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Through exact solution of the coupled scalar and gravitational field equations, in an energy dependent 
spacetime, two classes of novel dilatonic BTZ black holes have been found. The black hole solutions have 
only one horizon and their asymptotic behaviors are non-flat and non-AdS. The black hole mass, entropy 
and temperature have been calculated, as the conserved and thermodynamic quantities, and it has been 
shown that, although these quantities get modified in the presence of rainbow functions, they satisfy the 
first law of black hole thermodynamics in its standard form. The black hole heat capacity and Gibbs free 
energy have been calculated and the local and global stabilities of the black holes have been analyzed 
making use of the canonical and grand canonical ensembles, respectively. Then, by considering the black 
hole thermal fluctuations, the quantum gravitational effects on the local and global stabilities have been 
studied.
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1. Introduction

One of the outstanding achievements in perturbative string the-
ory and loop quantum gravity is the prediction of a fundamental 
measurable length which is of the order of Planck length. Based 
on the existence of such observer independent fundamental length 
there are some interest, in almost all of the various quantum 
gravity approaches, to promote the usual energy momentum re-
lation to the well-known modified dispersion relation [1–3]. The 
modified dispersion relation violates the Lorentz invariance. De-
formed (modified) special relativity, as the Planck-scale version of 
the usual special relativity, has been pout forwarded initially based 
on the nonlinear Lorentz transformations to make the modified 
dispersion relation Lorentz invariant. In the deformed special rela-
tivity theory in addition to the speed of light Planck energy is an 
invariant quantity too. The light speed and Planck energy are the 
upper limit of the amount of speed and energy that a particle can 
attain. It is evident that the modified dispersion relation reduces 
to its usual form when the infrared limit is taken [4–8].

Gravity’s rainbow is considered as a simple extension of the de-
formed special relativity to include gravity. Indeed, gravity’s rain-
bow is a deformed general theory of relativity in which the im-
pacts of string theory and loop quantum gravity are taken into 
account by considering the minimal measurable length. Thus, ac-
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cording to the correspondence principle, this theory is expected 
to recover the standard general relativity at low energy regime. 
In this regard, it is believed that this theory can be successful 
in explaining the well-known problems of the standard theory of 
gravity [9–11]. Now the gravity’s rainbow has been the subject of 
many interesting works and a lot of papers have appeared in which 
the thermodynamic properties of the black holes have been stud-
ied at the framework of high energy physics by considering the 
impacts of rainbow functions [12–15].

On the other hand, Hawking et al. showed that black holes 
are thermodynamic systems having well-defined thermodynamic 
quantities such as temperature and entropy. Nowadays, study of 
the black hole thermodynamic properties, and especially thermo-
dynamic stability of the black holes, have attracted an increasing 
interest and it is an important subject area in the context of black 
hole physics. In the context of canonical ensemble, one is able to 
analyze the local stability of the black holes by use of the black 
hole heat capacity, with the black hole charge as a constant, or 
noting the signature of the Hessian determinant. Geometric ther-
modynamics is the other approach for studying the black hole 
local stability [16–18]. Global stability of the black holes can be 
investigated regarding the signature of the Gibbs free energy. Ther-
modynamic local stability or phase transition of black holes in the 
three- and four-dimensional gravity’s rainbow have been studied in 
refs. [4,7,19,20]. Local and global stabilities as well as the Hawking-
Page phase transition of dilatonic black holes with power-law elec-
trodynamics have been studied in our previous work [21]. Here, 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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we tend to obtain novel exact three-dimensional dilatonic black 
hole solutions in rainbow gravity and to study their thermody-
namic properties. Also, we investigate thermodynamic local and 
global stabilities or type one, type two and Hawking-Page phase 
transitions of the novel dilatonic black holes in gravity’s rainbow. 
Next we examine the impacts of black hoe thermal fluctuations on 
the thermodynamic quantities and thermodynamic local and global 
stabilities.

