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Abstract In this work, we have made a systematic study
of how the gravitational wave frequency of the fundamental
mode from compact stars is affected by anisotropic effects
using realistic equations of state. Our study is an extension
of the seminal research performed by Doneva [Phys Rev
D 85:124023, 2012, https://doi.org/10.1103/PhysRevD.85.
124023], where a polytropic equation of state was used. To
achieve our objective, we considered compact stars which
were built by using equations of state in the framework of a
relativistic mean field theory for the case of hadronic stars
and in the framework of the MIT model for the case of
quark stars. In order to obtain some pertinent information
that could give us the possibility to detect the anisotropy in
compact stars, we also studied and analized the behaviour of
various global stellar quantities, e.g., gravitational redshift,
stellar mass, radius, among others. We concluded that the
anisotropic effects can have important consequences, which
are strongly related to the anisotropic parameter and the equa-
tion of state of high density matter. Additionally, a compar-
ison with observational data has been made and we have
shown that the anisotropic parameter λ can be used as a tun-
ing parameter to reproduce mass and radius observational
data of neutron stars.

1 Introduction

It is well know that compact stars are astrophysical objects
in whose interior matter can be found in extreme condi-
tions, i.e., high densities, intense gravitational fields, strong
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magnetic fields and fast rotation. The high density matter
in neutron stars can be studied using an equation of state
(EoS), which is used as the main ingredient for the numeri-
cal integration of the stellar structure equations, the so called
Tolman–Oppenheimer–Volkoff (TOV) equations. By using
this system of equations, important quantities can be theoret-
ically obtained, e.g., the mass and radius of a compact star,
compacticity, gravitational redshift, among other. Recently
there have been efforts in order to obtain better observational
constraints on the mass an radius of compact stars and as con-
sequence we have seen an improvement on the knowledge
of the high density matter inside compact stars.

Another important source of information about compact
stars comes from their gravitational wave emission. This
information can be observed from two main channels: binary
systems, in which a neutron star is one of the binary compo-
nents and from neutron star oscillations. In the second case
the neutron star is considered as an isolated system and can be
set in an oscillatory state as a consequence of some internal
or external perturbation. Those oscillation modes constitute
the fingerprint of the compact star, each mode with a natural
frequency corresponding to some characteristic or dynamics
of the fluid. Among all possible oscillatory frequencies we
have the fundamental mode which has been focus of intense
investigation because it can be detected by future third gen-
eration gravitational wave detectors or because its effects can
be observed when there exist resonance in a binary system.

All previously mentioned characteristics about compact
stars are frequently studied for the case of a perfect isotropic
fluid, but, at the same time, it is also very well know that the
knowledge of the EoS in the inner core of neutron stars is
very elusive. That difficulty has its origins in the uncertainty
of the nuclear EoS at extreme high densities, and for this
reason some authors have proposed that inside neutron stars
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could exist deconfined quark matter and others authors have
even proposed the existence of anisotropic effects. The exis-
tence of anisotropy can be justified by many reasons, among
them we have the possibility of a solid core or the presence of
strong magnetic fields, and by this reason [1] the possibility
of anisotropy inside neutron stars has been object of recent
study, e.g., [2–4]. Recently, the conditions for the (in)stability
of the isotropic pressure condition in collapsing spherically
symmetric, dissipative fluid distributions have been investi-
gated in [5]. In this seminal work, the author concluded that
dissipative fluxes, and/or energy density inhomogeneities
and/or the appearance of shear in the fluid flow, force any
initially isotropic configuration to abandon such a condition,
generating anisotropy in the pressure, i.e an initial fluid con-
figuration with isotropic pressure would tend to develop an
anisotropic pressure as it evolves, under conditions expected
in stellar evolution. Therefore, we are forced to consider pres-
sure anisotropy whenever relativistic fluids are involved.

