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Chromonatural inflation is a model where non-Abelian gauge fields are sustained by the coupling of
the axion with the gauge field through the Chern-Simons term, while minimal warm inflation is a model
where the axion produces a thermal bath of non-Abelian gauge particles through the Chern-Simons term.
Since both axion inflation models are based on the same action, a natural question is if they are compatible
or not. We study axion inflation with the Chern-Simons term and find that chromonatural inflation can
accommodate radiation with a temperature much larger than the Hubble parameter during inflation, which
is a characteristic feature of warm inflation. Thus, we conclude that chromonatural warm inflation exists,
which must have phenomenologically interesting consequences.
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I. INTRODUCTION

The inflationary scenario can be realized by a single
scalar field, the so-called inflaton. In the slow-roll limit, the
inflaton acts as a cosmological constant. The cosmic no-
hair theorem [1] tells us that the exponential expansion of
the Universe driven by a cosmological constant erases all
of the initial information of the Universe. More precisely,
in the presence of the cosmological constant and matter
satisfying the energy condition, the following occurs:
(1) The energy density of ordinary matter vanishes.
(2) The anisotropy of spacetime vanishes.
(3) The spatial curvature (except for the Bianchi IX

spacetime, with a very large curvature scale com-
pared to the Hubble scale) goes to zero.

Consequently, the Universe becomes a vacuum with
homogeneous and isotropic flat spacetime where only
quantum vacuum fluctuations remain. This is the reason
why inflation predicts the scale-invariant spectrum with a
statistically isotropic Gaussian distribution [2]. The belief
that any inflation model leads to this prediction is named
the cosmic no-hair conjecture [3–5].
In the presence of additional fields during inflation,

however, conventional inflation could be unstable and a
novel inflationary phase with cosmic hairs could appear [6].
In fact, there exist two clear counterexamples to the cosmic
no-hair conjecture: namely, warm inflation [7], which

violates (1); and anisotropic inflation [8] assisted by gauge
fields, which violates (1) and (2). Generically, those novel
inflation models give rise to qualitatively new predictions,
such as the statistically anisotropic non-Gaussianity [9].
From the particle physics point of view, it is important to

explore qualitatively novel inflation models with gauge
fields [10–12]. As to the case of Abelian gauge fields, it has
been shown that anisotropic inflation and warm inflation
yield anisotropic warm inflation [13]. In the case of non-
Abelian gauge fields, chromonatural inflation [14–16] and
minimal warm inflation [17,18] are the counterexamples to
the cosmic no-hair conjecture. In chromonatural inflation,
the background gauge field exists and interacts with the
axion through the Chern-Simons term to achieve slow-roll.
In minimal warm inflation, on the other hand, the axion
interacting with the gauge field through the Chern-Simons
term produces a thermal bath, which induces a friction term
in the axion dynamics realizing slow-roll inflation. Since
both inflation models utilize a similar setup, it is intriguing
to study if chromonatural inflation and warm inflation can
coexist or not.
Curiously, although both models have the same action

including the Chern-Simons interaction term, their predic-
tions are apparently different. In fact, chromonatural
inflation predicts the excess of primordial gravitational
waves due to the instability of gauge field perturbations
[12,19–22]. Meanwhile, in minimal warm inflation, it is
a challenge to have detectable primordial gravitational
waves [17,23]. It is natural to ask which happens in reality.
Logically, both inflation models may occur simultaneously:
namely, chromonatural warm inflation may exist. In that
case, it is interesting to reveal the prediction of such a
model on primordial gravitational waves. Thus, it is worth
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investigating the phase-space structure of axion inflation
with the non-Abelian Chern-Simons term (see [24] for an
earlier work on this issue).
The purpose of this paper is to clarify whether chromo-

natural warm inflation occurs or not. We study the effect of
the dissipation of inflaton energy on chromonatural infla-
tion by solving the slow-roll equation analytically and
numerically. When the effect of dissipation is negligible,
chromonatural inflation occurs. If we increase the dissipa-
tion rate, chromonatural inflation becomes warm. Thus, it
turns out that chromonatural inflation could accommodate
a thermal bath with a temperature T much larger than the
Hubble parameter H, which is a characteristic feature of
warm inflation. This can be nothing other than chromona-
tural warm inflation. If we further increase the dissipation
rate, chromonatural inflation disappears, and only warm
inflation occurs. Eventually, for very large dissipation, only
cold inflation remains.
The paper is organized as follows: In Sec. II, we review

chromonatural inflation. In Sec. III, we review minimal
warm inflation. In Sec. IV, we present the slow-roll
equations of natural inflation with the Chern-Simons term
and clarify the slow-roll conditions. First, we analytically
investigate the slow-roll equations and verify the existence
of chromonatural warm inflation. Next, we study the slow-
roll equations semianalytically and reveal the phase-space
structure of axion inflation. As a consequence, we prove the
compatibility of chromonatural inflation and warm infla-
tion. The final section is devoted to our conclusion.

