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Abstract: We extend a 2d topological model of the gravitational path integral to include

sums over spin structure, corresponding to Neveu-Schwarz (NS) or Ramond (R) boundary

conditions for fermions. This path integral corresponds to a correlator of boundary creation

operators on a non-trivial baby universe Hilbert space, and vanishes when the number of

R boundaries is odd. This vanishing implies a non-factorization of the correlator, which

necessitates a dual interpretation of the bulk path integral in terms of a product of partition

functions (associated to NS boundaries) and Witten indices (associated to R boundaries),

averaged over an ensemble of theories with varying Hilbert space dimension and different

numbers of bosonic and fermionic states. We also consider a model with End-of-the-World

(EOW) branes, for which the dual ensemble then includes a sum over randomly chosen

fermionic and bosonic states. We propose two modifications of the bulk path integral which

restore an interpretation in a single dual theory: (i) a geometric prescription where we add

extra boundaries with a sum over their spin structures, and (ii) an algebraic prescription

involving “spacetime D-branes”. We extend our ideas to Jackiw-Teitelboim gravity, and

propose a dual description of a single unitary theory with spin structure in a system with

eigenbranes.
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1 Introduction

The Euclidean gravity path integral naturally includes a sum over topologies of the space-

time manifold. A semiclassical saddlepoint contribution then has, in addition to the fluctu-

ations of the geometry and fields on the given background topology, additional fluctuations

associated with changes in the topology. A simple kind of topology changing process is

the addition of a small handle to the geometry (figure 1). Such a handle is referred to as

a spacetime wormhole, and is distinct from the more familiar spatial wormhole where the

spatial geometry at any moment in time has a handle. If we slice across the picture through

the handle, we see that it can be interpreted as the emission of a small “baby universe” by

a parent spacetime.

The role played by these topology changing processes in unitary quantum gravity is an

old puzzle [1–4]. In the 1980’s, Coleman [5] and Giddings and Strominger [6, 7] proposed

that at scales large compared to the size of the baby universes, the effects on the parent

universe are encoded in an average over a set of couplings, referred to as alpha parameters,

for local operators in the parent universe.

A different issue with spacetime wormholes appears in the AdS/CFT correspondence,

where the partition sum of the boundary field theory is computed by the bulk Euclidean

gravitational path integral. In this context, we expect that independent, non-interacting

field theories in their vacuum state will be dual to a sum over disconnected bulk geometries,

because the correlations functions should factorize between the theories. However, it turns

out that there are examples of spacetimes with two asymptotic boundaries for which there

are solutions where the two boundaries are connected by a spacetime wormhole, in addition
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Figure 1. A Euclidean spacetime with a “wormhole” handle which contributes to the gravitational

path integral. If we slice the path integral open along the bottom blue dotted line, we get a state

in a universe with a connected Cauchy slice. If we instead slice along the top blue dotted line, we

see the parent universe has “emitted” a baby universe, which appears as a disconnected component

of the Cauchy slice.

to the disconnected geometries connected to the two boundaries separately [8]. The usual

rules of the AdS/CFT correspondence state that we should sum over all bulk manifolds

that fill in the boundaries on which the field theories are defined, so we expect to add the

contribution of the wormhole to that of the disconnected geometries which are asymptotic

to the two spacetime boundaries.1 The contributions of the wormholes in the gravitational

path integral suggests a connection between the field theories on the two boundaries, and

a lack of factorization of their correlation functions. This is puzzling because we suppos-

edly started with two independent field theories in their vacuum state whose correlation

functions should have factorized. This example suggests a subtlety in the quantity that is

actually computed by the gravitational path integral in the AdS/CFT correspondence and

raises the question of whether it is simply the vacuum partition function.2

This tension was recently resolved in the context of two-dimensional Jackiw-Teitelboim

(JT) gravity in [20]. The authors of [20] showed that the gravitational path integral for

JT gravity was dual not to a single boundary theory, but to a matrix model which could

be interpreted as an ensemble average over a family of Hamiltonians for a one-dimensional

1This is different from the case of the Hawking-Page transition in AdS/CFT where two Euclidean bulk

geometries, thermal AdS and the Euclidean black hole, compete to dominate the partition sum calculation

for the dual thermal field theory. In this case, in the black hole phase a Cauchy slice has a wormhole between

the two asymptotic regions of the eternal black hole, but the boundary of the Euclidean saddlepoint has

only one connected component. By contrast, in the spacetime wormholes, the Euclidean geometry has

multiple disconnected boundary components.
2In principle, we could define the gravitational path integral to only include disconnected bulk manifolds,

and in this way enforce that the bulk path integral should factorize. However, recent work suggests that

including the non-factorizing wormhole contributions leads to a formalism which is powerful enough to

resolve the black hole information paradox [9] using only semiclassical gravity [10–12] in any dimension [13,

14]. See [15] for a review. Also, see [16] for an early application of baby universes to the information paradox.

Spacetime wormholes have also led to attempts at solving the cosmological constant problem [17–19]. As

such, it is clearly worth understanding the detailed implications of these contributions to the gravitational

path integral.
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quantum mechanics on the boundary.3 The connected correlation function of boundary

observables in this ensemble average is generated in the bulk path integral by a contribu-

tion from connected geometries with multiple boundaries, i.e., geometries with spacetime

wormholes. This observation raised the question of whether there is a general connection

between spacetime wormholes in the Euclidean gravity path integral and a dual holographic

description in terms of ensemble-averaged quantum theories.

In [27], Marolf and Maxfield used a baby universe picture to propose that the grav-

itational path integral should generically have an interpretation in terms of an ensemble

average. The general discussion was illustrated by considering a simple exactly solvable

topological model where the bulk path integral sums over all smooth two-dimensional

manifolds with n boundaries, including both connected and disconnected manifolds, with

a weight depending only on the topology of the bulk manifold. The connected contribu-

tions imply that the bulk path integral does not factorize: the n-boundary result is not a

power of the one-boundary result.

In AdS/CFT we would expect this bulk path integral to be dual to some quantum

mechanical system living on the boundary. Each boundary is a Euclidean circle, so the

path integral in the dual quantum theory on this circle computes the partition function Z.4

Marolf and Maxfield explicitly calculated the bulk path integral in this model, and showed

that the path integral with n boundaries can be interpreted as an ensemble average 〈Zn〉,
where Z = trH(1) is the trace over all states in a boundary Hilbert space H of dimension

d with vanishing Hamiltonian. Each boundary is associated with an independent copy of

H, and the average is taken in an ensemble of Hilbert spaces with a Poisson distribution

over d. In the context of the ensemble of boundary theories, Z should not be regarded as

a number in a single theory, but rather as a random variable taking values in the set of

boundary Hilbert space dimensions. As such, because of the average over the dimension d,

〈Zn〉 6= 〈Z〉n.

This non-factorization can also be described in terms of a baby universe Hilbert space.

We define this by slicing open the bulk path integral, along some one-dimensional surface

which splits the bulk manifold into two pieces.5 We think of the path integral on one side

of this surface as defining a state on the surface, and the full path integral as defining

an inner product between two such states. The path integral on one side of the slice is

completely characterised by the number m of asymptotic boundaries on this side, so we

denote the resulting state as |Zm〉. If we take a path integral with m + n boundaries

and slice it so m boundaries are on one side and n on the other, this defines the overlap

〈Zn|Zm〉. If we change the slicing so that m + 1 of the boundaries now lie on one side of

the slice, this defines a state |Zm+1〉 and the full path integral calculates 〈Zn−1|Zm+1〉. It

3Attempts to build a 2d boundary ensemble model for 3d pure gravity have been made recently in [21–

25], and the existence of the ensemble in any dimension was interpreted as a resolution of the so-called

“state paradox” in [26].
4As there is no metric in this model, there is no notion of the length of the circle, and hence no

temperature. The partition function is just a number.
5Since the bulk manifold can have multiple connected components, so will this surface, and its topology

will differ in different contributions to the path integral.
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is therefore natural to define a Hermitian operator Ẑ on the baby universe Hilbert space

such that Ẑ|Zm〉 = |Zm+1〉, describing the effect on the state of adding a boundary in the

path integral on one side of the slice. Then the bulk path integral with n boundaries can be

described as an expectation value in the baby universe Hilbert space, 〈HH|Ẑn|HH〉, where

|HH〉 = |Z0〉 is the Hartle-Hawking state, defined by the path integral with no asymptotic

boundaries [28]. This correlator would factorize, i.e., 〈HH|Ẑn|HH〉 = 〈HH|Ẑ|HH〉n, if |HH〉
were an eigenstate of Ẑ, which is only possible if the baby universe Hilbert space HBU is one-

dimensional. Thus, [27] showed that the bulk path integral requires a dual interpretation

in an ensemble of theories (as opposed to a single theory) precisely when the baby universe

Hilbert space is non-trivial.6

In general then, in the simple topological model of [27], the gravitational path integral

with n boundaries computes a non-factorizing correlator of n baby universe creation oper-

ators Ẑn, and this quantity has a dual description as the average of the nth power of the

partition sum evaluated in a particular ensemble of theories: 〈HH|Ẑn|HH〉 = 〈Zn〉, where

the average on the right hand side is taken over a statistical ensemble of field theories,

and Zn = trH(1)× · · · × trH(1) is the partition function in the n-fold product of identical

theories.

A natural extension of this model is to add spin structures, the topological aspect of

fermion fields. The main aim of the present paper is to explore this extension. The addition

of spin structures for JT gravity was considered in [30] and our discussions have several

parallels with that work.