It is very well know that the use of polytropic EoS
reduce numerical computations and describe consistently
many global properties of compact objects [6], therefore
polytropic EoS can serve as an extension to produce real-
istic EoS [7]. For example, we can use a polytropic index of
N = 0.5 , 0.6 in order to obtain a maximum neutron star mass
above two solar masses and radius in the range of the NICER
observations [8]. Additionally, several polytropic equations
can be used to model different densities inside neutron stars,
this is called the piecewise polytropic approximation. In Ref.
[4], the authors used a polytropic EoS to study the non-radial
oscillations (in Cowling approximation) of neutron stars in
the presence of anisotropic pressure. Our objective here is
to complement that work. To achieve this goal, we use EoS
in the framework of a relativistic mean field theory [9] for
hadronic stars and in the framework of the Mit bag model
[10,11] for quark stars.

The paper has the following structure: in Sect. 2 we recall
the equilibrium configuration of anisotropic compact stars.
In Sect. 3 we make a short explanation of the equations gov-
erning the oscillations of anisotropic stars. In section 4 we
describe realistic equations of state that are used in order to
model compact stars. In section 5 we discuss our results and
perform a comparison of our results with observational data.
Finally in Sect. 6 we give our final conclusions. Through our
discussion we use relativistic units c = 1 and G = 1, where
c is the speed of light and G is the gravitational constant,
respectively.

2 Generalized Tolman–Oppenheimer–Volkoff (TOV)
equations for an anisotropic fluid distribution

The Tolman–Oppenheimer–Volkoff (TOV) equations for an
static and spherical star are derived from the standard general
relativity Einstein field equations [12,13]

Gμν = Rμν − 1

2
Rgμν = 8πTμν, (1)

where Rμν is the Ricci tensor, R = gμν Rμν is the scalar
curvature, Tμν is the energy-momentum tensor and gμν is
the metric given by the coefficients of the line element below

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2(dθ2 + sin2 θdφ2). (2)

The anisotropic fluid distribution in spherical symmetry can
be represented by the following energy-momentum tensor

Tμν = ρuμuν + pkμkν + q
(
gμν + uμuν − kμkν

)
, (3)

where uμ is the fluid 4-velocity (uμuμ = −1), ρ is the fluid
energy density, kμ is the unit radial vector (kμkμ = 1) and
uμkμ = 0. The quantities p and q are the radial and tangential
pressures, respectively.

By solving the Einstein field equations for the anisotropic
fluid distribution we can obtain the differential equations that
govern the equilibrium configuration of the star

dm

dr
= 4πr2ρ, (4)

dp

dr
= −(ρ + p)

dΦ

dr
− 2σ

r
, (5)

dΦ

dr
= m + 4πr3 p

r(r − 2m)
, (6)

where m(r), p(r), ρ(r), Φ(r), σ(r) are quantities that depend
on the radial coordinate r and σ = p − q is the anisotropic
profile. For our purposes this profile will be defined as [4]

σ = λpμ = λp
(

1 − e−2Λ
)

, (7)

where λ is a dimensionless parameter which controls the
anisotropy and μ is a quasilocal variable.

As we can see, there are 3 equations and 4 unknown func-
tions. For this reason, in order to solve this system of equa-
tions, we need an equation of state p(ρ) and additionally
suitable boundary conditions.

The integration of the differential equations above is made
with the appropriate boundary conditions at r = 0:

m(0) = 0, p(0) = pc, Φ(0) = Φc, (8)

where pc is the central pressure and Φc is the metric field
value at the star center. The integration begins with the initial
conditions mentioned above and proceeds with tiny steps in
the radius r . Then when the integrated pressure is zero, the
numerical integration stops and the radius R and mass M of
the star are obtained.

It is also important to comment that the third boundary
condition is a guess for the metric field at the center, there-
fore the metric has to be renormalized using the value of the
vacuum Schwarzschild metric at r = R. That procedure is
necessary, because we need the correct metric values in order
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to obtain the coefficients of the oscillations equations, which
are going to be discussed in the next section.