II. A REVIEW OF CHROMONATURAL
INFLATION

In this section, we review chromonatural inflation,
where the axion is coupled with non-Abelian gauge fields
through the Chern-Simons term [14,15]. The interaction
between the gauge field and the axion leads to an extra
friction, which realizes the slow-roll inflation even for the
steep potential. Hereafter, we shall work in natural units
ðc ¼ ℏ ¼ Mpl ¼ 1Þ.
The chromonatural inflation is described by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi
−G

p �
1

2
R −

1

2
∂μχ∂

μχ − VðχÞ − 1

4
Fa
μνF

μν
a

−
g2λ
8f

χϵμνλρFa
μνFa

λρ

�
; ð2:1Þ

whereG is the determinant of the metricGμν, R is the scalar
curvature, χ is an axion field, the field strength of the non-
Abelian gauge field is Fa

μν ¼ ∂μAa
ν − ∂νAa

μ þ gϵabcAb
μAc

ν,
and g is a coupling constant of the non-Abelian gauge field.
Greek letters denote spacetime indices, while roman letters
denote gauge indices. The last term is the Chern-Simons
term with a coupling constant λ. We took the conventionffiffiffiffiffiffiffi
−G

p
ϵ0123 ¼ 1. The axion potential VðχÞ reads

VðχÞ ¼ μ4
�
1þ cos

χ

f

�
; ð2:2Þ

where the energy scale is given by μ, and f represents the
decay constant.
Let us consider the cosmological background solution

with the metric

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð2:3Þ

where aðtÞ ¼ eαðtÞ is a scale factor andH ¼ α̇ is the Hubble
parameter. The gauge field configuration is taken to be
homogeneous and isotropic: Aa

i ¼ ψðtÞaðtÞδai and Aa
0 ¼ 0.

Then, the Einstein equations are given by

α̇2 ¼ 1

3

�
1

2
χ̇2 þ μ4

�
1þ cos

χ

f

�
þ 3

2
ψ̇2 þ 3α̇ ψ̇ ψ

þ 3

2
α̇2ψ2 þ 3

2
g2ψ4

�
; ð2:4Þ

α̈ ¼ −
1

2
χ̇2 − ψ̇2 − 2α̇ ψ̇ ψ − α̇2ψ2 − g2ψ4: ð2:5Þ

The field equations for the axion and the gauge field can be
deduced as

χ̈ þ 3α̇ χ̇ −
μ4

f
sin

χ

f
¼ −3

g3λ
f

ψ2ðψ̇ þ α̇ψÞ; ð2:6Þ

ψ̈ þ 3α̇ ψ̇ þ
�
−
1

6
χ̇2 þ 2

3
μ4
�
1þ cos

χ

f

��
ψ

þ 2g2ψ3 −
g3λ
f

ψ2χ̇ ¼ 0: ð2:7Þ

In the slow-roll approximation, where we impose the
condition jχ̈j ≪ α̇jχ̇j, jψ̈ j ≪ α̇jψ̇ j and the inflaton potential
is dominant in Eq. (2.4), we need to solve the equations

α̇2 ¼ μ4

3

�
1þ cos

χ

f

�
; ð2:8Þ

3α̇ χ̇ −
μ4

f
sin

χ

f
¼ −3

g3λ
f

ψ2ðψ̇ þ α̇ψÞ; ð2:9Þ

3α̇ ψ̇þ2

3
μ4
�
1þ cos

χ

f

�
ψ þ 2g2ψ3 −

g3λ
f

ψ2χ̇ ¼ 0: ð2:10Þ

For λ ≠ 0, the consistency conditions for the slow-roll
approximation read

ϵv ≡ 1

2
�
1þ σ2

3

��V 0ðχÞ
VðχÞ

�
2

≪ 1; ð2:11Þ
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ηv ≡ 1�
1þ σ2

3

�V 00ðχÞ
VðχÞ ≪ 1; ð2:12Þ

and

δ≡ 1�
1þ σ2

3

� σ2
γ
≪ 1; ð2:13Þ

where we define σ ≡ g3λψ2

fα̇ and γ ≡ g4λ2ψ2

f2 . Notice that the

slow-roll parameters have the extra factor 1þ σ2=3. For
λ ¼ 0, we simply obtain the conventional slow-roll con-
ditions of natural inflation [25].

ϵv ¼
1

2

�
V 0ðχÞ
VðχÞ

�
2

∼
1

2f2
tan2

χ

2f
≪ 1; ð2:14Þ

ηv ¼
V 00ðχÞ
VðχÞ ∼

1

2f2

�
1 − tan2

χ

2f

�
≪ 1: ð2:15Þ

We see that inflation can occur only for f ≫ 1 in Planck
units, which is unnatural from a particle physics perspec-
tive. For λ ≠ 0, however, f can take a natural value, if
σ ≫ 1 and γ ≫ 1. The conditions σ ≫ 1 and γ ≫ 1 require
g2λ
f ≫ 1, because we need g2ψ4 ≪ μ4 ∼ α̇2 and ψ ≪ 1 for
inflaton potential to be dominant in (2.4).
We rewrite Eqs. (2.9) and (2.10) using σ and γ as

3α̇ χ̇ ¼ μ4

f
sin

χ

f
− 3σα̇ðψ̇ þ α̇ψÞ; ð2:16Þ

3α̇ ψ̇ ¼ −2
�
1þ σ2

γ

�
α̇2ψ þ σα̇ χ̇ : ð2:17Þ

From Eqs. (2.16) and (2.17), we can deduce the equations
for ψ̇ and χ̇. By imposing the slow-roll conditions, σ ≫ 1
and γ ≫ 1, we obtain the equation for the gauge field:

α̇ ψ̇ ≃
μ4

f sin
χ
f

3σ
− α̇2ψ : ð2:18Þ

Defining an effective potential for the gauge field,

VeffðψÞ ¼ α̇2
ψ2

2
þ μ4 sin χ

f

3g3λ
α̇

ψ
; ð2:19Þ

we can rewrite Eq. (2.18) as

α̇ ψ̇ ≃ − V 0
eff : ð2:20Þ

Thus, we see the minimum of the effective potential

ψmin ≃

 
μ4 sin χ

f

3g3λα̇

!
1=3

ð2:21Þ

is an attractor. Indeed, from Veff , the effective mass of the
gauge field ψ at ψmin can be calculated as m2

ψ ≃ 3α̇2, which
is positive and large. Hence, the minimum is an attractor.
Now, the slow-roll conditions can be expressed as

σ ≃
g3λψ2

min

fα̇
¼
 
g3λμ8sin2 χ

f

32f3α̇5

!1
3

≫ 1; ð2:22Þ

γ ≃
g4λ2ψ2

min

f2
¼
 
g6λ4μ8sin2 χ

f

32f6α̇2

!1
3

≫ 1: ð2:23Þ

Now, the axion equation reads from Eq. (2.17) by taking
ψ̇ ≃ 0:

α̇ χ̇ ≃
2

σ

�
1þ σ2

γ

�
α̇2ψ : ð2:24Þ

Using Eqs. (2.8), (2.21), and (2.24), we can calculate the
number of e-folding as

N ¼
Z

α̇

χ̇
dχ ≃

Z
σ

2
�
1þ σ2

γ

�
ψ
dχ

¼ g2λ
Z

π

χi
f

βð1þ cosXÞ23sin1
3X

3−
1
3β2ð1þ cosXÞ43 þ sinX

2
3

dX; ð2:25Þ

where we define X ¼ χ=f and β ¼ λ1=3μ4=3. For the current
parameters, σ ≫ 1 and γ ≫ 1 (for example, g ∼ 10−6,
g2λ ∼ 102, and μ ∼ 10−4), we have β ∼Oð1Þ. If we take
X ¼ 10−2 as an initial value, the number of e-folding is
given by N ∼ g2λOð1Þ. Therefore, g2λ ∼Oð100Þ is enough
for sufficient inflation to occur.

III. A REVIEW OF MINIMAL WARM INFLATION

Warm inflation is an attractive model, because it might
provide a mechanism for slow-roll inflation without a
shallow potential and the thermalization of the Universe
without reheating [7,26–28]. The point is that the decay
rate of the inflaton satisfies Γχ ≳H during inflation. The
inflaton produces other light fields and generates a thermal
bath. However, since the thermal bath gives a temperature
typically much larger than the Hubble parameter, thermal
backreaction to the inflaton potential may destroy the warm
inflation scenario [29]. To resolve the thermal backreaction
issue, minimal warm inflation utilizing the shift symmetry
of an axion has been proposed [17]. Although there are
other models protecting quantum and thermal corrections
to the inflaton potential [30–33], we focus on the minimal
warm inflation model in this paper.
The Lagrangian of minimal warm inflation driven by the

axion field χ is given by
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S ¼
Z

d4x
ffiffiffiffiffiffiffi
−G

p �
1

2
R −

1

2
∂μχ∂

μχ − VðχÞ − 1

4
Fa
μνF

μν
a

−
g2λ
8f

χϵμνλρFa
μνFa

λρ

�
: ð3:1Þ

The action is exactly the same as that of chromonatural
inflation. In the scenario of warm inflation, it is crucial to
take into account the dissipation rate of the inflaton Γχ ,
calculated from the sphaleron transition rate [34] as

ΓχðTÞ ¼ κg10T3
λ2

f2
; ð3:2Þ

where the parameter κ depends on g, the number of colors
Nc and flavors Nf of the gauge group [35]. The natural
value is κ ∼Oð100Þ. It is convenient to define the dimen-
sionless quantity Q by the relation Γχ ¼ 3HQ—namely,

Q ¼ κg10T3
λ2

3Hf2
: ð3:3Þ

In warm inflation, the dissipation of the energy of the axion
field χ due to the coupling to gauge fields leads to an
effective friction in the equation of the axion

χ̈ þ 3Hð1þQÞχ̇ þ V 0ðχÞ ¼ 0: ð3:4Þ

Moreover, the Friedman equation reads

H2 ¼ 1

3M2
pl

�
VðχÞ þ 1

2
χ̇2 þ ρR

�
; ð3:5Þ

where we take into account the energy density of radiation
with the internal degrees of freedom gi:

ρR ¼ π2

30
giT4: ð3:6Þ

The conservation of energy is described by

ρ̇R þ 4HρR ¼ 3HQχ̇2: ð3:7Þ

Using the slow-roll approximation jχ̈j ≪ Hjχ̇j in Eq. (3.4);
χ̇2 ≪ VðχÞ, ρR ≪ VðχÞ in Eq. (3.5); and ρ̇R ≪ HρR in
Eq. (3.7), we obtain the slow-roll equations

