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ABSTRACT: We look for relations among CKM matrix elements that are not consequences
of the Wolfenstein parametrization. In particular, we search for products of CKM elements
raised to integer powers that approximately equal 1. We study the running of the CKM
matrix elements and resolve an apparent discrepancy in the literature. To a good approxi-
mation only A runs, among the Wolfenstein parameters. Using the Standard Model renor-
malization group we look for CKM relations at energy scales ranging from the electroweak
scale to the Planck scale, and we find 19 such relations. These relations could point to
structure in the UV, or be numerical accidents. For example, we find that |VigVys| = ]VC% ,
within 2% accuracy, in the 109-10'® GeV range. We discuss the implications of this CKM
relation for a Yukawa texture in the UV.
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1 Introduction

The CKM flavor-mixing matrix possesses nontrivial structure, as exemplified by the Wolfen-
stein parametrization [1]:

1—)%/2 A AN(p—in)
V= —A 1-22/2 AN +0(X). (1.1)
AN (1 — p—in) —AN? 1

Experimentally, A\ &~ 0.22, reflecting the hierarchical nature of the CKM matrix. eq. (1.1)
is an expansion in the small parameter A, with the other Wolfenstein parameters A, p,
and 7 taken to be O(1). It is natural to wonder whether there is structure in the CKM
matrix beyond the Wolfenstein parametrization. This could manifest as precise relations
between elements of the CKM matrix (or equivalently, relations between the Wolfenstein
parameters) that do not follow purely from the smallness of A or the unitarity of V.

To this end, ref. [2] introduced the concept of “Wolfenstein anarchy”, in analogy with
anarchic models of the PMNS lepton mixing matrix [3-7]. In contrast to the CKM matrix,
it is unknown whether the PMNS matrix possesses any nontrivial strucure. PMNS anarchy
is the concept that there is no such structure: all of the elements of the PMNS matrix are
comparable and there are no new relations among them [3]. Following this, a CKM matrix
is Wolfenstein anarchic if it is generic other than the one small parameter A, and no
relations exist other than those already implied by the Wolfenstein parametrization. The
opposite situation is that the CKM matrix has a substructure. Whether the CKM matrix
is Wolfenstein anarchic or has a substructure depends upon the UV completion underlying
the flavor structure observed in nature.

Ref. [2] identified two novel CKM relations that are approximately satisfied:
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However, the CKM matrix runs [8, 9], and so the relations in eq. (1.2) should be understood
as holding at a low scale, below the top quark mass m;. (Below m;, the CKM matrix is
essentially constant [10].) If some UV physics generates CKM substructure, this should be
reflected in CKM relations that appear at the scale of the new physics. These relations may
not hold in the IR due to the running of the elements of CKM matrix. For this reason, we
seek to explore CKM relations at different scales, from the weak scale to the Planck scale.

What can we learn from such relations? The great hope is that they are due to some
fundamental reason — that is, that they serve as a hint of UV physics. Yet, such relations
can be totally accidental. Our hopes in this paper are twofold. First we look for relations.
Once we have found them, we ask what we can learn about any possible UV model that
generates them.

The running of the CKM matrix is model-dependent. In this paper we consider the
Standard Model (SM) and one realization of the Minimal Supersymmetric Standard Model
(MSSM) [11, 12]. While in the SM the numerical values of the parameters at the weak
scale are known to a good accuracy, for the MSSM we have to choose various unknown
parameters. Our choice is to take all superpartner masses to be equal at the weak scale and
tan § = vg/v, = 1. This realization of the MSSM is experimentally excluded, because the
LHC typically constrains superpartner masses to be heavier than the electroweak scale (see
for example refs. [13-16]). Heavier superpartner masses introduce logarithmic threshold
corrections to the CKM running which we do not include here for simplicity. Our purpose
with this toy MSSM example is to demonstrate that the running can change when going
beyond the SM, leading to different relations.