In section 2 we briefly review the topological model of [27], and introduce an extension

to include a sum over spin structures. (In this section we consider a sum which weights

all spin structures equally.) This extends the model to include two types of boundaries,

corresponding to anti-periodic or periodic boundary conditions for fermions on the bound-

ary circle, which are respectively dual to the Neveu-Schwarz (NS) or Ramond (R) sectors

of the boundary quantum theory. If we have an odd number of Ramond boundaries, the

bulk path integral vanishes identically, as there are no bulk spin structures compatible

with this boundary condition. As before, we can regard the path integral, sliced open so

that it has m NS and m̃ R boundaries, as defining a state |ZmZ̃m̃〉. Likewise, the full

path integral with n = m + m′ and ñ = m̃ + m̃′ boundaries of each kind defines the

overlap 〈Zm′Z̃m̃′ |ZmZ̃m̃〉. In terms of operators Ẑ and ˆ̃Z that act on the baby universe

Hilbert space to add NS and R boundaries, the full path integral computes the correlator

〈HH|Ẑn ˆ̃Z ñ|HH〉 where |HH〉 is the Hartle-Hawking wavefunction. The vanishing of these

correlators for odd, but not even, ñ is a particularly simple manifestation of the failure of

factorization, here due to a topological obstruction, and suggests that the dual field theory

defined on n+ ñ disconnected boundary circles must be given an ensemble interpretation.

To construct this ensemble interpretation, we consider a quantum theory with a finite-

dimensional Hilbert space H and vanishing Hamiltonian defined on each boundary. The

6As pointed out in [29], a key feature of the Hartle-Hawking density matrix which seems to lead to a

non-trivial baby universe Hilbert space is the lack of “bra-ket” wormholes, which are wormholes between

the spacetime boundaries associated with the bra and ket in a density matrix like |Z〉〈Z|.
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path integral on a circle with NS boundary conditions computes the partition function Z =

trH(1) while, with R boundary conditions, it computes the Witten index Z̃ = trH((−1)F ).

We show that the gravitational path integral with n and ñ boundaries of each kind computes

the ensemble average 〈ZnZ̃ ñ〉 in the boundary dual theory, where the ensemble sums over

the dimension of the boundary Hilbert spaces with Poisson weighting, and over the fraction

of bosonic and fermionic states in each theory with binomial weighting. Note that while

Z̃ vanishes on average (after summing over the fraction of fermionic states), it does not

vanish in each theory individually.

As in [27], to construct the Hilbert space of baby universes, we act with formal poly-

nomials of Ẑ and ˆ̃Z on |HH〉. This generates a substantial number of null states, which

we must quotient out. Polynomials in the Ramond boundary creation operator ˆ̃Z give an

especially simple illustration of how and why these null states appear. Null states of this

kind usually signal a gauge redundancy that sharply reduces the number of physical states.

We discuss the boundary interpretation of null states associated to the ˆ̃Z operator in terms

of the vanishing of conditional expectation values in the dual ensemble.

In section 3, we define a gravitational path integral in which we include end of the

world (EOW) branes in the model as a simple form of topological “matter”. These have

been used to represent gravitational microstates in approaches to the black hole information

paradox [12], by introducing a flavor index i on the EOW branes. EOW branes can inter-

sect the spacetime boundary; the corresponding state in the boundary theory is denoted

ψi. The boundary conditions for the topological model then include circular boundaries

and boundary segments terminated by EOW branes at both ends. In the model of [27], the

boundary segments were shown to correspond to overlaps (ψj , ψi). In our model with spin

structures, we can insert an operator reversing the sign of the fermions on the boundary,

so we have two kinds of boundary segments, which we will show correspond to (ψj , ψi)

and (ψj , (−1)Fψi). We show that the bulk path integral computes an ensemble average

of a product of partition sums, Witten indices, and such inner products where the ensem-

ble includes theories with Hilbert spaces H of different dimensions, different fractions of

fermionic and bosonic states, and randomly chosen gravitational microstates ψi ∈ H.

We then turn to considering ways that the bulk path integral can be modified to make

correlation functions of ˆ̃Z factorize. In section 4, we consider an alternative sum over spin

structures where we take odd spin structures with a minus sign. As in [30], this implies that
ˆ̃Z vanishes as an operator. Thus, factorization is trivially satisfied for ˆ̃Z; all correlation

functions involving ˆ̃Z vanish. When we consider the theory with EOW branes, the bulk

path integral with boundary segments corresponding to the (ψj , (−1)Fψi) inner product

can be non-zero, so long as every boundary includes an even number of such segments.

We propose a boundary ensemble interpretation of this alternative path integral where the

dimensions of the boundary Hilbert space are doubled, with equal numbers of bosonic and

fermionic states.

In section 5, we propose a construction of a bulk path integral dual to a single instance

of a boundary theory. An individual theory has a boundary Hilbert space of some fixed

dimension d, with m fermionic and d −m bosonic states. In [27], the results in a theory

– 5 –
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with fixed d were reproduced by considering a bulk path integral where the geometry is

restricted to have d connected components. We show that correlators of ˆ̃Z in a theory

with fixed d and m can be reproduced by introducing an additional boundary in each of

these connected components with a sum over spin structures on this additional boundary.

Additionally, we analyze coherent “spacetime D-brane” states, which are special “boundary

conditions” (generalizing the Hartle-Hawking no-boundary condition) for the gravitational

path integral that can both modify the boundary ensemble parameters (in a way that

cannot be achieved by tuning the bulk couplings) and formally restrict to eigenstates of Ẑ

or ˆ̃Z.

In section 6, we consider the extension of these ideas to the sum over spin structures in

JT gravity. We will see that, as in the simple topological model, combining EOW branes

with a sum over spin structures is straightforward: a model with a simple sum over all spin

structures is dual to the matrix model of [30] with EOW branes corresponding to states

chosen at random in the boundary Hilbert space as in [12]. Considering the alternative spin

structure is more interesting; we propose a dual description with a single matrix model but

a doubled Hilbert space, with the same spectrum of bosons and fermions. We propose an

extension of the eigenbrane proposal of [31] for describing fixed eigenvalues in the matrix

model spectrum by summing over spin structures on the eigenbrane boundary.

We conclude and summarise directions for future development in section 7. The key

feature of the examples considered here is that there is a topological obstruction in the

bulk for some choices of boundary conditions; this leads to a very simple argument for

non-factorization of correlators of boundary creation operators, and thus for an ensemble

interpretation in a dual field theory. We discuss the opportunities to find such topological

obstructions in more top-down examples of holography in string theory, and directions for

investigation of the nature of the baby universe Hilbert space in these models. Finally,

we describe an intriguing relation with an older proposal for describing a time-dependent

universe with an unstable brane placed at the beginning of time in terms of an ensemble

of matrix models of different dimensions.

2 Topological model with spin structure

2.1 Review of the topological model

Marolf and Maxfield [27] illustrated the general analysis of the path integral in quantum

gravity with a simple two-dimensional topological model, where the path integral reduces to

a sum over topologies. They considered a path integral over all orientable two-dimensional

manifolds with n boundaries. There is no metric or matter field in this model, just smooth

topological two-manifolds. The bulk path integral is then a function only of n. In anticipa-

tion of the boundary ensemble interpretation described in the Introduction, we denote this

as 〈Ẑn〉 where Ẑ is a boundary-creation operator, and the angle brackets are understood

in this context as an expectation in the Hartle-Hawking no-boundary state (see the Intro-

duction for a detailed explanation of the notation). Each connected component, of genus

g with n boundaries, is weighted by eχS0+nS∂ where χ = 2− 2g − n is the Euler character

– 6 –
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and S0, S∂ are bulk and boundary action parameters. Permutations of compact connected

components are treated as a gauge symmetry, introducing a symmetry factor

µ(M) =
1∏
gmg!

(2.1)

in the path integral, where mg is the number of compact connected components of genus g.

However, boundaries are treated as distinguishable, so once a component has boundaries

there is no analogous symmetry factor. For example, two one-boundary components are

not interchangeable because the boundaries are different. In [27] the choice S∂ = S0 is

made. Thus,

〈Ẑn〉 =
∑

M :|∂M |=n

µ(M) eS0χ̃(M), (2.2)

where χ̃ =
∑

c.c.(2 − 2g). With this choice, adding boundaries affects the combinatorics

but not the weighting. The gravitational path integral with no boundaries is

Z = 〈1〉 = eλ, (2.3)

where λ is the sum over connected manifolds with no boundary,

λ =
∞∑
g=0

eS0(2−2g) =
e2S0

1− e−2S0
. (2.4)

Considering a generating function for Ẑn, [27] compute

ln〈euẐ〉 =
∑

connected

un

n!
eS0(2−2g) = λeu, (2.5)

where the sum is over all connected manifolds with arbitrary numbers of boundaries. The

result is that

Z−1〈Ẑn〉 =

∞∑
d=0

dnpd(λ), pd(λ) = e−λ
λd

d!
. (2.6)

There are two ways of interpreting this result for the bulk path integral: the “bound-

ary” interpretation and the “baby universe” interpretation. In the boundary interpretation,

we consider that each boundary corresponds to a copy of a dual quantum system. Since the

boundaries are Euclidean circles, we interpret the path integral for the boundary theory

on this circle as dual to the partition function Z in the boundary theory. (Note again that

this is the boundary path integral and partition function.) Since the bulk has no dynamical

fields, the boundary dual is also a trivial theory with no operators and a vanishing Hamil-

tonian; we simply have a boundary Hilbert space H of dimension d. Thus the path integral

in a given theory on single boundary computes the partition sum Z = trH(1) = d. If there

are n boundaries, each carrying a copy of the same theory, the path integral over all of

them computes the n-fold product Zn = trH(1) × · · · × trH(1). Following [27], the bulk

path integral is then interpreted as an ensemble average over such theories with different

values of d. We take an independent boundary Hilbert space of the same dimension for

– 7 –
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each boundary, and then average over the values of d to get 〈Zn〉, where, in the context of

the boundary theory, the angle brackets are understood to mean an ensemble average. The

bulk result (2.6) corresponds to an average where we take each value of d with probability

pd(λ). This is just a Poisson distribution for d with mean λ.