3Hð1þQÞχ̇ þ V 0ðχÞ ¼ 0; ð3:8Þ

H2 ¼ VðχÞ
3M2

pl

; ð3:9Þ

ρR ¼ 3

4
Qχ̇2: ð3:10Þ

The consistency conditions for the slow-roll approximation
are given by

ϵv ≡ 1

2ð1þQÞ
�
V 0ðχÞ
VðχÞ

�
2

≪ 1; ð3:11Þ

ηv ≡ 1

1þQ
V 00ðχÞ
VðχÞ ≪ 1; ð3:12Þ

β≡ 1

1þQ
Q0V 0ðχÞ
QVðχÞ ≪ 1: ð3:13Þ

We can see that the factor 1þQ alleviates the condition on
the inflaton potential.
Since we know the axion potential (2.2), we can

calculate the number of e-folding as

N ¼
Z

α̇

χ̇
dχ ≃

Z
3ð1þQÞα̇2f2

μ4 sin χ
f

dχ

¼ f2
Z

π

χi
f

ð1þQÞð1þ cosXÞ
sinX

dX; ð3:14Þ

where we define X ¼ χ=f. If we take X ¼ 10−2 as an initial
value, the number of e-folding is given byN∼10f2ð1þQÞ.
For example, 1þQ ∼ f−2Oð10Þ gives N ∼Oð100Þ.
Hence, Q should be large, Q ≫ 1, for a natural value of
the decay constant f < 1.

IV. CHROMONATURAL WARM INFLATION

As shown in the previous sections, both chromonatural
inflation and minimal warm inflation assume interaction
between the inflaton and non-Abelian gauge fields through
the Chern-Simons term. Therefore, it is natural to ask if
chromonatural inflation and minimal warm inflation could
be compatible. The purpose of this section is to show the
existence of chromonatural warm inflation.

A. Slow-roll equations of axion inflation
with Chern-Simons term

We consider the same Lagrangian with chromonatural
inflation,

S ¼
Z

d4x
ffiffiffiffiffiffiffi
−G

p �
1

2
R −

1

2
∂μχ∂

μχ − VðχÞ − 1

4
Fa
μνF

μν
a

−
g2λ
8f

χϵμνλρFa
μνFa

λρ

�
; ð4:1Þ

where the axion potential VðχÞ is given in Eq. (2.2). Here,
we note the dual role of the SU(2) gauge field. In chromo-
natural inflation, it is crucial to assume that the SU(2) gauge
field configuration in the background is rotation invariant:
Aa
i ¼ ψðtÞaðtÞδai . In minimal warm inflation, it is crucial to

notice that the axion field can decay into a thermal gas of a
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SU(2)-gauge field through the Chern-Simons coupling.
It should be emphasized that these two components are
different. We take into account the energy density of the
thermal gas ρR in Eqs. (2.4) and (2.5) as

α̇2 ¼ 1

3

�
1

2
χ̇2 þ μ4

�
1þ cos

χ

f

�
þ 3

2
ψ̇2 þ 3α̇ ψ̇ ψ

þ 3

2
α̇2ψ2 þ 3

2
g2ψ4 þ ρR

�
; ð4:2Þ

α̈ ¼ −
1

2
χ̇2 − ψ̇2 − 2α̇ ψ̇ ψ − α̇2ψ2 − g2ψ4 −

2

3
ρR; ð4:3Þ

and Eqs. (2.6) and (2.7) read

χ̈ þ 3α̇ð1þQÞχ̇ − μ4

f
sin

χ

f
¼ −3

g3λ
f

ψ2ðψ̇ þ α̇ψÞ; ð4:4Þ

ψ̈ þ 3α̇ ψ̇ þ
�
−
1

6
χ̇2 þ 2

3
μ4
�
1þ cos

χ

f

��
ψ

þ 2g2ψ3 −
g3λ
f

ψ2χ̇ ¼ 0; ð4:5Þ

where we have added the dissipation term only for the
axion equation of motion. It is convenient to define ρχ
and ρψ as

ρχ ¼ μ4
�
1þ cos

χ

f

�
; ð4:6Þ

ρψ ¼ 3

2
α̇2ψ2 þ 3

2
g2ψ4: ð4:7Þ

The energy conservation implies

ρ̇R þ 4α̇ρR ¼ 3α̇Qχ̇2: ð4:8Þ

In the slow-roll approximation, we impose the condition
jχ̈j ≪ α̇ð1þQÞjχ̇j, jψ̈ j ≪ α̇jψ̇ j, ρ̇R ≪ α̇ρR, and the inflaton
potential is dominant in Eqs. (4.2), (4.4), (4.5), and (4.8).
The equations are simplified as follows:

α̇2 ¼ μ4

3

�
1þ cos

χ

f

�
; ð4:9Þ

3α̇ð1þQÞχ̇ ¼ μ4

f
sin

χ

f
− 3σα̇ðψ̇ þ α̇ψÞ; ð4:10Þ

3α̇ ψ̇ ¼ −2
�
1þ σ2

γ

�
α̇2ψ þ σα̇ χ̇; ð4:11Þ

ρR ¼ 3

4
Qχ̇2: ð4:12Þ

Note that we have defined σ ≡ g3λψ2

fα̇ and γ ≡ g4λ2ψ2

f2 . The

consistency conditions for the slow-roll approximation can
be derived as follows. From the condition ρ̇R ≪ α̇ρR, we
obtain

