬁd)éﬁ,)é("m) - @4
Using a similar procedure to the one we have carried pre-
viously in the Palatini f(R) gravity, we have constructed
another tetrad basis é,(f) to map the auxiliary metric g, onto
the tetrad frame.

‘We next consider the other field equation given in Ref. [51]

8w
V=q99"" —V—gg"" = —p\/—gT"”. (4.46)
€
g
In the tetrad frame, this equation reads
8 T
e _ 27
N(a)(b) Gﬂg (a)(b)
= 577(g)(h)77(a)(c)U(b)(d)éélg)é(vh)e,(f)ef)d), (4.47)

where e = /—g and € = /—¢q. Even though the two tetrad
bases are not related explicitly as in the Palatini f (R) gravity,
that is Eq. (4.10), in the EiBI theory these two bases are
still related implicitly via Eqgs. (4.45) and (4.47). We will
immediately show how to derive the master equations of the
axial perturbations by using these two equations.

The (1, 3) component of Egs. (4.45) and (4.47) can be
explicitly written as

1)~ 1~ D~
SRy = —eBgey 2, (65 '2fs) + 5 )633)) ; (4.48)
5,3) 5 D~ D~
0= eeg )e%) (ei )6(13) + eg )e%)) , (4.49)

where the 1st order terms are collected inside the parenthe-
sis for each equation (see the components of a tetrad basis
explicitly given in Egs. (2.2) and (2.3)). One can then obtain

[e3w+v—us—xtz (

SRy = 023 — 53,2)] )

_ AUt (63 —d3.0) o =0. (4.50)

Next, the (1, 2) component of Egs. (4.45) and (4.47) can
be explicitly written as

D=~ - -
SRy = —eplelel), (e§ &l + e )eé)), “51)

8me - @ (sl )52
_@‘ST(I)(Z) =ee, € (61 e te; 6‘(2)> . (4.52)
‘We then have
(51
e 6‘1 6(1)
SR =87 = 5T
Cee
2 €0
2
=- Foyo Fo, (4.53)
\/ aia_
where we have defined
02
oL =1+ ) 4.54
+ o (4.54)

Equation (4.53) can be rewritten as follows

I:e31ﬂ+ﬁf/13*/12 (52’3_53’2)] 3+e3157ﬁ+/137/12 (5’2_52’0)’0

= —4¢"r Q4 Bsiné. (4.55)

Finally, the (0, 1) component of Egs. (4.45) and (4.47) can
be explicitly written as

2,1 (D1 (1) =0
SRo)1) = —€Bge; "€y (e1 e+ e e(0)>, (4.56)

8rme S 050 ()51 (1) 50
—EST(O)(D = eey € (el €0y T ¢ e(o)) . 4.57)
g
We then have
M1
eel 6(1)
SRy =387 =G~ T
60 e(o)
(4.58)

2
= FooFao),
1/ O'_%_O'_
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which leads to

3 —b—fntiz (5, _ & 3 —v—fistin (& . _ =
[e (U,z 42,0)]’24-[6 (0,3 f13,0)]3

= 46‘”‘2}’Q* sin2 9F(1)(2). (459)
To simplify the equations, we define
0 = SV (323 — 43.2)
= rze"*’“m_ sin® (6}2,3 — 53,2) . (4.60)
Then, Egs. (4.50) and (4.55) become
_ 0, .
eV ——= _ — (63— , 4.61
oyr2sin® 0 ( 3 q3’0)'0 (4.61)
eu-H,Lz U_— Q,3
0_% r4sin3 0
- - 40 o_
=2~ 00.0~ 557 (—2> TR, (4.62)
r>sin“6 \ oy

By differentiating Eqgs. (4.61) and (4.62) and eliminating &,
we have

1 (ev—uzé ) +e”+“2 0; Q3
sin®9 \ opr? 2 2 ré UJ% sin® @ ;

Q.00 4e? 120, (o B
or2 sin’ fev—i2 r3 o2 ) \sin?6/ 5

(4.63)

We have obtained one of the coupled master equations (4.63).
Now we need to consider the other equation which comes
from the perturbed Maxwell equation, that is, Eq. (4.38). It
is necessary to replace the right hand side of Eq. (4.38) with
its tilde counterpart because of the definition (4.60).

