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1 Introduction

The current progress of the experimental effort at the Large Hadron Collider (LHC) has

largely exceeded expectations. An unprecedented amount of high-quality data has been

collected and true milestones have been reached for the field, such as the discovery of the

Higgs boson [1, 2]. After ten years of operation, however, and hundreds of measurements

that constrain all the most plausible scenarios for physics beyond the Standard Model

(SM), we are left to wonder if there are any new particles hiding at the weak scale.

This is the right time to ask this question because we have already a rather extensive

picture of physics around a TeV from the studies performed on tens of fb−1 of data at√
s = 13 TeV [3, 4]. The upcoming years of LHC operation will be characterized by a

very different pace, determined by a slow increase in sensitivity driven by the collected

integrated luminosity.

This question has inspired a large part of the theoretical effort for the past several

years, mainly in the direction of finding new solutions to the hierarchy problem hidden

from traditional LHC searches. By now most of these new scenarios are significantly

constrained. Here we would like to take a completely different perspective and abandon all
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prior theoretical expectations. If we do so, two possible answers strike us as the simplest and

potentially most plausible: either we have found nothing beyond the Higgs boson because

(1) there is nothing to be found at the weak scale1 or (2) there are too many new particles.

In this paper we show how large N sectors are naturally hard to detect at hadron

colliders. The reasons are simple and independent of a specific model. The first one is that

they require a small coupling to be consistent. This together with the finite kinematical

range accessible to colliders can give a small total production rate. The second reason is that

high-multiplicity final states containing only low pT particles can easily dominate their total

production rate, presenting a challenge for current triggers. We discuss this in section 2.

Emphasizing this general point about large N sectors is useful both from the exper-

imental and theoretical perspective. On the experimental side, anything that can be lost

due to current triggers deserves serious consideration. Missing new physics because of our

own choices in the selection of events would be a highly tragic mistake. An extensive effort

in this direction is already in progress at the LHC, in the form of data parking and data

scouting [5–8] and upgrades for the high-luminosity run, such as implementing particle

flow at Level 1 [9, 10] in CMS and the Feature Extractors [11, 12] and Fast Track Trigger

(FTK) [13] in ATLAS.

On the theory side, even if the mimetic properties of large N sectors are not inspired by

any open theoretical question, the models that realize them are well-motivated. They can

arise as remnants of string theory compactifications [14, 15] and/or as a low energy sector

of the landscape [16]. They can also be part of a hidden sector containing dark matter

or modifying the electroweak phase transition, giving rise to a phase of symmetry non-

restoration [17–19]. They are related to the broader framework of hidden valleys [20–23]

and realize a phenomenology that is in-between that of traditional hidden valleys (a small

number of possibly displaced SM particles in the final state) and that of conformal hidden

valleys [24, 25] (many particles emitted isotropically).

Furthermore, from a bottom-up viewpoint, the large N sectors that we discuss offer

the perfect opportunity to study the possible role of disorder in model building.2 In our

construction disorder is nothing more than a useful phenomenological tool. It allows us to

capture possible O(1) variations of the low energy parameters of the theory. However, as

it will emerge in the following, disordered systems possess interesting structural properties

and in the future their significance in beyond the SM (BSM) physics might be much

greater than this. Therefore we use this opportunity to discuss a number of results on

random matrices in a heuristic way, useful for model building. In the appendices we

expand our derivations, making them more rigorous and using, where applicable, path

integral techniques familiar from QFT.

The paper is organized as follows: in section 2 we discuss the general kinematical

mechanism that hides large N sectors from detection. In section 3 we present a concrete

realization of the ideas discussed in section 2, in the form of a disordered, large N model

of scalars. In section 4 we discuss general results on disordered mass matrices of scalars, in

1Including the possibility that new physics is too weakly-coupled for us to detect it.
2See [26] for uses in dynamical dark matter [27, 28].
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section 5 we study the collider phenomenology of these models, and in section 6 we discuss

large N models containing fermions. We conclude in section 7 suggesting next steps to

further develop this framework.

2 Large N mimesis

The reasons that make a new sector with a large number of new particles hard to detect at

hadron colliders are very simple and completely general. We present them briefly in this

section before discussing a specific model. Here we imagine that the number N of particles

is always large, but the kinematic arguments still apply to a moderate number of particles,

even as few as 5.

Introducing N � 1 particles in a finite mass range has three main consequences rele-

vant for colliders:

1. The spectrum is compressed and final states with only soft particles are common.

2. The theory requires a small coupling to be consistent.

3. Long decay chains can arise naturally and dominate the total production rate.

The first two items tend to make new sectors with a relatively large number of new particles

hard to detect. The last one can be used as a handle to disentangle these new sectors from

the background and even reconstruct their structure. However, long decay chains and soft

final states go hand-in-hand so having more particles in the final state is not necessarily

advantageous. Let us now discuss each of these three aspects in more detail.

Compression is a trivial consequence of having a large number of new states in a finite

mass range. However the amount of compression depends only on the density of particles

per unit mass, so it can persist also with a small number of new particles.

The small coupling arises if we require these theories to be perturbatively consistent.

Diagrams that are typically higher-order in the couplings, like loop diagrams, involve sums

over the new particles and when their number N is large the couplings must compensate

by scaling with the appropriate power of 1/N . In this regime it is useful to reorganize the

perturbative expansion as an expansion in powers of 1/N [29].

The small coupling on its own is not enough to guarantee a small production rate.

Typically, cross sections scale with the ’t Hooft coupling which means that any individual

final state is N -suppressed, but the sum over all states can result in an O(1) rate. One

exception is when only a subset of the new particles, NLHC, are kinematically-accessible.

In this case total rates can be suppressed by powers of NLHC/N , as illustrated in figure 1.

This leaves us with the last and most interesting aspect of these new sectors: long

decay chains. If the new sector is somewhat secluded, i.e. the couplings to the SM are

smaller than the couplings between the new states, it is likely for states towards the top

of the spectrum to cascade within their own sector before decaying to the SM. In a dense

spectrum there is no phase space suppression for not decaying directly to the bottom of

the spectrum.
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Figure 1. A large N theory where only NLHC � N states are kinematically accessible to a collider

gives a production cross section that is suppressed by powers of NLHC/N .

m
as
s

small mass

long decay chains

Figure 2. A theory with a moderately large number of new particles in a finite mass range, having

a small coupling to the SM, is characterized by a few light states that decay directly to the SM and

events with high multiplicities produced by the long decay chains of the heavier states.

Furthermore, in dense spectra the production rate of states higher in the spectrum can

be comparable to that of the lowest-lying states. Since the only guaranteed low multiplicity

final states come from the production of the lightest particle, in such spectra the probability

is O(1/NLHC) for single production and O(1/N2
LHC) for pair production so that higher

multiplicity final states can dominate the total production cross section.

Observing states near the bottom or top of the spectrum each have their own chal-

lenges. If we produce a state towards the bottom of the spectrum, most of the time it decays

directly to the SM, generating a low-multiplicity final state already targeted by current

searches. However these particles might just be too light to be detected either because of

trigger thresholds or because of backgrounds, especially if they decay to jets. Furthermore,

the total rate for these low multiplicity final states might just be too small to be detectable.

On the contrary a particle near the top of the spectrum cascades within its sector

before decaying back to a large number of SM particles. The total visible and/or invisible

energy can easily be too small to fire an HT or missing energy trigger if all the new particles

are relatively light (i.e. a few hundreds of GeV rather than a few TeV) and/or the spectrum

is compressed. This is summarized schematically in figure 2.

In the next section we introduce a model that makes this simple discussion more

concrete and in section 5 we study the statements made in the previous paragraphs quan-

titatively. We consider sectors with masses around a few hundreds of GeV with N between

5 and 50, but obviously the statements made here are much more general.
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3 A concrete model

In this section we introduce an explicit model. Other models can be constructed, for

example the one in section 6, but this one is the simplest and illustrates all relevant features.

Consider N real scalars with the Lagrangian

Lφ =
1

2
∂µφi∂

µφi −
m2
i

2
φ2i − aijkφiφjφk − λijklφiφjφkφl, (3.1)

where sums over repeated indices are implied and run from 1 to N . The parametrization

should be interpreted as an expansion around a local minimum, not necessarily valid for

arbitrarily large field excursions.