The paper is outlined based on the following order: In Sec. 2, 
starting from the suitable action of the three-dimensional Einstein-
dilaton gravity theory, the related field equations have been solved 
in a static, circularly symmetric and energy dependent spacetime. 
Two classes of novel dilatonic BTZ black holes have been intro-
duced in the presence of the rainbow functions. The black holes 
have one horizon only and their asymptotic behavior is non-flat 
and non-AdS. In Sec. 3, the black hole entropy, temperature and 
mass have been calculated and it has been shown that, even in the 
presence of the rainbow functions, they satisfy the standard form 
of the first law of black hole thermodynamics. Section 4 is devoted 
to the study of the black hole local and global stabilities in the 
canonical and grand canonical ensembles, respectively. By calculat-
ing the black hole heat capacity and Gibbs free energy, the ranges 
at which the novel dilatonic black holes are locally or globally sta-
ble have been determined. Also, the points of type one, type two 
and Hawking-Page phase transitions have been characterized. In 
Sec. 5, by consideration of the thermal fluctuations, the quantum 
gravitational corrections on the thermodynamic properties of the 
black holes have been studied. It has been shown that the black 
hole entropy gets logarithmic correction and other thermodynamic 
quantities remain unchanged when the first order corrections are 
taken into account. It is found that black hole local and global 
stability conditions are affected when the logarithmic corrected 
entropy is utilized. The results and discussions are presented in 
Sec. 6.

2. The basic equations and solutions

We start with the proper action of the three-dimensional Ein-
stein gravity theory nonminimally coupled to a scalar dilatonic 
field. It can be written in the following general form [22,23]

I = − 1

16π

∫ √−g
[
R− V (φ) − 2gμν∂μφ∂νφ

]
d3x. (2.1)

Here, R is the Ricci scalar, φ is a scalar field which is assumed 
to coupled to itself via the dilatonic potential V (φ). By use of the 
variational principle the action (2.1) gives the related field equa-
tions. Varying it respects to various fields, one obtains the follow-
ing field equations

Rμν = V (φ)gμν + 2∂μφ∂νφ, (2.2)

4�φ = dV (φ)

dφ
, φ = φ(r). (2.3)

We consider the following ansutz, as the three-dimensional static 
and circularly symmetric solution to the gravitational field equa-
tions (2.2), in an energy dependent spacetime [24,25]

ds2 = − U (r)

f 2(ε)
dt2 + 1

g2(ε)

[
1

U (r)
dr2 + r2 R2(r)dθ2

]
, (2.4)

note that U (r) and R(r) are two unknown functions to be deter-
mined. U (r) is named as metric function and R(r) denotes the 
impacts of dilaton field on the spacetime geometry. The structure 
of the line element (2.4) shows that it is a dimensionless function. 
The functions f (ε) and g(ε) are the temporal and spacial rainbow 
functions, respectively. There are three alternative proposed mod-
els of rainbow functions with the following explicit forms:

Model I: In this model, which is motivated by the results of 
loop quantum gravity and noncommutative geometry, the explicit 
form of the temporal and spacial rainbow functions are written the 
following form [5,6]

f (ε) = 1, g(ε) = √
1 − ηεn. (2.5)

Model I I: The hard spectra from gamma-ray burster’s is the 
motivation by which the rainbow functions are constructed out 
Amelino-Camelia et al. [8]. That is

g(ε) = 1, f (ε) = eβε − 1

βε
. (2.6)

Model I I I: This model is proposed based on the constancy of 
the light speed with the following explicit form [7]

f (ε) = g(ε) = 1

1 − ζε
. (2.7)

It must be noted that the coefficients η, β and ζ , known as the 
rainbow parameters, are of the order of unity, ε ≤ 1 and the power 
n is a positive integer [13,15,26].