If we express Eqs. (4.52) and (4.57) more explicitly by
writing down the metric functions, we obtain

2¢20x Fony
eﬁz 304 sin@’

54 29 Foo
egrios sinf ’

Q@ =q— (4.64)

(4.65)

respectively. Considering the difference between o290 — 2,00
and 6 20 — ¢2,00, We have

0,20 = 42,00
=020 — §2,00

2 eV eh2
- P Q.*z |: 4 (re B) :| -3 B,OO s
€B; sin” 0 reoy s oy

@ Springer

where we have used Eq. (3.15) to replace F(1)@2),0 with
F(0)(1),2- After combining Egs. (4.38), (4.62) and (4.66), we
obtain

(4.67)

4.2.2 Effective potentials
Similar to what we have done in the previous subsection, we

substitute (4.21) into the master equations. Consequently,
Egs. (4.63) and (4.67) can be rewritten as follows

eVh2
2 Q,r
o4r N
wle VT2 Mzevﬂu o_ -
+ oir2 219
+ U+

4M262v+/t2 Q* o
3 |8

(4.68)

2
Q* 2v+u2 ( 2+2) v+uo B
rioy

= 0. (G—;> ”+“2Q4 (4.69)
oy r
With the further definitions
HT = —2uSre’B, H = % (4.70)

where W =r, /oy and S =
the tortoise radius

dr

dr

J/o_ /o4, and after introducing

— V2

, .71

we can obtain
dZH(*)

1 2 r7(=)
dr2 +otH,

Sr,r 2 o+ 4Q£ 2 =)
— ELES 2 _T v H
[ S + (n” + ) T\ +—r4U+e h

2v
o_
_ L A H2<—>, 4.72)
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H. (4.73)

These coupled equations can be written in a matrix form
similar to the one given in Eq. (4.30). Furthermore, since the
eigenvectors of the matrix V;; are approximately constant as
those for the EBI black hole shown in the appendix A, we
can diagonalize the matrix as we did in Eq. (4.36). Because
the expressions are so complicated, we did not write down
the explicit form of V; in this paper. It is still important to
check whether the potentials reduce to those of the RN black
hole in the proper limits. Specifically, if ,B§ — oo we have
o4+ ~ o_ ~ 1 and the master equations reduce to those of the
RN black hole. Moreover, if O, = 0 the master equations of
the Schwarzschild black hole are recovered.

In addition, we should highlight a crucial result following
from the master equations (4.72) and (4.73). It can be seen
that in the second term on the right hand side of Eq. (4.72),
i.e., the term containing uz, there is a factor o4 /0_. On
the other hand, in the second term on the right hand side of
Eq. (4.73), there is a factor o_/o. Actually, these factors
play a crucial role when the QNMs in the eikonal limit (/ —
00) are considered. In that limit, we will show later in Sect. 5
that, because of these factors, the QNMs cannot be calculated
directly from the associated quantities of the unstable photon
sphere of the black hole and the correspondence proposed in
Ref. [68] is not satisfied for the EiBI charged black holes
(for more fundamental illustration on the photon sphere, see
Ref. [69]).

Before closing this subsection, we would like to write
down the exact metric functions of the charged black holes
in the EiBI gravity at the background level:

1. If € = +1, the metric functions read [39,53,54]

4

L0+ — "
A A
rt+ry

8

4 4
efz,Q:r +rg
R

g

1_#<1 4r4'B§F<7 1 §_é>)_r3ﬂ§,
/r4+r§ 3r 4’2’4 r 3r2

s =2 M = r2sin’0,
where r, = ,/0+/B; and we have used the rescaling

,Bgrs g ﬁg-
2. If € = —1, the metric functions read [39,53,54]

4

Q202

4 _ 4
r Vg

4 4
e—Zptz r I"g
r4 4 rd

302
[ 1—rgﬂg3<l,l>
r4—rg 3 42

200 (1Y)
( P 2) 32 |

(4.75)

A =r2 M =r2sin?0,

where B(..,..) is the Beta function and F(..,..) is the
elliptic function of the first kind, respectively [60].