In addition to eq. (3.1), we connect the new scalars to the SM through the most relevant

interactions that are possible, the Higgs portal couplings,

LφH = −aSMi φi|H|2 − λSMij φiφj |H|2, (3.2)

where again sums over repeated indices are left implicit. In section 5, where we discuss

collider phenomenology, we consider models with N ranging from 5 to 50. We study

separately three distinct phenomenological possibilities:

1. aijk = aSMi = 0.

2. All interactions are present and single production dominates.

3. All interactions are present and pair production dominates.

The first case has a potential that respects a Z2 symmetry under which

φi → −φi, ∀i. (3.3)

It can be considered our “nightmare scenario” being maximally difficult to detect at col-

liders. The second one is a more faithful description of a friendly landscape [16], where

the new scalars can get vacuum expectation values of the order of their masses. The third

possibility covers a different limit of this model that has distinct phenomenological fea-

tures. From the point of view of the Lagrangian it is similar to the first case, but with the

addition of a small Z2-breaking. The breaking is sufficiently small that pair production is

still the dominant production process at the LHC.

The model defined by eqs. (3.1) and (3.2) maps onto models used for baryogenesis

(with a particular choice of interactions) [17–19] and can be a QFT model of the land-

scape [16, 30–33]. The new scalars can also be moduli from extra dimensions compactified

at some large scale M∗. If the compactification scale is much larger than their mass, they

would have to be tuned moduli to be visible at colliders, i.e. they need couplings not sup-

pressed by some power of mφ/M∗. Given the ubiquitous presence of the weak scale in

nature their presence around LHC energies might not be a coincidence. The dark matter

energy density today is ρDM ∼ (v2/MPl)
4, the cosmological constant and neutrino masses

are also related to the same combination of v and MPl: Λ
1/4
CC ∼ mν ∼ v2/MPl, not to

mention the role of the weak scale in the SM itself. From a more pragmatic perspective,

this might be just one of many sectors spread over many orders of magnitude in mass that

arise from the compactification of extra dimensions and supersymmetry breaking.
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Large N . To have a well-behaved perturbative theory when N � 1 the couplings must

scale as an inverse power of N . First considering only the quartic interactions, we need

that λSM . 4π/N and λ . 16π2/N2. This can be verified by inspecting diagrams. For the

kind of arguments needed to derive this scaling in general see refs. [34, 35].

When trilinear couplings are included we require that aSM . 4πv/
√
N and

a . 4πmφ/N
3/2, where mφ is the typical mass scale of the scalars and v ≈ 174 GeV is

the vacuum expectation value of the SM Higgs.

Randomness. We introduce phenomenological randomness into the model through the

mass matrix.3 We use fully-populated matrices where each entry is drawn randomly from

a Gaussian distribution. For N real scalars the mass matrix is then symmetrized. After

diagonalization such a random matrix has a known distribution for the mass eigenvalues

in the large N limit. In eq. (3.1) we write the model after diagonalization.

We take the trilinear and the quartic couplings to be roughly of the same order. This

reflects our choice of a fully-populated mass matrix with entries drawn from the same distri-

bution, as in this case all mass eigenstates overlap at O(1/
√
N) with all flavor eigenstates.

Existing constraints. The most stringent bound on these models is indirect and arises

from LHC measurements of Higgs couplings. The mixing between the Higgs and the

new scalars reduces all Higgs couplings, modifying the global signal strength measured at

the LHC. We can estimate the impact of this bound by taking all scalar masses to be

approximately mφ. The modification of the couplings of the Higgs is governed by

sin θ ≈ aSMv
√
N

m2
φ −m2

h

. (3.4)

A weighted average of the CMS and ATLAS global signal strengths from 7, 8, and 13 TeV

data [36–38] sets a limit of sin θ < 0.13. The values of aSM that we consider in section 5

are all largely consistent with this bound.

Electroweak precision measurements receive corrections at one-loop [39]

Ŝ ≈ α

48πs2w
sin2 θ log

m2
φ

m2
h

, T̂ ≈ − 3α

16πc2w
sin2 θ log

m2
φ

m2
h

, (3.5)

and are constrained at the permille level making them subdominant [40]. Above we have

again imagined all scalars to have the same mass mφ.

The new states can also be singly produced at colliders through the mixing with

the Higgs. The most relevant direct searches are those for heavy Higgses, but existing

searches, once the bound from eq. (3.4) is taken into account, have no residual exclusion

power [41–45]. However, the full 13 TeV dataset has not yet been analyzed and searches

for resonant pairs of electroweak gauge bosons will become relevant in the future.

In the Z2-symmetric case the new scalars do not mix with the Higgs boson and the

constraints that we have just discussed do not apply. Furthermore, the new particles can

only be pair produced at colliders with much smaller rates. Current searches for pairs of

new particles have not even begun to probe λSM ∼ O(1) [46–49].

3Randomness in the mass matrix was also studied in [26].
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4 Disordered model building

In this section we discuss the spectrum and eigenvectors of disordered mass matrices. We

focus on N ×N matrices with entries randomly drawn from Gaussian distributions. Our

starting point is the Gaussian Orthogonal Ensemble (GOE), defined by

ρ[M ] =
N∏
i=1

e−(Mii)
2/2

√
2π

∏
i<j

e−(Mij)
2

√
π

, (4.1)

where we use Mii to denote the diagonal entries of the mass matrix M and Mij for the

off-diagonal entries. In eq. (4.1) the entries are drawn from the standard Gaussian dis-

tribution N (0, 1) with mean µ = 0 and standard deviation σ = 1.4 The GOE contains

real symmetric matrices which correspond to models of real scalars. For complex scalars

the analogous ensemble is the Gaussian Unitary Ensemble (GUE) that contains complex

Hermitian matrices. Most of our results apply to both cases (where there are differences

we specify them explicitly).

The natural generalization of the GOE, with broader physical applications, that we

consider is

ρ[M ] =

N∏
i=1

e
− (Mii−µd)

2

2σ2
d

√
2πσd

∏
i<j

e
−

(Mij−µo)
2

2σ2o

√
2πσo

, (4.2)

where the diagonal entries are now drawn from N (µd, σd) and the off-diagonal entries from

N (µo, σo). When we refer to the parameters as µ and σ we are setting µ = µd = µo and

σ = σd = σo and drawing all entries from N (µ, σ).

4.1 Summary of main results

The main result of this section is that in the large N limit the spectral density of matrices

with Gaussian-random entries follows a universal distribution called the Wigner semicircle

distribution [50–52], which once appropriately normalized reads

ρSC(m) =
1

2π

√
4−m2. (4.3)

For finite N and including the dependence on the parameters used for the Gaussian distri-

bution the spectral density is

ρ(m) =
1

πβNσ2

√
2βNσ2 −m2 +O(1/N). (4.4)

The parameter β is called the Dyson index and specifies the ensemble used. For the GOE

we have β = 1 and for the GUE we have β = 2. The parameter µ does not appear in

eq. (4.4) as the distribution does not depend on µ with the exception of a single large

eigenvalue at ∼ Nµ. The spectral edges are at ±
√

2βNσ.

4The standard deviation of the off-diagonal entries is 1/
√

2 rather than 1 because we imagine that the

matrix is symmetrized via (M + MT )/2.
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Figure 3. Left: the spectral density of a 20×20 matrix (red) drawn from the Gaussian Orthogonal

Ensemble and the Wigner semicircle (gray). Right: the spectral density of a 100×100 matrix (blue)

drawn from the Gaussian Orthogonal Ensemble and the Wigner semicircle (gray).

In figure 3 we plot the eigenvalues of matrices with N = 20 and N = 100 along with

the Wigner semicircle distribution.

The eigenvectors of these matrices do not significantly deviate from what one might

naively expect. Since the mass matrix is fully-populated with elements of comparable

magnitude, we can imagine the eigenvectors to be an approximately democratic mix of

flavor eigenstates with weight ∼ 1/
√
N . This is indeed the case as the sum of the squares

of the components of the GOE eigenvectors follow a beta distribution with mean ∼ 1/N

and variance ∼ 1/N2 [53].

We can infer several consequences from the Wigner semicircle distribution:

• All eigenvalues (except the largest one) are roughly contained in the interval

(−
√
Nσ,
√
Nσ). In particular if σ � µ they can be much smaller than the scale

µ of the matrix entries.

• The typical eigenvalue spacing is ∼ σ/
√
N .

• The lightest eigenvalue is ∼ σ/
√
N .