In both the SM and the MSSM, to a good approximation, only the Wolfenstein pa-
rameter A runs. The running of A has been calculated before, but there is an apparent
disagreement in the literature about its running in the SM: ref. [8] reports an increase
in A of about 13% from the weak scale to the GUT scale, while in figure 2 of ref. [9] A
increases by about 25%. We resolve this discrepancy. As we explain in section 2, we find
that recomputing the running of A using the methods of ref. [9] gives a result which, in
fact, agrees with ref. [8]. Thus, we take the results of both ref. [8] and ref. [9] (except for
their figure 2) to be correct.

Having the forms of running of the CKM matrix, we then search for CKM relations up
to the Planck scale in the SM and the MSSM. We find one particularly intriguing relation,

that holds in the SM between 10° and 10'® GeV, overlapping the scale where the Higgs
quartic vanishes [17, 18] and the GUT scale. In terms of Wolfenstein parameters, this
relation can be written as
A% = (1-p)*+ 02 (1.4)
Ideally we would like to find a UV model that generates this relation without tuning.
While we were unable to do so, we investigate an ansatz for the quark Yukawa matrices
that can result in such a relation. We find that this ansatz can reproduce the six observed
quark masses with five free parameters, once we impose the relation. Yet, it is not clear if
that relation is a hint of a UV physics or is just accidental.



2 CKM matrix running

The CKM elements run due to the fact that the Yukawa couplings run. Furthermore, the
running of the CKM matrix is related to the fact that the running of the Yukawa couplings
is not universal. If all the Yukawa couplings ran in the same way, the matrices that
diagonalize them would not run. Thus, it is the nonuniversality of the Yukawa coupling
running that results in CKM running.

Since only the Yukawa coupling of the top quark is large, that is, O(1), to a good ap-
proximation we can neglect all the other Yukawa couplings. This approximation is expected
to hold up to corrections of order my/m; arising from the subleading Yukawa couplings.

There are three consequences of our approximation:

1. The CKM matrix elements do not run below m;.
2. The quark mass ratios are constant except for those that involve my.

3. The only Wolfenstein parameter that runs is A.

The first two results above are easy to understand, while the third one requires some
explanation. A is the parameter that appears in the mixing of the third generation with
the first two generations, and thus is sensitive to the running of the top Yukawa coupling.
A mainly encodes 1-2 mixing — that is, between the first and second generations — and
is therefore insensitive to the top quark. The last two parameters, n and p, separate the
1-3 and 2-3 mixing. Thus they are effectively just a 1-2 mixing on top of the 2-3 mixing
that is generated by A. We see that, to a good approximation, it is only A that connects
the third generation to the first and second, and thus it is the only one that runs.

As explained above, there is a disagreement in the literature over the numerical running
of the CKM matrix. Ref. [8] works in the limit of vanishing electroweak gauge couplings,
arguing that the renormalization group (RG) evolution is dominated by the Higgs sector
and strong interactions. Exploiting the large hierarchies between the quark masses and
keeping only the mass of the top quark further simplifies the RG equations, to the point
that they can be solved analytically. With this method, ref. [8] reports an increase in A (in
the SM) of about 13% from 102 GeV to 10'° GeV. The authors of ref. [9] instead expand
the RG equations in terms of the Wolfenstein parameter A, noting that the leading term
in the one-loop contribution is O(1) while the leading term in the two-loop contribution
is O(A*). Motivated by this, they solve the RG equations up to order A3. In figure 2 of
ref. [9] we can see an increase in A of about 25% from 102 GeV to 10'5 GeV, in tension
with ref. [8].

To address the discrepancy, we compute the running of the Wolfenstein A by directly
computing the running of the Yukawa matrices and diagonalizing them to find the Wolfen-
stein parameters. Following egs. (15)-(22) in ref. [9], the down-type Yukawa matrix at
scale t is given by

ya(t) = \/r' (RS, (t) (U.)] Z(t) (Ua) 1, 43, (2.1)

t=1In (“) . (2.2)

where



' (t) and h,,(t) are functions and Z(¢) is a 3 x 3 matrix, which we define below, following
ref. [9]. Quantities with a zero index are evaluated at the scale pg, corresponding to ¢ = 0;
for example, y) = yq(t = 0). Explicitly, 7/(t) is defined in terms of the running gauge
couplings by

i=3 0\ 20
7t =] <gfft)) (2.3)

i=1
where g1, g2, and g3 are the U(1),,, SU(2);, and SU(3), gauge couplings, respectively.
The coefficients §; are {5/82, —27/38, —8/7} in the SM and {7/99, 3, —16/9} in the MSSM.
hm(t) is given by