The derivation of the exact metric functions given in
Eqgs. (4.74) and (4.75) were first obtained in Refs. [53,54].
One can also refer to Ref. [39] in which we recast the metric
functions in a simpler form for calculating the QNM frequen-
cies. Note that in the EiBI gravity, there are some regions
of the parameter space where no black hole solution exists
[53,54]. In this paper, we will only focus on the cases where
the black holes exist and calculate their QNM frequencies.

5 QNM frequencies: the 6th order WKB method

The evaluation of the QNM frequencies is essentially based
on treating the master equations of the perturbations as an
eigenvalue problem with proper boundary conditions. In the
literature, there have been several methods to calculate the
QNDMs, ranging from numerical approaches [70,71] to semi-
analytic methods (see Refs. [35-38] and references therein).
In this paper, we will use a semi-analytical approach firstly
formulated in the seminal paper [40]. This approach is based
on the WKB approximation and the QNMs can be calculated
by just using a simple formula once the potential terms in the
master equations are given. In Refs. [41,42], the 1st order
WKB method was extended to the 3rd and 6th orders WKB
approximation, respectively. Recently, a further extension of
the WKB method up to the 13th order has been proposed
with the help of the Padé¢ transforms [43]. The WKB method
is expected to be accurate as long as the multipole number
[ is larger than the overtone n [36]. On the other hand, for
astrophysical black holes, the fundamental mode n = 0 has
the longest decay time and therefore dominates the late time
signal of the ringdown stage. At this regard, we will mainly
focus on the fundamental mode.

The formulation of the WKB method to calculate the
QNDMs is essentially based on the fact that the master equa-
tions can be written like a Schrodinger wave equation in quan-
tum mechanics. The potential term, in most cases (including
ours), has a finite value when r, — oo (spatial infinity) and
ry — —oo (at the event horizon). Furthermore, the potential
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has a peak at some finite 7. One can then treat the problem as
a quantum scattering process through a potential barrier after
suitable boundary conditions for the problems are imposed.
At spatial infinity, only outgoing waves moving away from
the black hole exist. On the other hand, there can only exist
ingoing waves moving toward the black hole at the event
horizon.

The idea of the WKB method to encompass the aforemen-
tioned boundary conditions is to consider a quantum scatter-
ing process without incident waves, while the reflected and
the transmitted waves have comparable amounts of ampli-
tudes. The peak value of the effective potential Vegr(ry) =
—w?+V isrequired to be slightly larger than zero in the sense
that there are two classical turning points near the peak. The
solutions far away from the turning points (r, — 00) are
solved by using the WKB approximation up to a desired order
and the boundary conditions should be taken into account.
At the vicinity of the peak, the potential is expanded into a
Taylor series up to a given order, and one uses a series expan-
sion method to solve the differential equation. Finally, the
numerical values of the QNM frequencies w can be obtained
by matching the solution near the peak with the solutions
deduced from the WKB approximation simultaneously at the
two turning points.

In the 6th order WKB method, the WKB formula for cal-
culating QNMs is [40-42]

i (@ =Vu)

J=2v7

where the index m denotes the quantities evaluated at the
peak of the potential. V, is the second order derivative of
the potential with respect to r,, calculated at the peak. A; are
constant coefficients resulting from higher order WKB cor-
rections. These coefficients contain the value and derivatives
(up to the 12th order) of the potential at the peak.>

, (.1

N =

6
ZAi =n-+
i=2

5.1 Fundamental QNMs

In Fig. 1, we consider the EBI black hole and show its QNM
frequencies calculated from Vj and V5, respectively [see the
expressions of these potentials in Eq. (4.36)]. We consider
the multiple / = 2 and the fundamental mode » = 0. For
the sake of convenience to highlight the deviations due to the
Born-Infeld corrections, we present the QNMs ratio of the
EBI black hole and the RN black hole.