The fact that N−1 of the eigenvalues fall in (−
√
Nσ,
√
Nσ) even when µ� σ appears

useful for model building. If one found a model where µ ∼MPl while σ ∼ v it would appear

that a hierarchy has been generated. However we have only rewritten N − 1 Goldstone

bosons in an unusual basis.

To see this, consider N real scalars contained in a vector Φ with an O(N)-symmetric

potential

V (Φ) = −m
2

2
ΦTΦ +

λ

4
(ΦTΦ)2. (4.5)

If we expand V (Φ) around the true minimum and take the VEV in the direction 〈Φ〉 =

(v, . . . , v)T the mass matrix of the physical degrees of freedom is precisely what we obtain

in our examples by sending the standard deviation σ to zero, i.e. a matrix with all equal

entries. This matrix has N − 1 massless eigenvalues which are the Goldstone bosons of

SO(N)/SO(N − 1). The large eigenvalue with mass squared proportional to N is the

– 8 –
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radial mode. This explains why the typical scale of the eigenvalues is σ which is explicitly

breaking the symmetry, instead of µ that preserves it.

The last useful result on the spectrum is that taking a different mean for the diagonal

elements µd, shifts the spectral density from zero by the amount (µd − µ)

ρ(m) =
1

πβNσ2o

√
2βNσ2o − (m− (µd − µ))2 +O(1/N). (4.6)

If viewed in terms of Goldstone bosons this is a consequence of the explicit breaking of the

O(N) symmetry.

Before turning to the derivation of these results it is worth commenting on a difference

between our models and disordered condensed matter systems. It is natural to ask if we

can pick any variance for our mass matrix or if we need something scaling as an inverse

power of N to have a consistent theory. In real disordered systems locality and the central

limit theorem imply that the free-energy is self-averaging, i.e.

〈F 2〉 − 〈F 〉2 = O(1/N), (4.7)

where 〈·〉 is a disorder average. The argument is quite intuitive: only particles that are

nearby interact with each other appreciably and we can divide F into a sum over many

cells that are not strongly interacting with each other. In the large N limit we can ignore

surface effects and recover the result above.

If this result applied to us, it would require for example σ2 ∼ 1/N for our scalars, just

from computing the free energy from the partition function Z

F = −T logZ. (4.8)

However, in our theories there is no notion of locality in the same sense as for condensed

matter systems. The scalar with flavor 1 can mix as strongly with that of flavor 2 as with

any other, so in this sense all interactions can be long range.

Catalan numbers. There is another interesting structural property of our large N sec-

tors with Gaussian-random mass matrices. The set of numbers

Cn =
1

n+ 1

(
2n

n

)
, (4.9)

known as the Catalan numbers, impacts both the shape of the eigenvalue distribution and

the length of our decay chains. The moments of the Wigner semicircle distribution are the

Catalan numbers

Cn =

∫ 2

−2
ρSC(m)m2ndm. (4.10)

A derivation of this result can be found in appendix B while an explanation that uses an

interesting connection with planar diagrams is presented in appendix C.

To see the role of the Catalan numbers for our decay chains, consider a scalar sector

with particles that can either decay to two other scalars or to two SM particles. This

– 9 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
3

is a good approximation of our general model in section 3 since we expect the trilinear

couplings to dominate the branching ratios.

After a first decay, each daughter scalar would then likewise either decay to additional

scalars or to two SM particles. Each possible final state can then be represented by a binary

tree. The average number of final state particles can be approximated by computing the

weighted sum of possible final states. This requires knowing, for a given number of leaves

2n, how many distinct binary trees there are. This sequence of numbers is again given

by Cn.

The asymptotic behavior of the Catalan numbers also lets us make a rudimentary

estimate of the average decay chain length. Let the probability of decaying to the SM be p

and the probability of decaying to the new sector be q. The average number of final state

particles, ignoring all phase space factors, is then

Nmax∑
n=0

(n+ 1)Cn(pq)np, (4.11)

with Nmax determined by phase space. For n→∞ we have that Cn ∼ 4n/n3/2 which means

that the nth term in the average goes like ∼ (4pq)n/
√
n. Assuming that (4pq) ∼ O(1) the

average will go like ∼
√
Nmax. Nmax is set by phase space and is O(100) for the parameters

considered in section 5 in good agreement with the numerical results in the same section.

This heuristic derivation is valid for two-body decays, but the scaling of ∼
√
Nmax continues

to apply for higher n-body decays.

4.2 The joint eigenvalue distribution

Most of the results in the previous section can be derived using path integral techniques

and can be estimated by simple dimensional analysis. In this section we go through the

heuristic arguments that justify the form of the spectrum.

The first step is to go from the joint entry distribution ρ[M ], in eq. (4.2), to the joint

eigenvalue distribution ρ̂[m1, . . . ,mN ] via the change of basis

M = UMDU
†, (4.12)

where MD = diag(m1, . . . ,mN ). The joint distribution becomes

ρ[M ]DM = ρ[MD]|J(MD)|DmDU. (4.13)

Note that ρ[MD] is not the joint eigenvalue distribution because the Jacobian |J(MD)|
remains. The joint eigenvalue distribution is rather ρ̂[m1, . . . ,mN ] = ρ[MD]|J(MD)|

∫
dU .

The metric on the space of symmetric (or Hermitian) matrices that defines DM is

induced by the product M1 ·M2 = Tr[M1M2], i.e.

ds2M = Tr[dMdM ], (4.14)

where ds2M is the distance on the space of matrices. The other differentials are

Dm =
∏
i

dmi, DU =
∏
i>j

(U †dU)ij . (4.15)

– 10 –
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For simplicity we start with the case µ = 0. Eq. (4.13) anticipates that the Jacobian of

the transformation |J(MD)| and ρ[MD] depend only on the eigenvalues. The proofs are

given below and in appendix A. If we think about ρ as an action for a matrix model,

the eigenvectors U represent the gauge freedom associated to the choice of basis and J is

a gauge-invariant Fadeev-Popov determinant. Then it is not surprising that J does not

depend on U .

If J depends only on the eigenvalues we can make an ansatz for its form based on the

following arguments. When two eigenvalues coincide the transformation becomes singular

and J must be zero, so we expect

|J | =
∏
i<j

|mi −mj |β . (4.16)

To determine β we can use dimensional analysis5

GOE : [DM ] = mN(N+1)/2, [|J(MD)|Dm] = mNmβN(N−1)/2,

GUE : [DM ] = mN2
, [|J(MD)|Dm] = mNmβN(N−1)/2,

(4.17)

from which we find that β = 1 for the GOE and β = 2 for the GUE. Now we are left with

evaluating ρ[MD]. If we take µ = 0 in eq. (4.2) it is easy to conclude that in the large N limit

ρ[M ] ∝ e−
1

2σ2
Tr[M2]+O(1/N) = e−

1
2σ2

∑N
i=1m

2
i+O(1/N) . (4.18)

Combining this with the result for the Jacobian we finally obtain the joint distribution of

eigenvalues

ρ̂[m1, . . . ,mN )] ≡ ρ(MD)|J(MD)| = 1

ZN,β
e
− 1

2σ2o

∑N
i=1m

2
i
∏
i<j

|mi −mj |β , (4.19)

where ZN,β is a normalization factor.

From eq. (4.19) is possible to derive the Wigner semicircle distribution, eq. (4.3),

by solving a path integral [54, 55]. We can either use Feynman diagrams, as done in

appendix C, or use a saddle point approximation [50, 52]. Even without going through the

derivation we can understand most of the results in the previous section just by looking at

eq. (4.19).

For example we expect the largest positive and negative eigenvalues to be O(±
√
βNσ)

just from expanding ρ̂[m1, . . . ,mN ] around the largest eigenvalue m∗

ρ̂[m1, . . . ,mN ] ∼ e−
1

2σ2
m2

∗ |m∗|β(N−1), (4.20)

and taking the derivative dρ̂/dm∗ to find the maximum.

Thus far we have assumed µ = 0 but it can be shown that the results are valid also

for µ 6= 0. Consider splitting M into a zero-mean matrix M ′ and a constant matrix A

M = M +A−A = M ′ +A. (4.21)

5We use square brackets [·] to indicate the dimensions of a quantity.