3 Cowling approximation for non-radial perturbations

This approximation was introduced by Cowling [14] for
Newtonian stars and by McDermott for the case of neutron
stars. This approximation consists in ignoring the coupling
between the fluid motions and the metric perturbations. It
means that we can completely neglect the metric perturba-
tions (spacetime metric is kept fixed). In the next lines we
will briefly explain how the equations that describe the per-
turbations equations in the Cowling formalism are obtained.
For further details see [4],

To obtain the oscillation equations, we have to consider
the perturbation of the conservation equation for the energy
momentum tensor

∇νδT ν
μ = 0. (9)

We can project Eq. (9) along the uμ and obtain

uν∇νδρ + ∇ν

{[
(ρ + q)δν

μ + σkνkμ

]
δuμ

}

+ (ρ + q) aνδuν + ∇νuμδ
(
σkνkμ

) = 0. (10)

Projecting orthogonally to the background 4-velocity by
using the operator Pν

μ = δν
μ + uνuμ, we obtain

(δρ + δq) aμ + (ρ + q) uν
(∇νδuμ − ∇μδuν

)

+∇μδq + uμuν∇νδq + Pν
μ∇αδ

(
σkαkν

) = 0, (11)

where aμ = uν∇νuμ is the background 4-acceleration.
As the star is oscillating, the elements of fluid move from

their equilibrium position, that motion is represented by the
displacements ξ i , where i = 1, 2, 3 = r, θ, φ. Additionally
an integrability condition can be obtained from Eq. (11) from
which the correct expressions for ξθ and ξφ can be calculated.

Using the Eq. (10) and ξ i , we can explicitly write down
the expressions for the density and pressure perturbations

δρ = − (ρ + p)

[
e−Λ W ′

r2 + l(l + 1)

r2 V

]
Ylm − dρ

dr
e−Λ W

r2 Ylm

+2σ

r3 e−ΛW Ylm + σ
l(l + 1)

r2 V Ylm , (12)

δp = −dp

dρ

{
(ρ + p)

[
e−Λ W ′

r2 + l(l + 1)

r2 V

]
− 2σ

r3 e−ΛW

− σ
l(l + 1)

r2 V

}
Ylm − dp

dr
e−Λ W

r2 Ylm, (13)

where Ylm are the spherical harmonics, W and V are pertur-
bation functions and the symbol prime denotes the derivative
with respect to the radial coordinate r .

For the perturbation of the anisotropic pressure σ =
σ(p, μ), we have

δσ = ∂σ

∂p
δp, (14)

where was considered δμ = 0.
After considering a harmonic dependence on time for the

perturbation functions W (r, t) = W (r)eiωt and V (r, t) =
V (r)eiωt , where ω is the oscillation frequency, the oscillation
equations in the Cowling approximation can be obtained

W ′ = dρ

dp

[

ω2 ρ + p − σ

ρ + p

(
1 − ∂σ

∂p

)−1

eΛ−2Φr2V + Φ ′W
]

− l(l + 1)eΛV + σ

ρ + p

[
2

r

(
1 + dρ

dp

)
W

+ l(l + 1)eΛV
]
, (15)

V ′ = 2V Φ ′ −
(

1 − ∂σ

∂p

)
ρ + p

ρ + p − σ

eΛ

r2 W

+
[

σ ′

ρ + p − σ
+

(
dρ

dp
+ 1

)
σ

ρ + p − σ

(
Φ ′ + 2

r

)

−2

r

∂σ

∂p
−

(
1 − ∂σ

∂p

)−1 (
∂2σ

∂p2 p′ + ∂2σ

∂p∂μ
μ′

)]

V .

(16)

In order to solve the equations above we have to consider
boundary conditions at the center and surface of the star. The
boundary condition at the star surface furnishes

ω2 ρ + p − σ

ρ + p

(
1 − ∂σ

∂p

)−1

e−2Φ V

+
(

Φ ′ + 2

r

σ

ρ + p

)
e−Λ W

r2 = 0 , (17)

and the boundary condition at the star center (r = 0) satisfies

W̃ = −l Ṽ , (18)

where it was introduced the new functions defined by W =
W̃rl+1 and V = Ṽ r l . Hereafter, for all our results, we will
consider l = 2, i.e., we restrict to the quadrupolar modes.