In Fig. 2, we consider the EiBI charged black holes and
exhibit their QNM frequencies calculated from V; and V>,
respectively. The solid curves and the dashed curves cor-

2 The explicit expressions of A; are given in Refs. [41,42] (see
Egs. (1.5a) and (1.5b) in Ref. [41], and the appendix in Ref. [42]).

@ Springer

respond to the results when the EiBI coupling constant is
positive (¢ = +1) and negative (¢ = —1), respectively.

For a more general case, we shall consider the Palatini
R + aR? gravity coupled with Born-Infeld NED. In this
case, there is no exact expression of the metric functions.
The metric functions can only be written in an integral form
[45]. In Fig. 3, we rescale « as oz/rs2 — «, fix the value of
the charge Q, = 0.2, and exhibit the QNM frequencies with
respect to o (we shall mention that the qualitative behaviors
of our results remain unchanged when we alter the values of
Q. aslong as the charge is smaller than its extremal value). It
can be seen that when §,,, gets large, the frequencies remain
almost constant when changing «. This is expectable because
in this case, the NED reduces to linear Maxwell fields and the
Palatini R 4+« R? reduces to GR in absence of a cosmological
constant. Therefore, the QNMs reduce to those of the RN
black hole.

5.2 Eikonal QNMs

In Ref. [68], it has been shown that in GR the QNMs in
the eikonal limit (! & u — o0) of any stationary, spherically
symmetric, and asymptotically flat black hole can be deduced
from the properties of the unstable null circular orbit around
the black hole. More precisely, the QNM frequency in the
eikonal limit can be expressed as [68]
o~ Qd—i(n+1/2)|x|, (5.2)
where 2. is interpreted as the angular velocity of the null
circular orbit and the parameter A, is the Lyapunov expo-
nent quantifying the instability of the orbit. The derivation
of Eq. (5.2) is related to the fact that for these black holes,
the potentials in the master equations within the eikonal limit
can be approximated as

62\)

V=—I.
r2

(5.3)
It can be proven that the peak of this potential (5.3) coincides
with the radius of the null circular orbit. After inserting the
potential (5.3) into the the 1st order WKB formula, we can
derive Eq. (5.2). It can be shown that this equation is valid
as well in some modified theories of gravity. In fact, it can
be seen from Ref. [39], and from the master equations (4.28)
and (4.29) that the massless scalar field perturbations and
the axial perturbations of a charged black hole in the Palatini
f(R) gravity coupled with NED satisfy the approximation
(5.2). The same is also valid for the massless scalar field
perturbations of an EiBI charged black hole [39].

However, Eq. (5.2) may not be valid for the axial perturba-
tions of the EiBI charged black holes. According to the master
equations (4.72) and (4.73), the potentials in the eikonal limit
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Fig. 1 The real part (upper) and imaginary part (lower) of the fundamental QNM frequencies of the EBI black holes are presented with respect to
1/By. The results are based on the potential V; (left) and V; (right), and the multipole number is fixed to / = 2
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Fig. 2 The real part (upper) and imaginary part (lower) of the fundamental QNM frequencies of the EiBI charged black holes are presented with
respect to 1/f. The results are based on the potential V; (left) and V5 (right), and the multipole number is fixed to [ = 2

are
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Note that these approximated expressions are valid for both
€ = =£1. Because of the factors ﬂg2r4 + Q7?, the relation
between the eikonal QNMs and the properties of the null cir-

cular orbit around the black hole would be violated. Instead,
the QNMs of the axial perturbations described by the poten-
tials (5.4) and (5.5) can be expressed as

"

ip
) 5.6
2V, (5.6)

w; ~

Vip—i(n+1/2)

where i = 1, 2 and the index p denotes the quantities calcu-
lated at the peak of the potentials. Note that at the location
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Fig. 3 The real part (upper) and imaginary part (lower) of the funda-
mental QNM frequencies of the Born-Infeld black holes in the Palatini
R + o R? gravity are exhibited. The frequencies are shown with respect

of the peak, we have
5.7

In Fig. 4, we exhibit the eikonal QNM frequencies of the
EiBI charged black holes in terms of 1/8,. The charge is fixed
to Q4 = 0.4 (we choose this value to amplify the effects of
the charge on the QNMs). The blue (red) curves correspond
to a positive (negative) EiBI coupling constant. The dashed
and the dotted curves are the eikonal QNMs described by the
potential Vi and V,, respectively. We also present the eikonal
QNDMs for the massless scalar field perturbations which can
be described by the potential (5.3) in the sense that Vy = V
(see Ref. [39]). It can be seen that the eikonal QNMSs of the
axial perturbations for the EiBI charged black holes (dashed
and dotted curves) deviate from those corresponding to the
unstable null circular orbit (solid curves).