Now, making use of the line element (2.4) in the gravitational 
field equations (2.2), one is able to obtain the following differential 
equations

ett ≡ U ′′(r) +
(

1

r
+ R ′(r)

R(r)

)
U ′(r) + 2

V (φ)

g2(ε)
= 0, (2.8)

err ≡ ett + 2U (r)

(
R ′′(r)
R(r)

+ 2R ′(r)
rR(r)

+ 2φ′ 2(r)

)
= 0, (2.9)

eθθ ≡ U ′(r)
r

+ R ′′(r)
R(r)

U (r) + R ′(r)
R(r)

(
U ′(r)+2

r
U (r)

)
+ V (φ)

g2(ε)
= 0.

(2.10)

It can be shown that Eqs. (2.8) and (2.10) are not indepen-
dent. Thus we can solve the first order differential equation (2.10)
and ensure that its solution satisfies the Eq. (2.8) [21,27]. In-
deed, we have four unknown functions U (r), R(r), φ(r) and V (φ), 
while there are only three independent equations [Eqs. (2.3), (2.9)
and (2.10)]. In order to overcome this problem, we must to use 
an ansutz. Noting the structure of the line element presented in 
Eq. (2.4), one can argue that R(r) is a dimensionless function of r, 
which indicates the effects of dilaton field on the spacetime geom-
etry. As the result, there are the following alternatives:

• R(r) can be considered as an exponential function in the form 
of R(r) = e2βφ(r) in which the dilaton field is appeared explicitly. 
Similar exponential function has been used by many authors for 
the charged dilaton black holes [19,22,23,28–30].

• It also can be written in the form of a power-law function as 
R(r) =

(
r

r0

)ν
. Here, the power ν is the dilaton parameter, and r0 is 

a dimensional constant. A similar power-law function was initially 
used by Chan and Mann [31,32] and then in refs. [33–35].

In this work, we proceed with a power-law solution of the form 
R(r) =

(
r

r0

)ν
, and set r0 = 1 without loss of generality. Noting 

Eqs. (2.8) and (2.9) we obtain

R ′′(r)
R(r)

+ 2

r

R ′(r)
R(r)

+ 2φ′ 2(r) = 0. (2.11)

Substituting in Eq. (2.11), one can show that

φ(r) = γ ln

(
b
)

, with γ = √−ν(ν + 1)/2. (2.12)

r
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It is valid for positive b and the ν-values in the range −1 < ν < 0. 
A similar power-law scalar field has been used previously for 
studying the three- four- and five-dimensional black hole solutions 
[33,35,36].

Making use of these solutions in Eq. (2.10) we have

U ′(r) + ν

r
U (r) + r

ν + 1

V (φ)

g2(ε)
= 0. (2.13)

For solving this equation for the metric function f (r), we need to 
calculate the functional form of V (φ(r)) as a function of the radial 
coordinate. To do so, we proceed to solve the scalar field equation 
(2.3). It can be written as

4γ

r

(
U ′(r) + ν

r
U (r)

)
+ 1

g2(ε)

dV (φ)

dφ
= 0. (2.14)

By combining the Eqs. (2.13) and (2.14), after some simplifications, 
we obtained the dilatonic potential V (φ), in terms of the cosmo-
logical constant � = −
−2 as

V (φ) = 2�e2aφ, with a = 2γ

ν + 1
. (2.15)

Now, by combining Eqs. (2.15) and (2.13) the metric function U (r)
can be calculated as

U (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−mr2/3 − 6�b2

g2(ε)

(
b
r

)− 2
3

ln
( r




)
, ν = − 2

3 , (a),

− m
rν − 2�r2

(1+ν)(2+3ν)g2(ε)

(
b
r

)−2ν
,

ν �= − 2
3 , −1 < ν < 0, (b),

(2.16)

where, m is an integration constant related to the black holes to-
tal mass. The roots of the metric functions (2.16), known as the 
horizon radiuses, are located at

r+ =

⎧⎪⎪⎨
⎪⎪⎩


exp

(
m
2 g2(ε)

6b
4
3

)
, for ν = − 2

3 ,

[
m(1+ν)(2+3ν)g2(ε)

2(
bν )−2

] 1
2+3ν

, for ν �= − 2
3 .