4 Equation of state

As mentioned in the Introduction, depending on their pos-
sible interior composition, neutron stars can be classified as
hadronic stars with or without hyperons, hybrid stars con-
taining hadronic and quark phases and quark stars (strange
star). In this work, we will consider hadronic stars without
hyperons and quark stars.

4.1 Hadronic stars

For the description of the EoS of hadronic matter, we employ
the relativistic nonlinear Walecka model (NLW) [9]. The total
Lagrangian density reads
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Table 1 Coupling constants for the GM1 and NL3 parametrizations

Set GM1 NL3

mσ (MeV) 512 508.194

mω (MeV) 783 782.501

mρ (MeV) 770 763

gσ 8.91 10.217

gω 10.61 12.868

gρ 8.196 8.948

b 0.002947 0.002055

c −0.001070 −0.002651

LH =
∑

b

Lb + Lm +
∑

L

LL , (19)

where Lb, Lm and LL are the baryons, mesons and leptons
Lagrangians, respectively, and are given by

Lb = ψ̄b
(
iγμ∂μ − mb + gσbσ

−gωbγμωμ − 1

2
gρbγμτ · ρμ

)
ψb , (20)

Lm = 1

2

(
∂μσ∂μσ − m2

σ σ 2
)

− U (σ ) + 1

2
m2

ωωμωμ

−1

4
ωμνω

μν + 1

2
m2

ρρμ · ρμ − 1

4
ρμν · ρμν, (21)

LL = ψ̄L
(
iγμ∂μ − mL

)
ψL , (22)

where the b sum runs over the nucleons b ≡ p, n, and ψb

is the corresponding baryon Dirac field, whose interactions
are mediated by the σ scalar, ωμ isoscalar-vector, and ρμ

isovector-vector meson fields. The baryon mass and isospin
are denoted by mb and τ , respectively. The term

U (σ ) = 1

3
bmn(gσ σ )3 − 1

4
c(gσ σ )4, (23)

denotes the scalar self-interactions. The mesonic tensors are
given by their usual expressions ωμν = ∂μων − ∂νωμ and
ρμν = ∂μρν − ∂νρμ − gρb

(
ρμ × ρν

)
. The L sum runs

over the two lightest leptons L ≡ e, μ and ψL is the lepton
Dirac field. For more details about the EoS obtained from the
Lagrangian (19) see Ref. [15] and references therein.

The coupling constants adopted in this work are given by
the GM1 [16] and NL3 [17] parametrizations (see Table 1).

4.2 Quark stars

For the description of the EoS of quark matter, we consider
the phenomelogical MIT bag model, which characterizes a
degenerated Fermi gas of quarks up, down and strange [10,
11]. The EoS is given by a linear relationship which relates
the pressure and the energy density, that is

p = 1

3
(ρ − 4B) , (24)

where B is the bag constant. For stable strange quark matter
the bag constant values ranges from 57 MeV fm−3 to 92
MeV fm−3 [18]. It is worth to mention that a more recently
work reports a slightly different range 58.926 MeVfm−3 to
91.5 MeV fm−3 [19].

5 Results

We used the non-radial oscillations equations from Doneva’s
work [4]. At first, before using realistic equations of state,
we reproduced Doneva’s results and those calculations can
be considered as a strong test for our code. In this section
we show different profiles: mass-radius, frequency-mass,
mass-redshift, mass-density, normalized frequency-mass,
and frequency-mean density of compact stars. Those results
for hadronic stars were obtained using two parametrizations:
GM1 and NL3 (see Table 1) and for quark stars were obtained
using two different values for the bag constant: B = 60
MeV fm−3 and B = 90 MeV fm−3. For reasons of compari-
son we also show the case of isotropic stars, which correspond
to the black full lines (λ = 0).

5.1 Hadronic stars

As a first result, in Fig. 1 we observe, as expected, that the
maximum mass of the models are different for each value of
the λ parameter. We remark that smaller negative λ values
favor the pressure of the fluid to support stars with larger
masses and in contrast, a large positive λ value produces
stellar configurations with smaller masses. When the GM1
model is employed, we observe that for hadronic masses
below 0.3 M� and radii greater than 13.2 km, the anisotropy
does not have important effects. A similar situation can be
seen for the NL3 model, this behavior can be observed for
stars with masses smaller than 0.3 M� and radii greater than
14.5 km. In conclusion, hadronic stars with smaller masses
are not affected by anisotropy when they are described by
the GM1 or the NL3 model. Therefore, if we want to detect
anisotropic effects, we have to focus our attention on region
of massive stars.