ϵv ≡ 1

2ð1þQÞ
	
1þ σ2

3ð1þQÞ

�V 0ðχÞ

VðχÞ
�

2

≪ 1; ð4:13Þ

ηv ≡ 1

ð1þQÞ
	
1þ σ2

3ð1þQÞ

V 00ðχÞ
VðχÞ ≪ 1; ð4:14Þ

β≡ 1

1þQ
Q0V 0ðχÞ
QVðχÞ ≪ 1: ð4:15Þ

We can see that the slow-roll conditions (2.11), (2.12),
and (3.11)–(3.13) are included as special cases of
Eqs. (4.13)–(4.15). The requirement jψ̈ j ≪ α̇jψ̇ j does not
imply any additional condition. From the condition jχ̈j ≪
α̇ð1þQÞjχ̇j, we can see that the slow-roll condition (2.13)
is updated to

δ≡ 1	
1þ σ2

3ð1þQÞ

 σ2
γ

1

ð1þQÞ ≪ 1: ð4:16Þ

Note that these slow-roll conditions can be satisfied when
all the parameters σ, γ, and Q are larger than 1.
After diagonalizing Eqs. (4.10) and (4.11), the equations

of the axion and the gauge field are given by

α̇ χ̇ ¼ 1

9
	
1þ σ2

3ð1þQÞ


"
3 μ4

f sin
χ
f

1þQ
−
�
1 −

2σ2

γ

�

×
μ4
�
1þ cos χ

f

�
σψ

1þQ

#
; ð4:17Þ

α̇ ψ̇ ¼ 1

9
	
1þ σ2

3ð1þQÞ


"
σ μ4

f sin
χ
f

1þQ
−
�

σ2

1þQ
þ 2þ 2σ2

γ

�
μ4

×

�
1þ cos

χ

f

�
ψ

#
: ð4:18Þ

B. Effect of dissipation on chromonatural inflation

It is possible to cast Eq. (4.18) into the form
α̇ ψ̇ ≃ − V 0ðψÞeff , where we define the effective potential

V 0ðψÞeff ¼
μ4

3
	
1þ 3ð1þQÞ

σ2



"
−
sin χ

f

fσ
þ
�
1þ 2ð1þQÞ

σ2

þ 2ð1þQÞ
γ

��
1þ cos

χ

f

�
ψ

#
: ð4:19Þ
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From Eq. (4.19), we obtain the fixed point

ψ fixed ¼
0
@ μ2 sin χ

fffiffiffi
3

p
g3λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos χ

f

q 	
1þ 2ð1þQÞ

σ2
þ 2ð1þQÞ

γ



1
A1=3

:

ð4:20Þ

The second and third terms in the denominator represent
corrections to the attractor solution of chromonatural
inflation due to the effect of dissipation Q. This formal
solution shows that chromonatural inflation can be realized
when Q is much smaller than σ2 and γ. However, once
Q becomes comparable to σ2 and γ, we would expect
that warm inflation commences. What we would like to
clarify is whether chromonatural and warm inflation
coexist or not.
Let us take a look at the following expressions:

σ ¼ g3λψ2

fα̇
; γ ¼ g4λ2ψ2

f2
; Q ¼ κg10T3

λ2

3α̇f2
:

ð4:21Þ

Once the gauge field is captured at the minimum of the
effective potential, σ2, γ, and Q are determined by the para-
meters g, f, λ, μ, and κ and the field χ. Now, we change the
parameter κ, which controls the effect of dissipation, and fix
the other parameters and the field χ. For κ ¼ 0, the solution
reduces to that of chromonatural inflation in Sec. II. As
we increase κ, the effect of dissipation becomes larger.
Eventually, we see that chromonatural warm inflation can
be realized. We will find that chromonatural inflation
ceases to occur for larger κ.
From now on, we fix the parameters fg; f; λ; μg ¼

f0.2; 0.01; 9 × 105; 3 × 10−4g. For κ ¼ 0, we have an
attractor solution

ψmin ¼
 

μ2 sin χ
fffiffiffi

3
p

g3λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos χ

f

q
!