(2.17)

Thus, in order to have real and positive horizon radius with posi-
tive mass the parameter ν must be restricted to the range −2/3 <
ν < 0. The position of the horizons to be exactly determined, it is 
better to show the plots of U (r) versus r. Thus the numerical val-
ues of f (ε) and g(ε) are needed. Noting Eqs. (2.5)–(2.7) and the 
related explanations, one can argue that the numerical values of 
the temporal and spatial rainbow functions can be approximated 
as equal to or slightly different from unity. We prefer to use the 
numerical values similar to those of refs. [7,24]. These values are 
suitable approximations of almost all of the proposed functional 
forms of the rainbow functions. The plots of the metric functions 
(2.16) have been shown in Figs. 1 and 2.

Now, we check the spacetime curvature singularities. The most 
important curvature scalars which can produce significant in-
formation about the spacetime singularities are the Ricci and 
Kretschmann scalars. As a matter of calculation one is able to show 
that they take the following forms

R =

⎧⎪⎨
⎪⎩

− 2
3

(
b
r

)4/3 {
3�

[
1 + 2

3 ln
( r




)] + m
3 g2(ε)

}
, for ν = − 2

3 ,

4�(3+5ν)
2+3ν

(
b
r

)−2ν + ν(ν+1)m
r2+ν g2(ε), for ν �= − 2

3 ,

(2.18)
RμνρλRμνρλ

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4
(

b
r

)8/3 {
11�2 − 2

27 m2 g4(ε) − �
[
� + 28

27 mg2(ε)b−4/3
]

× ln
( r




) + �m
b4/3 g2(ε) − 8

3 �2
[
ln

( r



)]2
}
, for ν = − 2

3 ,

A1

(
b
r

)−4ν + A2

(
b
r

)2−ν + 2ν2(ν+1)2m2 g4(ε)

r4+2ν , for ν �= − 2
3 ,

(2.19)

where,

A1 = 8�2(16ν2 + 17ν + 6)

(2 + 3ν)2
, and

A2 = −2ν(ν + 1)(2 − 9ν)m�g2(ε)

(2 + 3ν)b2+ν
.

It is understood from Eqs. (2.18) and (2.19) that the Ricci and 
Kretschmann scalars are finite for finite values of r. There is an 
essential (not coordinate) singularity located at r = 0, which can 
be recovered with an event horizon. As the result, with the help of 
Eq. (2.17) or Figs. 1 and 2, our exact solutions can be interpreted 
as black holes with one event horizon.

3. Thermodynamic properties

In this section, we seek for satisfaction of the first law of black 
hole thermodynamics for both of the new three-dimensional dila-
tonic black hole solutions in the presence of the rainbow functions. 
For this purpose we proceed to calculate the conserved and ther-
modynamic quantities related to the new black hole solutions.

The entropy of the black holes, as an important thermodynamic 
quantity, can be calculated by use of the Hawking-Bekenstein 
entropy-area law. According to the entropy-area law, as a geomet-
rical method, the entropy of the black hole is equal to one-quarter 
of the surface are of the black hole horizon. It leads to the follow-
ing relation for the entropy of the black holes

S = πrν+1+
2g(ε)

, (3.1)

where, r+ is the black hole horizon radius which is the real root of 
the relation U (r+) = 0. Note that Eq. (3.1) reduces to its standard 
form for the three-dimensional Einstein black holes in the absence 
of dilatonic potential when its infrared limit is taken.

The other conserved quantity to be calculated is the black hole 
mass, M . It can be calculated in terms of the mass parameter, m. 
The total mass of the three-dimensional dilatonic black holes in-
troduced here can be obtained as [31,32] (see also [33,34])

M = ν + 1

8 f (ε)
m. (3.2)

The black hole mass given in Eq. (3.2) reduces to that of BTZ black 
holes in the absence of dilaton potential if one set f (ε) = 1.