Before closing this subsection, we would like to mention
that the violation of Eq. (5.2) for the axial perturbations of the
EiBI charged black holes could be due to the non-trivial cou-
pling between the electromagnetic and the gravitational fields
in this theory. On the other hand, if we assume that the electro-
magnetic perturbations do not alter the spacetime geometry,
the electromagnetic perturbations will be described by the
master equation (4.38) without the metric perturbation terms

@ Springer
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respectively
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Fig. 4 The real part (upper) and imaginary part (lower) of the QNMs
of the EiBI charged black holes in the eikonal limit (/ — co) are shown
with respect to 1/8,. The solid curves are included as well, indicating
the QNM s of the massless scalar field perturbations which are described
by the potential V; = V given in Eq. (5.3)
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on the right hand side. In this regard, the potential describing
the electromagnetic perturbations in the eikonal limit can be
approximated as Eq. (5.3), and the correspondence proposed
in Ref. [68], i.e., Eq. (5.2) is satisfied.

6 Conclusions

In this paper, we consider specifically two gravitational the-
ories within the Palatini formulation and study the QNMs of
the axial perturbations for the charged black holes in these
theories. These theories of gravity are, respectively, the Pala-
tini f(R) gravity coupled with Born-Infeld NED and the
EiBI gravity coupled with linear electromagnetic fields. One
of our goals is to see how the Born-Infeld structures from
the gravitational sector and from the matter sector change
differently the QNM frequencies. Therefore, we pay special
attention to the comparison between the QNMs of the EBI
black holes and the EiBI charged black holes. The QNMs of
the Born-Infeld charged black holes in the Palatini R + o R?
gravity are also discussed. In fact, our paper can be regarded
as a further extension of our previous work [39] in which we
studied the QNMs of the massless scalar field perturbations
to these different charged black holes.

By using the tetrad formalism, we have derived the cou-
pled master equations describing the axial perturbations of
the charged black holes. In the two theories that we are con-
sidering, the coupled equations reduce to those of the RN
black holes when the ratio of the charge and the Born-Infeld
coupling constant Q. /B, (or Q./B,)is small. The QNM fre-
quencies of the charged black holes are evaluated by using
the WKB method up to the 6th order, which is accurate for
modes whose multiple is larger than the overtone ! > n.
In this paper, we mainly focus on the QNMs of the funda-
mental modes (n = 0), since these modes have the longest
decay time and would dominate the late time ringdown sig-
nals from an astrophysical perspective. Our results indicate
that the charged black holes are all stable against the axial
perturbations. Besides, the QNM frequencies would deviate
from those of the RN black hole when nonlinearity of matter
fields (Born-Infeld NED) or modification of the gravitational
theory (EiBI or f(R)) are considered. For instance, both the
absolute value of the real part and the imaginary part of the
QNM frequencies for the EBI charged black holes would
increase with the value of 1/8,,. On the other hand, we show
that by increasing the value of 1/, the real part of the QNM
frequencies and the decay time (< 1/|Im w|) would increase
(decrease) for the EiBI charged black holes with € = +1
(e =—1).

Furthermore, we study the QNMs of these black holes in
the eikonal limit (/. — o0). Interestingly, we find that the
QNM frequencies in this limit for the EiBI charged black
holes cannot be described by the properties of the unstable

null circular orbit around the black hole. In other words, the
QNM formula (5.2) proposed in Ref. [68] is not valid for the
EiBI charged black holes. This violation could be an extra
possible imprint from the EiBI corrections on the QNMs,
aside from the QNM spectra, that may be detectable in the
future.