The baby universe Hilbert space interpretation is obtained by slicing open the bulk

path integral along some surface that cuts the bulk manifold into two pieces. The path

integral with n boundaries on one side of the slice defines a state |Zn〉 on the slice. As

described in the Introduction, we define the Hermitian operator Ẑ which adds a boundary

to the path integral on one side of the slice, so Ẑ|Zm〉 = |Zm+1〉. We can then write

|Zn〉 = Ẑn|HH〉, where the Hartle-Hawking state |HH〉 = |Z0〉 is the state defined by the

path integral with no boundaries. The full path integral with m + n boundaries defines

an inner product 〈Zm|Zn〉. If the path integral satisfies reflection positivity, this inner

product is positive semidefinite, so these states live in a pre-Hilbert space; we can define

a baby universe Hilbert space HBU by completing the Hilbert space in this norm while

quotienting by null states.

We can choose a basis of states in HBU which are eigenstates of Ẑ, |Z = z〉, where

Ẑ|Z = z〉 = z|Z = z〉. In the baby universe interpretation, the bulk path integral can be

written as the expectation value in the Hartle-Hawking state, 〈HH|Ẑn|HH〉. If we expand

|HH〉 in terms of the Ẑ eigenstates,

|HH〉 =
√
Z
∑
z

ψz|Z = z〉, (2.7)

we have

〈HH|Ẑn|HH〉 = Z
∑
z

zn|ψz|2. (2.8)

Comparing to explicit computation of the bulk path integral (2.6), we see that the spectrum

of Ẑ is z = d, d = 0, 1, . . . , and the amplitudes of the eigenstates in the Hartle-Hawking

state are |ψd|2 = pd(λ).

Null states, i.e. states of vanishing norm, appear in this construction because some

polynomials in the boundary creation operators vanish identically when acting on physical

states (linear combinations of states with definite values of dimH) [27]. The appearance of

these states is associated with a generalised diffeomorphism symmetry: the slicing of the

bulk is completely characterised by the number of asymptotic boundaries to one side of it,

so that bulk slices which differ in the interior but have the same boundaries are regarded

as equivalent. The restriction of the spectrum of Ẑ to discrete values implies that, given

any function f(x) which vanishes for x = 0, 1, . . . , the state |f(Z)〉 = f(Ẑ)|HH〉 in the

pre-Hilbert space is a null state; that is, f(Ẑ) annihilates all physical states in HBU. Thus

f(Ẑ) acting on the Hartle-Hawking vacuum formally creates a state of vanishing norm, i.e.,

a null state.

In this example, the gravitational path integral does not factorize between the space-

time boundaries, i.e., 〈Ẑn〉 6= 〈Ẑ〉n, as is evident from the sum on the r.h.s. of (2.6). The

form of (2.6) suggests a dual boundary interpretation in terms of an ensemble average,

and a bulk interpretation in terms of the expansion of the Hartle-Hawking state in Ẑ-

eigenstates in the baby universe picture. The general point of [27] is that any quantum

– 8 –
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gravity path integral will have a non-trivial expansion like (2.8), and the bulk path integral

will not factorize, unless |HH〉 is an eigenstate of the operators Ẑ[J ]. The standard bulk

path integral cannot then not be dual to a single boundary theory, and at best can have

an boundary ensemble interpretation.7

The baby universe picture does suggest alternative quantities that may factorise; in-

stead of taking the expectation value of Ẑn in the Hartle-Hawking state, we can take it

in an eigenstate, 〈Z = d|Ẑn|Z = d〉 = dn. This corresponds to evaluating the bulk path

integral with n boundary creation operators inserted between two slices each carrying the

baby universe state with Z = d. It is not clear how to do this in general, but, remarkably,

in the simple topological model it corresponds to restricting the path integral to manifolds

with precisely d connected components [27]. In the dual theory it corresponds to calculat-

ing correlators in a fixed field theory where each boundary carries a d-dimensional Hilbert

space, rather than an ensemble of theories.

2.2 Adding spin structure

We aim to further illustrate these ideas by extending the topological model above by

equipping the bulk spacetimes with a spin structure, and summing over the spin structures

in the bulk consistent with a choice of spin structure on the asymptotic boundaries. In this

section, we will calculate the bulk path integral, show that it also has a natural ensemble

interpretation in the boundary, and comment on the baby universe interpretation.

As explained in the Introduction, we will have two types of boundaries, corresponding

to NS and R spin structure, created by Ẑ and ˆ̃Z respectively. The dual field theory on

these boundaries inherits the NS or R boundary conditions for fermions, and thus the

path integral on one of these boundaries computes trH(1) or trH((−1)F ) respectively. The

gravitational path integral with a given set of boundaries computes the expectation value

〈ẐnNS ˆ̃ZnR〉 in the Hartle-Hawking vacuum, and involves a sum over all spin two-manifolds

with the given boundaries (see an example in figure 2). We take the action for a connected

component in the bulk to be χS0 + nS∂ , where χ is the Euler character and n is the

number of boundaries, independently of the choice of spin structure. Thus, the sum over

spin structures in the path integral just multiplies the contribution of each connected

component by a factor counting the number of distinct spin structures consistent with the

boundary conditions.

Stanford and Witten [30] show that for a genus g two-manifold with n boundaries, of

which nR have Ramond spin structure, the sum over spin structures gives∑
spin

1 = 22g+n−2(1 + (−1)nR) . (2.9)

Using this formula we get

ln〈euẐ+ũ ˆ̃Z〉 =
∑

g,nNS,nR

eS0(2−2g−n)enS∂
unNS

nNS!

ũnR

nR!
22g+n−2(1 + (−1)nR), (2.10)

7McNamara and Vafa have conjectured [32] that in every consistent theory of quantum gravity in d > 3

dimensions, the baby universe Hilbert space is one-dimensional (the quotient by the null states identifies

all states in the pre-Hilbert space), so that such ensemble interpretations do not arise.
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Figure 2. A genus g = 2 contribution to the bulk path integral with one NS and two R boundaries.

With these boundary conditions the gravitational path integral computes 〈Ẑ ˆ̃Z2〉. The depicted

diagram’s contribution to this expectation is 64e−5S0+3S∂ . Asymptotic boundaries with NS (R)

spin structure are shown as solid (dashed) blue circles. In the free energy (2.10), this connected

manifold contributes 32e−5S0+3S∂ to the coefficient of uũ2 (the only difference compared to its

contribution to 〈Ẑ ˆ̃Z2〉 is the additional symmetry factor (nNS!nR!)−1 which arises in the usual

way by passing from the generating function to the free energy). In the alternative sum over spin

structures discussed in section 4, the contribution from this manifold to both 〈Ẑ ˆ̃Z2〉 and the free

energy (4.2) vanishes identically since nR 6= 0.

where the sum is over all connected geometries. In other words, we sum over genus g and

the number of NS and R boundaries, nNS, nR, where n = nNS + nR is the total number of

boundaries. We have already summed over spin structures for each geometry to produce

the final factor. In this case, it is convenient to take S0 = S̃0 + ln 2 and S∂ = S̃0,8 so that

the sum splits into separate factors,

ln〈euẐ+ũ ˆ̃Z〉 =
∑
g

eS̃0(2−2g)
∑
nNS

unNS

nNS!

∑
nR

ũnR

nR!
(1 + (−1)nR) = λeu cosh(ũ), (2.11)

where

lnZ = λ = 2
∑
g

eS̃0(2−2g) =
2e2S̃0

1− e−2S̃0
. (2.12)

We can expand this out as:

Z−1〈euẐ+ũ ˆ̃Z〉 =

∞∑
d=0

pd(λ)eud
d∑

m=0

(
d

m

)
2−deũ(d−2m), (2.13)

where pd(λ) = e−λ λ
d

d! as before. Extracting the coefficient of unNS

nNS!
ũnR
nR! , we have

Z−1〈ẐnNS ˆ̃ZnR〉 =

∞∑
d=0

pd(λ)dnNS

d∑
m=0

(
d

m

)
2−d(d− 2m)nR . (2.14)

Note that 〈 ˆ̃Z〉 = 0 is zero. Indeed the r.h.s. vanishes for all odd nR, analogously to the

discussion in [30].

8As in [27], adding a constant to S∂ will scale the eigenvalues of Ẑ.
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Our first result is that this gravitational path integral has a natural interpretation in

an ensemble of boundary theories. Consider n copies of a field theory with a d-dimensional

Hilbert space and vanishing Hamiltonian on a circle. Let nNS of the circles have anti-

periodic fermions, and nR have periodic fermions. The path integral on these n circles

computes ZnNSZ̃nR = [trH(1)]nNS
[
trH((−1)F )

]nR . The first sum in (2.14) can be inter-

preted as before, as an ensemble average where Z takes non-negative integer values d

with a Poisson distribution with mean λ. Thus we have a boundary ensemble in which

we sum over the Hilbert space dimension with Poisson weight. The second sum can be

interpreted by requiring that Z̃ take values in (−d, . . . d) by steps of 2 with binomial prob-

abilities. We can reproduce this from a boundary description if we consider a Hilbert

space of dimension d, with m fermionic and d−m bosonic states, so Z = trH(1) = d and

Z̃ = trH((−1)F ) = d − 2m. The binomial probabilities can be obtained if we treat the d

states in the Hilbert space as distinguishable and take each to be bosonic or fermionic with

equal probability.9 With this identification we can relate correlation functions of boundary

creation operators in the baby universe Hilbert space to a dual ensemble averaged field

theory: 〈ẐnNS ˆ̃ZnR〉 = 〈ZnNSZ̃nR〉 where the angle brackets on the left side refer to expec-

tation in the Hartle-Hawking no-boundary vacuum, and the angle brackets on the right

side refer to dual ensemble average.

The correlation functions of Z̃ provide a particularly nice manifestation of the failure

of factorization associated with this ensemble interpretation. There are no bulk spin struc-

tures compatible with an odd number of Ramond (Z̃) boundaries, so the gravitational path

integral with this boundary condition vanishes because there is nothing to integrate over,

e.g.,, 〈Z̃〉 = 〈 ˆ̃Z〉 = 0. However, the gravitational path integral with an even number of

Ramond boundaries is non-zero, so it clearly does not factorize, e.g., Z−1〈Z̃2〉 6= Z−2〈Z̃〉2.