Next, the Hawking temperature associated to the black hole 
horizon, r = r+ , can be calculated by use of the concept of sur-
face gravity κ , as

T = κ

2π
= g(ε)

4π f (ε)

d

dr
U (r)|r=r+

=

⎧⎪⎨
⎪⎩

− 3�b
2π f (ε)g(ε)

(
b

r+

) 1
3
, for ν = − 2

3 (a),

− �r+
2π(ν+1) f (ε)g(ε)

(
b

r

)−2ν
, for ν �= − 2

3 (b).
(3.3)
+



4 M. Dehghani / Physics Letters B 799 (2019) 135037
Fig. 1. U (r) versus r for � = −1, M = 1, b = 2.5, and ν = − 2
3 , Eq. (2.16-a). Left: g(ε) = 0.7 and f (ε) = 0.6, 0.78, 0.96, 1.14 for black, blue, red and brown curves, respectively. 

Right: f (ε) = 0.7 and g(ε) = 0.7, 0.75, 0.8, 0.85 for black, blue, red and brown curves, respectively.

Fig. 2. U (r) versus r for b = 2.5, M = 0.2, � = −1 and ν �= − 2
3 , Eq. (2.16-b). Left: f (ε) = 0.8, g(ε) = 0.9 and −ν = 0.2, 0.3, 0.33, 0.36 from down to top, respectively. Middle: 

ν = −0.3, g(ε) = 0.7 and f (ε) = 0.7, 0.8, 0.9, 1 from top to down, respectively. Right: ν = −0.3, f (ε) = 0.8 and g(ε) = 0.75, 0.8, 0.85, 0.9 from top to down, respectively.
Note that we have used the condition U (r+) = 0 for eliminating 
the mass parameter m from the above given relations. Since, the 
cosmological constant � is negative, from Eq. (3.3) one can argue 
that the black hole temperature is positive valued for both of the 
new dilatonic black hole solutions with the dilaton parameter ν in 
its acceptable range. The black holes with positive temperature are 
physically reasonable. The other point to be mentioned is that the 
extreme black holes (i.e. the black holes having zero temperature) 
can not occur.

In order to calculate the thermodynamic and conserved quan-
tities, related to our new black holes from the thermodynamical 
methods, we need to have a Smarr-type mass formula. It can be 
derived from Eq. (2.16) by imposing the condition U (r+) = 0 and 
substituting the mass parameter m within Eq. (3.2). The Smarr 
mass formula which gives the black hole mass as the function of 
thermodynamical extensive parameter S is obtained as

M(S) =

⎧⎪⎨
⎪⎩

− �[r+(S)] 4
3

4 f (ε)g2(ε)
ln

(
r+(S)

l

)
, for ν = − 2

3 ,

− �[r+(S)]2+ν

4(2+3ν) f (ε)g2(ε)

(
b

r+(S)

)−2ν
, for ν �= − 2

3 .

(3.4)

From the thermodynamical point of wive, the black hole mass can 
be interpreted as the internal energy that has to be positive for a 
thermodynamical system. Noting the fact that � = −
−2 < 0 the 
black hole mass is positive valued for the case ν = − 2

3 . Also, the 
mass of the black holes with ν �= − 2

3 is positive if the dilaton pa-
rameter ν be chosen in the range − 2

3 < ν < 0.
Making use of Eq. (3.4) and treating the black hole entropy as 

the thermodynamical extensive parameter, one can obtain the pa-
rameter T as the intensive parameter conjugate to entropy. It can 
lead to confirmation of the first law of black hole thermodynamics. 
For this purpose it is easily shown that

dM

dS
=

(
∂M

∂r+

)(
∂ S

∂r+

)−1

= T , for both ν = −2

3
and ν �= −2

3
.