– 11 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
3

If we apply a unitary transformation UA that diagonalizes A we find that UAAU
†
A =

diag(0, . . . , 0, Nµ). At the same time M ′ is rotated to M ′′ = UAM
′U †A. The asymptotic dis-

tribution of eigenvalues of M ′′ is still the Wigner semicircle distribution and even the finite

N joint distribution is the same. The reason is that ρ[M ] is invariant under unitary transfor-

mations of M and the Jacobian is the same for M and M ′′ since they are both Hermitian.6

A similar argument can be applied to the case with a different mean for the off-diagonal

entries: µd 6= µo. We can subtract the matrix B where B contains the mean of each entry.

Then we further split B into a constant matrix A and (µd − µo) times the identity

M = M +B −B = M ′ +B = M ′ +A+ (µd − µo)1N×N . (4.22)

By diagonalizing A, M ′ is rotated as before, while the term proportional to the identity,

(µd − µo)1N×N , is unaffected. Therefore we still have the Wigner semicircle distribution,

but shifted from zero by an amount (µd − µo). In addition we have the large eigenvalue

which is also shifted to mmax = N(µo − 1) + µd.

This concludes our heuristic derivation of results on the spectrum of GOE and GUE

matrices. We now turn to another phenomenological possibility: having mass matrices

that mix only p nearest neighbors.

4.3 Band matrices

It is interesting to consider what happens if we draw the elements of our matrices from the

same probability distributions considered in the previous sections, but instead of populating

the full matrix we allow only for nearest neighbor interactions among p < N nearest

neighbors

M2
p =



m2
11 m

2
12 · · · m2

1p · · · 0

m2
21 m

2
22 · · · m2

2p · · · 0
...

...
. . . · · · · · ·

...

m2
p1 m

2
p2

...
. . . · · ·

...
...

...
...

...
. . .

...

0 0 · · · · · · · · · m2
NN


. (4.23)

This scenario can arise, for example, from localization in an extra dimension. The eigenval-

ues of these matrices are spread over a smaller range than those in the GOE or GUE. ρ[M ]

is the same as before leaving intact the Gaussian measure in eq. (4.19), but the Jacobian

of the trasformation, even just on dimensional grounds, cannot be the same. If we repeat

the arguments in the previous subsection we find

GOEp : [DM ] = m(2N−p)(1+p)/2, [|J(MD)|Dm] = mNmβpN(N−1)/2. (4.24)

From this we find that

βp =
p(p+ 1− 2N)

N(1−N)
≈ 2p

N
. (4.25)

In this case the eigenvalues are spread over an interval that we expect to be O(
√
pσo) wide.

This is indeed confirmed numerically, as shown in figure 4.

6For a derivation of this result see appendix A.
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Figure 4. Spectral density of 100× 100 symmetric band matrices with elements drawn randomly

from Gaussian distributions. We have used µd = µo = 0 and σd =
√

2σo = 1. The different colors

correspond to different numbers of interacting neighbors p. The vertical lines show the estimate of

the distribution width given in eq. (4.25) from dimensional analysis.

Also the eigenvectors of these matrices, not surprisingly, are more localized than their

GOE or GUE counterparts. The limiting case is a diagonal matrix that exhibits perfect

localization. In the opposite limit we might have eigenvectors as spread as in the previous

cases. If the off-diagonal elements are smaller than the diagonal ones we can have a stronger

form of localization, known as Anderson localization [56], with mass eigenstates spanning

approximately p flavor eigenstates. This fact has already found several applications in the

context of BSM physics [57, 58] and cosmology [59–61].

We do not explore band matrices in detail in this paper, but from the discussion in this

section we expect a collider phenomenology similar to the one that we discuss in section 5

with potentially longer decay chains compared to fully-populated matrices.

5 Collider phenomenology

In this section we explore the collider signals predicted by the scalar model that we pre-

sented in eqs. (3.1) and (3.2). In different regions of parameter space quite different behavior

is expected ranging from simple dijet resonances (singly or pair produced) to long cascades

ending in many SM particles and possibly missing energy. In all cases presented here we

extract particle masses from a Wigner semicircle distribution that has support between

100 and 600 GeV.

We study three regions of parameter space that provide a good representation of the

possible final states of the model. The first case is the Z2-symmetric theory where the only

coupling to the SM is a quartic Higgs portal coupling, λSM. The scalars are pair produced

through this coupling (figure 5a) and can decay either through the same Higgs portal

coupling (figure 6b) or through the hidden sector quartic λ (figure 6a). For simplicity we

take λSM = 1/N and λ = 1/N2 for all the scalars.7

7We do not need this scaling to maintain perturbativity in all the cases that we study. We only use it as

a convenient benchmark. The results presented here are not strongly affected by this choice of couplings.
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g

g

φi

φj

h∗

(a) Pair production σ ∼ (λSM)2

g

g

φi

(b) Single production σ ∼ (aSM)2

Figure 5. Diagrams for scalar production in the model of eqs. (3.1) and (3.2).

φi

φj

φk

φl

(a) Decay via hidden sector quartic Γ ∼ λ2

φi

φj

h(∗)

(b) Decay via Higgs portal Γ ∼ (λSM)2

φi

φj

φk

(c) Decay via hidden sector trilinear Γ ∼ a2

φi

b

b̄

(d) Decay via SM trilinear Γ ∼ (aSM)2

Figure 6. Diagrams for scalar decays in the model of eqs. (3.1) and (3.2).

In the second case we allow non-zero trilinear terms to be present. This changes both

the production and the dominant decay channels of the scalars. Production occurs both

through pair production (figure 5a) and single production (figure 5b). The scalars can

decay either as before (figure 6a and figure 6b), or through the two-body scalar channel

(figure 6c), or to a pair of SM particles via mixing with the Higgs (figure 6d). For the quartic

couplings we use λSM = 0.1/N and λ = 1/N2. For the trilinears we take a = mmin/N
3/2,

where mmin is the lightest scalar mass, and aSM = a, for all the scalars.

In the last scenario we still allow all the couplings to be present, but we take very small

trilinears: a = 10−5 ×mmin and aSM = 10−5 ×mh, leaving the quartics as in the exactly

Z2-symmetric case. In this case pair production dominates over single production and the

lightest scalar decays to a pair of SM particles.

Before discussing the phenomenology of these three scenarios it is useful to take a look

at the scalar production rate at the LHC. We show the total event rate from gluon fusion

summed over all pairs of scalars in figure 7 (left) as a fuction of the coupling λSM and

summed over all singly produced scalars in figure 7 (right) as a function of the trilinear

aSM. We use a center-of-mass energy of 14 TeV and an integrated luminosity of 3 ab−1.

Cross sections were calculated using Madgraph 5 [62] with gluon fusion implemented via

the Higgs Effective Theory module [63]. We have plotted figure 7 for a representative choice

of the scalar spectrum drawn at random from a Wigner semicircle distribution in the range
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Figure 7. Total number of events from pair production (left) and from single production (right)

in 3 ab−1 of
√
s = 14 TeV LHC data. For pair production the upper end of the lines corresponds

to λSM = 1/N and the dotted line indicates where λSM = 1/N2. For single production the dotted

line indicates where aSM = mmin/N
3/2 where mmin is the lightest scalar mass.
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Figure 8. Total number of particles in the event in the Z2-symmetric scenario where aSM = a = 0

in eqs. (3.1) and (3.2). Final state particles include two stable scalars. Different colors correspond

to different spectra. From left to right: N=5, 10, and 50 scalars in the new sector.
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Figure 9. Total number of particles in the event in the scenario where all couplings in eqs. (3.1)

and (3.2) are present and single production dominates. Different colors correspond to different

spectra. From left to right: N=5, 10, and 50 scalars in the new sector.

of 100 GeV to 600 GeV. The red lines are for N = 10 and the purple lines are for N = 50.

The figure allows us to conclude that even with our N -suppressed couplings we still have

a reasonable number of events to work with at the end of the high-luminosity program of

the LHC.

To analyze the phenomenological features of the model we start by showing the total

number of particles Ntot per event. In figure 8 we show Ntot for N = 5, N = 10, and

N = 50 scalars in the Z2-symmetric case. In figure 9 we show the same for the second case,

– 15 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
3

� � � � � �� �� �� �� ��

���

���

���

���

����

�
��
��
��
�
��
�
�
��
��

�=�
�������� ϕ�

���� ����������

� � � � � �� �� �� �� �� ��

���

���

���

���

���

���

���

���

����

�
��
��
��
�
��
�
�
��
��

�=��

�������� ϕ�

���� ����������

� � � � � �� �� �� �� �� ��

���

���

���

���

���

���

����

�
��
��
��
�
��
�
�
��
��

�=��

�������� ϕ�

���� ����������

Figure 10. Total number of particles in the event in the scenario where all couplings in eqs. (3.1)

and (3.2) are present and pair production dominates. Different colors correspond to different spec-

tra. From left to right: N=5, 10, and 50 scalars in the new sector.

where single production dominates, while in figure 10 we show Ntot for the last scenario

that is nearly Z2-symmetric, but has small trilinears that allow the lightest scalar to decay.