In the sequence, we show the results for the frequency of
the fundamental mode as a function of the mass M , these
results are presented on the Fig. 2. According to the GM1
parameterization (Fig. 2a), we observe that for masses below
1.5 M�, the fundamental mode frequencies of anisotropic
hadronic stars do not have big difference when compared
with the frequencies of isotropic hadronic stars (λ = 0). For
masses above 1.5 M�, it is clear that as the |λ| increases, the
frequencies change significantly. The same behavior can be
observed for hadronic stars build with the NL3 parametriza-
tion, as can be seen in the Fig. 2b. We can conclude the
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Fig. 1 Mass-radius curves for anisotropic hadronic stars using the GM1 (left panel) and NL3 (right panel) parametrizations for different values of
the parameter λ. Black lines (λ = 0) correspond to isotropic hadronic stars
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Fig. 2 The frequency f of the fundamental mode as a function of the mass M using GM1 (left panel) and NL3 (right panel) parametrizations.
The results are shown for different values of the parameter λ

GM1 model gives greater frequencies when compared with
the NL3 model.

As it is well know in general relativity, an important quan-
tity is the surface gravitational redshift. In fact the gravita-
tional redshift Z , which is predicted by Einstein’s general
relativity, expresses that light emitted from the surface of a
compact object is expected to be displaced towards longer
wavelengths of the electromagnetic spectrum. The results
for the gravitational redshift as a function of the mass are
showed in Fig. 3, for different values of λ. From the two
figures, we observe that the gravitational redshift increases
linearly for masses smaller than ≈ 1.5 M�, this means that
for low mass configurations, the values of the gravitational
redshift becomes independent of the parameter λ. For stars
with masses greater than 1.5 M�, the anisotropy produces

significant changes for any λ. It is also clear that lower neg-
ative values of λ give greater gravitational redshifts.

In Fig. 4, the mass M of anisotropic hadronic stars is
shown as a function of the central density ρc. We observe
that for both the GM1 and NL3 models, the properties of
hadronic stars vary significantly as we change the parameter
λ. In fact, for central densities less than 200 MeV fm−3, the
masses of the anisotropic stars do not have a visible change,
in contrast for values greater than 200 MeV fm−3, the stellar
masses change considerably.

In Fig. 5 we show the normalized frequency ω
√

R3/M as
a function of the stellar mass, obtained for the GM1 (Fig. 5a)
and NL3 (Fig. 5b) parameterizations. In both figures, we note
that the normalized frequency can be higher (lower) when the
parameter λ is negative (positive). Consequently, for large
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Fig. 3 The total mass of the anisotropic hadronic stars as a function of the gravitational redshift Z(R) = e−Φ(R)/2 − 1 for several values of the
parameter λ. We use GM1 (left panel) and NL3 (right panel) parametrizations
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Fig. 4 The total mass of anisotropic hadronic stars versus the central density ρc using GM1 (left panel) and NL3 (right panel) parametrizations
for different values of the parameter λ

values of |λ| and large masses, the oscillation frequencies
differ significantly from the case of the isotropic hadronic
stars (λ = 0). That result is observed for the GM1 and NL3
models.

Finally in Fig. 6 we show the frequency of the funda-
mental mode as a function of the square root of the average
density. The figure shows that the frequency does not change
significantly for values lower than 0.02 km−1 in the average
density, i.e., in that region it is not possible to discriminate
between isotropic and anisotropic hadronic stars by the use
of the fundamental mode frequencies. Concerning the GM1
model (Fig. 6a), we realize that for average densities above
0.02 km−1 and for large positive values of λ, the deviation
of the anisotropic curves from the isotropic curves becomes
more significant. Likewise, for the NL3 model (Fig. 6b), as
the square root of the stellar average density grows for large

positive values of λ, the deviation of the fundamental mode
frequencies begins to be noticed. It is interesting to see that
for negative values of λ, the fundamental mode frequency
of anisotropic hadronic stars does not exhibit an important
deviation with respect to the frequency of the isotropic stars,
provided 0.01 <

√
M/R3 < 0.035.

