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Abstract In SU(N) gluodynamics, above the de-confinement
temperature, the effective potential has minima at non-zero
A0-background fields in the two-loop approximation. Also,
it has a minimum at non-zero chromomagnetic background
field, known as ’Savvidy’-vacuum, which shows up on the
one-loop level. In this paper, we join these two approaches.
We formulate, at finite temperature, the effective action, or
the free energy, in SU(2) gluodynamics on the two-loop level,
with both, A0 background and magnetic background present
at the same time, which was not done so far. We provide the
necessary representations for both, effective numerical calcu-
lation and high-temperature expansions. The results are rep-
resented as a 3D plot of the real part of the effective potential.
Also, we reproduce for zero either, the A0-background or the
magnetic background, the known minima and compare them.
The imaginary part is, on the two-loop level, still present. We
mention that, as is known from literature for the case without
A0-background, the imaginary part is compensated by the
ring (’daisy’) diagrams. However, in our two-loop approxi-
mation, the results reveal an unnatural, singular behavior of
the real part of the effective potential in the region, where
the imaginary part sets in. Our conclusion is that one has to
go beyond the two-loop approximation and its ring improved
version, in order to investigate the minimum of the effective
action as a function of A0 and chromomagnetic field, and
its stability, at least in the approximation of super daisy dia-
grams, i.e., the Hartree approximation in the CJT formalism.

1 Introduction

Background fields and classical solutions in QCD are impor-
tant topics towards a theory of confinement. There is quite
a number of them which were investigated as, for example,
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instantons, monopoles, or vortices [1]. A special role plays
constant background fields, to a large extent since these are
frequently solutions of the classical field equations and allow
in many cases for quite explicit formulas. One prominent
example is the A0-background, which is closely related to
the Polyakov loop. At finite temperature, such field cannot
be gauged away and was intensively investigated beginning
with [2]. In the early 90-ies, two-loop contributions were
calculated and with these, as was shown in [3], the effec-
tive potential has non-trivial minimums and related conden-
sate fields. These form a hexagonal structure in the plane
of the relevant components A3

0 and A8
0 of the background

field. These condensate fields constitute the so-called ’A0-
vacuum’. This topic is also intensively investigated by func-
tional approaches, for a recent work see [4] and citations
therein.

A different kind of background field is the chromomag-
netic one. Its history dates back to the work [5], where a
minimum of the effective potential in the background of a
chromomagnetic field was found, also forming a condensate.
This state is called ’Savvidy vacuum’. However, quite soon,
in [6] and [7], it was found to be unstable due to the tachyonic
mode. By now, there is a large number of attempts towards
stabilization. We mention here only the re-summation of ring
(’daisy’) diagrams in [8], resulting in the statement that the
imaginary part disappears and the minimum of the real part
remains.

There are only very few attempts to consider A0- and
magnetic backgrounds together, [9] and [10]. Both are on
the one-loop level. It must be mentioned that this is clearly
insufficient as the A0 condensate starts to appear only on the
two-loop level.

There are lattice calculations with both backgrounds. In
[11] it was observed that in the presence of a constant color
magnetic field the Polyakov loop acquires a non-trivial spa-
tial structure along the direction of the magnetic field. More
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interestingly, in [12] a common spontaneous generation of
both fields was found.

As a step towards the simultaneous generation of both
background fields in a perturbative approach, we consider
both these background fields on the two-loop level. More
specifically, we calculate the effective potential as a function
of both parameters, A0, and B, in SU (2) gluodynamics. The
reason for the restriction to this group is basically that this
is the simplest relevant non-Abelian group. It enters as sub-
group QCD and electroweak theories and generalizations are
known to be quite easy.

The general expressions for the effective potential, are
generalized to include the magnetic background in two-
loop order. The mathematical tools for the calculation of
the appearing expressions, which can be found to a large
extent in the literature, will be represented in a coherent form.
This way, we are able to calculate numerically the effective
potential in the (A0, B)-plane for finite temperature. Also,
we consider the limiting cases A0 = 0 and B = 0 in detail
and find, for instance, the magnetic condensate in two-loop
order, which was also considered in [8]. We mention, that
a spontaneous generation of a background field is meant in
the sense, that for the corresponding field the effective action
has a minimum below zero, which is energetically favorable.
Thereby it is assumed that no external sources are present.

In our investigation, we are mainly interested in the mini-
mum of the effective potential, i.e., on a spontaneous genera-
tion, on the two-loop level. At this place, we do not touch the
problem of stability. However, we will observe that the com-
pensation of the imaginary part, found in [8] in a one-loop
approximation, is insufficient in the two-loop level.

In the gluonic sector, in the case of SU(2), the effective
potential reads

WSU (2)
gl = B4(0, 0) + 2B4 (a, b)

+ 2g2
[
B2 (a, b)2 + 2B2 (0, b) B2 (a, b)

]

− 4g2(1 − ξ)B3 (a, b) B1 (a, b) (1)

with the notation

a = x

2
= gA0

2πT
, b = gH3, (2)

where H3 is the third color component of the background field
and g is the coupling constant. Since we work at finite tem-
perature, WSU (2)

gl is, of course, equivalent to the free energy.
The functions Bn(a, b) are defined by

B4(a, b) = T
∑

�

∫
dk3

2π

b

4π

∑
n,σ

ln

× (
(2πT (� + a))2 + k2

3 + b(2n + 1 + σ − i0)
)
,

B3(a, b) = T
∑

�

∫
dk3

2π

b

4π

∑
n,σ

× � + a

(2πT (� + a))2 + k2
3 + b(2n + 1 + σ − i0)

B2(a, b) = T
∑

�

∫
dk3

2π

b

4π

∑
n,σ

× 1

(2πT (� + a))2 + k2
3 + b(2n + 1 + σ − i0)

,

B1(a, b) = T
∑

�

∫
dk3

2π

b

4π

∑
n,σ

× � + a
(
(2πT (� + a))2 + k2

3 + b(2n + 1 + σ − i0)
)2 .