In addition to the axial perturbations, it is necessary to
investigate the QNM:s of the polar perturbations (even parity
perturbations) for the charged black holes considered in this
work. For the Schwarzschild [72] and the RN charged black
holes [59] in GR, it is well-known that their axial and polar
perturbations are isospectral. This means that the potential
terms in their master equations satisfy a certain relation in
such a way that the QNM:s of the axial and polar perturbations
have identical spectra. The isospectrality could be violated in
the presence of, for instance, nonlinearity in the matter source
[73,74], or modifications of the Einstein-Hilbert action [16],
and so on. The violation/fulfillment of the isospectrality for
the charged black holes in the Palatini-type gravity theories
could be an additional tool to test the underlying theories and
we shall leave this interesting issue for a coming work.
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Appendix A: The decoupling of the master equations

It is well-known that for the RN black hole, the coupled
master equation (4.30), or equivalently

(83* + a)z) HO = VHO, (A1)

@ Springer
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Fig. 5 The ratio |9, P.|/|Prn| for the two eigenvectors of the matrix
V for the EBI charged black holes is presented with respect to r and
B. We assume here Q, = 0.3 and [ = 2. Those values are chosen to

can be decoupled by diagonalizing the matrix V to obtain its
eigenvalues V7 and V;:

1
i=3 |:V11 + Vo + \/(Vll — V) +4V12V21} ’

1
Va=3 |:V11 + V- \/(Vu — Va)? +4V12V21} . (A2)

This is because the eigenvectors P = Pry of the matrix V
are non-vanishing constant vectors for the RN black hole.
Therefore, one can use a similarity transformation H™) =
PH ™) to rewrite the matrix equation (A1) as follows

P (37 +o?)HO = VPAC.

By multiplying the above equation by P!, the equation can
be decoupled.

On the other hand, for the extended charged black holes
considered in this paper, the eigenvectors of the matrix V are
not constant vectors anymore. Instead, they would depend
on r and, strictly speaking, one is not able to diagonalize V
to decouple the master equations. It can be proven that for
these extended charged black holes, the eigenvectors can be
expressed as

P = Prn + Pc(r),

where P.(r) stands for the correction term. If we use the
same similarity transformation H™) = PH(7), the matrix
equation (A1) can be rewritten as

P (37 +o?)HO
+2 (0, P.) (ar*ﬁ(—>) + (8,2*PC) ac

= VPH. (A3)

@ Springer

estimate the largest errors in our calculations. Note that the domain of

r we are considering here is r > ry, where rp is the horizon satisfying
2v

e’ =0

In general, Eq. (A3) cannot be decoupled due to the last two
terms on the left hand side.

However, we will argue that for our present work and for
the parameter space of interest, the last two terms on the left
hand side of Eq. (A3) are actually very small as compared
with the other terms. The arguments are the following:

(1) In this work, we calculate the QNM frequencies with a
semi-analytical approach, which is formulated within
the WKB approximation. For the cases where this
approach is valid, the wave functions H™) can be solved
with the WKB approximation. It can then be proven that
H) and its derivatives (8,*Ijl(_) and 8,2*1:1(_)) have the
same order of magnitudes (note that we have normalized
all relevant quantities with respect to r, so the magni-
tude of the frequencies would be of order one, which is
also consistent with our results shown in Sect. 5).

(i1) It can be shown that the magnitude of 9, P, is very small
as compared with the magnitude of Pry outside the event
horizon and in the parameter space of our interest. In
Fig. 5, we assume Q. = 0.3 and [/ = 2, and exhibit the
smallness of the ratio |9, Pc|/|Prn| for the EBI black
hole, with respect to r and the value of 8. For the Born-
Infeld black holes with f(R) being a quadratic function
and for the EiBI charged black holes, this ratio is also
very tiny.

According to the arguments above, the last two terms on
the left hand side of Eq. (A3) are very small as compared to
the other terms. Therefore, when studying the QNMs of the
extended charged black holes, we shall omit these two terms
and decouple the master equation (4.30) by diagonalizing the
potential matrix V as given in Eq. (A2).
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