1=3

≃
�

μ2ffiffiffi
3

p
g3λ

�
1=3

≃ 0.0002

�
0.2
g

��
9 × 105

λ

�1
3

�
μ

3 × 10−4

�2
3

; ð4:22Þ

where we assume that the χ-dependent part gives an Oð1Þ
contribution. Then, σ and γ would be given by

σ ≃ 105
�

g
0.2

��
10−2

f

��
λ

9 × 105

�1
3

�
3 × 10−4

μ

�2
3 ð4:23Þ

and

γ ≃ 106
�

g
0.2

�
2
�
10−2

f

�
2
�

λ

9× 105

�4
3

�
μ

3× 10−4

�4
3

: ð4:24Þ

Since σ ≫ 1 and γ ≫ 1, the slow-roll conditions of
chromonatural inflation are satisfied. Notice that, for these
parameters, σ2 ≫ γ is satisfied.
Let us start to increase κ gradually. As long as the effect

of dissipation can be negligible, σ2 ≫ Q and γ ≫ Q, the
fixed point is approximated by that of chromonatural infla-
tion ψmin. The slow-roll conditions, from (4.13) to (4.16),
are reduced into those of chromonatural inflation, σ ≫ 1
and γ ≫ 1. Using Eqs. (3.3), (3.6), and (4.12), we obtain

T ¼ 3

40π2
κg10

λ2

α̇f2
χ̇2; ð4:25Þ

where we choose gi ¼ 100 in Eq. (3.6). Since the inequality
σ2 ≫ γ holds and ψ̇ ≃ 0 is satisfied, Eq. (4.11) yields

χ̇ ¼ 2f
gλ

ψmin: ð4:26Þ

Substituting Eqs. (4.22) and (4.26) into Eq. (4.25), we can
analytically obtain the ratio of temperature to the Hubble
parameter as

T
α̇
¼ 1

30
κg6
�
g2ψ2

min

α̇2

�
≃ κ

�
g
0.2

�
6
�
3× 10−4

μ

�8
3

�
9× 105

λ

�2
3

:

ð4:27Þ

Thus, for κ > 1, we see that warm inflation is realized.
Using Eq. (4.27), we can evaluate the dissipation para-
meter (3.3) as

Q¼ κg10
λ2

3α̇f2
T3≃ 10−7κ4

�
g
0.2

�
28
�
3×10−4

μ

�
4
�
10−2

f

�
2

:

ð4:28Þ

We can also deduce the following expressions:

Q
σ2

≃ 10−18κ4
�

g
0.2

�
26
�
3 × 10−4

μ

�8
3

�
9 × 105

λ

�2
3

; ð4:29Þ

and

Q
γ
≃ 10−12κ4

�
g
0.2

�
26
�
3 × 10−4

μ

�16
3

�
9 × 105

λ

�4
3

: ð4:30Þ

From the above results, we see that the current assumptions
σ2 ≫ Q and γ ≫ Q hold as long as κ satisfies the condition
κ ≪ 103. For 1 < κ, we see that the temperature could
exceed the Hubble parameter, which is a characteristic
feature of warm inflation. In particular, for 101.75< κ≪103,
we obtain strong warm inflation Q > 1. Thus, chromona-
tural warm inflation occurs for the parameter region
1 < κ ≪ 103. Note that these conditions change depending
on the choice of other parameters. For example, when we
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consider g ∼Oð10−2Þ, the condition for warm inflation to
occur becomes 106 < κ ≪ 109.
From Eqs. (4.26) and (4.28), we obtain the radiation

energy density as

ρR ¼ 3

4
Qχ̇2 ≃ 10−5

κ4g32

α̇4
ψ8
min

≃ 10−28κ4
�

g
0.2

�
24
�
3 × 10−4

μ

�8
3

�
9 × 105

λ

�8
3

; ð4:31Þ

where we use the relation σ2 ≫ γ in the last equality. The
energy density of the gauge field can be obtained by
substituting the fixed point (4.22) into Eq. (4.7) as

ρψ ¼ 3

2
g2ψ4

min ≃ 10−16
�

μ

3 × 10−4

�8
3

�
0.2
g

�
2
�
9 × 105

λ

�4
3

:

ð4:32Þ

We can also obtain the number of e-folding using Eq. (2.25).
For the current parameters, we obtain β ¼ λ1=3μ4=3 is
Oð10−2Þ, and N ≃ g2λOð10−2Þ ∼Oð100Þ.
To check the analytical results, we numerically solved

the basic Eqs. (4.4), (4.5), and (4.8) with the parameter set
fκ; g; f; λ; μg ¼ f102; 2 × 10−1; 10−2; 9 × 105; 3 × 10−4g.
In Fig. 1, we can see that the gauge field value has settled
down into the potential minimum ψmin, indicating that the
slow-roll conditions are satisfied during inflation. We also
show T=H for various κ in Fig. 2. As we increase κ, we see
that the temperature gradually increases.
In this subsection, we have analytically investigated

chromonatural warm inflation. Although we have fixed the
parameters other than κ, it is easy to change other para-
meters and to see what kind of inflation is realized. In
particular, we should note that warm inflation is highly
sensitive to the gauge coupling constant g, as one can see
from Eqs. (4.27), (4.28), and (4.31).