5.2 Quark stars

In Fig. 7 we illustrate the mass-radius relation for aniso-
tropic stars using the MIT bag model. In order to elabo-
rate our results we employed two different values for the
bag constant: B = 60 MeV fm−3 (Fig. 7a) and B = 90
MeV fm−3 (Fig. 7b). From that figure, we can appreciate how
the equilibrium profile for strange stars is affected due to the
anisotropy. For example, for the case B = 60 MeV fm−3,
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Fig. 6 The fundamental mode frequency f as a function of square root of the average density
√

M/R3 for several values of the parameter λ. The
results are shown for GM1 (left panel) and NL3 (right panel) parametrizations

the anisotropy has a much greater effect on masses above
1.0M�. We observe that when the parameter λ changes, the
values for the maximum mass change significantly. Similar
results can be observed for the case of B = 90 MeV fm−3.

In Fig. 8 we show the profile of the frequency of the funda-
mental mode as a function of the stellar mass M . We observe
that, when the absolute value of the λ parameter changes,
there is a considerable effect in anisotropic stars when com-
pared with the curves corresponding to isotropic (i.e. λ = 0)
stars. Thus, the frequencies can be significantly higher or
lower than in the case of isotropic strange stars, if λ is slightly
negative or positive. For example, for a bag constant value
of B = 60 MeV fm−3 we see that the fundamental mode
frequencies range from 2.3 to 3.0 kHz. For the case of posi-
tive values of the λ parameter, anisotropic strange stars have
low frequencies that decrease with the mass until some min-

imum value is reached. For the case of negative values of
the λ parameter, the frequencies behave nearly constant with
the mass. Even though the anisotropic frequencies suffer big
changes due to λ, the frequencies are lower than 4 kHz [20].

Now we discuss the behavior of the gravitational redshift.
The results for the gravitational redshift as a function of the
mass are showed in Fig. 9, for different values of λ. From the
left panel, for B = 60 MeV fm−3 , in Fig. 9a, we observe
that the gravitational redshift increases linearly for masses
smaller than ≈ 1.4 M�, this means that for low mass config-
urations, the values of the the gravitational redshift becomes
independent of the parameter λ. For stars with masses greater
than 1.4 M�, the anisotropy produces significant changes for
any λ. From the right panel, B = 90 MeV fm−3, in Fig. 9b,
we observe that the gravitational redshift increases linearly
for masses smaller than ≈ 1.1 M�, this means that for low
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Fig. 7 Mass-radius curves for anisotropic quark stars with Mit bag constant B = 60 MeV fm−3 (left panel) and 90 MeV fm−3 (right panel) for
different values of the parameter λ
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Fig. 8 The fundamental mode frequency f as a function of the mass M with Mit bag constant B = 60 MeV fm−3 (left panel) and 90 MeV fm−3

(right panel). Results are plotted for different values of the parameter λ

mass configurations, the values of the the gravitational red-
shift becomes independent of the parameter λ. For stars with
masses greater than 1.1 M�, the anisotropy produces signif-
icant changes for any λ. It is also clear that lower negative
values of λ give greater gravitational redshifts.

In Fig. 10, the mass M of anisotropic quark stars is shown
as a function of the central density ρc for different values
of the parameter λ. For example, for the constant bag B =
60 MeV fm−3, the anisotropic quark mass does not change
considerably when λ is changed for central densities below
300 MeV fm−3. The stellar mass changes significantly for
central densities above ≈ 300 MeVfm−3 for any λ. Similar
results can be observed for B = 90 MeV fm−3.