(3.5)
Therefore, even if the thermodynamic quantities are affected by 
the rainbow functions, the first law of black hole thermodynamics 
still remains valid for both classes of the new three-dimensional 
dilatonic black holes in the following form

dM = T dS. (3.6)

4. Thermal stability analysis

In this section, we investigate thermal stability of the new black 
hole solutions obtained in section 2. The local and global stabilities 
of the black holes can be analyzed by use of the canonical and 
grand canonical ensembles, respectively. In the canonical ensemble 
one is able to perform a local stability analysis regarding the black 
hole heat capacity [37,38]. Also, global stability of the black holes 
can be studied noting the Gibbs free energy of the black holes 
[39]. Now, we proceed to explore the local and global stabilities 
of our new dilatonic black holes by use of the canonical and grand 
canonical ensembles, separately.

4.1. Black hole local stability

In order to study the local stability or thermodynamic phase 
transition of the black holes, we calculate the black hole heat ca-
pacity for both of the new black hole solutions, found here. It can 
be calculated by considering the following relation

H = T

(
∂ S

∂T

)
. (4.1)

It is well-known that the positivity of heat capacity H, for the 
physical black holes, guaranties the local stability. The unstable 
black holes experience thermodynamic phase transitions to be sta-
bilized. The real root(s) of the black hole heat capacity are the lo-
cations of the type one phase transition. Also, the divergent points 
of black hole heat capacity indicate the type two phase transi-
tion points. Equivalently, the real root(s) of the denominator of the 
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black hole heat capacity are the points of type two phase transi-
tion [37,38] (see also [40–42]). Keeping these facts in mind, we are 
able to analyze the thermal stability or phase transition of both of 
our new black hole solutions.

Making use of Eqs. (3.1) and (3.3) in Eq. (4.1), one is able to 
show that

H =
{ − π

2g(ε)
r1/3
+ , for ν = − 2

3 ,

π(1+ν)
2(1+2ν)g(ε)

rν+1+ , for ν �= − 2
3 ,

(4.2)

from which we can say that the heat capacity of the black holes 
with ν = − 2

3 is negative everywhere. Thus, no type one or type 
two phase transition can take place because it neither vanishes nor 
diverges. They are locally unstable. The heat capacity of the black 
holes correspond to ν �= − 2

3 is positive for ν > − 1
2 . As the result 

they are locally stable with the dilaton parameter ν in the range 
− 1

2 < ν < 0. No type one phase transition can take place. If we set 
ν = − 1

2 the heat capacity of this kind of black holes diverges and 
they undergo type two phase transition. There is no point of type 
one phase transition. It is notable that in the absence of dilaton 
field (i.e. ν = 0) the black hole heat capacity is positive valued 
and the BTZ black holes are locally stable even in the presence of 
rainbow functions.

4.2. Black hole global stability

In order to investigate the global stability of the novel dilatonic 
BTZ black holes we need to calculate the Gibbs free energy. Regard-
ing the signature and vanishing points of the Gibbs free energy the 
global stability or Hawking-Page phase transition of the black holes 
can be studied. In the case under consideration, it can be defined 
via the following relation [43,44]

G = M − ST . (4.3)

As a matter of calculation, one is able to show that

G =

⎧⎪⎪⎨
⎪⎪⎩

�r
4
3+

4 f (ε)g2(ε)

[
3
(

b
r+

) 4
3 − ln

( r+



)]
, for ν = − 2

3 ,

�(2ν+1)r2+ν+
4 f (ε)g2(ε)(ν+1)(3ν+2)

( r+
b

)2ν
, for ν �= − 2

3 .

(4.4)

With the purpose of analyzing the black hole global stability, it 
must be noted that the black hole Gibbs free energy has a real 
root located at

r+ ≡ r1 = 2
√

2b [Lw(η)]−
3
4 , for ν = −2

3
, (4.5)

where Lw(η) is the Lambert function and η = 4 
(

b



)4/3
. For more 

details on the Lambert function see [45] and references therein. It 
is positive for r+ > r1 and negative for r+ < r1. Therefore, the black 
holes with horizon radius equal to r1 experience Hawking-Page 
phase transition. Those have horizon radii in the range r+ > r1 are 
globally stable. Otherwise they prefer to be in the radiation phase.