(3)

In these formulas the summations run n = 0, 1, . . . , σ = ±2
and � runs over all integers. The ′ − i0′-prescription defines
the sign of the imaginary part for the tachyonic mode. These
formulas and Eq. (1) are the generalization of the correspond-
ing two-loop expressions in [13], Eqs. (3.8) and (A.2)–(A.5),
[14], Eq. (14), [15], Eq. (4), and also [16], Eq. (4), to the inclu-
sion of the magnetic field. Note a “-” sign in (5)). Below we
will use also the relations

B3(a, b) = 1

4πT
∂a B4(a, b),

B1(a, b) = −1

4πT
∂a B2(a, b), (4)

which are quite convenient.
For b → 0 we note b

4π

∑
n,σ → ∫ d2k

(2π)2 and get at b = 0

B4(a, 0) = 2π2T 4

3
B4(a), B3(a, 0) = 2πT 3

3
B3(a),

B2(a, 0) = T 2

2
B2(a), B1(a, 0) = − T

4π
B1(a), (5)

where Bn(a) are the Bernoulli polynomials, periodically con-
tinued. The special values for, in addition, a = 0 are

B4(0, 0) = −π2T 4

45
, B3(0, 0) = 0, B2(0, 0) = T 2

12
,

B1(0, 0) = T

8π
. (6)

We note that these formulas hold for T > 0. For the T =0–
case see Sect. 2.1 together with the renormalization. The
motivation for the above choice of the notations is that the
functions Bn(a, b), (3), are the corresponding mode sums
without additional factors.

The rest of the paper is organized as follows. In the next
section we give, in detail, representations of the functions
Bj (a, b), (3), including their high temperature expansions.
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In the third section, we investigate the minima of the effective
action in the pure magnetic case and, in Sect. 4 we consider
the pure A0-case and compare both. Section 5 represents with
the effective potential as a function of both, a and b the main
result of the paper, which is discussed in the last section.

Throughout the paper we use natural units with h̄ = c =
kB = 1.

2 Representation of the basic functions

In this section, we consider in detail the functions defined in
(3). First of all, we write down their proper time representa-
tions,

B4(a, b) = −∂s

∫ ∞

0

dt

t

ts− 1
2√

4π�(s)

b

4π

∑
n,σ

T
∑

�

exp

× {−t
[
(2πT (� + a))2 + b(2n + 1 + σ − i0)

]}
,

B2(a, b) =
∫ ∞

0

dt

t

ts+ 1
2√

4π�(s + 1)

b

4π

∑
n,σ

T
∑

�

exp

× {−t
[
(2πT (� + a))2 + b(2n + 1 + σ − i0)

]}
.

(7)

Here, s is the regularization parameter with s → 0 at the
end. The ‘-i0’-prescription is for the tachyonic mode. The
arbitrary parameter μ which comes in with dimensional reg-
ularization is not shown in these formulas. We assume for the
moment σ > −1 having in mind the analytic continuation
to σ = −2 later. In (7) we have already integrated over k3.
The next step is the application of the Poisson resummation
formula which results in

B4(a, b) = −∂s

∫ ∞

0

dt

t

t s−1

4π�(s)

b

4π

∑
n,σ

∑
N

cos(2πaN ) exp

×
{
− N 2

4T 2t
− tb(2n + 1 + σ − i0)

}
,

B2(a, b) =
∫ ∞

0

dt

t

t s

4π�(s + 1)

b

4π

∑
n,σ

∑
N

cos(2πaN ) exp

×
{
− N 2

4T 2t
− tb(2n + 1 + σ − i0)

}
. (8)

The summation over N runs over all integers.
These expressions allow for several ways to proceed.

However, before doing this, one needs to split into T = 0 –
parts and temperature-dependent parts. Afterward, one may
choose a representation in terms of Bessel functions, or, in
terms of Theta functions. In addition, before doing so we
must do another split. This is, as we will see below, neces-
sary because of the exceptional role of the tachyonic mode
which requires a separate treatment. So we define

Bx (a, b) = BT=0
x (a, b) + �T Bx (a, b), (9)

where x = 1, 2, 3, 4 denotes the functions in (3), as split into
T = 0 and temperature dependent parts. The latter we split
further,

�T Bx (a, b) = �T B
nt
x (a, b) + �T B

ta
x (a, b), (10)

where �T Bnt
x (a, b) denotes the contribution from the non-

tachyonic modes, ((σ = +2, n = 0, 1, . . . ) and (σ =
2, n = 1, 2, . . . )), and �T Bta

x (a, b) denotes the contribution
from the tachyonic mode, (σ = −2, n = 0).

In the next subsections, we consider these contributions
separately.

2.1 The zero temperature part

In Eq. (8), the zero temperature part results from the N = 0-
term. Carrying out the summations over n and σ using

∑
n,σ

e−tb(2n+1+σ) = etb + e−tb coth(tb), (11)

where the first term in the right side results from the tachyonic
mode, we arrive at

BT=0
4 (a, b) = −∂s

∫ ∞

0

dt

t

ts−1

4π�(s)

b

4π

(
etb + e−tb coth(tb)

)
,

BT=0
2 (a, b) =

∫ ∞

0

dt

t

ts

4π�(s + 1)

b

4π

(
etb + e−tb coth(tb)

)
.

(12)

The first term in the parentheses results from the tachyonic
(unstable) mode and it must be understood in the sense of
an analytic continuation. This can be accounted for by the
substitution t → teiπ . To see the reason for this manipula-
tion one needs to go back to the representation in Minkowski
space and account for the ′ + i0′ prescription in the causal
propagator, which would result in a corresponding adden-
dum in the square brackets in the exponential in (7). Starting
from there, for the stable modes, one makes a Wick rotation,
t → t e−iπ/2, while for the unstable modes an ’Anti-Wick’
rotation, t → t eiπ/2, is in order. Since Eq. (7) is written
after Wick-rotation, we must perform an ’double anti-Wick’
rotation, t → t eiπ in the unstable mode. We get

BT=0
4 (a, b) = −∂s

∫ ∞

0

dt

t

t s−1

4π�(s)

b

4π
e−tb

×
(
eiπ(s−1) + coth(tb)

)
,

BT=0
2 (a, b) =

∫ ∞

0

dt

t

t s

4π�(s + 1)

b

4π
e−tb

×
(
eiπs + coth(tb)

)
. (13)
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These integrations can be carried out,

BT=0
4 (a, b) = −∂sb

2−sμ2s 1 + eiπs + 2(21−s − 1)ζ(s − 1)

(4π)2(1 − s)
,

BT=0
2 (a, b) = b1−sμ2s −1 + eiπs − 2(2−s − 1)ζ(s)

(4π)2s
, (14)

where we introduced also the arbitrary dimensional param-
eter μ which sets the scale. These terms contain ultraviolet
divergences. In the considered case, these can be removed by
performing the limit s → 0. We get

BT=0
4 (a, b) = − ib2

16π
+ 11b2

96π2

(
ln

b

μ2 − 1

)
,

BT=0
2 (a, b) = ib

16π
− b ln 2

16π2 ,

BT=0
1 (a, b) = 0, BT=0

3 (a, b) = 0. (15)

In the first line, we redefined μ for later convenience. In
the following, especially in the pictures, we put μ = 1 and
assume all quantities to be in arbitrary units.