C. The existence of chromonatural warm inflation

If we increase κ, the condition γ ≫ Q will eventually be
violated: namely, the effect of dissipation Q cannot be
negligible. According to Eq. (4.20), the gauge field would
become smaller as we increase κ. Hence, the slow-roll
conditions of chromonatural inflation, σ ≫ 1 and γ ≫ 1,
will be violated in the end. In order to see the behavior, we
will analyze the κ dependence of the gauge field using the
slow-roll Eqs. (4.17) and (4.18).
The temperature can be determined by the time deriva-

tive of the axion χ̇ as in Eq. (4.25). The slow-roll equation
of the axion field gives

χ̇ ¼
ffiffiffi
3

p

9
�
1þQþ σ2

3

�
(
3μ2

f

sin χ
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos χ
f

q

−
�
1 −

2σ2

γ

�
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos

χ

f

r
σψ

)
: ð4:33Þ

By substituting χ̇ into the temperature (4.25), we obtain

T ¼ 3κg10

40π2
λ2

α̇f2

" ffiffiffi
3

p

9
�
1þQþ σ2

3

�
(
3μ2

f

sin χ
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos χ
f

q

−
�
1 −

2σ2

γ

�
μ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos

χ

f

r
σψ

)#
2

: ð4:34Þ

Moreover, since the gauge field is settled down into the
minimum of the effective potential, ψ̇ ≃ 0 will be realized.
Thus, Eq. (4.18) implies

FIG. 1. The solid curve represents the time evolution of the
gauge field numerically obtained with κ ¼ 102. The dashed curve
represents the analytical solution ψmin.

FIG. 2. The horizontal axis represents χ=f. Inflation ends when
χ=f reaches π. The graph shows that larger κ gives a larger
temperature. We use the parameters g ¼ 0.2, f ¼ 0.01, λ ¼
9 × 105, μ ¼ 3 × 10−4 and the initial conditions T0 ¼ 10−7,
χ0 ¼ 10−4, vχ0 ¼ 0, ψ0 ¼ 4 × 10−5, vψ0

¼ 0.
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1þQ ¼ σ2

2

�
1þ σ2

γ

�−1
(

1

fσψ

sin χ
f

1þ cos χ
f

− 1

)
: ð4:35Þ

By using Eq. (4.35) in Eq. (4.34), the temperature T can be
written as a function of ψ . On the other hand, using the
expression of Q (3.3) in Eq. (4.35), the temperature T can
also be written by ψ as

T ¼
� ffiffiffi

3
p

μ2f2σ2

2κg10λ2

�1
3
��

1þ σ2

γ

�
−1

×

�
1

fσψ

sin χ
f�

1þ cos χ
f

� − 1

�
−

2

σ2

�1
3

: ð4:36Þ

The attractor solutions of slow-roll inflation could be
obtained as the intersection of (4.34) and (4.36). To make
the analysis precise, we fix the parameters g, f, λ, μ. Thus,
the attractor of the gauge field and the temperature can be
determined by the axion field χ once κ is determined.
During inflation, χ is almost constant. Hence, we can take a
representative value.
Now, we will take a look at the κ dependence of ψ , σ, γ,

T=H, Q, and χ̇. In the numerical calculations, we use the
parameters g ¼ 0.2, f ¼ 0.01, λ ¼ 9 × 105, μ ¼ 3 × 10−4.
We also choose a reference point χ ¼ 0.01 for the axion
field.
Since we know the behavior of solutions up to κ ¼ 10

from the analysis in Secs. IV and IV B, we will start with
κ ¼ 10. In Fig. 3, we plot the gauge field for various κ.
In Figs. 4 and 5, the parameters σ and γ which characterize
the slow-roll chromonatural inflation are depicted. Up to
κ ¼ 102, ψ , σ, and γ do not change, as shown in Figs. 3–5,
which is consistent with the results in Secs. IV and IV B.
In the parameter region κ ≳ 103, we see the behavior
ψ ∝ 1=

ffiffiffi
κ

p
due to the dissipation. As a consequence, σ

and γ decrease linearly, 1=κ. Around κ ¼ 107, we can
see that σ and γ become Oð1Þ, which means that the

chromonatural inflation ceases to occur. In fact, we numeri-
cally checked that the intersection point disappears when
we take κ > 107.
In Fig. 6, we plot the ratio of temperature to the Hubble

parameter T=H for various κ. We find that the ratio T=H
takes the maximum value T=H ≃ 600 around κ ¼ 103.
Beyond κ ¼ 103, the ratio T=H decreases.
We also plot the dissipation parameter Q in Fig. 7. From

Fig. 7, we see that the dissipation parameter Q rapidly
increases up to κ ¼ 103, beyond which Q increases slowly.
Note that the dissipation parameterQ is always much larger
than 1 for large κ.
Remarkably, for κ > 103, the temperature T decreases in

spite of increasing Q. This is because χ̇ decreases faster
than the increasing rate of Q. Note that the larger κ
enhances the dissipation, and as a consequence, the friction
becomes large. That makes χ̇ small. To verify this, we plot χ̇
in Fig. 8. This is the reason why the ratio T=H starts to
decrease at some point.

FIG. 3. The gauge field ψ is depicted for various κ. The gauge
field does not depend on κ for κ < 102. For κ > 102, the gauge
field gradually decreases as 1=

ffiffiffi
κ

p
.

FIG. 4. The variable σ is depicted for various κ. Since σ ≫ 1 is
the slow-roll condition for chromonatural inflation, we see that
chromonatural inflation ceases to occur around κ ¼ 107.