In the case ν �= − 2
3 it is easy to show that the Gibbs free en-

ergy vanishes at ν = − 1
2 , the point at which Hawking-Page phase 

transition occurs. It is positive in the range − 2
3 < ν < − 1

2 , thus 
the black holes with the ν-values in this range are globally stable. 
Also, the black holes with the ν-values in ranges −1 < ν < − 2

3
and − 1

2 < ν < 0 have negative Gibbs free energy and they prefer 
the radiation phase.
5. Thermal fluctuations and corrected thermodynamics

Up to now, we have studied thermodynamic properties of our 
novel dilatonic black holes by ignoring the black hole thermal fluc-
tuations. Now, we come back to the study of thermodynamics and 
thermal stability of the black holes in the presence of quantum 
gravitational effects by considering the black hole thermal fluctu-
ations. It is well-known that, when the first order corrections are 
studied through consideration of the black hole thermal fluctua-
tions, the black hole temperature remains unchanged while the 
black hole entropy gets logarithmic correction [46,47]. Thus the 
first order corrected entropy is written as [48,49]

S(C) = S − ξ

2
ln

(
ST 2

)
. (5.1)

Note that S and T are the uncorrected black hole entropy and 
temperature presented in Eqs. (3.1) and (3.3), respectively. The co-
efficient ξ is the thermal fluctuations or correction parameter with 
the dimension of Length. S(C) denotes the first order corrected en-
tropy with the thermal fluctuations are taken into account.

The Helmholtz free energy is an important thermodynamic 
quantity to be calculated. With the black hole temperature and cor-
rected entropy in hand, one is able to calculate the Helmholtz free 
energy making use of the following relation [46]

F (C) = −
∫

S(C)dT

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

9ϒb2

π

(
b

r+

) 2
3
{

ξ
2 ln

[
ϒb1/3

g(ε)

(
b

r+

) 7
3
]

− 7ξ
4 − πr1/3

+
g(ε)

}
,

for ν = − 2
3 , (a)

ϒr2+
π(1+ν)2

( r+
b

)4ν
{

ξ
2 ln

[
ϒ(1+2ν)2r1+ν+

(1+ν)2 g(ε)

( r+
b

)4ν
]

− ξ(1+5ν)
4(1+2ν)

− π(1+2ν)rν+1+
g(ε)(3+5ν)

}
, for ν �= − 2

3 , (b)

(5.2)

where,

ϒ = �2

8π f 2(ε)g2(ε)
. (5.3)

In terms of the Helmholtz free energy, the black hole mass M(C) =
F (C) + T S(C) , is obtained as

M(C) = F (C) + ST − ξ T

2
ln

(
ST 2

)
, (5.4)

where, F (C) is given by Eq. (5.2), S and T are the uncorrected en-
tropy and temperature, respectively.

Starting from Eq. (5.4), after some algebraic calculations, one 
can show that the first law of black hole thermodynamics is valid 
in the following form

dM(C) = T (C)dS(C), with T (C) = T , (5.5)

even when the black hole thermal fluctuations are taken into ac-
count.

In order to perform a black hole stability analysis in the pres-
ence of the thermal fluctuations, we need to calculate the cor-
rected black hole heat capacity. Starting from the relation H(C) =
T ∂ S(C)

∂T , one can calculate the quantum corrected black hole heat 
capacity. It is a matter of calculation to show that

H(C) =
⎧⎨
⎩

− 1
2

(
π

g(ε)
r1/3
+ + ξ

2

)
, for ν = − 2

3 ,

1
2(1+2ν)

[
π(1+ν)

g(ε)
rν+1+ − ξ

2 (3 + 5ν)
]
, for ν �= − 2

3 .
(5.6)
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Eq. (5.6) indicates the corrected heat capacity of dilatonic BTZ 
black holes in rainbow gravity with consideration of the thermal 
fluctuations. The black hole heat capacity is negative everywhere 
and the black holes corresponding to the case of ν = − 2

3 are lo-
cally unstable even in the presence of the thermal fluctuations. For 
the black holes with ν �= − 2