2.2 Representation in terms of Bessel functions and
asymptotic expansion for high T

We continue with the temperature dependent parts. The rep-
resentation in terms of Bessel functions appears after the
substitution t → t N

2T
√
b(2n+1+σ)

, in (8), and application of
formula 8.4327 (with z = 1) from [17],

�T B4(a, b) = −b
3
2 T

2π2

∞∑
N=1

∑
n,σ

cos(2πaN )

√
2n + 1 + σ

N

× K1

(√
b

T
N

√
2n + 1 + σ

)
,

�T B3(a, b) = b
3
2

4π2

∞∑
N=1

∑
n,σ

sin(2πaN )

√
2n + 1 + σ

N

× K1

(√
b

T
N

√
2n + 1 + σ

)
,

�T B2(a, b) = b

4π2

∞∑
N=1

∑
n,σ

cos(2πaN )

× K0

(√
b

T
N

√
2n + 1 + σ

)
,

�T B1(a, b) = bT−1

8π2

∞∑
N=1

∑
n,σ

N sin(2πaN )
√

2n + 1 + σ

× K0

(√
b

T
N

√
2n + 1 + σ

)
, (16)

where Kν(z) are modified Bessel functions. These formulas
provide a representation as fast converging double sums. The
convergence comes from the decrease of the Bessel function
for the non-tachyonic modes. The asymptotics for small T , or
equivalently, large b, has only exponentially small contribu-
tions. However, in the other direction the convergence slows
down and this representation becomes ineffective. The con-
tribution from the tachyonic mode can be done in an above-
mentioned way and the fast decreasing modified Bessel func-
tions turn into Hankel functions. These have an oscillating
behavior which makes the representation (16) less effective
for them. This is one reason for the above-mentioned splitting
of our basic function. Below, we consider different represen-
tations for the tachyonic modes, including the representation
in terms of Hankel functions (Sect. 2.4.3).

To get a high-T expansion from (16) one may apply the
Mellin representation of the Bessel functions

Kν(z) = 1

4

∫ c+i∞

c−i∞
ds

2π i
�

(
s + ν

2

)
�

(
s − ν

2

) ( z

2

)−s
,

(17)

where the integration path may be chosen as a straight line
parallel to the imaginary axis intersecting the real line at c,
which must be taken such that the path goes to the right of all
poles of the integrand. Using this representation in (16) and
exchanging the orders of integration and summation, we get

�T B4(a, b) = −b
3
2 T

8π2

∫ c+i∞

c−i∞
ds

2π i
�

(
s + 1

2

)
�

(
s − 1

2

)

×
(

2T√
b

)s

�N (s)�b(s),

�T B3(a, b) = b
3
2

16π2

∫ c+i∞

c−i∞
ds

2π i
�

(
s + 1

2

)
�

(
s − 1

2

)

×
(

2T√
b

)s

�a
N (s)�b(s),

�T B2(a, b) = b

16π2

∫ c+i∞

c−i∞
ds

2π i

(
�

( s
2

))2
(

2T√
b

)s

× �N (s − 1)�b(s + 1),

�T B1(a, b) = −bT−1

32π2

∫ c+i∞

c−i∞
ds

2π i

(
�

( s
2

))2
(

2T√
b

)s

× �a
N (s − 1)�b(s + 1), (18)

where we defined

�N (s) =
∞∑
N=1

cos(2πaN )

Ns+1 = 1

2

(
Lis+1

(
e2π ia

)

+Lis+1

(
e−2π ia

))
, �a

N (s) =
∞∑
N=1

sin(2πaN )

Ns+1 ,
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�b(s) =
∑
n,σ

(2n + 1 + σ)
1−s

2 = i1−s + 1

+ 21+ 1−s
2 ζ

(
s − 1

2
,

3

2

)
. (19)

The first two sums resulted in poly-logarithms and the third
in a Hurwitz zeta function.

Because of the tachyonic mode, one must choose the inte-
gration path with some care. The integral owes its conver-
gence to the Gamma functions. These decrease in the com-
plex s-plane in the directions of large imaginary and negative

s. In the imaginary directions, from the factor (−1)
1−s

2 comes
increase which overturns the decrease from the Gamma func-
tions. For this reason, one should take the path as follows.
First, from −∞ parallel to and below the real axis, then encir-
cling the rightmost pole in s = 3, and continuing, to −∞
above the real axis. For large negative s we have a decrease

from the Gamma functions and the factor (−1)
1−s

2 is oscil-
lating, but not growing. With such a choice of path, this rep-
resentation may well be used for numerical purposes.

The pole structure is determined by the Gamma functions
and by the poles of �N (s) and �b(s). For any non-integer
a, the first expression does not have any poles. For integer
a it has a pole in s = 0. The function �b(s) has a pole in
s = 3 (independently from whether the tachyonic modes are
included or not).

Representation (18) is very convenient for calculating the
asymptotic expansion at high temperatures or small b. Mov-
ing the contour left across the poles, one picks up the con-
tributions from the residua giving powers of T/

√
b and the

remaining integral has only lower powers in T/
√
b. This way

we get the following expansions,

�T B4(a, b) = 2π2

3
T 4B4(a) + i

b2

16π

+ 11b2

48π2

[
ln

T√
b

− γ + 6

11
(1 − ln A + 2 ln 2)

−
(

Li′0
(
e2π ia

)
+ Li′0

(
e−2π ia

)) ]

+ O

(
b4

T 4

)
,

�T B2(a, b) = T 2

2
B2(a) − i

b

16π
+ b

16π2 ln 2

− 11b2

192π2T 2

(
Li′−2

(
e2π ia

)

+Li′−2

(
e−2π ia

))
+ O

(
b2

T 2

)
, (20)

where the prime denotes differentiation with respect to the
index. The structure of the expansion of �T B4(a, b), espe-
cially the missing of a contribution proportional to T 2 as

well as further contributions odd in T , is due to compensa-
tions between the different gluon modes and was observed
also earlier in the literature. It must be mentioned that this
expansion is not uniform in a since for integer a there is
an additional pole in s in (18) and some coefficients of the
above expansions become singular. Thus the expansion will
be different. Accordingly, for a = 0 the expansion takes the
form,

�T B4(0, b) = −π2

45
T 4 − a1 + i

4π
b3/2T

− i
b2

16π
+ 11b2

48π2

[
ln

2πT√
b

− γ

+ 6

11
(1 − ln A + 2 ln 2)