The sum over spin structures also provides an interesting illustration of the appearance

of null states in the baby universe Hilbert space which is spanned by the simultaneous

eigenstates of Ẑ, ˆ̃Z. Since the spectrum is restricted, there are combinations of the operators

Ẑ, ˆ̃Z which annihilate all the states in the baby universe Hilbert space. This was explained

in [27] for the discrete spectrum of Ẑ; the case of ˆ̃Z provides an even simpler example.

In parallel with (2.8), we want to expand the Hartle-Hawking vacuum in simultaneous

eigenstates of Ẑ and ˆ̃Z, |HH〉 =
√
Z
∑

z,z̃ ψzz̃|Z = z, Z̃ = z̃〉, which gives the correlation

〈HH|ẐnNS ˆ̃ZnR |HH〉 = Z
∑

z,Z̃ |ψz,z̃|
2. We can read off the possible values of z and z̃ by

comparison with the explicit computation of the gravitational path integral in (2.14). The

outer sum shows that z = 0, 1, 2, · · · is the sum over the spectrum of Ẑ, and the inner sum

shows that z̃ = −d,−d+ 2, · · · d is the spectrum of ˆ̃Z. The spectrum of ˆ̃Z depends on the

spectrum of Ẑ. So, to characterise the null states associated with ˆ̃Z, we must split the

baby universe Hilbert space into a direct sum of eigenspaces of Ẑ, and in each eigenspace

consider appropriate operators. In the eigenspace with z = 1, the possible eigenvalues

of ˆ̃Z are z̃ = ±1, so ˆ̃Z2 − 1 vanishes as an operator on this subspace, and indeed any

9Equivalently, to describe the Z and Z̃ distributions compactly together, we could say that we draw the

number of bosonic states db and the number of fermionic states df independently at random with Poisson

statistics each having mean λ/2.
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operator containing a factor of ˆ̃Z2 − 1, such as ˆ̃Z3 − ˆ̃Z, will vanish as an operator on this

subspace. Similarly, in the eigenspace where z = 2, the possible values are z̃ = −2, 0, 2, so

all polynomials with a factor of ˆ̃Z( ˆ̃Z2 − 4) vanish as operators on this subspace.10

3 End of the world branes

We can extend this model by considering end of the world (EOW) branes [12, 34], which

were adapted to the topological theory in [27]. As discussed in the Introduction, for

the theory with EOW branes, the boundary conditions include circular boundaries with

either NS or R spin structure and boundary segments, with EOW branes intersecting the

boundary at each end of the segment. The EOW branes carry flavour labels i = 1, . . . k, and

specifying a boundary segment will fix the flavour labels at the endpoints. In the theory

with spin structure the segments also carry an even/odd index. In the calculation of the

bulk path integral, we sum over all ways of pairing the EOW branes starting and ending

on the boundary segments, sewing the boundary segments into circular boundaries of the

bulk two-manifold. The state index on either end of an EOW brane must be identical. If

the resulting circle boundary contains an even number of odd-index segments, it has an

NS spin structure, otherwise it has an R spin structure. We also allow pure EOW brane

boundaries — circular branes on which the bulk geometry is allowed to terminate. These

pure EOW brane boundaries are not part of the asymptotic boundary data which defines

the correlator, and we must sum over all the ways they may be inserted, just as we sum

over all possible bulk topologies. We will assume that these pure EOW brane boundaries

have an NS spin structure. This is based on the intuition that in a theory with more

dynamics, there would be a limit where the EOW brane shrinks to zero size, and we would

like a zero size EOW brane boundary to be equivalent to no boundary. We then sum over

all bulk geometries and spin structures with a given set of circular boundaries.

The boundary dual field theory still has factors that are defined on the Z and Z̃ on

which the path integral with odd and even boundary conditions for fermions computes the

partition sum and the Witten index respectively. But additionally there are factors defined

on the boundary segments, again with a d-dimensional Hilbert space H = Hb ⊕ Hf with

bosonic and fermionic components of dimension db and df respectively, and a vanishing

Hamiltonian. Now a segment of the asymptotic boundary with an EOW brane and index

i at one end is interpreted as defining a state ψi ∈ H at the free end. We can also consider

the path integral on a segment of asymptotic boundary ending on EOW branes with labels

i, j at the two ends. For a boundary with an even index we interpret this path integral as a

standard inner product in the boundary Hilbert space (ψj , ψi); we will call this a “standard”

10In the language of [33], the addition of spin structure enlarges the group of baby universe transformations

from Z to Z2, but the GNS representation of C∗(Z2) induced by the state ω (which defines the gravitational

path integral) is not irreducible. We further point out that there is an intriguing interplay between the

choice of ω, the group of baby universe transformations, and the quotient by null states which produces the

GNS Hilbert space. In particular, the commutative nature of C∗(Z2) does not necessarily imply that the

eigenvalues of the group generators (acting on the GNS Hilbert space) are independent of each other. The

allowed eigenvalues can instead become coupled by the choice of ω, and this is what occurs in our discussion

of spin structures.
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(or NS) segment. For a boundary with an odd index we interpret the path integral on a

segment as computing the twisted inner product (ψj , (−1)Fψi) instead; we will call this a

“twisted” (or R) segment. In detail, if |ψi〉 =
∑db

m=1 ψ
m
i |bm〉+

∑df
n=1 ψ

n
i |fn〉 where |bm〉 and

|fn〉 are bases for Hb and Hf , then (−1)F |ψi〉 =
∑db

m=1 ψ
m
i |bm〉 −

∑df
n=1 ψ

n
i |fn〉. In other

words, (−1)F flips the sign of the fermionic components of a state.

In [27], following [12], the path integral with just the (ψj , ψi) segments was shown to

have an ensemble interpretation where the states ψi are randomly chosen in the boundary

Hilbert space: for each choice of boundary Hilbert space dimension d, the components ψai
in some basis {|a〉} (where a = 1, . . . d) were i.i.d. Gaussian random variables. We will

show that there is a similar ensemble interpretation in our case, with the addition that as

in the previous section, we must take the basis states for the Hilbert space to be randomly

bosonic or fermionic with equal probability.

Let Ẑ and ˆ̃Z create boundaries with NS and R boundary conditions as in the previous

sections, and Ŝji and ˆ̃Sji create even and odd boundary segments with labels j and i on

the two endpoints. We consider the generating function

〈euẐ+ũ ˆ̃Z+tij Ŝji+t̃ij
ˆ̃Sji〉, (3.1)

which involves a sum over all numbers of asymptotic boundaries and boundary segments.

The angle brackets indicate an expectation value in the Hartle-Hawking no-boundary vac-

uum. In this generating function, a contribution with an asymptotic boundary of type Z,

Z̃ comes with a factor of u, ũ, and a circular asymptotic boundary formed by summing

together boundary segments comes with a factor of the trace of the matrix product of

the corresponding chemical potentials tij , t̃ij . Note that the repeated i, j indices in the

exponent are summed over.

The bulk path integral treats all types of NS or R boundaries in the same way, so the

generating function is a function of the “total” NS and R chemical potentials,

U = u+ Teven = u+

∞∑
n=1

1

n
tr(tn) +

∞∑
n=0,n 6=m

∞∑
m=0

tr(tnt̃tmt̃) +
1

2

∞∑
n=0

tr(tnt̃tnt̃) + . . . , (3.2)

Ũ = ũ+ Todd = ũ+

∞∑
n=0

tr(tnt̃) + . . . , (3.3)

where Teven is the sum of all the traces with an even number of t̃ij factors, and Todd is

the sum of all traces with an odd number of t̃ij factors.11 We make the same choice as

before that S0 = S̃0 + ln 2, S∂ = S̃0. The sum over connected manifolds with no asymp-

totic boundaries includes a sum over an arbitrary number of pure EOW brane boundaries

(“floating” in the bulk as in figure 3), which introduce a factor of k from the trace over the

EOW degrees of freedom, so

lnZ = ln〈1〉 = λ =
2e2S̃0

1− e−2S̃0
ek. (3.4)

11We include a symmetry factor in cases where the trace is invariant under some subset of cyclic permu-

tations.
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Figure 3. A contribution to the expectation 〈 ˆ̃Sij
ˆ̃Sji

ˆ̃ZŜkl
ˆ̃Slk〉. We do not sum over indices in such

expressions; if we had not matched the outgoing EOW brane label of one boundary segment with

the incoming EOW brane label of the subsequent boundary segment, the bulk path integral on this

manifold would have been zero. Red segments are EOW branes and solid (dashed) blue segments

are asymptotic NS (R) boundary segments. We can of course still have circular NS or R boundaries

as before. There can also be closed EOW branes (red circle) floating in the bulk, which are not

part of the boundary data.

The bulk path integral then gives

〈euẐ+ũ ˆ̃Z+tij Ŝji+t̃ij
ˆ̃Sji〉 = eλe

U cosh Ũ , (3.5)

where the repeated i, j indices in the exponent are summed. Expanding this out, we have

Z−1〈euẐ+ũ ˆ̃Z+tij Ŝji+t̃ij
ˆ̃Sji〉 =

∞∑
d=0

pd(λ)eUd
d∑

m=0

(
d

m

)
2−deŨ(d−2m). (3.6)

We want to equate the correlation functions of boundary creation operators in the

baby universe Hilbert space 〈Ẑm ˆ̃Zm̃Ŝji · · · ˆ̃Skl · · · 〉 with an ensemble average over boundary

theories 〈ZmZ̃m̃(ψj , ψi) · · · (ψk, (−1)Fψl)〉, where Z is the partition sum, Z̃ is the Witten

index, and the sequence of inner products and twisted inner products arises from the

segments ending on EOW branes. As in the previous section, we can interpret the sum

over d in (3.6) as choosing the dimension d of the boundary Hilbert space leading to the

partition sum Z = d, and the sum over m as determining the number of fermionic states

in this Hilbert space, leading to the Witten index Z̃ = d − 2m. Fixing these quantities,

we would like to interpret the remaining dependence on tij , t̃ij as defining a boundary

ensemble average as follows:

〈etij(ψj ,ψi)+t̃ij(ψj ,(−1)Fψi)〉d,m = edTeven+(d−2m)Todd . (3.7)

We want to determine the correct ensemble for the average in (3.7). In [27], the

corresponding factor was

ed
∑∞
n=1

1
n

tr(tn) =
1

det(I − t)d
, (3.8)

which was recognised as the generating function of a complex Wishart distribution, which

can be written as a Gaussian integral in terms of random variables ψai ,

1

det(I − t)d
=

1

πkd

∫ k∏
i=1

d∏
a=1

dψai dψ̄
a
i e
−ψ̄ai ψai exp

(
tij

d∑
a=1

ψ̄ajψ
a
i

)
. (3.9)
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In this expression, ψai was interpreted as the coefficient in a basis expansion of states: |ψi〉 =∑d
a=1 ψ

a
i |a〉. To reproduce (3.7), we just need a simple generalisation of this Gaussian

integral,

edTeven+(d−2m)Todd =
1

πkd

∫ k∏
i=1

d∏
a=1

dψai dψ̄
a
i e
−ψ̄ai ψai

× exp

[
tij

d∑
a=1

ψ̄ajψ
a
i + t̃ij

(
−

m∑
a=1

ψ̄ajψ
a
i +

d∑
a=m+1

ψ̄ajψ
a
i

)]
.