In Fig. 11 we show the results for the normalized fre-
quency of the fundamental mode ω

√
R3/M as a function

of the stellar mass . The analysis in this case is similar to

the case considered in the Fig. 5 (hadronic case), i.e., the fre-
quencies change considerably when we increase the absolute
value of λ. Also, we can say that for a fixed value of λ and
considering larger masses, any anisotropic curve is very dif-
ferent from the isotropic case. Consequently, the oscillation
frequencies for massive stars can deviate considerably from
the case of the isotropic strange stars whenever |λ| takes large
values. On the other hand, by comparing the frequency and
the normalized frequency, we can notice that the maximum
frequency value is ≈ 3.6 kHz, while the maximum normal-
ized frequency ω ≈ 1.4 kHz. Moreover, both the fundamen-
tal mode frequency and the normalized frequency decrease as
the total mass increases for any value of λ. Later, they reach
a minimum point and the star becomes unstable. While the
decrease of anisotropic frequencies are a bit inclined, the
anisotropic normalized frequencies are abruptly inclined for
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Table 2 Neutron stars main properties for each one of the EoS used in the article

EoS λ M (M�) R (km) f (kHz) Z ρc (MeV fm−3)
√

M/R3 (G)

MITB60 2 1.38 9.88 2.37 0.3079 1316.929 0.037

MITB60 0 1.96 10.65 2.61 0.4814 1219.027 0.043

MITB60 -2 2.69 11.66 2.62 0.7715 742.395 0.041

MITB90 2 1.13 8.03 2.91 0.3096 1022.144 0.046

MITB90 0 1.60 8.71 3.19 0.4795 897.558 0.049

MITB90 -2 2.19 9.56 3.20 0.7647 666.990 0.051

GM1 2 1.67 11.46 2.17 0.3256 1497.773 0.033

GM1 0 2.30 11.80 2.47 0.5360 1187.773 0.037

GM1 -2 2.98 12.78 2.46 0.7973 668.297 0.037

NL3 2 2.02 12.78 1.91 0.3693 1094.099 0.031

NL3 0 2.77 13.16 2.18 0.6292 897.558 0.034

NL3 -2 3.53 13.97 2.18 0.9844 527.829 0.035

any λ. Another interesting observation is that, here, the curves
don’t overlap as it is shown for hadronic stars in the Fig. 5.

The oscillation frequency of the fundamental mode as a
function of the square root of the average density is shown in
Fig. 12, for some values of the parameter λ. On the left panel
(Fig. 12a), the plot shows small (big) changes of the frequen-
cies from the isotropic (i.e., λ = 0) strange stars only when λ

takes negative (positive) values and for small average density.
However, the effect of anisotropy on the frequency begins to
be noticed for any large value of the average density and for
any negative λ. On the right panel (Fig. 12b), The situation
of the deviation for the fundamental mode frequencies from
the isotropic frequency curve are visualized better when the
bag constant is increased, for any value of the parameter λ

and for any range along the average density.
Our main results for each one of the EoS used in this work

are summarized in Table 2.

5.3 Comparison between theory and observations

Comparing the theory and its predictions with the observa-
tional data is an interesting test that validates whether or not
an EoS is adequate to describe a realistic neutron star. In Figs.
13 and 14, we compared our results with the NICER con-
straints obtained from the pulsars PSRJ0030 + 0451 [21,22]
and PSR J0740 + 6620 [23,24] for hadronic and quark stars,
respectively. We also show the corresponding bands of the
pulsars PSRJ0740 + 6620 [25], PSRJ0348 + 0432 [26] and
PSRJ1614+2230 [27] and an error bar corresponding to the
binary system GW170817 [28]. For hadronic stars within the
NL3 model, Fig. 13b, the curve related to the anisotropic fac-
tor λ = 1.0 is the unique that satisfies the constraints obtained
from Pulsars observations. Additionally, we can note that the
decrease in the anisotropic factor produces an increase in the
radius for the same stellar mass, this behaviour pushes out the
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Fig. 13 Comparison of mass-radius curves for anisotropic hadronic stars with observational data using the GM1 (left panel) and NL3 (right panel)
parametrizations for different values of the parameter λ. Black lines (λ = 0) correspond to isotropic hadronic stars