B (t) = exp [16;2 /O t Yf(t’)dt’] : (2.4)

where Y; is the largest eigenvalue of the up-type Yukawa matrix. (One must not confuse
the ¢ defined in eq. (2.2) with the symbol for the top quark that appears in Y; and my.)
It is related to the running top quark mass my(t) by v2my(t) = v(t)Yi(t), where v(t) is
the Higgs VEV. Lastly, Z(t) = diag (1,1, h(t)), where h(t) = h,(t)~%/? in the SM and
h(t) = hp(t) in the MSSM.

The Yukawa matrix y4; can be diagonalized by a scale-dependent bi-unitary
transformation

ya(t) = (Ua)} 5a(t) (Ua) g, (2.5)

where g4 denotes the diagonal Yukawa matrix, and the ¢-dependencies of (Uy); and (Ug)p
are implicit. Consider the following hermitian matrix:

ya()ya(t)' = (UL}, [ (ORS(OZ(®) (V) vy (U] Z0)] (V) (2.6)
After diagonalizing it we get
Ga(t) = V&) [ (RS0 2(8) (V) v’ (V)] 2]V (©), (2.7)
where
V(1) = (Ua), (1) (Ua)] (1) (28)
is the CKM matrix at scale t. Consequently, we can directly compute the CKM matrix by
diagonalizing the hermitian matrix

Z(t) (Ua) vy (U Z(t) = %Z(tm(Mg)%*Z(t), (2.9)

where vy is the Higgs vev, Vj is the CKM matrix, and M (g is the mass matrix of down-type
quarks (all at the scale py).

Following the definition in the PDG [10], we compute the numerical value of Wolfen-
stein parameters directly from the CKM matrix elements:

Vs

V |Vud’2 + ’VUS‘Q
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. AN (p+in) = Vi, (2.10)



We find that ), p, and 7 only change by O(10~%) from the weak scale to the Planck scale,
confirming known results [8, 9]. Moreover, the assumption that we use of neglecting all the
Yukawa couplings but that of the top is not justified for such a small running. Indeed, the
analysis of ref. [9] shows that the Wolfenstein parameters other than A only run at order
M and A < my/my. Given the fact that the running of A, p, and 1 is much smaller than
that of A we treat them as constants. A full study of CKM running including subleading
Yukawa couplings would be interesting, but is beyond the scope of this paper.

Our results for the running of the Wolfenstein parameter A in the SM and the MSSM
are depicted in figure 1. We use the CKMfitter collaboration central values for the CKM
matrix elements [19] and the PDG values for all running gauge couplings and masses [10].
The running of A in the SM agrees with ref. [8], contrary to the running reported in figure 2
of ref. [9]. We conclude that the different methods of computing the CKM running agree
with each other, and they are in disagreement with figure 2 of ref. [9].

In the SM A increases with the RG scale, while we find the opposite is true in the
MSSM: A decreases from the weak scale to the Planck scale. This is in agreement with
previous analyses of the RG equations in the MSSM [20].

Fitting A to a quadratic equation, we find that it is very well-approximated by

('LL) 810 100 GeV 810 100 GeV

The error of these fits is less than 1% between m; and Mp;.