(3.10)

To see this, expand the exponential in t, t̃ in a Taylor series. In each term, performing

the Gaussian integral over ψ, ψ̄ will result in Wick contractions between the different ψ’s,

forming products of traces of t, t̃. For each trace, there is a single remaining sum over a.

In a term with an even number of t̃ in a trace, all the different ψa will contribute in the

same way, giving an overall factor of d. With an odd number of t̃, the values a = 1, . . .m

will contribute with a minus sign, giving an overall factor of d− 2m.

The interpretation of this is that the |ψi〉 are simply random states in the Hilbert

space, as before, and are random linear combinations of the bosonic and fermionic basis

elements. In (ψj , (−1)Fψi), the fermionic elements, which we have taken for definiteness

to be labeled by a = 1, . . .m, contribute with the opposite sign.

The addition of the twisted boundary segment creation operators ˆ̃Sji corresponding

to (ψj , (−1)Fψi) enlarges the Hilbert space of baby universes, just as the addition of the

Ramond boundary creation operators ˆ̃Z corresponding to Witten indices Z̃ did in the

previous section. In [27], the baby universe Hilbert space for fixed d was L2(Md
k ), where

Md
k is the space of Hermitian positive definite k×k matrices with rank ≤ d, corresponding to

the inner product matrices (ψj , ψi) that can be constructed from ψai with a = 1, . . . d. The

dimension of Md
k is k2 for k ≤ d and 2kd−d2 for k ≥ d. For the present case, it is convenient

to combine our boundary observables to form the matrices (ψj , (1 ± (−1)F )ψi), which

give the inner product between the restrictions of our states to the bosonic or fermionic

subspaces respectively. Thus the baby universe Hilbert space for fixed d,m is L2(Mb) ⊗
L2(Mf ), where Mb = Md−m

k and Mf = Mm
k are the space of Hermitian positive definite

k × k matrices with rank ≤ (d − m) and rank ≤ m, respectively. The parameter space

Mb ⊕Mf then has dimension

dim(Mb ⊕Mf ) =


2dk −m2 − (d−m)2, k > d−m,m
k2 + 2km−m2, d−m ≥ k > m

k2 + 2k(d−m)− (d−m)2, m ≥ k > d−m
2k2, d−m,m ≥ k.

(3.11)

4 Alternative sum over spin structures

So far we have summed with equal weight over all spin structures consistent with a given

boundary condition. We can alternatively weight the sum over spin structures by (−1)ζ ,
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where ζ is the number of zero modes (mod 2) of the Dirac equation /Dλ = 0 with the given

choice of spin structure,12 a choice that divides spin structures into even and odd classes.

With this choice, [30] found that the sum over spin structures gives

∑
spin

(−1)ζ =

{
2g+n−1 if nR = 0

0 otherwise.
(4.1)

Thus, the answer is zero for all cases with Ramond boundaries (e.g., the case in figure 2).

Without EOW branes, the model is then very similar to the one in [27]. The sum over

connected geometries is

ln〈euẐ+ũ ˆ̃Z〉 =
∑

g,nNS,nR

eS0(2−2g−n)enS∂
unNS

nNS!

ũnR

nR!
2g+n−1δnR,0 =

∑
g,n

eS0(2−2g−n)enS∂
un

n!
2g+n−1 .

(4.2)

Thus ˆ̃Z is zero as an operator, as the generating function is independent of ũ. We can

absorb the factor of 2 in S0 by taking S0 = S̃0 + 1
2 ln 2, and make the n dependence cancel

out by taking S∂ = S̃0 − 1
2 ln 2. Then

lnZ = λ =
e2S̃0

1− e−2S̃0
(4.3)

and

Z−1〈euẐ+ũ ˆ̃Z〉 = e−λeλe
u

=

∞∑
d=0

pd(λ)eud. (4.4)

We have an ensemble labelled by a single integer d, which could be interpreted as the

dimension of the boundary Hilbert space. Thus correlators of ˆ̃Z factorize trivially since

they all vanish.

The structure is more interesting if we include EOW branes. The twisted boundary

segments (ψj , (−1)Fψi) still have a non-trivial effect, as boundaries with an even number

of these factors have NS boundary conditions. Thus, with EOW branes one can show that

lnZ = λ =
e2S̃0

1− e−2S̃0
ek, (4.5)

and

〈euẐ+ũ ˆ̃Z+tij Ŝji+t̃ij
ˆ̃Sji〉 = eλe

U
, (4.6)

where U = u + Teven as before, Ŝji creates standard (ψj , ψi) segments, and ˆ̃Sji creates

twisted (ψj , (−1)Fψi) segments. Recall that Teven depends on both tij and t̃ij . Conditioning

on eigenstates of Ẑ with eigenvalue Z = d,

〈etij Ŝji+t̃ij
ˆ̃Sji〉d = edTeven . (4.7)

12For a fixed choice of spin structure, ζ is anomalous on manifolds with boundary if the spin structure is

Ramond on some of the boundaries [35]. However, the variation in ζ as we change the spin structure in the

bulk while holding boundary spin structure fixed is well-defined, so the sum of (−1)ζ over spin structures

with a given boundary spin structure is well-defined up to an overall sign for cases with some Ramond

boundaries. As the value vanishes in these cases, the overall sign ambiguity is unimportant.
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To provide a boundary description of this result, we must give the boundary Hilbert space

additional structure corresponding to the difference between the standard (ψj , ψi) and

twisted (ψj , (−1)Fψi) segments. A natural interpretation is that the boundary system is

as in the previous section, but is restricted to have an equal number of fermionic and

bosonic states. This might seem problematic, as the total Hilbert space dimension d could

be even or odd, but we can take the boundary Hilbert space to consist of d bosonic and d

fermionic dimensions, with the ψai coefficients of the basis states chosen as i.i.d. Gaussian

random variables. This makes the Witten index Z̃ and combinations with an odd number

of factors of (ψj , (−1)Fψi) vanish as desired in the boundary ensemble. However, it means

that the partition sum in a given element of the ensemble is Z = trH(1) = 2d, rather than

d, and similarly for the non-vanishing combinations of boundaries with EOW branes. We

can deal with this either by instead identifying Z = 1
2trH(1) (similar to the choice in [30]

that ZNS(β) =
√

2 tr e−βH), or by changing our choice for S∂ : if S∂ = S0 = S̃0 + 1
2 ln 2, we

find that

Z−1〈euẐ+ũ ˆ̃Z+tij Ŝji+t̃ij
ˆ̃Sji〉 =

∞∑
d=0

pd(λ)e2Ud, (4.8)

consistent with a boundary interpretation with Z = trH(1) taking even integer values.

Thus, once we include the EOW branes we see that the natural boundary interpretation

of our bulk path integral has more structure, and we propose that the theory where we

sum over spin structures weighted by (−1)ζ is dual to an ensemble of boundary theories

which each have d bosonic and d fermionic states.

5 Dual of a single theory

We would like to identify a bulk dual description for the individual theories of fixed Hilbert

space dimension, where we fix the numbers of bosonic and fermionic states (not necessarily

equal), to make progress towards linking these ideas to the conventional AdS/CFT picture,

where we have a bulk gravity theory dual to a specific boundary theory, rather than an

ensemble of theories. In the baby universe picture, we are looking for a bulk calculation

that gives the expectation values in an eigenstate of the boundary creation operators |Z =

d, Z̃ = d − 2m〉 rather than the Hartle-Hawking state. In [27], the theory with a specific

dimension d for the boundary Hilbert space was identified with the gravitational path

integral restricted to the sector where the bulk has precisely d connected components.13

The idea is basically that if we have d connected components, when we add an additional

boundary we get to choose which component we add it to, so the bulk path integral gets

multiplied by a factor of d.

We would like to give a similar description for the eigenstates of ˆ̃Z. The gravitational

path integral that we described vanishes if there is a single Z̃ boundary because there is

no bulk manifold with spin structure consistent with this boundary condition. However, in

the dual description, if we have a single theory with fixed but unequal numbers of bosonic

13See also [36] for an attempt to reconcile the ensemble average induced by wormholes with the unitarity

of the underlying quantum mechanical evolution.
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and fermionic states, the Witten index Z̃ is not zero. To resolve the disagreement, we

must modify the bulk path integral so that adding a single Z̃ boundary gives a non-zero

result which is independent of the number of boundaries already present. To motivate an

appropriate modification, note that the number of connected components in the bulk path

integral is related to the dimension of the boundary Hilbert spaces, and so there may be a

relation between the individual connected components and some basis for the CFT Hilbert

space. If so, to specify an eigenstate of ˆ̃Z we must specify which of these basis states are

bosonic and which are fermionic. We can define projectors onto the bosonic and fermionic

sectors by 1±(−1)F , and we would like to insert such a projector into each of the connected

components in the bulk path integral.