The different colors correspond to a different randomly-generated mass spectrum, so the

four histograms in each figure represent the variation that we expect from randomness in

the mass matrix.

Especially at small N , the variation between different spectra is primarily a function

of the gap between the lightest state φN and the states closest in mass to it. When there

is a large gap between φN and the next state, events with Ntot = 2 are favored because

φNφN production dominates the overall rate. Spectra for which the Ntot = 2 bin is small

have states that are near in mass to φN so that their production rate is comparable to that

of φN . Furthermore, smaller mass gaps near the bottom of the spectrum mean that heavy

scalars have a very similar probability to decay to any of the light scalars favoring longer

decay chains. If φN is much lighter, phase space will instead favor a direct decay to the

bottom of the spectrum.

This discussion leads us to identify the main qualitative feature common to all three

regions of parameter space: increasing the density of states in a fixed mass interval, long

decay chains become more common, giving rise to higher multiplicity final states. This

emerges clearly from figure 11 where we compare one of the spectra of figure 8 for N = 50

with N = 5 scalars in the same scenario, but distributed over a much smaller mass range:

from 200 to 250 GeV. The two spectra have the same average mass splitting between

neighboring states and very similar final state multiplicities.

From figures 8, 9, and 10 another general aspect of the phenomenology of the model

emerges clearly: when single production dominates traditional resonant searches for pairs

of SM objects are still the main avenue for discovery. However when pair production

dominates the main signature consists in four or more particles in the final state. In the

Z2-symmetric case these particles are mostly soft b-quark jets. This is shown in figure 12

and figure 14. The first figure counts the number of b-quarks in the event, while the second

one shows the fraction of events with average energy per particle above a certain threshold

for N = 10 and N = 50 scalars. From figure 14 it is clear that our final states are extremely

challenging for traditional low-multiplicity triggers and even the total energy in the event,

shown in figure 15 is not a good handle. A quantitative discussion of trigger thresholds
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Figure 11. Comparison between 5 states and 50 states with the same average mass splitting. We

show the total number of particles in the event for the Z2-symmetric scenario, where aSM = a = 0

in eqs. (3.1) and (3.2). Final state particles include two stable scalars.
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Figure 12. Total number of b-jets in the event for the Z2-symmetric scenario, where aSM = a = 0

in eqs. (3.1) and (3.2). Different colors correspond to different spectra. From left to right: N=5,

10, and 50 scalars in the new sector.
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Figure 13. Total number of W bosons in the event in the scenario where all couplings in eqs. (3.1)

and (3.2) are present and pair production dominates. Different colors correspond to different spec-

tra. From left to right: N=5, 10, and 50 scalars in the new sector.

goes beyond the scope of this work, but it is clear from our results that low-threshold, high-

multiplicity triggers are well motivated in this scenario. Note also that in this scenario the

lightest scalar φN is stable and we have always a small amount of missing energy in the

event. It is too small for triggering purposes, but it can be used as a handle to identify

this model.

Let us now turn to the last scenario, where pair production dominates but φN can

decay to a pair of SM particles. Interestingly for N . 10 most of the events contain at

least four W s, as shown in figure 13. At larger N b-quarks are still the dominant species
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Figure 14. Fraction of events with average energy per particle above Ecut. The plots were made

in the Z2-symmetric scenario where aSM = a = 0 in eqs. (3.1) and (3.2). Left: 10 scalars, right: 50

scalars.
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Figure 15. Fraction of events with total energy (including missing energy) above Ecut. The plots

were made in the Z2-symmetric scenario where aSM = a = 0 in eqs. (3.1) and (3.2). Left: 10 scalars,

right: 50 scalars.

of SM particles. In this scenario φN decays via its mixing with the Higgs. So the large W

multiplicity is due to the mass of the lightest state in the spectrum, that for small N is

usually larger than the Higgs mass (due to the shape of the Wigner semicircle distribution).

The WW decay width turns on rapidly for mW . mφ . 2mW . On the contrary at larger

N when we start to populate the entire Wigner distribution, we always find a scalar with

mass comparable or smaller than mh for which decays to SM quarks dominate. From the

point of view of triggering the total energy in the event still does not offer a very good

handle as shown in figure 17. However at small N the average energy per particle (shown

in figure 16) is more than enough for leptonic and some multijet triggers.

To summarize, the phenomenology of the model is very rich, ranging from scenarios

where traditional resonant searches capture the bulk of the events to cases where long decay

chains with multiple bs or W s are the most common signatures. In general the total energy

and missing energy in the event cannot be used for triggering and high-multiplicity trig-

gers are motivated. In this section we took the mass range of the scalars between 100 and

600 GeV. It would be interesting to explore different mass ranges. Going to larger masses

would boost the total energy in the event potentially changing our qualitative conclusions

on triggering. However this can be done only at the price of considerably reducing the
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Figure 16. Fraction of events with average energy per particle above Ecut. The plots were made in

the scenario where all couplings in eqs. (3.1) and (3.2) are present and pair production dominates.

Left: 10 scalars, right: 50 scalars.
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Figure 17. Fraction of events with total energy (including missing energy) above Ecut. The plots

were made in the scenario where all couplings in eqs. (3.1) and (3.2) are present and pair production

dominates. Left: 10 scalars, right: 50 scalars.

production rate and would not make these new sectors less elusive. Going to lower masses

would make the new scalars even harder to trigger on or move them to kinematical regions

better explored outside of the domain of hadron colliders. However following the agnostic

approach outlined in the introduction it would be worth to consider also much lighter sec-

tors and a completely different set of experiments. We leave this exploration to future work.

6 Fermionic hidden sectors

In this paper we have chosen to focus on models with scalars and explore thoroughly their

mass matrices. However the same ideas could be realized in models containing a large

number of fermions or a mixture of particles with different spins. In this section we discuss

some of the differences that one would encounter for fermions.

The chiral protection of fermion masses makes them plausible low energy remnants

of the compactification of extra dimensions, also if the typical scale of compactification is

much larger than their mass. For example, light fermions are common in some realizations

of string theory [14]. One example that would have a collider phenomenology similar to
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the theories in section 3 is a model of N Dirac fermions with a Yukawa interaction

Lψ = iψαγ
µ∂µψα −mαψαψα − yαβψαψβφ+ h.c.. (6.1)

This choice is rather appealing from the point of view of coupling this sector to the SM since

it gives us a symmetry argument to forbid the lHψα vertex leaving us with the interaction

LψH = −
ψαψβ |H|2

Λ
+ h.c., (6.2)

which gives the long decay chains discussed in section 5. If we also take the mass of φ

in a range that makes three-body decays within the dark sector (ψα → ψβφ
∗ → ψβψγψδ)

relevant we can reproduce exactly the same structure that we had in the scalar models.

However when considering the mass matrices of N fermions one should be aware of

some differences compared to the scalar case. We have to diagonalize M †M to obtain the

pole masses in the free theory, while the parameters in the Lagrangian form a linear mass

matrix M . If we treat the entries of M as the fundamental parameters of the theory, drawn

from a random distribution, the asymptotic form of the spectral density is different from

what discussed for GOE and GUE.

Given a square N ×N matrix M , with independent and identically-distributed entries

drawn from a Gaussian distribution with zero mean and unitary variance the asymptotic

distribution for the eigenvalues of (M †M)/N is a particular case of the Marčenko-Pastur

density [64]

ρMP(m) =
1

2πm

√
m(4−m), (6.3)

which denotes an accumulation of eigenvalues around zero. A diagrammatic derivation of

this result can be found in [65]. Note that we have used m for the eigenvalues of M †M

that have the dimension of a squared mass. The Marčenko-Pastur density can be easily

generalized to the case of non-unitary variance. Assuming that all the entries of M have zero

mean and variance σ, the asymptotic distribution for the spectral density of (M †M)/N is

ρMP (m,σ 6= 0) =
1

2πσ2m

√
m(4σ2 −m). (6.4)

Also in this case turning on a non-zero mean µ equal for all the entries does not affect the

spectral density except for the appearance of one large eigenvalue of M that is O(Nµ). We

leave a more detailed discussion to future work.