Fig. 14 Comparison of mass-radius curves for anisotropic quark stars with observational data using Mit bag constant B = 60 MeV fm−3 (left
panel) and 90 MeV fm−3 (right panel) for different values of the parameter λ

models from the more central regions. The same effect can
be observed for the GM1 model, but in this case an approx-
imately vanishing anisotropic factor can be fulfil the above
mentioned constraints shown in Fig. 13a. A good perspec-
tive can be found out when we look at Fig. 14a, where we
test MIT bag model (B = 60 MeV fm−3). Clearly, when
λ decreases the MIT bag model will tend to correspond to
all observables. One can see that some of our results related
to hadronic stars are more accurate and closer to empirical
evidence of the neutron stars and therefore these EoS are
great candidates for describing a realistic neutron star. At
this stage, an interesting aspect related to our results is the
fact that the anisotropic parameter λ controls the values of
the maximum star masses and the corresponding radii. This
lead us to conclude that parameter λ can be used as a tuning
parameter to reproduce observational data of neutron stars
for the observable mass and radius.

6 Summary and final remarks

In this article we examined how the non-radial oscillations of
hadronic and quark stars are affected by anisotropic effects.

The results for hadronic stars were elaborated using two dif-
ferent parameterizations which are special cases of a rela-
tivistic mean field model and for the case of quark stars we
employed the MIT bag model.

All our analysis was made in the framework of the rela-
tivistic Cowling approximation, which means that the metric
perturbations do not have dynamics when the stellar fluid
is perturbed. Then we integrated numerically the non-radial
oscillation equations obtaining the frequency of the funda-
mental mode, which it is considered to be more important for
astrophysical applications. We even obtained more informa-
tion by combining the frequency value of the fundamental
mode with other physical properties of the star.

As far as we are concerned on hadronic and quark stars,
we found that the anisotropy alters the following stellar prop-
erties: the frequency of oscillation of the fundamental mode,
the total mass, total radius, the square root of the average
density, the central density, the normalized frequency, and
the surface redshift. Depending on the type of star to be
considered, the influence of anisotropy is more obvious in
some cases than in others, for instance, the frequency of the
fundamental mode for hadronic stars has deviated slightly
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for small average density. The same small effect is observed
to the gravitational redshift for both strange and hadronic
masses below 1.5 M�; that is, it is not possible to distinguish
between hadronic and quark stars. The same situation has
happened for small quark masses as a relationship of the total
radius. However, a big impact of anisotropy is clearly visu-
alized on other relationships, such as, the frequency of the
fundamental mode as function of the total mass has modified
significantly the quark stars; and the same result is viewed for
hadronic stars within the GM1 model. Another major impact
exists for the normalized frequency as a function of mass as a
result of anisotropy. Additionally, we have found noticeable
effects of the anisotropy when we illustrate the hadronic total
mass for radius lesser 14 km within the GM1 model and a
radius lesser 15 km under the NL3 model. A similar situa-
tion is perceived for the total mass as a function of central
density. One interesting feature that allows us to differentiate
between strange stars and hadronic stars is that the former
stars emit higher gravitational waves than the hadronic stars,
i.e., anisotropy boosts higher values for the quark frequency
of the frequency of the fundamental mode than hadronic fre-
quency. In conclusion, all features mentioned lines above
suggest that the anisotropic parameter λ monitors all stellar
properties of compact stars and it can be used as a tuning
parameter to reproduce mass and radius observational data.
From the comparison of our results with observational data,
one can see that some of our theoretical results are in agree-
ment with the empirical evidence of neutron stars, i.e. some
EoS used in this work are great candidates for describing a
realistic neutron star. In spite of some of our results related
to hadronic stars are more accurate and closer to empiri-
cal evidence of the neutron stars, it is possible to realize
the results with the MIT bag model can be favored depend-
ing on the bag constant B. The anisotropic factor λ leads
those curves to observable regions of the mass-radius dia-
gram. Softer EoS, when not figured in experimental ranges,
clearly can be favored when λ decreases, which opens new
possibilities for analysis of those EoS.
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