]
+ O

(
b4

T 4

)
,

�T B2(0, b) = T 2

12
− a2 − i

8π

√
b T + b

16π2 ln 2

− i
b

16π
+ O

(
b2

T 2

)
, (21)

where the coefficients with the linear in T terms are

a1 = 1 − 2(1 − √
2)ζ

(
−1

2

)

= 1 −
√

2 − 1

2π
ζ

(
3

2

)
� 0.828,

a1

2π
� 0.132,

a2 = 1 − (2 − √
2)ζ

(
1

2

)
� 1.856,

a2

2π
� 0.295. (22)

The coefficient a1 was found earlier, for example a1 =
−1 + C1

π
in [18], Eq. (3.7), a1 = 2π

3 a in [19], Eq. (30), and
a1 = C2 in [10], Eq. (C4). Each of the expansions in (21)
includes terms linear in T . Their real parts originate from
the non-tachyonic modes and their imaginary parts from the
tachyonic mode.

Finally we add the zero temperature part. It contributes to
the order b2. For a �= 0, adding (15) to (20), we arrive at

B4(a, b) = 2π2

3
T 4B4(a) + 11b2

48π2

×
[

ln(2T ) − γ − Li′0
(
e2π ia

)
− Li′0

(
e−2π ia

) ]

+ O

(
b4

T 4

)
,
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B2(a, b) = T 2

2
B2(a) − 11b2

192π2T 2

×
(

Li′−2

(
e2π ia

)
+ Li′−2

(
e−2π ia

))
+ O

(
b2

T 2

)
,

(23)

Here, the imaginary parts and ln b canceled (see the remark
after Eq. (30)). For a = 0, adding (15) to (21), we get

B4(0, b) = −π2

45
T 4 − a1 + i

4π
b3/2T + 11b2

48π2

×
[

ln(4πT ) − γ

]
+ O

(
b4

T 4

)
,

B2(0, b) = T 2

12
− a2 − i

8π

√
b T + O

(
b2

T 2

)
. (24)

Again, the ln b-term was canceled; but an imaginary part
remained. We mention that the tachyonic mode is included
in the above formulas. It is to be mentioned that there is no
imaginary part in (23). This is in agreement with the expecta-
tion that the imaginary part is present for

√
b > 2πTa only

and in (23) b � T 2 was assumed. In opposite, in (24) we
have a = 0 and an imaginary part is present for all tempera-
tures.

The main advantage of the current approach is in the com-
bination of the double sums in Eq. (16) with the Mellin rep-
resentation, (17), which allows for a machined evaluation of
the residua.

We add the following remark. The above expansions are
for a and b fixed, T → ∞. One might wish to consider
A0 fixed in place of a. With (2), this implies a → 0. The
variable a appears only in the argument of the cos in (19).
An expansion would result in growing powers, N 2k , (k =
0.1.2. . . . ), of N . This would produce factors ζ(s − 2k + 1)

and add poles at s = 2k in (18). One would be forced to move
the integration contour right, where the integrand is growing
because of the Gamma functions. Convergence would be lost
and the results, which are of order (gA0/

√
b)2k (all contribute

with the same power of T ), would not be reliable. Moreover,
summing the resulting series (this can be done explicitly),
would come in conflict with the expansion (24).

2.3 Representation of the non-tachyonic part in terms of
Theta functions

To get formulas that would be useful for numerical calcula-
tion of B4 and B2 in parameter regions where the sum repre-
sentations (16) are not effective, we consider a representation
in terms of theta functions. Such a representation was used,
for example, in [9]. For this, we must do the split (10) into
non-tachyonic and tachyonic parts and in this subsection, we
consider the first one.

We return to the representation (8) and use the Jacobi theta
function,

3(z, q) =
∞∑

N=−∞
qN2

cos(2zN ),

1

2
(3(z, q) − 1) =

∞∑
N=1

qN2
cos(2zN ), (25)

with q = exp
(
− 1

4T 2t

)
and z = πa, and using also the last

line in (3) and (11), we arrive at the representations

�T B
nt
4 (a, b) = − b

16π2

∫ ∞

0

dt

t2

[
3

(
πa, e

− 1
4T 2 t

)
− 1

]

× e−tb coth(tb),

�T B
nt
3 (a, b) = −bT−1

64π2

∫ ∞

0

dt

t2 ′
3

(
πa, e

− 1
4T 2 t

)
e−tb coth(tb),

�T B
nt
2 (a, b) = b

16π2

∫ ∞

0

dt

t

[
3

(
πa, e

− 1
4T 2 t

)
− 1

]

× e−tb coth(tb).

�T B
nt
1 (a, b) = −bT−1

64π2

∫ ∞

0

dt

t
′

3

(
πa, e

− 1
4T 2 t

)

× e−tb coth(tb). (26)

The subtraction of the ‘1’ in the square bracket is because
of the dropped N = 0-term. In the odd number functions,
this term is absent. In these formulas, we also carried out the
sum over the Landau levels and the spin with the exception,
as announced, of the tachyonic mode, n = 0, σ = −2.

2.4 The tachyonic part

For the tachyonic part, we consider three representations,
one is a sum over the Matsubara frequencies, the other uses
the Abel-Plana formula and the third is in terms of Hankel
functions.

2.4.1 Sum representation

We start with the sum representation. We go back to repre-
sentation (7) where only the integration over k3 is carried out,
and include only the tachyonic mode,

Bta
4 (a, b) = −∂s

∫ ∞

0

dt

t

t s− 1
2√

4π�(s)
T

∑
�

b

4π

× exp
{
−t

[
(2πT (� + a))2 − b − i0

]}
,

Bta
2 (a, b) =

∫ ∞

0

dt

t

t s+ 1
2√

4π�(s + 1)
T

∑
�

b

4π

× exp
{
−t

[
(2πT (� + a))2 − b − i0

]}
. (27)
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Next, we carry out the integration over t ,

Bta
4 (a, b) = −∂s

�(s − 1
2 )√

4π�(s)

bT 2

2(2πT )2s

∑
�

(
(� + a)2 − β

) 1
2 −s

,

Bta
2 (a, b) = �(s + 1

2 )√
4π�(s + 1)

b

8π2(2πT )2s

×
∑

�

(
(� + a)2 − β

)− 1
2 −s

, (28)

where we defined β = b
(2πT )2 + i0. To proceed, we must

perform the analytic continuation to s = 0.
We start with the imaginary part. Since only a finite num-

ber of terms enters one can put s = 0 and arrives at

	Bta
4 (a, b) = −bT

4π

⎛
⎝

[√β−a]∑
�=0

√
b − (2πT (� + a))2

+
[√β+a]∑

�=1

√
b − (2πT (� − a))2

⎞
⎠ ,

	Bta
2 (a, b) = bT

8π

⎛
⎝

[√β−a]∑
�=0

1√
b − (2πT (� + a))2

n

+
[√β+a]∑

�=1

1√
b − (2πT (� − a))2

⎞
⎠ . (29)

There is an imaginary part if either
√
b > πT , or, if

√
b <

πT , the relations 2πTa <
√
b or 2πT (1 − a) <

√
b hold.