7 Outlook

In this paper, motivated by the current null results at colliders, we have ignored some of

the unspoken rules of BSM model building. We have asked what is the simplest scenario

in which new particles are present at the weak scale, but still invisible at colliders, without

attempting to answer the open questions that have driven the field. Even if our starting

point was orthogonal to most traditional phenomenological studies, our “kinematics of

invisibility” is realized in a number of scenarios that are well motivated theoretically.
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More concretely, we have discussed the simple kinematical consequences of having a

large number of new particles in a finite mass range. This situation can arise in many

BSM scenarios and has characteristic phenomenological signatures that we have explored

in section 5. The main messages are that final states with multiple soft particles can be

common and that the total production cross section can easily be small enough to motivate

the high luminosity upgrade of the LHC. Often there is not enough total energy to pass

global triggers such as those targeting high HT or missing ET signatures. This provides

further motivation for the ongoing work aimed at lowering trigger thresholds.

The new sectors that we have studied are naturally described in terms of disordered

mass matrices and couplings. This is a convenient phenomenological tool to parametrize

our ignorance. It allows us to keep parameters that are supposed to be of the same order

close to each other without giving up potentially interesting O(1) variations. The main

phenomenological interest lies in accidental compressions near the bottom of the spectrum.

We find that this situation is not uncommon and can considerably increase the number

of soft final state particles in the event. Aside from this point, disordered mass matrices

have an interesting structure that we have discussed in section 4 and expanded upon in the

appendices. We have made an effort to rederive all relevant results in a language as close as

possible to QFT. We hope that further explorations of disorder in model building will have

interesting implications for the long standing questions in the field. Even if just at the level

of intriguing coincidences we already find much more structure than we naively expected.

There are a number of new directions that this work suggests. Most of them are simple

such as expanding the analysis of fermion models and of the combinatorial properties of

long decay chains. However the one that we find most intriguing is the general exploration

of large N sectors and disorder in phenomenology, especially their aspects that we have

not touched in this paper as the possibility of having a large number of metastable vacua

and glassy phases.

In conclusion we have presented a simple phenomenon that motivates new explorations

of hadron collider data, found connections with motivated BSM scenarios, and introduced

some of the tools of large N disordered models in a particle physics context.
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A The Vandermonde determinant

As discussed in section 4 the joint entry distribution for real symmetric N ×N Gaussian-

random matrices with variance σ and mean equal to zero is

ρ[M ] =

N∏
i=1

e−
M2
ii

2σ2

√
2πσ

∏
i<j

e−
M2
ij

σ2

√
πσ
∝ e−

1
2σ2

Tr[M2]. (A.1)

The joint eigenvalue distribution for the eigenvalues mi of the matrix M is

ρ̂[m1, . . . ,mN ] =
1

ZN
e−

1
2σ2

∑N
i=1m

2
i

∏
i>j

|mi −mj |, (A.2)

where ZN is a normalization factor.

The factor |J | =
∏
i>j |mi−mj | is the Jacobian of the transformation between matrix

entries and its eigenvalues and eigenvectors. It is known as the Vandermonde determinant.

In this appendix we derive it in two ways.

The first is through a simple change of basis. Starting from the joint entry distribution

we find

ρ[M ]DM = ρ[MD]|J(MD)|DmDU. (A.3)

To compute J , recall the definition of the metric on the space of symmetric matrices

Tr[dMdM ] = Tr
[
d(OMDO

T )d(OMDO
T )
]

= Tr
[
dm2 + [MD, O

TdO]2
]

=

N∑
i=1

dm2
i +

∑
i 6=j

(mi −mj)
2(OTdO)2ij ,

(A.4)

where we have used d(OOT ) = 0 which means dOT = −OTdOOT . This also shows that

OTdO is an antisymmetric matrix. We now have a metric tensor and we can use the square

root of its determinant to obtain J .

Note that when we write ρ[M ]DM we are integrating only over the N(N + 1)/2

independent variables in M . Given the form of ρ[M ], integrating over the other matrix

components would just give an overall constant absorbed by the normalization. So we

do not need all the components of the metric tensor defined by eq. (A.4) to compute J .

Combining eq. (A.3) and eq. (A.4) we obtain

|J | =
∏
i>j

|mi −mj | . (A.5)

It is not hard to generalize these steps to the case of complex Hermitian matrices.

The second way to derive J is as a Fadeev-Popov determinant. The correlation func-

tions of gauge-invariant operators Oi(A) in a Yang-Mills theory

1

Z

∫
DAeiS(A)O1(A) · · ·ON (A), (A.6)
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have the same structure as the expectation values of quantities that depend only on the

eigenvalues of M ∫
DMρ[M ]O1(m) · · ·ON (m), (A.7)

if we identify ρ[M ] with the action eiS(A). In the matrix case a gauge transformation is a

change of basis. From eq. (A.1) we see that an orthogonal transformation on M does not

change ρ[M ]

ρ[M ] = ρ[OMOT ], (A.8)

and leaves us in the space of symmetric matrices (OMOT )T = OMOT . It is then easy to

conclude that also in eq. (A.7) the action and integration measure are gauge-invariant.

Following the Fadeev-Popov procedure we first define ∆(MD) as

1 =

∫
DmDUδ[M −MD]∆[MD], (A.9)

where δ[M − MD] is an N(N + 1)/2−dimensional Dirac delta function for symmetric

matrices M . For complex Hermitian matrices it would be N2−dimensional.

From eq. (A.9) we compute ∆[MD] for an infinitesimal orthogonal transformation

O ≈ 1N×N + δO which means DU ≈ dδO. We find

∆(MD) =
1∫

DmDUδ[M −MD]

≈ 1∏
i>j

∫
dδOijδ[δOijDjj +DiiδOTij ]

≈ 1∏
i>j dδOijδ [(mi −mj)δOij ]

=
∏
i>j

|mi −mj |.

(A.10)

So we have found that ∆(MD) is precisely the Jacobian of the transformation. For a

complex Hermitian M , |J | =
∏
i>j |mi − mj |2 where the square derives from the double

integration on the real and imaginary parts of the elements of the unitary transformation.

The last step to derive eq. (A.2) consists in multiplying eq. (A.7) by the identity in the

form given in eq. (A.9) and note that
∫
DUδ[M −MD] being the inverse of ∆(MD) cancels

the factor of
∏
i>j |mi − mj | in the integration measure. The Jacobian is then restored

by ∆(MD).

B Moments of Wigner’s semicircle

Recall the Wigner semicircle distribution:

ρSC(m) =

{
1
2π

√
4−m2 |m| < 2,

0 |m| > 2.
(B.1)

The odd moments of this distribution vanish by symmetry. Here we show that the even

moments, µ2n, for integer n, are the Catalan numbers, Cn, where

Cn =
1

n+ 1

(
2n

n

)
. (B.2)
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We compute the integral in polar coordinates

µ2n =

∫ 2

−2
ρSC(m)m2ndm =

22n+1

π

∫ π/2

−π/2
sin2n θ cos2 θdθ. (B.3)

Using a reduction formula∫ π/2

−π/2
sinn θdθ =

n− 1

n

∫ π/2

−π/2
sinn−2 θdθ, (B.4)

the integral in eq. (B.3) can be simplified to an integral over a single power of sine

µ2n =
22n+1

π

1

2(n+ 1)

∫ π/2

−π/2
sin2n θdθ . (B.5)

Finally using the identity ∫ π

−π
sin2n θdθ =

π

22n−1

(
2n

n

)
, (B.6)

one finds that

µ2n =
1

n+ 1

(
2n

n

)
= Cn. (B.7)

C The Catalan numbers and planar diagrams

Here we present a partial derivation of the Wigner semicircle distribution using Feynman

diagram techniques. This derivation highlights the connection between Catalan numbers

and planar diagrams.