This motivates the following proposal: we perform a bulk path integral with the bulk

geometry restricted to have precisely d connected components, and each connected com-

ponent contains (in addition to any Z or Z̃ boundaries) a boundary on which we sum over

the spin structures, taking NS + R if we want the corresponding state to be bosonic and

NS − R if we want the corresponding state to be fermionic.14 We think of this boundary

as a part of the specification of the dynamical bulk theory, rather than as part of the

asymptotic boundary conditions we are free to choose. Accordingly, we treat connected

components with no other boundaries apart from this one, the same genus and the same

type of boundary (bosonic or fermionic), as indistinguishable, including a symmetry factor

in the measure as in [27].

Including this additional contribution means we get a non-zero answer for any number

of Z̃ boundaries in a connected component; if we have an even number we get a contribution

from the NS spin structure on the additional boundary, and if we have an odd number we

get a contribution from the R spin structure on the additional boundary. In the case with

an NS + R boundary, adding a Z̃ boundary to a connected component gives a positive

contribution, while, with a NS − R boundary, we get a negative contribution. With

d connected components of which m have NS − R boundaries, we get d − m positive

contributions and m negative ones as we sum over different ways of adding the new Z̃

boundary. So this corresponds to an eigenstate of Z̃ with eigenvalue d− 2m (figure 4).

It is interesting to note that this means there are two potential bulk duals for a theory

with equal numbers of bosonic and fermionic states: we could consider the bulk path

integral weighted by (−1)ζ as described in section 4 and restrict to bulk geometries with d

connected components, or we could consider the path integral with trivial weighting, and

restrict to 2d connected components, d of which have a boundary summed over NS + R

spin structure and d which have a boundary summed over NS − R spin structure. These

two bulk theories produce equivalent results. It would be interesting to understand the

relation in more detail, and to see if there are other examples of different bulk constructions

with the same boundary dual.

In addition to the above geometric construction of the dual of a single theory, we can

also give an account of the eigenstates of ˆ̃Z which makes use of the “spacetime D-branes”

(SD-branes) of [27]. Consider a theory where we allow the spacetime to have any number

14Further inspiration for this picture came from the eigenbrane ideas of [20, 31].
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Figure 4. A contribution to the expectation 〈Z = 3, Z̃ = −1|Ẑ ˆ̃Z|Z = 3, Z̃ = −1〉. Since we wish

to compute the expectation in an eigenstate, we must modify the usual rules for the gravitational

path integral. Since we want Z = 3, the geometry must have exactly 3 connected components. To

select the Z̃ eigenstate, we choose specific sums over spin structures on the one additional boundary

(green) on each component. Choosing two NS−R sums (dashed) and one NS+R sum (solid) fixes

Z̃ = −1. Finally, since the operator we want is Ẑ ˆ̃Z, as usual we must fix the boundary conditions

to have one NS boundary (solid blue) and one R boundary (dashed blue).

of additional SD-brane boundaries. We will allow for two types of SD boundaries, with NS

or R spin structure, with complex parameters g, g̃ respectively. These SD-branes are not

new objects; they are coherent states in the baby universe Hilbert space,

|SD-braneg,g̃〉 ≡ |egZ+g̃Z̃〉 = egẐ+g̃ ˆ̃Z |HH〉, (5.1)

where g, g̃ ∈ C are the SD-brane couplings. That is, calculating the path integral with

SD-brane boundaries is equivalent to taking the expectation value in this coherent state.

Consider the generating function

〈SD-braneg,g̃|euẐ+ũ ˆ̃Z |SD-braneg,g̃〉 = exp
[
λeu+2Re(g) cosh(ũ+ 2Re(g̃))

]
, (5.2)

where we used the previously derived relation ln〈euZ+ũZ̃〉 = λeu cosh ũ. To interpret this

as an ensemble, we also need a new normalization factor

lnZg,g̃ ≡ ln〈SD-braneg,g̃|1|SD-braneg,g̃〉 = λe2Re(g) cosh 2Re(g̃). (5.3)

Then we have an expansion of the generating function in the normalized SD-brane state

Z−1
g,g̃〈SD-braneg,g̃|euẐ+ũ ˆ̃Z |SD-braneg,g̃〉 =

∞∑
d=0

pd(λ
′)eud

d∑
m=0

bm|d(g̃)eũ(d−2m), (5.4)

where pd(λ
′) is the Poisson distribution with shifted mean

λ′ ≡ λe2Re(g) cosh 2Re(g̃), (5.5)

and m for a given value of d has a binomial distribution

bm|d(g̃) ≡ (1 + e−4Re(g̃))−de−4mRe(g̃)

(
d

m

)
. (5.6)

We see that the g dependence can be interpreted as a simple shift of the Poisson mean

to λ′. However, the g̃ dependence results in a more subtle modification, changing the
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relative probabilities of having fermionic or bosonic states. The collective distribution of

Z and Z̃ can be equivalently described as saying that the number of bosonic and fermionic

states are independent random variables drawn from Poisson distributions with means

λb = 1
2λe

2Re(g)+2Re(g̃) and λf = 1
2λe

2Re(g)−2Re(g̃) respectively.

This is a rather interesting departure from the story in [27], where the total effect of

the SD-brane was just the shift in the Poisson mean, which could also have been achieved

by a suitable change in S̃0.15 Here, the SD-brane coherent state allows for a modification of

the boundary ensemble which seems impossible to reach by only varying the constants that

appear in the bulk gravitational action, as the bulk action does not distinguish bosonic and

fermionic states. If the general lesson to be learned about SD-brane boundary conditions

for the bulk path integral is that they may lead to large modifications of the boundary

ensemble, then perhaps a more clever application can actually cut down the number of

parameters which define the boundary ensemble.

Since SD-brane boundaries correspond to coherent states in the baby universe Hilbert

space, we can easily recover the eigenstates as appropriate combinations of them, by Fourier

transforming the SD-brane states for imaginary values of the couplings. We simply write

|FT [SD-brane]d,m〉 ≡
∫ π

−π

dθ

2π

∫ π

−π

dθ̃

2π
e−idθe−i(d−2m)θ̃|SD-braneiθ,iθ̃〉, (5.7)

with d,m ∈ N. Then by direct integration we find

|FT [SD-brane]d,m〉 ∝

∣∣∣∣∣ sin(πZ) sin(πZ̃)

(Z − d)(Z̃ − (d− 2m))

〉
, (5.8)

which are the eigenstates |Z = d, Z̃ = d − 2m〉 for d and m in the appropriate physical

ranges. As discussed above, these eigenstates are dual to a single boundary theory, rather

than an ensemble of theories.

6 JT gravity, spin structure, and EOW branes

Jackiw-Teitelboim (JT) gravity is a useful toy model of holography and quantum gravity

which has led to many recent insights, including the possibility of holographic duality

with an ensemble of theories (see, e.g., [10, 12, 37, 38], the references therein, and the

review [39]). The sum over spin structures for JT gravity was extensively analysed in [30].

Here we follow our analysis of the topological model in previous sections to introduce

EOW branes with spin structure, and to consider modifications of the bulk path integral

to reproduce individual boundary theories.

We first consider adding EOW branes16 to the simple sum over spin structures, by

combining the matrix model of [30] with the random state description of the EOW branes

from [12]. We consider JT gravity with the following boundary conditions:

15Though we should remark that not all values of λ ∈ R+ are attainable by simply varying S̃0 ∈ R, so

even in [27] there is a small extension of the boundary ensemble due to SD-branes. This is only true if we

allow negative real SD-brane coupling g < 0. If instead we require g > 0 then this subtlety is removed.
16See [12, 34] for the construction and use of pure states by EOW branes in JT gravity, and [14] for a

higher dimensional discussion inspired by the “inception” technique of [11].
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• p boundary segments of length τk connecting EOW branes with indices ik, jk, corre-

sponding to 〈ψik(τk)|ψjk(τk)〉, where |ψ(τ)〉 ≡ e−τH/2|ψ〉,

• q boundary segments of length τ̃l connecting EOW branes with indices ĩl, j̃l, with an

insertion of (−1)F , corresponding to 〈ψĩl(τ̃l)|(−1)F |ψj̃l(τ̃l)〉,

• r boundary circles of length βm with NS spin structure, corresponding to tr(e−βmH),

• and s boundary circles of length β̃n with R spin structure, corresponding to

tr((−1)F e−β̃nH).

In the bulk path integral, we contract the p + q boundary segments together in all

possible ways with EOW branes. These pairings can be labelled by a permutation π on

p+q variables, where the EOW brane starting in the Kth boundary segment with index jK
ends on the π(K)th boundary segment with index iπ(K), where K runs over the p+q values

labelled by k, l in the above discussion. (We have appended the boundary R segment lengths

to the boundary NS segment lengths, forming a long vector τK , where τp+l ≡ τ̃l. We have

done the same with the state indices, forming a long index vector iK , where ip+l ≡ ĩl, and

similarly for jK , jp+l, and j̃l.) The contribution vanishes when these indices don’t match,

so we have a sum over all permutations π with a factor of
∏p+q
K=1 δiπ(K),jK . For each choice

of permutation, the boundary segments are sewn together to form a circular boundary for

each cycle in the permutation π. When a cycle contains an even number of values lying

in the range K = p + 1, . . . p + q, the boundary has Neveu-Schwarz spin structure, and

when it contains an odd number, the boundary has Ramond spin structure. Each of these

boundaries consists of an alternating sequence of EOW branes and asymptotic boundary

segments, where the asymptotic boundary segments have length τK , and the EOW branes

follow geodesics in the bulk, with the length l of the geodesic integrated over with a weight

e−µl in the bulk path integral.