For a = 0 there is always an imaginary part. There is no
imaginary part if

√
b < 2πTa (30)

holds. For instance, for high T , with a fixed, there is no imag-
inary part as can be seen from the corresponding asymptotic
expansions in (23), whereas in the expansion (24) for a = 0
there is an imaginary part.

For the real part, we proceed as follows. First, we separate
the contribution from � = 0. Then we add and subtract the
first terms of the expansion for large �. This way we represent,

Bta
4 (a, b) = bT 2

2
V4, Bta

2 (a, b) = b

16π2 V2, (31)

with three contributions,

Vν = Vν,0 + Vν,1 + Vν,2, (ν = 4, 2). (32)

The first ones are

V4,0 =
√
a2 − β, V2,0 = 1√

a2 − β
. (33)

In the second one, the sum over � results in Riemann zeta
functions,

V4,1 = 2ζ(2s − 1) + (2s − 1)(2sa2 + β)ζ(2s + 1),

V2,1 = 2ζ(2s + 1) + (2s + 1)(2(s + 1)a2 + β)ζ(2s + 3).

(34)

The last terms are converging sums and we could put s = 0,

V4,2 =
∞∑

�=1

(√
(� + a)2 − β +

√
(� − a)2 − β −

(
2� − β

�

))
,

V2,2 =
∞∑

�=1

(
1√

(� + a)2 − β
+ 1√

(� − a)2 − β
− 2

�

)
. (35)

Finally, inserting into (32) and performing the limit s = 0
we arrive at

Bta
4 (a, b) = bT 2

2
V4,0 + bT 2

2

(
−1

6
− a2

)

+ b2

8π2 (ln(4πT ) − γ ) + bT 2

2
V4,2,

Bta
3 (a, b) = bT

8π

∞∑
�=0

(
� + a√

(� + a)2 − β
− � + 1 − a√

(� + 1 − a)2 − β

)
,

Bta
2 (a, b) = b

16π2 (V2,0 + V2,2) − b

8π2 (ln(4πT ) − γ ),

Bta
1 (a, b) = b

64π3T

∞∑
�=0

×
(

� + a

((� + a)2 − β)3/2 − � + 1 − a

((� + 1 − a)2 − β)3/2

)
.

(36)

In these formulas, γ is Euler’s constant. We mention that
we dropped a divergent piece from Bta

2 (a, b) which does not
depend on T . For Bta

3 (a, b) and Bta
1 (a, b) we used (3). In

these, the sums are convergent.
We mention that in this representations the imaginary parts

(29) are included. In case, one is interested only in the real
parts, one may simply calculate (36) and take the real part.

2.4.2 Integral representation

In this subsection, we derive an integral representation for the
contribution from the tachyonic mode which is alternative to
the sum representation in the preceding subsection. For this,
we go back to Eq. (7), keep only the tachyonic mode and
carry out the integration over t ,

Bta
4 (a, b) = −∂s

�(s − 1
2 )√

4π�(s)

bT

4π

×
∑

�

(
(2πT (� + a))2 − b − i0

) 1
2 −s

,
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Bta
2 (a, b) = �(s + 1

2 )√
4π�(s + 1)

bT

4π

×
∑

�

(
(2πT (� + a))2 − b − i0

)− 1
2 −s

. (37)

The sum over � can be transformed into integrals using the
Abel-Plana formula which, generalized to the inclusion of a,
takes the form

T
∑

�

(
(2πT (� + a))2 + b0

) 1
2 −s =

∫
dk

2π

(
k2 + b0

) 1
2 −s

− cos(πs)

π

∫ ∞
√
b0

dω
(
ω2 − b0

) 1
2 −s

h
(
a,

ω

T

)
, (38)

where we defined

h(a, ω) = 1

e2π ia+ω − 1
+ 1

e−2π ia+ω − 1

= cos(2πa) − e−ω

cosh(ω) − cos(2πa)
. (39)

Also, we will need the function

g(a, ω) = i

e2π ia+ω − 1
+ −i

e−2π ia+ω − 1

= sin(2πa)

cosh(ω) − cos(2πa)
, (40)

and we mention the relation 1
2π

∂ah(a, ω) = ∂ωg(a, ω). Here
we introduced the parameter b0 which is assumed to be real.
To apply this formula to (37), we need to do the analytic
continuation

b0 = −b − i0 and
√
b0 = −i

√
b. (41)

On the right side of Eq. (38), the first integral gives the zero
temperature part and the second the temperature-dependent
part which will be marked by ’�T ’ as before. The zero-
temperature parts are

Bta,T=0
4 (a, b) = −∂s

�(s − 1
2 )√

4π�(s)

b

4π

∫
dk

2π

(
k2 + b0

) 1
2 −s

= −i
b2

16π
+ b2

16π2 (−1 + ln b) ,

Bta,T=0
2 (a, b) = �(s + 1

2 )√
4π�(s + 1)

b

4π

∫
dk

2π

(
k2 + b0

)− 1
2 −s

= b

16π2s
+ i

b

16π
− b

16π2 ln b. (42)

These expressions constitute the tachyonic part of (29).

For the temperature-dependent parts, we arrive at the
expressions

�T B
ta
4 (a, b) = −bT 2

4π2

∫ ∞
√

β0

dω

√
ω2 − β0 h (a, ω) ,

�T B
ta
3 (a, b) = bT

8π2

∫ ∞
√

β0

dω
ω√

ω2 − β0
g (a, ω) .

�T B
ta
2 (a, b) = b

8π2

∫ ∞
√

β0

dω
1√

ω2 − β0
h (a, ω) .

�T B
ta
1 (a, b) = −bT−1

16π2

∫ ∞
√

β0

dω
1√

ω2 − β0
∂ωg (a, ω) .

(43)

Since here there are no divergences we could put s = 0.
Also, we made the substitution ω → ωT and introduced the
notation β0 = b0

T 2 for notation convenience. In the second
line, we integrated by parts. In the last line, we did not inte-
grate by parts to avoid a singularity at the lower integration
boundary.