Lastly, we discuss how a potential CKM relation runs. We consider some function of
CKM matrix elements R(u) which, when expressed in terms of the Wolfenstein parameters,
scales as A™. Suppose one has computed R at a particular scale p9. Then we have

R(u) = [mrmm (2.12)

From this one can see that computing the scale at which R = 1 simply amounts to solving
the equation

Ap) — fml =0. (2.13)

3 CKM relations up to the Planck scale

We search for relations across the range of scales (my, Mp;) of the form

1 Wi — =1%£0.02, (3.1)

where iy, kn, € (u, ¢, t), jn,lm € (d,s,b), and >, an+_,, by < 7. We restrict our attention
to those relations which are not already implied by the Wolfenstein parametrization and
require that the relations hold to within 2% of 1. We choose a 2% precision because that
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Figure 1. Running of the Wolfenstein parameter A in the SM (black) in the MSSM (blue). In the
MSSM we take tan 8 = 1. The running is fitted to the quadratic equations given in eq. (2.11).

is roughly the experimental precision on the values of the CKM elements, as well as the
theoretical precision in the running formula that we use. Our results for the SM and MSSM
are depicted in figures 2 and 3, respectively.

Our analysis differs from ref. [2] in two ways. First, ref. [2] worked at leading order in
A, and thus approximated V,4 ~ 1. We do not make this approximation. Second, we allow
>on Gn + Do b < 7, while ref. [2] required >, an + Y., bm < 6, i.e. we allow one more
factor of CKM matrix elements.

Two of the relations we find are independent of the Wolfenstein parameter A. These are

Va V3 Vus| 1 —3X%/2 4 Ve Vi Vis| 1 —2)2 4
1= ¢ = — + O (A, 1= 4 = — + 0 (A*).
Vi [1—p—in ( ) Vi 11— p—in ( )
(3.2)
Since these relations are A-independent, they do not run.
Of course, at low scales we find the same relations as ref. [2]: |[V2| = |V3| and

|VZV.s| = |Vi|]. In both the SM and the MSSM, these relations hold up to about
103-10* GeV.

There is a compelling relation in the SM involving only four factors of CKM matrix
elements, which holds between 10° and 10'® GeV:

ViaVus| = Vc2b : (3.3)
In terms of the Wolfenstein parameters, this relation can be written as
A2 = (1= )2, (3.4)

Below we concentrate on this relation.
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Figure 2. Novel CKM relations in the SM from m; to Mp;. The bars indicate the range of energy
scales in which the relations hold to within 2%, while the dots indicate the scale at which the
relations equal 1. The first two relations do not run at order A3 and so they hold at all scales.

4 Yukawa ansatz

It would be tantalizing if we could construct a UV model that generates the relation of
eq. (3.3). Yet, we were unable to find one. Instead, we explored possible forms of the
Yukawa matrices that could yield the relation. The idea is that once we find such matrices,
they can serve as a first step in constructing a model.

Flavor models, for example Froggatt-Nielsen models [21-23], typically predict textures
for the Yukawa matrices, generating the small Wolfenstein parameter A through some novel
dynamics. Although these models explain the hierarchical structure of the CKM matrix,
they cannot generate CKM relations (ignoring numerical coincidences), since the Yukawa
textures are only defined up to O(1) parameters. That is, Froggatt-Nielsen models are
consistent with Wolfenstein anarchy.
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Figure 3. Same as figure 2, but for the MSSM.

For a flavor model to generate a relation like eq. (3.3), it must predict a precise form
for the Yukawa matrices, without unspecified O(1) constants. In fact, we are unaware of
any model that can generate such a relation.

There are ten observables in the SM quark sector (six masses, three mixing angles, and
one complex phase). Thus, an ansatz for the Yukawa matrices which correctly predicts
all of these observables is only nontrivial if it involves fewer than ten input parameters.
But even this is quite an ambitious goal. Here we achieve a more pedestrian goal: we find
an ansatz that reproduces the correct quark masses with fewer than six parameters, while
making a connection to the relation in eq. (3.3).