In appendix D in [12], Penington et al. use previous results relating the bulk path

integral with a boundary segment of length τ ′ to a bulk path integral with a boundary

along a bulk geodesic to show that the boundary condition with (say) N alternating EOW

branes and boundary segments, where the boundary segments have length τi, i = 1, . . . N , is

equivalent to taking the boundary condition with a circular boundary of length
∑

i(τi+τ
′
i),

and integrating over all the τ ′i with weights

f(τ ′i) = IL

21−2µ

∣∣∣∣∣Γ
(
µ− 1

2
+ i
√

2Ea

) ∣∣∣∣∣
2
 (τ ′i), (6.1)

where IL denotes the inverse Laplace transform. The spin structure is unaffected by this

transformation, so if we had an even number of the (−1)F boundary segments in the EOW

brane boundary, we will have an NS spin structure on the circular boundary, and if we

have an odd number, we will have a R spin structure (figure 5).

Thus, we can reduce the evaluation of the bulk path integral for these boundary con-

ditions to a sum of terms each of which involves some number of circular boundaries of

given length with NS and R spin structures; precisely the case that was analysed in [30].
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Figure 5. An N = 2 example of the identity in JT gravity relating the path integral with EOW

branes and boundary segments forming a circular boundary to the path integral with only boundary

segments forming a circular boundary. The red EOW brane segments which have tension µ and

lengths li turn into NS boundary segments of length τ ′i . For the equality to hold, we must integrate

over the EOW brane lengths and transformed NS boundary segment lengths with the weights

shown, given in (6.1). This transformation leaves the spin structure unchanged; here it is Ramond,

since we have an odd number of dashed segments.

The calculation there was organised by considering the genus g connected contribution

to the bulk path integral with these boundary conditions, with n total boundaries of which

nR have Ramond boundary conditions, which they call Zg,n,nR (after extracting a factor

of e−(2g+n−2)S0 , and rescaling so that Z0,1,0 = 1). They show that summing over all spin

structures gives

Zg,n,nR = 22g+n−2(1 + (−1)nR)ZGUE
g,n (6.2)

and summing over spin structures with (−1)ζ gives

Zg,n,nR =

{
22g+n−1ZGUE

g,n , nR = 0

0, else,
(6.3)

where ZGUE
g,n denotes the result without a sum over spin structures, which we know from [20]

is equal to the result in the GUE matrix ensemble.17

Let us now see how we reproduce this result from an ensemble perspective. For the

case where we simply sum over spin structures, the situation is straightforward. The sum

over spin structures in JT gravity is dual to a random matrix ensemble [30]

H =

(
GUE1 0

0 GUE2

)
, (6.4)

where there are independent random matrices for the Hamiltonian acting on the bosonic

states (the upper block) and the fermionic states (the lower block). In [12], the EOW

brane states are taken to be random superpositions of the energy eigenstates. The natural

generalization is

|ψi(τ)〉 =

∑
b

+
∑
f

 2
1
2
−µΓ

(
µ− 1

2
+ i
√

2Ea

)
e−τEaCi,a|Ea〉, (6.5)

17We follow the notation of [30], where GUE refers to a generalized class of unitary-invariant matrix

ensembles which need not be precisely Gaussian. Indeed, the JT ensemble has a leading double-scaled

density of states which looks like sinh
√
E, which is quite far from the Gaussian result

√
E.
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where
∑

b +
∑

f indicates that we sum the index a over both the bosonic and fermionic

states, that is over all eigenstates of H above, and Ci,a are i.i.d. complex Gaussian random

variables. Intuitively, this formula follows from (6.1) and the fact that the inverse Laplace

transform of the partition function yields a density of states. Then we also have

(−1)F |ψĩ(τ̃)〉 =

∑
b

−
∑
f

 2
1
2
−µΓ

(
µ− 1

2
+ i
√

2Ea

)
e−τ̃EaCĩ,a|Ea〉. (6.6)

Now we consider the average over H,C of the observable with p normal boundary segments,

q (−1)F boundary segments, r normal circles and s (−1)F circles (where we now use E
for the boundary ensemble expectation instead of 〈·〉, since the bra-ket now labels the

inner product in the boundary Hilbert space H, i.e. it is playing the role of the parenthesis

(ψi, ψj) in the topological model)

EH,C

(
p∏

k=1

〈ψik(τk)|ψjk(τk)〉
q∏
l=1

〈ψĩl(τ̃l)|(−1)F |ψj̃l(τ̃l)〉
r∏

m=1

tr(e−βmH)

s∏
n=1

tr((−1)F e−β̃nH)

)
.

(6.7)

The average over the Ci,a generates contractions between |ψj〉 and 〈ψi|, producing a sum

over permutations of the p+ q elements just as in the bulk analysis, so (6.7) equals

∑
π


p+q∏
K=1

δiπ(K),jKEH

 ∏
γ∈c(π)

tr (ργ)

r∏
m=1

tr(e−βmH)

s∏
n=1

tr((−1)F e−β̃nH)

 , (6.8)

where

ργ =
∑
a

(−1)nqF e−
∑
L∈γ τLH

∣∣∣∣Γ(µ− 1

2
+ i
√

2Ea

)∣∣∣∣2 |Ea〉〈Ea|. (6.9)

There is a trace over the Hilbert space for each cycle in the permutation, coming from the

remaining sum over the indices in (6.5) and (6.6) after contracting all the Ci,a. This comes

with a minus sign for the fermionic states if the cycle involved an odd number of factors of

(−1)F , which is accounted for by the factor of (−1)nqF , where nq is the number of values

from K = p + 1, . . . p + q appearing in the cycle. If this is an even number we get the

normal trace and if it’s an odd number we get the trace with (−1)F .

Using the inverse Laplace transform, this is equal to∑
π

∫ ∏
K

dτ ′Kf(τ ′K)δiπ(K),jK×

EH

 ∏
γ∈c(π)

tr
(

(−1)nqF e−
∑
L∈γ(τL+τ ′L)H

) r∏
m=1

tr(e−βmH)
s∏

n=1

tr((−1)F e−β̃nH)

 .
(6.10)

This is the expectation value in the matrix ensemble of some number of circular boundaries,

with a permutation factor and an integral over the auxiliary variables τ ′K which exactly

matches what we argued above will appear in the bulk path integral. The average over the
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matrix ensemble defined by (6.4) exactly reproduces the result (6.2) for the values of the

bulk path integral with circular boundary conditions [30]. Thus, this ensemble of random

matrices and random states precisely matches the bulk JT gravity path integral results

with a sum over spin structures for the EOW brane boundary conditions described at the

start of this section.

Now let’s consider the sum over spin structures with an insertion of (−1)ζ . In [30] this

was related to a matrix ensemble with no symmetry, so H = GUE. But as in section 4, once

we introduce the EOW branes, we need the boundary Hilbert space to have some additional

structure to account for the difference between 〈ψik(τk)|ψjk(τk)〉 and 〈ψĩl(τ̃k)|(−1)F |ψj̃l(τ̃k)〉
boundary segments. A natural proposal extending the idea of the previous section is to

keep a single matrix ensemble, but double the Hilbert space, so

H =

(
GUE 0

0 GUE

)
, (6.11)

where we interpret the upper block as bosonic states and the lower block as fermionic

states, as in our discussion of the usual sum over spin structures. The result is then the

same as (6.10), but averaging over the matrix model will make the answer vanish unless

s = 0, and we restrict to permutations with even numbers of (−1)F elements in each cycle,

so the matrix model answer is equal to

∑
π′

∫ ∏
K

dτ ′Kf(τ ′K)δiπ′(K),jKEH

 ∏
γ∈c(π′)

tr
(
e−

∑
L∈γ(τL+τ ′L)H

) r∏
m=1

tr(e−βmH)

 , (6.12)

where
∑

π′ denotes the restricted sum over permutations. This makes the answer zero in

the appropriate cases, and almost gives the expected answer for ZNS(β) and the traces with

an even number of boundaries. However, as in section 4, there is an extra factor of 2 from

the doubling of the Hilbert space. We can deal with this by hand by identifying the bulk

objects with rescaled versions of the matrix model observables, so ZNS(β) = 1√
2
tre−βH ,

rather than the identification in [30] of ZNS(β) =
√

2tre−βH . This factor seems a little ad

hoc, and it would be nice to have a deeper understanding of it.

The proposal in [30] was motivated by considering the SYK model. For even N the SYK

Hilbert space has a (−1)F symmetry, but for odd N (−1)F interchanges two irreducible

representations of the Clifford algebra, so if we take the Hilbert space to be one of these

two representations the symmetry is broken at the quantum level. Our proposal could be

understood as corresponding to keeping both representations, so that the boundary Hilbert

space is the direct sum. The bosonic and fermionic states are symmetric and antisymmetric

combinations of the states exchanged by (−1)F .

This model has a degeneracy between the bosonic and fermionic states, since the

Hamiltonians in the two sectors are identified. Thus, each instance is a supersymmetric

quantum mechanics. However, this is not the same as the supersymmetric matrix model,

as we are taking the Hamiltonian rather than the supercharge as the random variable. For

each instance we can construct a supercharge corresponding to the Hamiltonian (6.11), but

averaging over the GUE in (6.11) is not the same as averaging over a GUE ensemble for
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the supercharge. This is why the bulk description, corresponding to an ensemble averaged

theory, is simply JT gravity and not super JT.

Finally, we consider how we can modify the bulk path integral to produce a dual of

a specific boundary theory. For JT gravity, it was already suggested at the level of the

purely bosonic theory without spin structures that fixing the spectrum of the boundary

Hamiltonian would involve introducing additional boundaries in the bulk path integral;

indeed this was part of the inspiration for our proposal in section 5. In particular, in [31],

it was argued that introducing “eigenbrane” boundaries (analogous to the FZZT branes

of [40]) in the bulk could be associated with having some fixed eigenvalues. This perspective

was further explored in [41]. In the model with a sum over spin structures, we want to

specify whether the fixed eigenvalue associated with a given eigenbrane boundary is bosonic

or fermionic. It seems natural to do so by summing over spin structures on the eigenbrane

boundary as in section 5, with NS+R boundary spin structure giving a bosonic eigenvalue

and NS −R spin structure giving a fermionic eigenvalue.