Now we do the analytic continuation (41), which here
takes the form

√
β0 = −i

√
β, β = b/T 2. Thereby the begin-

ning of the integration path moves in the complex ω-plane
down to the negative imaginary axis. Numerical integration
in such formulas is possible (the integration does converge).
For practical purposes one may substitute ω = −i

√
β + s

with integration over real s = 0, . . . ,∞ and taking the real
part of the integral (the imaginary parts are given by (29)).

There is an alternative to the integration in the complex
plane. We may deform the integration path to run from −i

√
β

to the origin along the imaginary axis, and from the origin to
infinity along the real axis. Accordingly, we split

�T B
ta
4 (a, b) = T1 + T2, �T B

ta
2 (a, b) = U1 +U2.

(44)

Before carrying out this program it is useful to integrate by
parts. Representing the right side of (39) in the form

h(a, ω) = ∂ω f (a, ω) (45)

with

f (a, ω) = ln
(

1 + e−2ω − 2e−ω cos(2πa)
)

= −ω + ln [2 (cosh(ω) − cos(2πa))] , (46)

we arrive at

�T B
ta
4 (a, b) = bT 2

4π2

∫ ∞
√

β0

dω
ω√

ω2 − β0
f (a, ω) ,

�T B
ta
2 (a, b) = b

4π2

∫ ∞
√
b0

dω
ω(

ω2 − β0
)3/2
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×
(
f (a, ω) − f

(
a,

√
β0

))
. (47)

There are no surface terms.
In the path along the imaginary axis, we substitute ω =

−i x and get for the real parts of the integrals

T1 = bT 2

4π2

∫ √
β

0

dx x√
β − x2

ln (2 |cos(x) − cos(2πa)|) ,

U1 = b

4π2

∫ √
β

0

dx x

(β − x2)3/2 ln

∣∣∣∣
cos(x) − cos(2πa)

cos(
√

β) − cos(2πa)

∣∣∣∣ .
(48)

The absolute values in the logarithms let us get the contri-
butions from the real parts (the imaginary parts were con-
sidered above in Eq. (29)). Finally, we make the substitution
x → x

√
β and arrive at

T1 = b3/2T

4π2

∫ 1

0

dx x√
1 − x2

ln

(
2

∣∣∣∣∣cos

(
x

√
b

T

)
− cos(2πa)

∣∣∣∣∣

)
,

U1 = b1/2T

4π2

∫ 1

0

dx x

(1 − x2)3/2 ln

∣∣∣∣∣∣∣∣

cos
(
x

√
b

T

)
− cos(2πa)

cos

(√√
b

T

)
− cos(2πa)

∣∣∣∣∣∣∣∣
.

(49)

For the contributions from the path along the real axis we
simply use (47) to get

T2 = bT 2

4π2

∫ ∞

0

dω ω√
ω2 + β

f (a, ω),

U2 = − b

4π2

∫ ∞

0

dω ω

(ω2 + β)3/2

(
f (a, ω) − f

(
a,−i

√
β
))

,

= − b

4π2 ln (2 |cos(β) − cos(2πa)|)

+ b

4π2

∫ ∞

0

dω ω

(ω2 + β)3/2 f (a, ω). (50)

In the last line, another imaginary piece was dropped. Doing
the substitution x → x

√
β we arrive finally at

T2 = b3/2T

4π2

∫ ∞

0

dω ω√
ω2 + 1

f

(
a, ω

√
b

T

)
,

U2 = − b

4π2 ln

(
2

∣∣∣∣∣cos

(√
b

T

)
− cos(2πa)

∣∣∣∣∣

)

+ b1/2T

4π2

∫ ∞

0

dω ω

(ω2 + 1)3/2 f

(
a, ω

√
b

T

)
. (51)

2.4.3 Representation of the tachyonic part in terms of
Bessel functions and the low-T expansion

Although in Sect. 2.2 it was observed that a representation of
the tachyonic mode in terms of Bessel functions is less conve-
nient for numerical evaluation, it is convenient at small tem-
perature (or large magnetic field) as mentioned, for example,
in [9]. For this reason, we provide it here. We mention that the
low-temperature expansion of the non-tachyonic part is expo-
nentially small, as can be seen from (16) because only the
modified Bessel functions enter. We start with the representa-
tion (16) and take only the tachyonic mode, n = 0, σ = −2,
such that

√
2n + 1 + σ = −i , where the analytic continua-

tion was done as discussed in the beginning of Sect. 2. With
the standard properties of the Bessel functions, we get from
(16)

�T B
ta
4 = −i

b3/2T

4π

∞∑
N=1

cos(2πaN )

N
H (1)

1

(√
b

T
N

)
,

�T B
ta
2 = i

b

8π

∞∑
N=1

cos(2πaN )H (1)
0

(√
b

T
N

)
, (52)

where H (1)
ν (z) are Hankel functions. Using their leading

order asymptotic expansion for large arguments,

H (1)
ν (z) �

√
2

π z
eiω with ω = z − π

2
ν − π

4
, (53)

we arrive at

�T B
ta
4 �

T→0
−b5/4T 1/2

2(2π)3/2

(
Li 3

2

(
ei2πa+i

√
b

T

)

+Li 3
2

(
e−i2πa+i

√
b

T

))
e−i π

4 ,

�T B
ta
2 �

T→0

b3/4T 3/2

2(2π)3/2

(
Li 1

2

(
ei2πa+i

√
b

T

)

+Li 1
2

(
e−i2πa+i

√
b

T

))
ei

π
4 . (54)

As can be seen, this first low-temperature correction to (15)
has, as a function of a, a structure similar to the high-
temperature expansion (20) with the difference of a fast rota-
tion (in the complex plane) of the arguments of the poly-
logarithms.

2.5 The complete expressions

The complete expressions for the real parts of the functions
Bx (a, b), defined in (3), follow from (9) and (10). For the
T = 0-part we have (15) and for the non-tachyonic part

123



390 Page 10 of 15 Eur. Phys. J. C (2022) 82 :390

either (16) or (26). For the tachyonic part we have either (36)
or (43) with (44). Together the real parts read


Bn(a, b) = 

(
BT=0
n (a, b) + �T B

nt
n (a, b) + �T B

ta
n (a, b)

)
,

(55)

for n = 1, . . . , 4. The imaginary parts are given by Eq. (29).
For SU (2), the complete one and two-loop expression for

the effective action is given by (1).