3 the corrected black hole heat capacity 
vanishes at

r+ ≡ R1 =
[

ξ(3 + 5ν)

2π(1 + ν)

] 1
1+ν

, for − 3

5
< ν < 0. (5.7)

Eq. (5.7) indicates the horizon radius of the black holes that un-
dergo type one phase transition. In the range −1 < ν < − 3

5 both 
of the terms in the brackets are positive and H(C) becomes nega-
tive due to the presence of coefficient 1 + 2ν . Thus for the ν in the 
range −1 < ν < − 3

5 the black holes are locally unstable. The black 
holes with horizon radius in the range r+ < R1 are locally stable.

Now, we explore the global stability in the presence of black 
hole thermal fluctuations. The corrected black hole Gibbs free en-
ergy can be determined by use of the relation G(C) = M(C) − S(C)T . 
It is easy to show that it is just equal to the Helmholtz free en-
ergy presented in Eq. (5.2). We need to have the real root(s) of 
G(C) = 0, but it is too difficult to be solved analytically. Numeri-
cal calculations show that there is only one real root we label by 
r+ = r2, G(C) > 0 for r+ < r2 and G(C) < 0 for r+ > r2. As the re-
sult, the black holes with r+ = r2 undergo Hawking-Page phase 
transition. Those with r+ < r2 are globally stable and black holes 
with the horizon radius in the range r+ > r2 are in the phase of 
radiation.

6. Conclusion

We studied the exact solutions of the Einstein-dilaton gravity 
theory in a three-dimensional circularly symmetric and energy de-
pendent geometry. By solving the coupled equations of the gravita-
tional and scalar fields, we found that the scalar potential takes the 
form of Liouville potential and reduces to the cosmological con-
stant when the dilaton field disappears. Also, two classes of novel 
one horizon dilatonic black holes have been introduced with the 
non-flat and non-AdS asymptotic behavior. Through consideration 
of curvature scalars we argued that based on existence of the event 
horizon and appearance of the curvature singularities our new ex-
act solutions are really black holes. The solutions reduce to the 
metric function of the well-known BTZ black holes in the absence 
of dilaton field.

Next, in order to investigate the thermodynamic properties of 
the new black hole solutions, we just obtained, we calculated the 
black hole temperature, entropy and total mass and showed that, 
although these quantities get modified in the presence of rainbow 
functions, they satisfy the standard form of the first law of black 
hole thermodynamics.

Then, we analyzed thermal stability or thermodynamic phase 
transition of the black holes by use of the canonical and grand 
canonical ensembles. By calculating the black hole heat capacity 
we determined the points of type one and type two phase tran-
sitions. Also, we indicated that the black holes corresponding to 
ν = − 2

3 are locally unstable while the black holes correspond-

ing to ν �= − 2
3 are stable with the dilaton parameter in the range 

− 1
2 < ν < 0. In addition, we obtained the Gibbs free energy of the 

black holes and by analyzing its signature we obtained the points 
of Hawking-Page phase transition and characterized the ranges 
where the black holes are globally stable. For the black holes with 
ν = − 2

3 there is a point of Hawking-Page phase transition r1, in-
dicated by Eq. (4.5). This class of black holes are globally stable 
provided that their horizon radii are greater than r1. Also, the sec-
ond class of dilatonic black holes experience Hawking-Page phase 
transition if ν = − 1

2 is chosen. They are globally stable in the range 
− 2

3 < ν < − 1
2 .

Finally, with the aim of studying the quantum gravitational 
impacts on the thermodynamic behavior of the black holes, we 
considered black hole thermal fluctuations. In the presence of ther-
mal fluctuations, when the first order corrections are taken into 
account, the black hole entropy gets logarithmic correction and 
the other thermodynamic quantities remain unchanged. By use of 
the logarithmic corrected black hole entropy we found that al-
though the first law of black hole thermodynamics is still valid 
but the local and global stabilities as well as the points of type 
one, type two and Hawking-Page phase transitions get some mod-
ifications.
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