From the boundary ensemble average point of view, it is clear what sort of operators we

must introduce. For the standard sum over spin structures, we have a boundary ensemble

with two separate random matrices, and the partition function is schematically

Zstandard =

∫
dH+

∫
dH− e

−LV (H+)−LV (H−), (6.13)

where H+ is the bosonic sector Hamiltonian, H− is the fermionic sector Hamiltonian, and

V is the potential. In such a situation, we can introduce bosonic and fermionic eigenbrane

operators

ψ±(E) ≡ e−
LV (E)

2 det(E −H±). (6.14)

Then, incorporating a bosonic or fermionic boundary with fixed energy λ corresponds to

a matrix ensemble where the partition function involves an expectation over ψ2
±(λ), which

fixes a single eigenvalue in the appropriate sector as in [31]. By contrast, in the alternate

sum over spin structures, there is effectively only one random matrix to average over, and

we have ψ+(E) = ψ−(E) ≡ ψ(E), which reduces identically to the situation considered

in [31]. Of course, in both of these situations, the equivalence between the boundary

ensemble picture and the bulk sum over surfaces (with extra fixed energy boundaries)

picture is still guaranteed by the equivalence of JT gravity’s genus expansion and the

matrix model recursion relations as proven in [20].

7 Conclusions

In this paper, we extended the simple topological model of [27] to include a sum over spin

structures. The gravitational path integral then has a dual interpretation as an ensemble

average over theories labelled by the dimension of a boundary Hilbert space, with an

additional decomposition into bosonic and fermionic states. If all spin structures are equally

weighted, the states in the dual are chosen to be bosonic or fermionic at random in the

different theories in the ensemble. This freedom effectively enlarges the baby universe

Hilbert space. An alternative sum over spin structures weighted by (−1)ζ (where ζ counts
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zero modes mod 2 of the Dirac equation) leads to a dual ensemble in which the number

of bosonic and fermionic states is fixed to be equal, and the corresponding baby universe

Hilbert space is the same as in [27] without a sum over spin structures. We discussed

the bulk dual of individual boundary theories in the ensemble, and argued that this could

be obtained by restricting the bulk path integral to geometries with a fixed number of

connected components, with an additional boundary in each connected component on

which we sum over spin structures.

We can add EOW branes as a form of topological matter: the boundary conditions then

include boundary segments with standard and twisted boundary conditions, which carry

state labels associated to the EOW branes that terminate them. With this addition, the

gravitational path integral has a dual ensemble description in which the boundary states are

random linear combinations of the bosonic and fermionic elements of the boundary Hilbert

space. We also discussed the calculation with EOW branes for JT gravity. The theory with

the sum over spin structures weighted by (−1)ζ can be interpreted as dual to a matrix model

with a degeneracy between fermionic and bosonic states; the individual instances of the

model are supersymmetric, but the average is over choices of the Hamiltonian (from a GUE

ensemble) rather than the supercharge, so this is not a supersymmetric matrix model as

usually understood.

Extending the model by adding additional structures in the bulk generically increases

the size of the baby universe Hilbert space. The number of null states also increases, as

there are restrictions on the values of the boundary observables such as the Witten index

Z̃, which imply additional null states. But boundary observables typically do have a range

of possible values, which imply new physical baby universe states. In some definitions of

the gravitational path integral, e.g., if the sum over spin structures is weighted by (−1)ζ ,

the new observables have a unique value, where Z̃ = 0. In this case, the baby universe

Hilbert space is not reduced compared to the case without summing over spin structures;

it is just not enlarged. From the boundary perspective, it seems likely that this behaviour

is generic. If an extension adds new structures in the boundary Hilbert space, we have

a larger space of possible boundary models consistent with the structure, and the dual

gravitational path integral in the bulk is dual to a sum over all models with this structure.

To produce a bulk path integral which is dual to a unique boundary theory, or perhaps

a more restricted class of models, we must implement an analogous restriction from the

bulk perspective. It is far from clear how to achieve this in general. In our discussion of the

simple topological model and JT gravity, it was possible to achieve this by adding additional

boundary components in the bulk path integral with particular weightings. It would be

interesting to extend this discussion to obtain a path integral dual of the calculation in a

specific baby universe state (or equivalently a unique boundary theory) for the theory with

EOW branes. This is particularly interesting as it provides the simplest example where

the eigenstates of the boundary creation operators are not normalisable states in the baby

universe Hilbert space — they are only delta function normalisable.

One attraction of adding spin structures to the simple toy model is that we get a

topological obstruction to the existence of bulk geometries for certain boundary conditions,

which then implies that the bulk path integral must have an ensemble interpretation.
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Looking for such topological obstructions is a good way to explore whether the bulk gravity

calculation has an ensemble interpretation in other, more complicated cases, where we

cannot control the full gravitational path integral.

It has been conjectured [32] that the baby universe Hilbert space is one-dimensional

in consistent theories of quantum gravity, such as those obtained from string theory, which

would imply the absence of any such topological obstruction. In a discussion of compactifi-

cations, the same authors conjectured earlier that any compact d-manifold is the boundary

of some (d + 1)-dimensional dynamical process in a consistent theory of quantum grav-

ity [42]. Similar topological issues arise in discussions of anomalies (see e.g. [43]) and in a

recent study of bubbles of nothing [44].

Mathematically, the relevant structure is a cobordism group, specifically the d-dimen-

sional spin cobordism groups ΩSpin
d , where d is the dimension of the boundary and disjoint

union is the group operation [45]. Elements of ΩSpin
d are equivalence classes of d-manifolds

M with spin structure σ such that two manifolds (M1, σ1) and (M2, σ2) are equivalent if

there is a (d+ 1)-manifoldM with spin structure Σ and ∂M = M1tM2 and Σ induces σ1

on the M1 boundary and σ2 on the M2 boundary. For the d = 1 case we considered here,

ΩSpin
1 = Z2, and S1 with Ramond structure (periodic boundary conditions for fermions) is

the nontrivial element; thus, a two-dimensional spin manifold always has an even number

of R boundaries, as claimed previously.

There is a direct analogue for d = 2, where ΩSpin
2 = Z2 and the torus S1 × S1 with R

structure on both circles is the nontrivial element. Thus, if we considered an AdS3/CFT2

correspondence with the CFT living on this torus, it looks like there is a similar obstruction.

However, top-down AdS3/CFT2 models usually have some internal compact space. If we

consider a model with AdS3 × S3 asymptotics, the boundary at some cutoff surface is

T 2 × S3. The relevant spin cobordism group is then actually ΩSpin
5 , which is trivial. This

is easy to understand; one can construct a spin manifold by filling in the S3. Similarly,

in d = 4, there is a non-trivial ΩSpin
4 = Z which is generated by the K3 surface. But in

the duality with N = 4 SYM, we need to consider K3×S5, and there are ten-dimensional

spin manifolds where we fill in the S5. This relaxation of the topological restriction can

also arise in more top-down constructions of two-dimensional models. In the topological

theory we considered and in JT gravity, the bulk is actually two-dimensional, but in a

string theory construction, we often obtain AdS2 as the near-horizon region of some black

hole, and the full geometry has an AdS2×Sd factor; there is then no obstruction to having

a spin manifold with an S1 × Sd boundary for periodic spin structure on the S1.

Thus, we see that familiar top-down constructions do not have topological obstructions

similar to the one in our simple two-dimensional model. This is far from a systematic

exploration of the possibilities, however, and it remains an interesting direction for future

work to see if candidate topological obstructions can be identified in other cases.

The authors of [46] gave an interesting example of a statistical ensemble of theories

appearing in the description of a fully dynamical universe with a spacetime boundary.

They described a universe with a sort of Big Bang seeded by an unstable brane placed at

the beginning of time. The brane decays and populates the universe with quanta. The

entire process can be described by open string worldsheet computations, and, equivalently,
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in a grand canonical ensemble of SU(N) matrix models of different ranks N . Later points

in time are related to larger chemical potentials and thus to dominance by the dynamics

of larger matrices, consistent with the idea that large matrix models tend to have dual

gravitational descriptions. In this way, time emerges from a statistical ensemble on a

Euclidean surface, and the size of space is related to the number of degrees of freedom,

with early times (where the brane tension should shrink space) related to the contribution

of small matrices, and late times (where space is large) being related to the contribution

of large matrices. There are some analogies with the topological model discussed in this

paper. Here, too, we have an ensemble of finite dimensional quantum theories which

collectively reproduce computations in bulk gravity. We have also seen, following [27],

that the dimension of the boundary Hilbert space is related to the number of connected

components in the bulk geometry. In a topological theory there is no metric, and so, in

some sense, the number of connected components is a proxy for the size of the universe.

So, like in [46], pieces of the boundary ensemble with Hilbert spaces of different dimension

describe components of the universe of different size. It would be interesting to understand

if there is a deeper connection between these two pictures.
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in a model of Hawking radiation, arXiv:2003.05448 [INSPIRE].

[15] A. Almheiri, T. Hartman, J.M. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of

Hawking radiation, arXiv:2006.06872 [INSPIRE].

[16] J. Polchinski and A. Strominger, A Possible resolution of the black hole information puzzle,

Phys. Rev. D 50 (1994) 7403 [hep-th/9407008] [INSPIRE].

[17] S.R. Coleman, Why There Is Nothing Rather Than Something: A Theory of the Cosmological

Constant, Nucl. Phys. B 310 (1988) 643 [INSPIRE].

[18] J. Preskill, Wormholes in Space-time and the Constants of Nature, Nucl. Phys. B 323 (1989)

141 [INSPIRE].

[19] I.R. Klebanov, L. Susskind and T. Banks, Wormholes and the Cosmological Constant, Nucl.

Phys. B 317 (1989) 665 [INSPIRE].

[20] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115

[INSPIRE].

[21] A. Maloney and E. Witten, Averaging Over Narain Moduli Space, arXiv:2006.04855

[INSPIRE].

[22] N. Afkhami-Jeddi, H. Cohn, T. Hartman and A. Tajdini, Free partition functions and an

averaged holographic duality, arXiv:2006.04839 [INSPIRE].

[23] A. Belin and J. de Boer, Random Statistics of OPE Coefficients and Euclidean Wormholes,

arXiv:2006.05499 [INSPIRE].
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