Recall that the Catalan numbers are the even moments of the Wigner semicircle dis-

tribution

Cn =

∫ 2

−2
ρSC(m)m2ndm. (C.1)

Consider a Hermitian matrix M .8 It has an associated Green’s function

GM (z) =
1

N
Tr

1

z −M
=

1

N

N∑
i=1

1

z −mi
, (C.2)

where mi are the N eigenvalues of M . We are interested in the average over many realiza-

tions of M

G(z) = lim
N→∞

〈GM (z)〉 =

∫
ρ(m)

z −m
dm. (C.3)

The averaging merges the poles into a cut spanning the support of ρ(m). From the Green’s

function one can find the spectral density ρ(m) via the identity

ρ(m) = − 1

π
lim
ε→0+

Im G(m+ iε). (C.4)

8We show the Feynman rules for the GUE because they are slightly simpler than for the GOE.
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i j 1
z δ
j
i

i j

k l

1
N δ

j
i δ
l
k 1

Figure 18. Feynman rules for random matrix theory to compute eq. (C.7).

i j

Figure 19. The n = 1 term from eq. (C.5) in the computation of Gi
j(z).

We compute G(z) using the Feynman diagram expansion developed in [66] and discussed

pedagogically in [55]. It is convenient to first introduce Gij(z) as

Gij(z) =

〈(
1

z −M

)i
j

〉
= δijG(z). (C.5)

We expand Gij(z) to find

Gij(z) =

∞∑
n=0

1

z2n+1
〈(M2n)ij〉. (C.6)

Odd powers of M vanish in the average. The numerator of each term, explicitly, is

〈(M2n)ij〉 =
1

Z

∫
dMe−

N
2
Tr(M2)(M2n)ij , (C.7)

where Z is a normalization factor. Eq. (C.7) resembles a path integral for the matrix M .

Computing the full propagator requires evaluating these integrals which we can do using

Feynman diagrams.

Using Feynman diagrams we can see that in the large N limit planar diagrams domi-

nate, similar to large N QCD [29]. The Feynman rules are shown in figure 18.

The n = 1 term is shown in figure 19. Given that there is no integral over space or

time, each diagram contributes a pure number to 〈(M2n)ij〉. Closed loops correspond to

factors of N from tracing so that non-planar diagrams are suppressed by powers of 1/N .

By inspecting diagrams, such as the one in figure 19, we can conclude that there are

as many planar diagrams with n vertices as there are non-crossing partitions of a lattice

with n sites. The definition of a non-crossing partition is precisely that if one puts the n

points of a lattice on a circle and connects each point with the next member of its part

by an internal path (in cyclic order), the paths do not cross. The Catalan numbers count,

among other things, non-crossing partitions [67]. Therefore

Gij(z) = δij

∞∑
n=0

1

z2n+1
Cn. (C.8)

With eq. (C.6) this implies

Cn =

∫
ρ(m)m2ndm, (C.9)

which was shown explicitly in appendix B.
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[15] M. Cvetič, P. Langacker and G. Shiu, Phenomenology of a three family standard like string

model, Phys. Rev. D 66 (2002) 066004 [hep-ph/0205252] [INSPIRE].

[16] N. Arkani-Hamed, S. Dimopoulos and S. Kachru, Predictive landscapes and new physics at a

TeV, hep-th/0501082 [INSPIRE].

[17] P. Meade and H. Ramani, Unrestored Electroweak Symmetry, Phys. Rev. Lett. 122 (2019)

041802 [arXiv:1807.07578] [INSPIRE].

– 26 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7235
https://twiki.cern.ch/twiki/bin/view/AtlasPublic
https://cms-results.web.cern.ch/cms-results/public-results/publications/
http://cds.cern.ch/record/1480607
https://arxiv.org/abs/1708.06925
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.06925
http://cds.cern.ch/record/2642192
https://arxiv.org/abs/1808.00902
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.00902
https://dx.doi.org/10.22323/1.282.0190
http://inspirehep.net/record/1596468
http://cds.cern.ch/record/2635471
https://arxiv.org/abs/1808.02094
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.02094
https://indico.cern.ch/event/678456/contributions/
https://doi.org/10.22323/1.282.1055
http://inspirehep.net/record/1634746
http://cds.cern.ch/record/1502664
http://cds.cern.ch/record/1552953
https://doi.org/10.22323/1.305.0019
https://arxiv.org/abs/1801.03503
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.03503
https://doi.org/10.1103/PhysRevD.66.066004
https://arxiv.org/abs/hep-ph/0205252
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0205252
https://arxiv.org/abs/hep-th/0501082
https://inspirehep.net/search?p=find+EPRINT+hep-th/0501082
https://doi.org/10.1103/PhysRevLett.122.041802
https://doi.org/10.1103/PhysRevLett.122.041802
https://arxiv.org/abs/1807.07578
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.07578


J
H
E
P
0
8
(
2
0
1
9
)
1
6
3

[18] I. Baldes and G. Servant, High scale electroweak phase transition: baryogenesis & symmetry

non-restoration, JHEP 10 (2018) 053 [arXiv:1807.08770] [INSPIRE].

[19] A. Glioti, R. Rattazzi and L. Vecchi, Electroweak Baryogenesis above the Electroweak Scale,

JHEP 04 (2019) 027 [arXiv:1811.11740] [INSPIRE].

[20] M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B

651 (2007) 374 [hep-ph/0604261] [INSPIRE].

[21] T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron

colliders, JHEP 07 (2008) 008 [arXiv:0712.2041] [INSPIRE].

[22] M.J. Strassler, On the Phenomenology of Hidden Valleys with Heavy Flavor,

arXiv:0806.2385 [INSPIRE].

[23] M.J. Strassler and K.M. Zurek, Discovering the Higgs through highly-displaced vertices, Phys.

Lett. B 661 (2008) 263 [hep-ph/0605193] [INSPIRE].

[24] M.J. Strassler, Why Unparticle Models with Mass Gaps are Examples of Hidden Valleys,

arXiv:0801.0629 [INSPIRE].

[25] S. Knapen, S. Pagan Griso, M. Papucci and D.J. Robinson, Triggering Soft Bombs at the

LHC, JHEP 08 (2017) 076 [arXiv:1612.00850] [INSPIRE].

[26] K.R. Dienes, J. Fennick, J. Kumar and B. Thomas, Randomness in the Dark Sector:

Emergent Mass Spectra and Dynamical Dark Matter Ensembles, Phys. Rev. D 93 (2016)

083506 [arXiv:1601.05094] [INSPIRE].

[27] K.R. Dienes and B. Thomas, Dynamical Dark Matter: I. Theoretical Overview, Phys. Rev. D

85 (2012) 083523 [arXiv:1106.4546] [INSPIRE].

[28] K.R. Dienes and B. Thomas, Dynamical Dark Matter: II. An Explicit Model, Phys. Rev. D

85 (2012) 083524 [arXiv:1107.0721] [INSPIRE].

[29] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461

[INSPIRE].

[30] J.M. Bardeen, J.R. Bond, N. Kaiser and A.S. Szalay, The Statistics of Peaks of Gaussian

Random Fields, Astrophys. J. 304 (1986) 15 [INSPIRE].

[31] A.J. Bray and D.S. Dean, Statistics of critical points of Gaussian fields on large-dimensional

spaces, Phys. Rev. Lett. 98 (2007) 150201 [INSPIRE].

[32] R. Easther, A.H. Guth and A. Masoumi, Counting Vacua in Random Landscapes,

arXiv:1612.05224 [INSPIRE].

[33] M. Dine and S. Paban, Tunneling in Theories with Many Fields, JHEP 10 (2015) 088

[arXiv:1506.06428] [INSPIRE].

[34] S. Coleman, Aspects of Symmetry, Cambridge University Press, Cambridge, U.K. (1985).

[35] T. Cohen, R.T. D’Agnolo and M. Low, Freezing in the hierarchy problem, Phys. Rev. D 99

(2019) 031702 [arXiv:1808.02031] [INSPIRE].

[36] ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay

rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC

pp collision data at
√
s = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

[37] ATLAS collaboration, Combined measurements of Higgs boson production and decay using

up to 80 fb−1 of proton-proton collision data at
√
s = 13 TeV collected with the ATLAS

experiment, ATLAS-CONF-2018-031.