FIG. 5. We plot γ for various κ. Since γ ≫ 1 is the slow-roll
condition for chromonatural inflation, again we see that chro-
monatural inflation ceases to occur around κ ¼ 107.
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To understand the behavior of the Universe in the
parameter region κ > 107, we checked analytically and
numerically the maximum value of κ where warm inflation
can occur. Beyond κ ¼ 107, since the gauge field becomes

trivial, the behavior of the axion field would return to that
of warm inflation. The time derivative of the axion field χ̇ is
given by taking ψ ¼ 0 in Eq. (4.33) as

χ̇ ¼ 1ffiffiffi
3

p ð1þQÞ
μ2

f

sin χ
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cos χ
f

q : ð4:37Þ

From Eqs. (3.6) and (4.12), the temperature is given by

T ¼ 1

κ
1
7

�
9

40π2
α̇μ4

g10λ2
sin2 χ

f�
1þ cos χ

f

��1
7

: ð4:38Þ

Note that we have assumed Q ≫ 1, as shown in Fig. 6.
As κ is increased, we see that the temperature decreases.
Thus, eventually we will reach the critical point T ¼ α̇.
Now, assuming the parameter set g ¼ 0.2, f ¼ 0.01,
λ ¼ 9 × 105, μ ¼ 3 × 10−4 and the axion field χ ¼ 0.01,
we can obtain κ at the critical point:

κ ¼ 35

40π2
1

g10λ2μ8
sin2 χ

f�
1þ cos χ

f

�
4
≃ 1022: ð4:39Þ

Thus, for κ > 1022, the temperature is below the Hubble
parameter—that is, we have cold inflation. In Sec. III, we
obtained the number of e-folding (3.14), which can be
approximately written as N ∼ 10f2Q. Substituting (4.38)
into (3.3), we can derive the dissipation parameter Q as

Q ¼ κ
4
7

�
3

ð40π2Þ3
g40λ8μ4

f14
sin6 χ

f�
1þ cos χ

f

�
5

�1
7

: ð4:40Þ

We see that the number of e-folding increases as N ∝ κ
4
7.

Therefore, the Universe looks like an eternal inflation
for κ > 1022.
In Sec. IV B, we have analytically shown that chromo-

natural warm inflation exists for 1 < κ < 103. In this sub-
section, we have numerically shown that chromonatural
warm inflation exists in the parameter region 10 <
κ < 107. For κ > 107, warm inflation is realized up to
κ < 1022. If we consider much larger κ > 1022, almost
eternal inflation is realized with the number of e-folding
N ∝ κ

4
7. Thus, we can conclude that chromonatural warm

inflation exists for 1 < κ < 107.

V. CONCLUSION

We studied axion inflation with the non-Abelian Chern-
Simons interaction term. In particular, we examined if
chromonatural inflation and minimal warm inflation can
occur simultaneously. We showed that these inflation
models can coexist. Indeed, chromonatural inflation could
have a temperature T > H, which is a characteristic feature
of warm inflation.

FIG. 6. The ratio T=H is depicted for various κ. Around
κ ¼ 103, the ratio becomes maximum.

FIG. 7. The dissipation parameter Q is depicted for various κ.
We see Q rapidly increase up to κ ¼ 103, beyond which Q
increases slowly.

FIG. 8. The time derivative of the axion field χ̇ is depicted for
various κ. From κ ¼ 103, χ̇ decreases rapidly.
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We analyzed the system in two ways. First, starting from
the chromonatural inflation where κ ¼ 0, we gradually
increased the parameter κ. We analytically showed that
chromonatural warm inflation occurs once κ exceeds 1. In
particular, when κ is larger than 101.75, strong warm inflation
appears. Beyond κ ¼ 103, the approximation became in-
valid. Hence, second, we numerically solved attractor equa-
tions. We found that gauge fields decrease as ψ ∝ 1=

ffiffiffi
κ

p
.

Hence, σ and γ decrease linearly as 1=κ. Around κ ¼ 107,
we see that σ and γ become Oð1Þ. Namely, chromonatural
inflation ceases to occur there. We also found that the ratio
of the temperature to the Hubble parameter T=H is always
larger than 1 in the parameter region 1 < κ < 107. Thus,
we found that chromonatural warm inflation occurs in the
parameter region 1 < κ < 107. For κ > 107, we have
warm inflation. If we further increase κ, since χ̇ decreases,
warm inflation ceases to occur around κ ¼ 1022. For
κ > 1022, inflation becomes cold and looks like eternal
inflation. We can summarize our findings in Fig. 9.
In our analysis, we have always fixed the parameters

other than κ. However, our analytic expressions are useful
for getting information about inflation with other parameter
values. For example, we can see the strong dependence of

warm inflation on the gauge coupling constant g. Moreover,
our numerical analysis can be easily repeated for other
parameter cases. We merely focused on the existence of
chromonatural warm inflation in this paper.
As we mentioned in the Introduction, the counterexam-

ple of the cosmic no-hair conjecture can lead to interesting
phenomenological consequences. In the present case,
minimal warm inflation predicts the absence of primordial
gravitational waves due to the low Hubble scale. On the
other hand, in chromonatural inflation, the non-Abelian
gauge field contains the tensor modes interacting with the
metric tensor modes, leading to an excess of primordial
gravitational waves due to the tachyonic instability. How-
ever, in chromonatural warm inflation, the growth of the
gauge field would be suppressed. Hence, it might happen
that tachyonic instability could produce an appropriate
amount of gravitational waves to be observable. We will
leave this issue for future work.
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