WSU (2)
gl = b2

2g2 + B4(0, 0) + 2B4 (a, b)

+ g2

2

[
B2 (a, b)2 + 2B2 (0, b) B2 (a, b)

−8(1 − ξ)B3 (a, b) B1 (a, b)] (56)

where we added the tree contribution.

3 The minimum of the effective action in the pure
magnetic case (A0 = 0)

In this section, we apply the results of the preceding section
to calculate the effective action as a function of the magnetic
background field H and to find its minimum.

3.1 The case T = 0

We start from the zero temperature case for completeness,
although in QCD this case is not physical in the perturbative
approach. Also, it will serve to check the numerical investiga-
tions at finite, but low temperatures. In the zero temperature
case we have 2πT (� + a) → k4 in (3) and the functions
BT=0
x (a, b) in (9) do not have any dependence on the A0-

background due to the translational invariance in k4. These
functions were calculated in Sect. 2.1 and we use Eq. (14).

Insertion of (15) into (56) delivers

WSU (2)
gl = b2

2g2 + 11 b2

48π2

(
ln

b

μ2 − 1

2

)

− i
b2

8π2 + g2 ln2(2) b2

128π4 . (57)

Here, the first term is the classical energy of the background.
The second term is the famous vacuum energy of SU (2) in
magnetic background [5]. In QED, the first and the second
term (with different coefficients) form the Euler-Heisenberg
Lagrangian. The third term is the known imaginary part, caus-
ing instability on the one-loop level. The last term is the con-
tribution from the second loop, which was in this context
never considered since it is expected to give only a small
contribution.

Fig. 1 The dependence of the vacuum energy in one-loop order and
of the condensate field (58) on the coupling constant g for SU (2). The
vacuum energy is amplified by a factor of 50 to fit together with the
field in one plot

The energy (57) has a non-trivial minimum resulting from
the logarithmic term,

bmin = μ2 e
− 24π2

11g2 − 3 ln2(2)

98π2 g2

= μ2 e
− 24π2

11g2

×
(

1 − 3 ln2(2) g2

88π2 + · · ·
)

,

WSU (2)
min = −11μ4

96π2 e
− 24π2

11g2 − 3 ln2(2)

44π2 g2

= −11μ4

96π2 e
− 24π2

11g2

×
(

1 − 3 ln2(2) g2

44π2 + · · ·
)

. (58)

The first line is the field in the minimum, i.e., the condensate,
and the second line is the energy in this minimum. The sec-
ond loop appears as an additional term in the exponentials
and its expansion in order g2 is shown in the parenthesizes.
We mention the known feature that this minimum is non-
perturbative. It has an essential singularity at g = 0 from
the exponential prefactor. Also, it depends essentially on the
arbitrary scale μ, which is the only dimensional parameter
in this case.

In one-loop order, i.e., without the second term in the expo-
nentials, or without the parenthesis, the behavior of these
expressions is well known. For small coupling g they van-
ish fast, for larger coupling they go into saturation. These
features are illustrated in Fig. 1.

In two-loop order, the picture changes for large g. The
additional contribution compensates for the negative energy
from the one-loop approximation and the minimum disap-
pears. We demonstrate this feature in Fig. 2. This way, at
larger coupling, the second loop is not a small addendum
and demonstrates the breakdown of the perturbative expan-
sion.
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Fig. 2 The dependence of the vacuum energy in two-loop order and of
the condensate field (58) on the coupling constant g for SU (2). In the
left panel we show the complete expression (middle terms in (57)) and

in the right panel we show the corresponding expansion (last terms in
(58)). The vacuum energy is amplified by a factor of 50 to fit together
with the field in one plot

3.2 The high-T case

In this subsection, we consider the case of high temperature.
We use the formulas (24) from Sect. 2.2 and insert these into
(56). With (2), the effective potential reads

WSU (2)
gl = b2

2g2 − π2T 4

15
− a1b3/2T

2π
+ 11b2(log(4πT ) − γ )

24π2

+ g2

(
T 4

24
− a2

√
bT 3

12π
+ a2

2bT 2

32π2

)
(59)

Again, the first term is classical energy. The terms propor-
tional to T 4 constitute the gluon black body radiation and
there is no term logarithmic in b. The contribution from the
second loop is in the parenthesis. It has a T 3-contribution
which was missing in the one-loop part.

In one-loop order, the energy (59) has a non-trivial min-
imum resulting from the term proportional to b3/2T . This
picture is not spoiled from the second loop by its T 3-term.
In one-loop order, the condensate and the effective potential

in its minimum are

bonemin = 9a1
2g4T 2

16π2 , WSU (2), one
min = −π2T 4

15
− 27a4

1g
6T 4

512π4 .

(60)

Again, the first term of the energy is the gluon blackbody
radiation. In this approximation, the condensate is always
positive, i.e., always present, and the energy in the minimum
is always negative. Plots are shown in Fig. 3.

In two-loop order, one has to find a root of a third-order
polynomial and explicit formulas become quite complicated.
Instead, we show the condensate and the effective potential in
the minimum, graphically, see Fig. 3. The behavior is similar
to the one-loop behavior given by the formulas in Eq. (60)
and shown in Fig. 4. However, the condensate and the energy
grow faster with increasing g or T .

In two-loops, to get an expansion in the coupling constant,
it is meaningful to take the numerical values in (59). With
these, the expansions read

bmin = 0.0846044g8/3T 2 + 0.00575057g4T 2

+ g14/3T 2(−0.00523858 ln(T ) − 0.0102511) + O
(
g5

)
,

Fig. 3 The condensate field (blue) and the vacuum energy (red) in one-loop order for SU (2) as function of the coupling g for T = 10 (left panel)
and as function of the temperature for g = 1 (right panel)
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Fig. 4 The condensate field (blue) and the vacuum energy (red) in two-loop order for SU (2) as function of the coupling g for T = 10 (left panel)
and as function of the temperature for g = 1 (right panel)

Wmin = −π2T 4

15
+ g2T 4

24
− 0.0107369g10/3T 4 − 0.00324209g4

× T 4 + 0.000922241g14/3T 4 + (0.000332405 ln(T )

+ 0.000318908)g16/3T 4 + O
(
g6

)
. (61)

As compared with (60), the powers of g changed; for
bmin even in leading order, and the magnetic field becomes
stronger. This perturbative expansion breaks down for suf-
ficiently large g, as can be seen from the terms with ln T ,
which enter with the ’wrong’ sign. Also, this can be seen in
Fig. 5, where Eq. (61) is plotted. A conclusion is that the
coupling g should not much exceed unity.