Consider the following quark mass matrix ansatz:

0 zX3 0 0 wA30
My =my | 23 2X2 2\, |, Mg =my [ wA3 w3 0| . (4.1)
0 zX, 1 0 01

This ansatz is inspired by the phenomenologically relevant textures identified in refs. [24,
25]. There are six free parameters my, my, x,w, Ay, and A\y. Note that we have made
two simplifications. First, we take all parameters real (and therefore neglect the CKM
phase). Second, while normally each entry is multiplied by an order-one free parameter,
and therefore this texture would include 10 free parameters (after accounting for texture
zeroes), we have reduced the 10 parameters to 6 parameters. These simplifications mean
that the following toy analysis cannot fully describe nature. In what follows we treat A,
and Ay as small, as they tend to be on the order of the Wolfenstein parameter A ~ 0.22.
As we show below, if we require additionally that the relation in eq. (3.3) is satisfied, the



number of parameters is reduced to five. We further show that one can choose parameters
that reproduce the six quark masses observed in nature while satisfying the relation in
eq. (3.3). Note that we do not attempt to explain the precise size of the CKM mixing
angles in this toy analysis.

The eigenvalues of M, are given by

my, me =~ (1 — z)\2my, my >~ x(1 —x) " Amy, (4.2)

where we are retaining terms at the leading order in A,. Similarly the eigenvalues of My
at the leading order in \; are

my, ms ~ wAimy, mg ~ wAimy,. (4.3)

While we do not write them explicitly, we note that the eigenvectors of My and M, are
independent of my, m, and w. For m; and m; this is easy to see, since they are overall
factors multiplying the matrices. To see that this is also the case for w, observe that M is
block diagonal and w is an overall factor multiplying the upper block. Thus, we conclude
that the CKM matrix depends only on the parameters A, g, and x.

We generate 107 random Yukawa matrices from this ansatz, uniformly sampling the
parameters \g, Ay, and z from the range [~0.5,0.5]. About 7.5 x 10* of these satisfy the
relation in eq. (3.3) to within 2%. (One might guess that about 2% of matrices would
satisfy the relation within 2%; this turns out to be correct up to an order one factor.) The
parameter values giving rise to matrices satisfying the relation are depicted in figure 4.

To better understand the features of this plot, one can solve for the CKM matrix
perturbatively in A, and Ay, then extract the ratio

V;fdvus
R= (4.4)
Ve
The relation in eq. (3.3) corresponds to R = 1. Up to order A\*, we find
oo | A X — )
Az (1 — )
1
— = 22z —1D)%z = A3\ — 1222 -1

“XNN(z 1) (282 — 2)( = )2+ 1) + AANF@ — 12+ 60 (@ — 1)°]

+0(X).

In the above calculation we have assumed that |z| < 1. Note that R is unchanged under
the transformation A, — —\,, Ay — —Ag (while holding x constant). This is the reason
for the symmetry observed in figure 4.

If we retain only the leading-order, O(\?) term, it is easy to solve for \g as a function
of A, and z:

1 1 1 4R
AN —xhy | —— £ . 4.
4= 5" [x(l — ) \/x2(1 —x)? + Ty ] (46)



IH|HI\‘HI\‘IIH’\II\‘HII‘H

Figure 4. Parameters of random mass matrices generated from the ansatz in eq. (4.1) which
lead to a CKM matrix satisfying the relation (3.3). Black X marks indicate values of Ay, Aqg
which reproduce the observed quark mass hierachies with & ~ —0.5. Green lines correspond to the
analytical estimate in eq. (4.6) for z = 0.5 (solid line) and x = —0.5 (dashed line). Blue dotted
lines indicate the lines Ay = 0 and Ay = \,.

In accordance with the discussion above, there is another solution obtained by taking
Ay = —Ay and Ay — —Ag. Setting R = 1 and = = +1/2 roughly gives the boundaries of
the region of parameter space populated by our scan, at least at small values of A, and A4
(see the green lines in figure 4).

eq. (4.6) exemplifies our previous statement that imposing the relation eq. (3.3) upon
our ansatz effectively reduces the number of free parameters from six to five. Next we
show that it is possible to choose the parameters so that the relation is satisfied and all
six quark masses are reproduced correctly. We first choose the parameters A\, Ag, x, and
w to reproduce the observed quark mass ratios [10, 26]. For the mass ratios at the GUT
scale we use

T v0.002, € ~0.003, 4005 @« 22002 (4.7)

me my ms mp

Then, the overall constants in front of M, and M, can be chosen to reproduce the correct
running values of m; and mg,.