– 27 –

https://doi.org/10.1007/JHEP10(2018)053
https://arxiv.org/abs/1807.08770
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.08770
https://doi.org/10.1007/JHEP04(2019)027
https://arxiv.org/abs/1811.11740
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.11740
https://doi.org/10.1016/j.physletb.2007.06.055
https://doi.org/10.1016/j.physletb.2007.06.055
https://arxiv.org/abs/hep-ph/0604261
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0604261
https://doi.org/10.1088/1126-6708/2008/07/008
https://arxiv.org/abs/0712.2041
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2041
https://arxiv.org/abs/0806.2385
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.2385
https://doi.org/10.1016/j.physletb.2008.02.008
https://doi.org/10.1016/j.physletb.2008.02.008
https://arxiv.org/abs/hep-ph/0605193
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0605193
https://arxiv.org/abs/0801.0629
https://inspirehep.net/search?p=find+EPRINT+arXiv:0801.0629
https://doi.org/10.1007/JHEP08(2017)076
https://arxiv.org/abs/1612.00850
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.00850
https://doi.org/10.1103/PhysRevD.93.083506
https://doi.org/10.1103/PhysRevD.93.083506
https://arxiv.org/abs/1601.05094
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.05094
https://doi.org/10.1103/PhysRevD.85.083523
https://doi.org/10.1103/PhysRevD.85.083523
https://arxiv.org/abs/1106.4546
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4546
https://doi.org/10.1103/PhysRevD.85.083524
https://doi.org/10.1103/PhysRevD.85.083524
https://arxiv.org/abs/1107.0721
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0721
https://doi.org/10.1016/0550-3213(74)90154-0
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B72,461%22
https://doi.org/10.1086/164143
https://inspirehep.net/search?p=find+J+%22Astrophys.J.,304,15%22
https://doi.org/10.1103/PhysRevLett.98.150201
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,98,150201%22
https://arxiv.org/abs/1612.05224
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.05224
https://doi.org/10.1007/JHEP10(2015)088
https://arxiv.org/abs/1506.06428
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06428
https://doi.org/10.1017/CBO9780511565045
https://doi.org/10.1103/PhysRevD.99.031702
https://doi.org/10.1103/PhysRevD.99.031702
https://arxiv.org/abs/1808.02031
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.02031
https://doi.org/10.1007/JHEP08(2016)045
https://arxiv.org/abs/1606.02266
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.02266
http://cds.cern.ch/record/2629412


J
H
E
P
0
8
(
2
0
1
9
)
1
6
3

[38] CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton

collisions at
√
s = 13 TeV, Eur. Phys. J. C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].

[39] R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an

extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].

[40] D. Buttazzo, F. Sala and A. Tesi, Singlet-like Higgs bosons at present and future colliders,

JHEP 11 (2015) 158 [arXiv:1505.05488] [INSPIRE].

[41] ATLAS collaboration, Search for new phenomena in high-mass diphoton final states using

37 fb−1 of proton-proton collisions collected at
√
s = 13 TeV with the ATLAS detector, Phys.

Lett. B 775 (2017) 105 [arXiv:1707.04147] [INSPIRE].

[42] ATLAS collaboration, Search for heavy resonances decaying into WW in the eνµν final

state in pp collisions at
√
s = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018)

24 [arXiv:1710.01123] [INSPIRE].

[43] ATLAS collaboration, Search for heavy ZZ resonances in the `+`−`+`− and `+`−νν̄ final

states using proton-proton collisions at
√
s = 13 TeV with the ATLAS detector, Eur. Phys. J.

C 78 (2018) 293 [arXiv:1712.06386] [INSPIRE].

[44] CMS collaboration, Search for a Higgs boson in the mass range from 145 to 1000 GeV

decaying to a pair of W or Z bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].

[45] CMS collaboration, Search for additional neutral Higgs bosons decaying to a pair of tau

leptons in pp collisions at
√
s = 7 and 8 TeV, CMS-PAS-HIG-14-029.

[46] ATLAS collaboration, A search for pair-produced resonances in four-jet final states at√
s = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 250 [arXiv:1710.07171]

[INSPIRE].

[47] CMS collaboration, Search for pair-produced resonances decaying to quark pairs in

proton-proton collisions at
√
s = 13 TeV, Phys. Rev. D 98 (2018) 112014

[arXiv:1808.03124] [INSPIRE].

[48] CMS collaboration, Search for long-lived particles with displaced vertices in multijet events

in proton-proton collisions at
√
s = 13 TeV, Phys. Rev. D 98 (2018) 092011

[arXiv:1808.03078] [INSPIRE].

[49] CMS collaboration, Search for Multijet Resonances in the 8-jet Final State,

CMS-PAS-EXO-11-075.

[50] E. Wigner, Characteristic Vectors of Bordered Matrices with Infinite Dimensions, Annals

Math. 62 (1955) 548.

[51] E. Wigner, On the Distribution of the Roots of Certain Symmetric Matrices, Annals Math.

67 (1958) 325.

[52] F.J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Math. Phys. 3

(1962) 140 [INSPIRE].

[53] S. O’Rourke, V. Vu and K. Wang, Eigenvectors of random matrices: A survey,

arXiv:1601.03678.

[54] G. Livan, M. Novaes and P. Vivo, Introduction to Random Matrices — Theory and Practice,

arXiv:1712.07903.

[55] A. Zee, Quantum field theory in a nutshell, Princeton University Press (2003).

[56] P.W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109 (1958)

1492 [INSPIRE].

– 28 –

https://doi.org/10.1140/epjc/s10052-019-6909-y
https://arxiv.org/abs/1809.10733
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.10733
https://doi.org/10.1103/PhysRevD.76.115008
https://arxiv.org/abs/0706.0432
https://inspirehep.net/search?p=find+EPRINT+arXiv:0706.0432
https://doi.org/10.1007/JHEP11(2015)158
https://arxiv.org/abs/1505.05488
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05488
https://doi.org/10.1016/j.physletb.2017.10.039
https://doi.org/10.1016/j.physletb.2017.10.039
https://arxiv.org/abs/1707.04147
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.04147
https://doi.org/10.1140/epjc/s10052-017-5491-4
https://doi.org/10.1140/epjc/s10052-017-5491-4
https://arxiv.org/abs/1710.01123
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.01123
https://doi.org/10.1140/epjc/s10052-018-5686-3
https://doi.org/10.1140/epjc/s10052-018-5686-3
https://arxiv.org/abs/1712.06386
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.06386
https://doi.org/10.1007/JHEP10(2015)144
https://arxiv.org/abs/1504.00936
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.00936
http://cds.cern.ch/record/2041463
https://doi.org/10.1140/epjc/s10052-018-5693-4
https://arxiv.org/abs/1710.07171
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.07171
https://doi.org/10.1103/PhysRevD.98.112014
https://arxiv.org/abs/1808.03124
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.03124
https://doi.org/10.1103/PhysRevD.98.092011
https://arxiv.org/abs/1808.03078
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.03078
http://cds.cern.ch/record/1482131
https://doi.org/10.2307/1970079
https://doi.org/10.2307/1970079
https://doi.org/10.2307/1970008
https://doi.org/10.2307/1970008
https://doi.org/10.1063/1.1703773
https://doi.org/10.1063/1.1703773
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,3,140%22
https://arxiv.org/abs/1601.03678
https://arxiv.org/abs/1712.07903
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,109,1492%22


J
H
E
P
0
8
(
2
0
1
9
)
1
6
3

[57] I.Z. Rothstein, Gravitational Anderson Localization, Phys. Rev. Lett. 110 (2013) 011601

[arXiv:1211.7149] [INSPIRE].

[58] N. Craig and D. Sutherland, Exponential Hierarchies from Anderson Localization in Theory

Space, Phys. Rev. Lett. 120 (2018) 221802 [arXiv:1710.01354] [INSPIRE].

[59] D. Green, Disorder in the Early Universe, JCAP 03 (2015) 020 [arXiv:1409.6698]

[INSPIRE].

[60] R. Brandenberger and W. Craig, Towards a New Proof of Anderson Localization, Eur. Phys.

J. C 72 (2012) 1881 [arXiv:0805.4217] [INSPIRE].

[61] V. Zanchin, A. Maia Jr., W. Craig and R.H. Brandenberger, Reheating in the presence of

noise, Phys. Rev. D 57 (1998) 4651 [hep-ph/9709273] [INSPIRE].

[62] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond,

JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

[63] https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/HiggsPheno.

[64] V. Marchenko and L. Pastur, Distribution of eigenvalues for some sets of random matrices,

Math. USSR-Sb 1 (1967) 457.

[65] X. Lu and H. Murayama, Universal Asymptotic Eigenvalue Distribution of Large N Random

Matrices — A Direct Diagrammatic Proof to Marchenko-Pastur Law, arXiv:1410.3503

[INSPIRE].
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