4 The minimum of the effective action in the pure A0

case (b = 0) and comparison with the pure magnetic
case

In this section, we remind the known results for the case
of a pure A0-background. We follow the recent paper [20],
where this case was investigated in detail for SU (3). In our
case of SU (2) the formulas are even easier. For b = 0, the
effective action (1) with (5) is expressed in terms of Bernoulli
polynomials. We restrict ourselves to the main topological
sector and there to 0 ≤ a ≤ 1/2. Here, the effective potential
has a minimum at a = amin (see also Eq. (6) in [15]) and
takes in this minimum the value W|a=amin = Wmin with

amin = 3 − ξ

16π2 g
2,

Wmin = −π2T 4

15
+ T 4

24
g2 − (3 − ξ)2T 4

192π2 g4. (62)

As mentioned in [20], (62) coincides with the gauge-invariant
result for ξ = −1, what we assume in the following. The
first term of the effective potential is the gluon black body
radiation.

If comparing (62) with the minimal effective potential (61)
in the pure magnetic case, it can be seen that in order g2 these
coincide. In Fig. 6 (left panel), we show these effective poten-
tials as functions of the re scaled variables a = 4amins and
b = 4bmins with 0 < s < 1 (in order to fit into one figure),
for two values of the coupling. The difference between them
is

W (61)
min − W (62)

min

= −0.0107369g10/3T 4 − 0.00324209g4T 4 + . . . . (63)

These two minima are shown in Fig. 6 (right panel). The
difference between them is of order higher than g2.

5 The numerical evaluation of the effective potential as
function of both, a and b

The formulas of Sect. 2 allow for an numerical evaluation of
the effective potential (56) as a function of two parameters,
a and b, (2). We remind, that we put the parameter μ, which
measures all dimensional quantities, equal to unity, μ = 1.
Parameters are the temperature T and the coupling g. We
demonstrate the results in Fig. 7 for two different couplings.

In both panels, the ranges of a and b are chosen to include
the minima on each axis. Details near the axes are shown in
Fig. 8.

It is seen, that a deep minimum appears immediately when
one leaves the axis, i.e., for small b in the left panel and for
small a in the right panel. These minima are seen in Fig. 7
as a valley. For smaller coupling g, these are narrower than
for larger g.

The origin of these minima can be traced back to Eqs. (33),
(35) and (36), showing singular behavior. Also, the imaginary
parts (29) show such behavior. Clearly, these minima are
a consequence of the imaginary part present in the given
approximation, i.e., with two loops. As mentioned in Eq.
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Fig. 5 The condensate field and the vacuum energy in two-loop order from the expansion (61) as function of the coupling g for T = 1 (left panel)
and for T = 5 (right panel)

Fig. 6 The effective potentials (61) and (62) as functions of the re-scaled variable a = 4amins and b = 4bmins for T = 10 (left panel). The minima
of the effective potential at a = 0, (61), and at b = 0. (62), as function of the coupling g for T = 10 (right panel)

Fig. 7 The real part of the effective potential WSU (2)
gl , (56), as function of the A0

2πT
g and the magnetic background H3 = b

g (see Eq. (2)) for
T = 10 (in arbitrary units) and g = 0.1 (left panel) and g = 1 (right panel)

Fig. 8 Sections of Fig. 7 (left panel) near the axes
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(30), for small b (b < (2πTa)2), there is no imaginary part
and the parabola b = (2πT )2 in the (a, b)-plane marks the
onset of the imaginary part.

6 Conclusions

In the foregoing sections, we investigated in detail the effec-
tive potential in SU (2) gluodynamics in the background of
both, A0 and magnetic field H3. The basic results are shown
in Fig. 7, using the notations (2). We confirmed the known
results for, separately, A0 = 0 and H3 = 0,i.e., for the min-
ima on the axes.

As can be seen from Fig. 7, and in detail from Fig. 8, as
soon as one goes from A0 = 0 into the (A0, H3)-plane, the
imaginary part known from the Savvidy vacuum sets in. The
leading contribution follows from the product of Bta

1 (a, b)

and Bta
3 (a, b), (36), for � = 0, in WSU (2)

gl , (33), to be

WSU (2)
gl ∼ − a2b2T 4

4((2πTa)2 − b)2 (64)

for b � (2πTa)2. Beyond, this contribution disappears and
the imaginary part from (29) sets in. Thus, we have to inter-
pret the ’valley’ as a remnant of the imaginary part. We did
not show any picture of the imaginary part since it is not
interesting beyond its mere existence.

As mentioned in the Introduction, there is a claim in [8]
that summation of the ring diagrams, which is beyond what is
used in the present paper, removes the imaginary part while
keeping the minimum of the real part. Indeed, with Eq. (59)
we reproduce, up to differences in numerical coefficients, Eq.
(37) in [8] up to the ring contributions.

As for the minimum of the effective action as a function
of the two parameters a and b, one can see from the Fig. 7
that it is clearly dominated by the ’valley’ around the onset of
the imaginary part. As for the minima on the axes, in leading
order in the coupling g these are of equal depth, including
higher orders the magnetic minimum becomes deeper, as
can be seen from Eq. (63) and Fig. 6. This picture is also
confirmed by Figs. 7 and 8. When starting from b = 0,
with increasing b the A0-minimum gets lifted as can be seen
clearly on Fig. 8, left panel. When starting from a = 0, with
increasing a, the Savvidy minimum becomes deeper. How-
ever, in both cases, the picture is dominated by the mentioned
above remnant of the imaginary part.

From the above discussions, we conclude that at the con-
sidered two-loop level, no conclusive judgment on the mini-
mum of the effective potential is possible. It is clear that one
has to go beyond and do the summation of ring diagrams with
nonzero A0, at least. In this connection, it is worth mentioning
the lattice result [12], where a minimum in the (A0, b)-plane

was found. As a lattice result, it goes, of course, beyond any
perturbative re-summation and cannot be compared with the
current calculation. However, it may serve as a motivation to
go further.

We conclude with a remark on the high-T approximation
discussed in Sect. 2.2. In this paper, we took T = 10 for the
numerical examples. Several checks showed that the num-
bers produced this way are very close to the corresponding
numbers produced with the asymptotic expansions as long
as either a = 0 or a � 0.1, down to T 2/b ∼ 1. For small,
but non-zero values of a, the high-T asymptotic cannot be
used. Especially, the singular behavior seen in Eq. (64), is
completely missing in the high-T expansion although the
tachyonic mode is included there.

Data Availability This manuscript has no associated data or the data
will not be deposited. [Authors’ comment: No data beyond the cited
literature were used.]
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