Specifically, one takes A\, = —0.07 and x = —0.50, which reproduces the observed
ratios my,/m. and m./m;. Imposing the relation (3.3) then requires Ay ~ —0.22 — which
also gives the correct mass ratio mq/ms. Then, one can choose w ~ 0.36 so as to reproduce
the correct value for mg/m;. These values of A\, and A4 are indicated on figure 4 by black
X marks.

~10 -



One would expect that a Yukawa ansatz with six free parameters would not be able to
simultaneously satisfy eq. (3.3) and correctly yield all six quark masses. At best, a generic
Yukawa ansatz with six parameters could either satisfy eq. (3.3) and give five correct quark
masses, or violate eq. (3.3) and get all quark masses correct. In this sense, the ansatz in
eq. (4.1) is not generic. This is reflected in that the choice of Ay & —0.22 in the preceding
paragraph, which was needed to satisfy the relation eq. (3.3), also happened to yield the
correct value for mg/ms.

Next we consider the regime x < 1, which is relevant for the interior region of the
plot. Expanding eq. (4.5) at leading order in x yields

1
R LPOLA) + 0], (19)
where P is the polynomial
2 4
1
P M) = — Mg+ % +2x3 - i—” +35 (AaX2 + X3\ - (4.9)

There are three solutions to P = 0:

1
_ _ Y _ 2
AM=0, A=A, A= 6( Au /12 5>\u>. (4.10)

When P = 0, it is impossible to satisfy R = 1. Hence, the first two solutions in eq. (4.10)
correspond to the gaps in figure 4 (dotted blue lines). The last solution lies outside of the
plot range. As one moves slightly away from these lines, one can tune x = P(Ay, A\g) to
satisfy the relation.

The above toy analysis illustrates some of the features that a UV explanation of R =1
should have. Even after taking the simplified texture of eq. (4.1), with 10 nonzero complex
parameters simplified to 6 real parameters, we find that the texture parameters should
satisfy the nontrivial relation of eq. (4.6), in order to enforce R = 1. Ideally, R = 1 would
be a structural consequence of a UV model, and not a parametric accident. This seems
challenging to realize.

5 Conclusions

In this work, we have explored novel CKM relations that are Wolfenstein-independent,
in the sense that they are not implied purely by the smallness of A in the Wolfenstein
parametrization. We looked for them from the weak scale up to the Planck scale, computing
the running in the SM and one realization of the MSSM. This builds upon previous work in
ref. [2] which examined such relations at low scales. In particular, the relation in eq. (3.3),
which holds in the SM near the GUT scale, is rather simple.

We have also settled the disagreement between ref. [8] and ref. [9] over the running of
the CKM matrix. Although ref. [9] reports a different running of A from ref. [8], recomput-
ing the running using their methods yields a result that agrees with ref. [8]. Furthermore,
our results confirm that to a very good approximation, the only Wolfenstein parameter
that runs is A — the other parameters are effectively constant. We provide quadratic fits

- 11 -



to the running of A in the SM and the MSSM in eq. (2.11), which are valid to within 1%
between m; and Mp;. These results may be of use to others interested in the CKM matrix
at different scales.

It seems difficult to construct UV models that explain the sort of CKM relations we
consider. Flavor models usually only constrain the Yukawa matrices up to O(1) factors,
and so they do not make any precise predictions of CKM relations. It would be quite inter-
esting and challenging to find a UV model that can dynamically generate CKM relations
like eq. (3.3).

Indeed, we were unable to find a UV model to explain eq. (3.3). We instead investigated
an ansatz for the Yukawa matrices, eq. (4.1). If one imposes the relation eq. (3.3) upon
the ansatz, there are effectively five free parameters. Interestingly, this ansatz can still
correctly reproduce all six quark masses.

The big question is what the implications of the relations we found are. It would be
nice if they will lead us into any UV physics. Yet, at this point we do not see any, and the
relations may be just accidental.
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